Superfast second-order methods for Unconstrained Convex Optimization

Yurii Nesterov, CORE/INMA

UCLouvain, Belgium

One World Optimization Seminar (OWOS)

June 29, 2020

Recent developments: Tensor Methods

Problem:

 $\min_{x \in \mathbb{E}} f(x) \quad | \text{ where } f(\cdot) \text{ is a differentiable function on } \mathbb{E}.$

Taylor approximation:

$$\Omega_{x,\rho}(y)=f(x)+\sum_{k=1}^{p}rac{1}{k!}D^{k}f(x)[y-x]^{k},\quad y\in\mathbb{E},$$

where $D^k f(x)[h]^k$ is the *k*th-order derivative of $f(\cdot)$ at $x \in \mathbb{E}$ along direction $h \in \mathbb{E}$.

Lipschitz continuity $\| \| D^p f(x) - D^p f(y) \| \le L_p \| x - y \|$ $x, y \in \mathbb{E}$, where the norm $\|\cdot\|$ is Euclidean and $p \ge 1$.

Augmented Taylor approximation:

$$\hat{\Omega}_{x,p,H}(y) = \Omega_{x,p}(y) + \frac{H}{(p+1)!} \|y-x\|^{p+1}, y \in \mathbb{E}.$$

Main property:

$$f(y) \leq \hat{\Omega}_{x,p,L_p}(y)$$
 for all $y \in \mathbb{E}$.

Implementability ($p \ge 1$)

Th. (N.2019) If $f(\cdot)$ is convex and $H \ge pL_p$, then $\hat{\Omega}_{x,p,H}(\cdot)$ is <u>convex</u>. **NB:** For p = 3, function $\tau^3 + H\tau^4$, $\tau \in \mathbb{R}$, is *never* convex.

Corollary. The point
$$T_{p,H}(x) = \arg\min_{y \in \mathbb{E}} \hat{\Omega}_{x,p,H}(y)$$
 is computable.

Basic Tensor Method: $x_{k+1} = T_{p,H}(x_k)$ Convergence: $O(k^{-p})$.

Accelerated Tensor Methods. Convergence: $O(k^{-(p+1)})$. (Baes 2009, N.2019. Tool: Estimating sequences.)

Extensions (Monteiro, Svaiter (2014) for p = 2) $O(k^{-(3p+1)/2})$.

NB: Very expensive line search (Bubeck, Jiang, Lee, Li, Sidford (2019), Gasnikov, Gorbunov, Kovalev, Mohhamed, Chernousova (2019)).

Maximal rate (Agarwal, Hazan (2017), Arjevani, Shamir, Shiff (2017))

$$O(k^{-(3p+1)/2}): \quad p=2 \Rightarrow O(k^{-7/2}), \quad p=3 \Rightarrow O(k^{-5}).$$

Main difficulty: Implementation of Tensor Step.

Accelerated 3rd-order method (N.2019)

Assumption: $||D^3f(x) - D^3f(y)|| \le L_3||x - y||, x, y \in \mathbb{E}.$

Augmented Taylor Polynomial:

$$\begin{split} \hat{\Omega}_{x,p,H}(h) &= f(x) + \langle f'(x), h \rangle + \frac{1}{2} \langle f''(x)h, h \rangle \\ &+ \frac{1}{6} D^3 f(x) [h]^3 + \frac{H}{24} \|h\|^4. \end{split}$$

Main Theorem: $D^3f(x)[h] \leq f''(x) + \frac{L_3}{2} ||h||^2 I$ for all $x, h \in \mathbb{E}$,

where I is the identity matrix.

Proof: $\forall x, h \in \mathbb{E} \Rightarrow 0 \leq f''(x-h) \leq f''(x) - D^3 f(x)[h] + \frac{L_3}{2} ||h||^2 I.$

Corollary: for function $\rho_x(h) = \frac{1}{2} \langle f''(x)h, h \rangle + \frac{L_3}{4} ||h||^4$, we have $\left(1 - \frac{1}{\sqrt{2}}\right) \rho_x''(h) \preceq \hat{\Omega}_{x,p,6L_3}''(h) \preceq \left(1 + \frac{1}{\sqrt{2}}\right) \rho_x''(h).$

Thus, we can use *relative non-degeneracy condition*! (Bauschke, Bolte, Teboulle (2016), Lu, Freund, N. (2018))

Relative non-degeneracy

Convex problem: $f^* = \min_{x \in \mathbb{E}} f(x).$

Scaling function: $\rho(\cdot)$ is strictly convex.

Relative non-degeneracy: $\mu\rho''(x) \preceq f''(x) \preceq L\rho''(x) \quad \forall x \in \mathbb{E}.$ Bregman distance: $\beta_{\rho}(x,y) = \rho(y) - \rho(x) - \langle \rho'(x), y - x \rangle.$ Main property: $\mu\beta_{\rho}(x,y) \leq \beta_{f}(x,y) \leq L\beta_{\rho}(x,y) \quad \forall x, y \in \mathbb{E}.$

Bregman-Distance Gradient Method (BDGM):

 $\begin{aligned} x_{k+1} &= \arg\min_{x\in\mathbb{E}} [f(x_k) + \langle f'(x_k), x - x_k \rangle + L\beta_{\rho}(x_k, x)], \ k \geq 0. \end{aligned}$ (Nonsmooth: Beck, Teboulle, *ORLetters*(2003). Smooth: N. *MP*(2005).)

Convergence: for $\gamma = \frac{\mu}{L}$ and $k \ge 0$ we have $\beta_{\rho}(x_{k+1}, x^{*}) \le (1 - \gamma)\beta_{\rho}(x_{k+1}, x^{*}) - \frac{1}{2L}(f(x_{k}) - f^{*}).$ **Our case:** $\mu = 1 - \frac{1}{\sqrt{2}}, \ L = 1 + \frac{1}{\sqrt{2}}, \ \gamma = 3 - 2\sqrt{2} > \frac{1}{6}.$

Accelerated 3rd-order method

Let $x_0 \in \mathbb{E}$, $\psi_0(x) = \frac{1}{4} \|x - x_0\|^4$, $A_k = \frac{10}{7L_2} \left(\frac{2}{3}\right)^3 \left(\frac{k}{4}\right)^4$, $a_{k+1} = A_{k+1} - A_k$. **Iteration** $k \ge 0$: **1.** Define $v_k = \arg \min_{x \in \mathbb{R}} \psi_k(x)$ and $y_k = \frac{A_k}{A_{k+1}} x_k + \frac{a_k}{A_{k+1}} v_k$. **2.** Set $\varphi_k(h) = \langle f'(y_k), h \rangle + \frac{1}{2} \langle f''(y_k)h, h \rangle + \frac{1}{6} D^3 f(y_k)[h]^3 + \frac{6L_3}{24} ||h||^4$. $\rho_k(h) = \frac{1}{2} \langle f''(y_k)h, h \rangle + \frac{L_3}{4} \|h\|^4$. Set $h_{k,0} = 0$ and iterate BDGM: $h_{k,i+1} = \arg\min_{k \in \mathbb{T}} \left\{ \langle \varphi'_k(h_{k,i}), h - h_{k,i} \rangle + L\beta_{\rho_k}(h_{k,i}, h) \right\},\$ $i \geq 0$. When stop at i_k , define $x_{k+1} = y_k + h_{k,i_k}$.

3. Update $\psi_{k+1}(x) = \psi_k(x) + a_{k+1}[f(x_{k+1}) + \langle f'(x_{k+1}), x - x_{k+1} \rangle].$

Convergence: $O(k^{-4})$. **Question:** What is the order of this method? **NB:** We use $D^3 f(y_k)[h]^2 = \lim_{\tau \to 0} \frac{1}{\tau^2} [f'(y_k + \tau h) + f'(y_k - \tau h) - 2f'(y_k)].$ WHAT ABOUT THE "LOWER BOUND" $O(k^{-7/2})$?

Implementation details

What do we need:

- 1. Justification of tensor methods with inexact tensor steps.
- 2. Justification of BDGM with inexact gradients.

What do we get:

Second-order method with the rate of convergence $O(k^{-4})$.

Complexity of iteration: $O(\ln \frac{1}{\epsilon})$ calls of oracle.

Problem class: functions with bounded fourth derivative.

Conclusion

1. Denote $M_p(f) = \sup_{x \in \mathbb{E}} \|D^p f(x)\|$. Then $M_3(f) \leq \sqrt{2M_2(f)M_4(f)}$.

Thus, there is no contradiction with the lower bound $O(k^{-7/2})$.

2. Expansion of the lower-order methods onto the field of high-order methods.

The rate of convergence is the same!

3. Old situation: Problem class \Leftrightarrow Order of the method. This is 1D-picture.

4. New situation: 2D-picture.

Parameters: Order of bounded derivative + Order of the method. We need to fill the table!

Some hints for future research

1. <u>Functions with bounded 2rd derivative</u> $\geq O(k^{-2})$

Worst function: $f_2(x) = |x^{(1)}|^2 + \sum_{i=1}^{k-1} |x^{(i+1)} - x^{(i)}|^2 - x^{(1)}.$

NB: Derivatives of order $p \ge 3$ are zeros. No help from bounding them.

2. Functions with bounded 3rd derivative $\geq O(k^{-7/2})$

Worst function:
$$f_3(x) = |x^{(1)}|^3 + \sum_{i=1}^{k-1} |x^{(i+1)} - x^{(i)}|^3 - x^{(1)}$$
.

NB: 3rd derivative is discontinuous. There is no high-order derivatives.

3. <u>Functions with bounded 4th derivative</u> $\geq O(k^{-5})$

Worst function: $f_4(x) = |x^{(1)}|^4 + \sum_{i=1}^{k-1} |x^{(i+1)} - x^{(i)}|^4 - x^{(1)}.$

NB: Derivatives of order $p \ge 5$ are zeros. No help from bounding them.

Hint: Bounds (1) and (3) are indeed unimprovable.

Some references

1. Yurii Nesterov. Inexact basic tensor methods. *CORE Discussion Paper* 2019/23 (November 2019).

- Acceptable accuracy for auxiliary problem in tensor methods.
- Convergence rate $O(k^{-6})$ for FGM used inside Cubic Reg. Newton.

2. Yurii Nesterov. Superfast second-order methods for unconstrained convex optimization. *CORE Discussion Paper* 2020/07 (January 2020). Presented at OWOS 29/06/2020.

3. Yurii Nesterov. Inexact accelerated high-order proximal-point methods. *CORE Discussion Paper* 2020/08 (February 2020).

Bi-Level Unconstrained Minimization (BLUM) based on high-order proximal-point operators. Will be presented at SIAM MDS $\underline{TOMORROW}$.

4. Yurii Nesterov. Inexact accelerated high-order proximal-point methods with auxiliary search procedure. *CORE Discussion Paper* 2020/10. 2nd-order implementation of 3rd-order scheme with the rate $O(k^{-5})$.

THANK YOU FOR YOUR ATTENTION!