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Two-stage stochastic programs

stage-one decision z: here and now T
Decision .
Resolution of
J: uncertainty
@ 1 &« |
1 1
.. t=1 =
nature makes a random decision w t=2

Recourse action
Yw

Stage-tWO deC|S|On Yo wait and see Figure taken from [Li and Grossmann, 2021]

Origin: George B. Dantzig (1955)

Monographs: [Shapiro, Dentcheva and Ruszczyriski, 2009], [Birge and Louveaux, 2011] ...



An example: power system planning

Stage 1: Determine the capacity of each power plant and unit price

o

The random demand and random production (from renewable energy)
are observed

g

Stage 2: Allocate the production of each power plant to different locations



Two-stage linear programs

A standard two-stage linear program (X polyhedral):

miznierr;(ize () Tz +Epup [U(2;w)],

where 1 (x;w) is the second-stage recourse:

Y(z;w) £ minimum  c(w) 'y
y

subject to  T'(w)z + W (w)y = h(w).

x: stage-one decision (independent of w)

y: stage-two decision (depends on w)



Two-stage linear programs

A standard two-stage linear program (X polyhedral):

minierr)\(ize ()2 + Eypp [Y(z;0)],

where 1 (z;w) is the second-stage recourse:

Y(r;w) 2 minimum  c(w) Ty
y

subject to  T'(w)z + W (w)y = h(w).

Given S realizations of w, the problem becomes

1S
minimize ()T + EZ [(CS)TyS]

IGX,yl,---,y pr
subject to Tz + W3y =h%, s=1,---,5.

Problem size: dim(x) + Sxdim(y) — if S is large: decomposition!



Decomposition

Two-stage problems: block angular constraints

X Yi y2 yg

Benders decomposition

many variants: single cut vs. multicut
stochastic decomposition

regularized decomposition

O () (8, Yy

Xy == XZ =0 X3

Lagrangian relaxation

(dual decomposition)

Subgradient Method
Progressive Hedging




Benders decomposition

In two-stage LP

mimnierr;(ize () "z + Eopnr [Y(z30) ],

where 1 (x;w) is the second-stage recourse:

P(r;w) 2 minimum  c(w) Ty
y

subject to  T'(w)x + W(w)y = h(w).




Benders decomposition

In two-stage LP

mia;nierr;(ize () "z + Eopnr [Y(z30) ],

where 1 (x;w) is the second-stage recourse:
)T

P(r;w) 2 minimum  c(w) Ty
y

subject to  T'(w)x + W(w)y = h(w).

(e ;w) is convex piecewise affine!

For each scenario w, one can get a linear lower approximation of ¢ at a given x



Nonconvex recourse

What if x appears in the objective function?

o T .
minimize () x+ Bunr [Y(z;0)],

where 1 (z;w) is the second-stage recourse:

Y(z;w) = minimum 2" D(w)y
Y

subject to  T'(w)x + W(w)y = h(w)

Applications in decision-dependent uncertainty, stochastic interdiction problem... [Liu, Cui, Pang and Sen, 2020]

The function v (e;w) is no longer convex!

N o

Recourse function v
o .

Recourse function ¢

N
&



Nonconvex recourse

In general, we consider

minimize ¢ (z) + Eu~p [¢(z;0)],
where ¢ (z;w) is the second-stage recourse:
Y(z;w) £ minimum  f(z,y;w)
Y

subject to  T(w)z + W(w)y = h(w), G(z,y;w) <0.

(p convex on a closed convex set X

- f(e, ®;w) concave-convex

G(e, ®;w) jointly convex

all functions can be nonsmooth

Q: How to generalize the Benders decomposition to solve such problems?

8



Recourse functions: absences of Clarke Regularity

A locally Lipschitz continuous function f is said to be Clarke regular at
if it is directionally differentiable and

) & i d E ) — (@) fla+td) — f(z)
A e A




Recourse functions: absences of Clarke Regularity

A locally Lipschitz continuous function f is said to be Clarke regular at
if it is directionally differentiable and

Faid) 2 i 28T =@ o, L@t td) = @)
’ H0 ¢ x—Z,t10 t

Examples: (weakly) convex functions, smooth functions, convex o smooth functions...



Recourse functions: absences of Clarke Regularity

A locally Lipschitz continuous function f is said to be Clarke regular at &
if it is directionally differentiable and

ey & gy 4 (@) = f(@) fx +td) - f(x)
Flad & g = e T

downward cusp inward corner

o,
: ////

A
N® = 0}

figure from [Rockafellar and Wets 09]

Absences of Clarke regularity



What can we do?

Back to the recourse function

P(r;w) = mini;num

subject to

' D(w)y
T(w)x + W(w)y = h(w)
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What can we do?

Back to the recourse function

Y(z;w) = minimum

y
subject to
0
g
g
g-w
o
-15
-6 -4 2 0

' D(w)y
T(w)x + W(w)y = h(w)

Recourse function v

10



What can we do?

Back to the recourse function

Y(z;w) £ minimum 2" D(w)y
y

subject to  T'(w)x + W(w)y = h(w)

Theoretically, this is a (piecewise linear-quadratic) difference-of-convex function
[Nouiehed, Pang and Razaviyayn, 2019]

However, its dc decomposition is tedious...
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What can we do?

Recall the sensitivity analysis of linear programs. Let us fix .

Perturbed constraints: 1 is convex piecewise affine
A [ minimum z'Dy
wcvx(x) = v

| subjectto Tx+Wy=h |

Perturbed objective: 1) concave piecewise affine
[ minimum 2" Dy

cvex é Y
Verel) | subjectto Tz +Wy=h |




What can we do?

Recall the sensitivity analysis of linear programs. Let us fix .

Perturbed constraints: 1 is convex piecewise affine
A [ minimum z'Dy
wcvx(m) = v

| subjectto Tx+Wy=h |

Perturbed objective: 1) concave piecewise affine
A [ minimum 2" Dy
wcve(x) - ) Y B

| subjectto Tz +Wy=h |

Joint perturbations:

A | minimum xT Dy
Plx) = Y
subject to Tax+Wy=nh

Variational analysis of optimal value functions can be found in [Bonnans and Shapiro, 2000]
11



Lifting: implicit convexity-concavity

minimum 2" Dy
y
subject to Tax+Wy=h

g

_ minimum z' Dy ]

T,z =S Y
Vi) subject to Tax+Wy=nh
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Lifting: implicit convexity-concavity

minimum 2" Dy ]

y
subject to Tax+Wy=h

g

o . T

— minimum z' Dy

P(x,2) £ Y |:> convex-concave
subject to Tax+Wy=nh

12



Lifting: implicit convexity-concavity

minimum 2" Dy

A

Y(z) = < b'é/ct to To+ W h <j implicitly convex-concave
ubj T Yy =

g @

_ A | minimum =" Dy
y
subject to Tax +Wy=nh [> convex-concave

12



Lifting: implicit convexity-concavity

subjectto Tx+Wy=~h

g @

.. T

_ minimum z'D

U(z,2) £ Y ’ |:> convex-concave
subject to Tax+Wy=nh

minimum z' Dy
A Y o
Y(z) = <j implicitly convex-concave

This implicitly convex-concave property holds for a broad class of optimal
value functions [Cui and Pang, 2021]
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Lifting: implicit convexity-concavity

o . T

minimum ' Dy

Y(x) £ [ . b'eyct to Tot W L ] <j implicitly convex-concave
ubj T Yy =

N @

.. T

_ minimum z'D

Y(w,z) £ Y i |:> convex-concave
subjectto Tz +Wy=nh

Note: A difference-of-convex function is explicitly convex-concave:

flx) = g(x) - fz)—g(2)
~—~— ~—~ N——
convex convex convex-concave
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Lifting: implicit convexity-concavity

The value function

s 4 a2 a4 o
The first-stage variable x

Implicitly convex-concave in R convex-concave in R?

convex/concave in R
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Implicitly convex-concave: surrogations

Moreau envelope (f may not be convex)

1) 2 it { 1)+ e ulP}.
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Implicitly convex-concave: surrogations

Moreau envelope (f may not be convex)

1) 2 it { £+ 5o wIP}.

can always be decomposed into difference-of-convex functions

. 1 1 1
e f(x :—x2—sup{—fy——y2+—yTx}
7(@) = gllel? =sup { <) = ool + -

convex in z even if f is nonconvex

14



Implicitly convex-concave: surrogations

Moreau envelope (f may not be convex)

1) 2 it { 1)+ e ulP}.

can always be decomposed into difference-of-convex functions

: 1 1 1
e f(x = —|z||* - sup{—f 1Y) — — y2+—yTw}
if(a) = 5-lalP = s =7 - - IolP + -

Vv
not easy to compute if f is not Clarke-regular!
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Implicitly convex-concave: surrogations

Partial Moreau envelope for an implicitly convex-concave function :

et 2 it {B(e2)+ 5 llo =l |

0 o N
e = Value function
z o #[|= -Partial Moreau
" " Moreau
6 © 5
s K
10 -10
12 -2 10
14 14
/ Y =
16 4 16 o ?-
¢
18 : . . s . . . . . .= . . .
s s « B 2 E o £ B “ B 2 El 0 s s “ B 2

First-stage variable x First-stage variable x First-stage variable x

El

0
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Implicitly convex-concave: surrogations

Partial Moreau envelope for an implicitly convex-concave function :

s — 1
et 2 it {B(e2)+ 5 lle =l |

Difference-of-convex decomposition:

1 — 1 1
el = gl —sup{ =B,z - el + 22Ta ).
H,—/ ~

strongly convex denoted as g, (z), convex

The evaluation of the function value and subgradient of g, at x can be
done by solving a convex problem

15



Implicitly convex-concave: surrogations

1, _ R }
e z) = — ||z — su —-Y(x,2) — —|lz||"+—2 x
W= el — s { =G - ool +
strongly convex denoted as g+ (z), convex
1, o .
< 2—Hz|| — linearization of g, at any point
g

strongly convex

-2 0
= \/alue function Soci == \/alue function
4 | | == Partial Moreau envelope -2 | === Partial Moreau envelope
o Maijorization Majorization //
e S
’ 0 Left: v+ =0.15
1
N
o .
Right: v = 0.02
12+ g ’7
g
25 2 .‘6-6 -55 -5 4.5 4 35 3 2.5 2
X X
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A decomposition algorithm: fixed samples

Fixed S scenarios {(D*,T°, W*, h*)}3_,

. . . 1«
minimize first-stage obj + ggws(:c),

z e X
where the s-th recourse is

ps(x) = mini;num z' D%y

subject to TPz + W?oy =h*

17



A decomposition algorithm: fixed samples

Fixed S scenarios {(D*,T°, W*, h*)}3_,

. . . 1«
minimize first-stage obj + ggws(x),

z e X
where the s-th recourse is
iy e T s
Ys(z) £ minimum  x' Dy
Y

subject to TPz + W?oy =h*

Master problem:

k+1

. I K
2T = argmin | first-stage obj + E; eyths(x; ")

rzeX

Subproblem: for each scenario s, solve y® of the recourse problem at
x = 2¥*1 to get the next surrogation ey s (; z*)
(decomposable over different scenarios)

Need an outer loop to update v | 0



A decomposition algorithm: fixed samples

7~

Theorem: Under technical conditions,
(a) any accumulation point is a (properly-defined) stationary point;

(b) if nyk < +o00, then the objective value sequence converges.
k>0

18



A decomposition algorithm: fixed samples

Theorem: Under technical conditions,
(a) any accumulation point is a (properly-defined) stationary point;

(b) if nyk < +o00, then the objective value sequence converges.
k>0

==V/alue function

Majorization

A technical note:

2
4| | = Partial Moreau envelope
6
8

the surrogation is neither an upper
bound nor a lower bound of the
original recourse
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Decomposition with sampling

For each step, we can also sample a batch of scenarios {(D?®,T%, W*, h®)}scs,

Master problem:

Z ey s(; xk)

SESK

1
xFt1 = argmin | first-stage obj + ——
reX ’Sk‘

Subproblem: for each sampled scenario s € Sy, solve y* at z = z**! to
get ey1)s(x; :ck)

Gradually add samples to the master problem

19



Decomposition with sampling

For each step, we can also sample a batch of scenarios {(D?®,T%, W*, h®)}scs,

Master problem:

k+1

2"t = argmin | first-stage obj + —— Z €7ws(x;mk)

reX ’Sk‘sesk

Subproblem: for each sampled scenario s € Sy, solve y* at z = z**! to
get ey1)s(x; :ck)

Gradually add samples to the master problem

Sample-size requirement:

Z St < oo for some n € (0,1/2).
* Sk ( Sk

19



Numerical experiments

compared with the general purpose nonlinear programming solver Knitro

Knitro IP-direct
900 |\ — knitro IP-CG
800 - - Decomposition
700
600
°
E s00
1=
400
300
200
100 e
0
0 10000 20000 30000 40000 50000

Number of scenarios

Knitro IP-direct
110+ ——Kaitro IP-CG
- — Decomposition
108
E]
=1
>
o
21
B
Kol
o1
[e}
100

%
0 10000 20000 30000 40000 50000
Number of scenarios

Sizes of the deterministic equivalent problems:

# of scenarios

10* 5 x 10*

# of variables (1st+2nd stages) | 400,010 | 2,000,010

# of constraints

850,030 | 4,250,030

1st stage: x € R10

22 inequality constraints

2nd stage: y° € R%0

93 inequality constraints

Algorithms stop if
KKT residual < 10~4
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Advertisement

Our new monograph (2021)
Modern Nonconvex Nondifferentiable Optimization

Available at SIAM Bookstore
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Thank Youl

22



