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Two-stage stochastic programs

stage-one decision x: here and now

nature makes a random decision ω

stage-two decision yω: wait and see Figure taken from [Li and Grossmann, 2021]

Origin: George B. Dantzig (1955)

Monographs: [Shapiro, Dentcheva and Ruszczyński, 2009], [Birge and Louveaux, 2011] ...
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An example: power system planning

Stage 1: Determine the capacity of each power plant and unit price

The random demand and random production (from renewable energy)
are observed

Stage 2: Allocate the production of each power plant to different locations
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Two-stage linear programs

A standard two-stage linear program (X polyhedral):

minimize
x∈X

(c0)⊤x+ Eω∼P [ψ(x;ω) ] ,

where ψ(x;ω) is the second-stage recourse:

ψ(x;ω) ≜ minimum
y

c(ω)⊤y

subject to T (ω)x+W (ω)y = h(ω).

x: stage-one decision (independent of ω)

y: stage-two decision (depends on ω)
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Two-stage linear programs

A standard two-stage linear program (X polyhedral):

minimize
x∈X

(c0)⊤x+ Eω∼P [ψ(x;ω) ] ,

where ψ(x;ω) is the second-stage recourse:

ψ(x;ω) ≜ minimum
y

c(ω)⊤y

subject to T (ω)x+W (ω)y = h(ω).

Given S realizations of ω, the problem becomes

minimize
x∈X,y1,··· ,yS

(c0)⊤x+
1

S

S!

s=1

"
(cs)⊤ys

#

subject to T sx+W sys = hs, s = 1, · · · , S.

Problem size: dim(x) + S×dim(y) −→ if S is large: decomposition!
4



Decomposition

Two-stage problems: block angular constraints

Benders decomposition

many variants: single cut vs. multicut

stochastic decomposition

regularized decomposition

...

Lagrangian relaxation
(dual decomposition)

Subgradient Method

Progressive Hedging

...
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Benders decomposition

In two-stage LP

minimize
x∈X

(c0)⊤x+ Eω∼P [ψ(x;ω) ] ,

where ψ(x;ω) is the second-stage recourse:

ψ(x;ω) ≜ minimum
y

c(ω)⊤y

subject to T (ω)x+W (ω)y = h(ω).

ψ(• ;ω) is convex piecewise affine!

For each scenario ω, one can get a linear lower approximation of ψ at a given x
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Nonconvex recourse

What if x appears in the objective function?

minimize
x∈X

(c0)⊤x+ Eω∼P [ψ(x;ω) ] ,

where ψ(x;ω) is the second-stage recourse:

ψ(x;ω) = minimum
y

x⊤D(ω)y

subject to T (ω)x+W (ω)y = h(ω)

Applications in decision-dependent uncertainty, stochastic interdiction problem... [Liu, Cui, Pang and Sen, 2020]

The function ψ(•;ω) is no longer convex!
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Nonconvex recourse

In general, we consider

minimize
x∈X

ϕ(x) + Eω∼P [ψ(x;ω) ] ,

where ψ(x;ω) is the second-stage recourse:

ψ(x;ω) ≜ minimum
y

f(x, y;ω)

subject to T (ω)x+W (ω)y = h(ω), G(x, y;ω) ≤ 0.

- ϕ convex on a closed convex set X

- f(•, •;ω) concave-convex
- G(•, •;ω) jointly convex

- all functions can be nonsmooth

Q: How to generalize the Benders decomposition to solve such problems?
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Recourse functions: absences of Clarke Regularity

A locally Lipschitz continuous function f is said to be Clarke regular at x̄
if it is directionally differentiable and

f ′(x̄; d) ≜ lim
t↓0

f(x̄+ td)− f(x̄)

t
= lim sup

x→x̄,t↓0

f(x+ td)− f(x)

t
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Recourse functions: absences of Clarke Regularity

A locally Lipschitz continuous function f is said to be Clarke regular at x̄
if it is directionally differentiable and

f ′(x̄; d) ≜ lim
t↓0

f(x̄+ td)− f(x̄)

t
= lim sup

x→x̄,t↓0

f(x+ td)− f(x)

t

Examples: (weakly) convex functions, smooth functions, convex ◦ smooth functions...
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Recourse functions: absences of Clarke Regularity

A locally Lipschitz continuous function f is said to be Clarke regular at x̄
if it is directionally differentiable and

f ′(x̄; d) ≜ lim
t↓0

f(x̄+ td)− f(x̄)

t
= lim sup

x→x̄,t↓0

f(x+ td)− f(x)

t

downward cusp inward corner

figure from [Rockafellar and Wets 09]

Absences of Clarke regularity
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What can we do?

Back to the recourse function

ψ(x;ω) ≜ minimum
y

x⊤D(ω)y

subject to T (ω)x+W (ω)y = h(ω)
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What can we do?

Back to the recourse function

ψ(x;ω) ≜ minimum
y

x⊤D(ω)y

subject to T (ω)x+W (ω)y = h(ω)

Theoretically, this is a (piecewise linear-quadratic) difference-of-convex function

[Nouiehed, Pang and Razaviyayn, 2019]

However, its dc decomposition is tedious...
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What can we do?

Recall the sensitivity analysis of linear programs. Let us fix x̄.

Perturbed constraints: ψ is convex piecewise affine

ψcvx(x) ≜
!

minimum
y

x̄⊤Dy

subject to Tx+Wy = h

"

Perturbed objective: ψ concave piecewise affine

ψcve(x) ≜
!

minimum
y

x⊤Dy

subject to T x̄+Wy = h

"

Joint perturbations:

ψ(x) ≜
!

minimum
y

x⊤Dy

subject to Tx+Wy = h

"

Variational analysis of optimal value functions can be found in [Bonnans and Shapiro, 2000]
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Lifting: implicit convexity-concavity

ψ(x) ≜
!

minimum
y

x⊤Dy

subject to Tx+Wy = h

"

ψ(x, z) ≜
!

minimum
y

z⊤Dy

subject to Tx+Wy = h

"
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Lifting: implicit convexity-concavity

ψ(x) ≜
!

minimum
y

x⊤Dy

subject to Tx+Wy = h

"

ψ(x, z) ≜
!

minimum
y

z⊤Dy

subject to Tx+Wy = h

"

implicitly convex-concave

convex-concave

This implicitly convex-concave property holds for a broad class of optimal
value functions [Cui and Pang, 2021]
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Lifting: implicit convexity-concavity

ψ(x) ≜
!

minimum
y

x⊤Dy

subject to Tx+Wy = h

"

ψ(x, z) ≜
!

minimum
y

z⊤Dy

subject to Tx+Wy = h

"

implicitly convex-concave

convex-concave

Note: A difference-of-convex function is explicitly convex-concave:

f(x)#$%&
convex

− g(x)#$%&
convex

""# f(x)− g(z)# $% &
convex-concave
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Lifting: implicit convexity-concavity

Implicitly convex-concave in R convex-concave in R2 convex/concave in R

13



Implicitly convex-concave: surrogations

Moreau envelope (f may not be convex)

eoriγ f(x) ≜ inf
y

'
f(y) +

1

2γ
‖x− y‖2

(
.
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Implicitly convex-concave: surrogations

Moreau envelope (f may not be convex)

eoriγ f(x) ≜ inf
y

'
f(y) +

1

2γ
‖x− y‖2

(
.

can always be decomposed into difference-of-convex functions

eoriγ f(x) =
1

2γ
‖x‖2 − sup

y

'
−f(y)− 1

2γ
‖y‖2 + 1

γ
y⊤x

(

# $% &
convex in x even if f is nonconvex
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Implicitly convex-concave: surrogations

Moreau envelope (f may not be convex)

eoriγ f(x) ≜ inf
y

'
f(y) +

1

2γ
‖x− y‖2

(
.

can always be decomposed into difference-of-convex functions

eoriγ f(x) =
1

2γ
‖x‖2 − sup

y

'
−f(y)− 1

2γ
‖y‖2 + 1

γ
y⊤x

(

# $% &
not easy to compute if f is not Clarke-regular!
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Implicitly convex-concave: surrogations

Partial Moreau envelope for an implicitly convex-concave function ψ:

eγψ(z) ≜ inf
x

'
ψ(x, z) +

1

2γ
‖x− z‖2

(
,
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Implicitly convex-concave: surrogations

Partial Moreau envelope for an implicitly convex-concave function ψ:

eγψ(z) ≜ inf
x

'
ψ(x, z) +

1

2γ
‖x− z‖2

(
,

Difference-of-convex decomposition:

eγψ(z) =
1

2γ
‖z‖2

# $% &
strongly convex

− sup
x

'
−ψ(x, z)− 1

2γ
‖x‖2 + 1

γ
z⊤x

(

# $% &
denoted as gγ(z), convex

.

The evaluation of the function value and subgradient of gγ at x can be
done by solving a convex problem
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Implicitly convex-concave: surrogations

eγψ(z) =
1

2γ
‖z‖2

# $% &
strongly convex

− sup
x

'
−ψ(x, z)− 1

2γ
‖x‖2 + 1

γ
z⊤x

(

# $% &
denoted as gγ(z), convex

≤ 1

2γ
‖z‖2 − linearization of gγ at any point

# $% &
strongly convex

Left: γ = 0.15

Right: γ = 0.02
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A decomposition algorithm: fixed samples

Fixed S scenarios {(Ds, T s,W s, hs)}Ss=1

minimize
x∈X

first-stage obj +
1

S

n!

s=1

ψs(x),

where the s-th recourse is

ψs(x) ≜ minimum
y

x⊤Dsy

subject to T sx+W sy = hs

Master problem:

xk+1 = argmin
x∈X

!
first-stage obj +

1

S

n)

s=1

*eγψs(x;x
k)

"

Subproblem: for each scenario s, solve ys of the recourse problem at
x = xk+1 to get the next surrogation *eγψs(x;x

k)
(decomposable over different scenarios)

Need an outer loop to update γ ↓ 0
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A decomposition algorithm: fixed samples

Theorem: Under technical conditions,

(a) any accumulation point is a (properly-defined) stationary point;

(b) if
)

k≥0

γk < +∞, then the objective value sequence converges.

A technical note:

the surrogation is neither an upper
bound nor a lower bound of the
original recourse
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Decomposition with sampling

For each step, we can also sample a batch of scenarios {(Ds, T s,W s, hs)}s∈Sk

Master problem:

xk+1 = argmin
x∈X

+

, first-stage obj +
1

|Sk|
)

s∈Sk

*eγψs(x;x
k)

-

.

Subproblem: for each sampled scenario s ∈ Sk, solve ys at x = xk+1 to
get *eγψs(x;x

k)

Gradually add samples to the master problem

Sample-size requirement:
∞)

ν=1

Sk+1 − Sk

Sk+1 (Sk)η
< ∞ for some η ∈ (0, 1/2).
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Numerical experiments

compared with the general purpose nonlinear programming solver Knitro

1st stage: x ∈ R10

22 inequality constraints

2nd stage: ys ∈ R40

93 inequality constraints

Algorithms stop if

KKT residual ≤ 10−4

Sizes of the deterministic equivalent problems:

# of scenarios 104 5× 104

# of variables (1st+2nd stages) 400, 010 2, 000, 010

# of constraints 850, 030 4, 250, 030
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Advertisement

Our new monograph (2021)

Modern Nonconvex Nondifferentiable Optimization

Available at SIAM Bookstore
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Thank You!
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