

Two-stage Stochastic Programs with Nonconvex Recourse

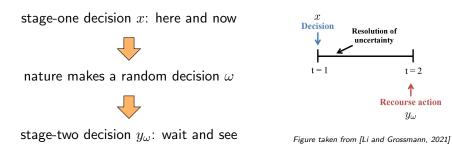
Ying Cui

Department of Industrial and Systems Engineering University of Minnesota

Joint work with Hanyang Li (UMN)

Also acknowledge: Junyi Liu, Jong-Shi Pang and Suvrajeet Sen

Two-stage stochastic programs



Origin: George B. Dantzig (1955)

Monographs: [Shapiro, Dentcheva and Ruszczyński, 2009], [Birge and Louveaux, 2011] ...

t = 2

 y_{ω}

Stage 1: Determine the capacity of each power plant and unit price

The random demand and random production (from renewable energy) are observed

 $\overline{\mathbf{V}}$

Stage 2: Allocate the production of each power plant to different locations

Two-stage linear programs

A standard two-stage linear program (X polyhedral):

 $\begin{array}{l} \underset{x \in X}{\text{minimize }} (c^0)^\top x + \mathbb{E}_{\omega \sim \mathbb{P}} \left[\psi(x; \omega) \right], \\ \text{where } \psi(x; \omega) \text{ is the second-stage recourse:} \\ \psi(x; \omega) \triangleq \underset{y}{\text{minimum }} c(\omega)^\top y \\ \text{subject to } T(\omega) x + W(\omega) y = h(\omega). \end{array}$

x: stage-one decision (independent of ω)

y: stage-two decision (depends on ω)

Two-stage linear programs

A standard two-stage linear program (X polyhedral):

$$\begin{split} \underset{x \in X}{\text{minimize}} & (c^0)^\top x + \mathbb{E}_{\omega \sim \mathbb{P}} \left[\psi(x; \omega) \right], \\ \text{where } \psi(x; \omega) \text{ is the second-stage recourse:} \\ & \psi(x; \omega) \triangleq \underset{y}{\text{minimum}} & c(\omega)^\top y \\ & \text{subject to} & T(\omega) x + W(\omega) y = h(\omega). \end{split}$$

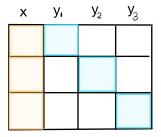
Given S realizations of $\omega,$ the problem becomes

$$\begin{array}{ll} \underset{x \in X, y^{1}, \cdots, y^{S}}{\text{minimize}} & (c^{0})^{\top}x + \frac{1}{S}\sum_{s=1}^{S}\left[\,(c^{s})^{\top}y^{s}\,\right] \\ \text{subject to} & T^{s}x + W^{s}y^{s} = h^{s}, \quad s = 1, \cdots, S. \end{array}$$

Problem size: dim(x) + $S \times dim(y) \longrightarrow$ if S is large: decomposition!

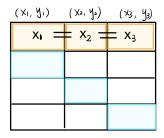
Decomposition

Two-stage problems: block angular constraints



Benders decomposition

many variants: single cut vs. multicut stochastic decomposition regularized decomposition



Lagrangian relaxation

(dual decomposition)

Subgradient Method

Progressive Hedging

. . .

Benders decomposition

In two-stage LP

$$\begin{split} \underset{x \in X}{\text{minimize}} & (c^0)^\top x + \mathbb{E}_{\omega \sim \mathbb{P}} \left[\psi(x; \omega) \right], \\ \text{where } \psi(x; \omega) \text{ is the second-stage recourse:} \\ & \psi(x; \omega) \triangleq \underset{y}{\text{minimum}} & c(\omega)^\top y \\ & \text{subject to} & T(\omega) x + W(\omega) y = h(\omega). \end{split}$$

Benders decomposition

In two-stage LP

$$\begin{split} & \underset{x \in X}{\text{minimize}} \ (c^0)^\top x + \mathbb{E}_{\omega \sim \mathbb{P}} \left[\psi(x; \omega) \right], \\ & \text{where } \psi(x; \omega) \text{ is the second-stage recourse:} \\ & \psi(x; \omega) \triangleq \underset{y}{\text{minimum}} \ c(\omega)^\top y \\ & \text{subject to} \ T(\omega) x + W(\omega) y = h(\omega). \end{split}$$

For each scenario $\omega,$ one can get a linear lower approximation of ψ at a given x

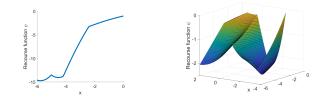
Nonconvex recourse

What if x appears in the objective function?

$$\begin{split} \underset{x \in X}{\text{minimize}} & (c^0)^\top x + \mathbb{E}_{\omega \sim \mathbb{P}} \left[\psi(x; \omega) \right], \\ \text{where } \psi(x; \omega) \text{ is the second-stage recourse:} \\ & \psi(x; \omega) = \underset{y}{\text{minimum}} & \overset{x^\top}{x} D(\omega) y \\ & \text{subject to} & T(\omega) x + W(\omega) y = h(\omega) \end{split}$$

Applications in decision-dependent uncertainty, stochastic interdiction problem... [Liu, Cui, Pang and Sen, 2020]

The function $\psi(\bullet; \omega)$ is no longer convex!



Nonconvex recourse

In general, we consider

$$\begin{split} \min_{x \in X} & \varphi(x) + \mathbb{E}_{\omega \sim \mathbb{P}} \left[\psi(x; \omega) \right], \\ \text{where } \psi(x; \omega) \text{ is the second-stage recourse:} \\ & \psi(x; \omega) \triangleq \min_{y} \quad f(x, y; \omega) \\ & \text{ subject to } \quad T(\omega)x + W(\omega)y = h(\omega), \ G(x, y; \omega) \leq 0. \end{split}$$

- φ convex on a closed convex set X
- $f(ullet,ullet;\omega)$ concave-convex
- $G(\bullet,\bullet;\omega)$ jointly convex
- all functions can be nonsmooth

Q: How to generalize the Benders decomposition to solve such problems?

A locally Lipschitz continuous function f is said to be Clarke regular at \bar{x} if it is directionally differentiable and

$$f'(\bar{x};d) \triangleq \lim_{t \downarrow 0} \frac{f(\bar{x}+td) - f(\bar{x})}{t} = \limsup_{x \to \bar{x}, t \downarrow 0} \frac{f(x+td) - f(x)}{t}$$

A locally Lipschitz continuous function f is said to be Clarke regular at \bar{x} if it is directionally differentiable and

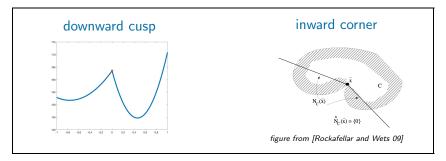
$$f'(\bar{x};d) \triangleq \lim_{t \downarrow 0} \frac{f(\bar{x}+td) - f(\bar{x})}{t} = \limsup_{x \to \bar{x}, t \downarrow 0} \frac{f(x+td) - f(x)}{t}$$

Examples: (weakly) convex functions, smooth functions, convex o smooth functions...

Recourse functions: absences of Clarke Regularity

A locally Lipschitz continuous function f is said to be Clarke regular at \bar{x} if it is directionally differentiable and

$$f'(\bar{x};d) \triangleq \lim_{t \downarrow 0} \frac{f(\bar{x}+td) - f(\bar{x})}{t} = \limsup_{x \to \bar{x}, t \downarrow 0} \frac{f(x+td) - f(x)}{t}$$



Absences of Clarke regularity

Back to the recourse function

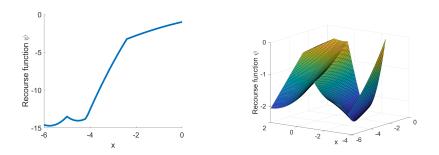
$$\begin{split} \psi(x;\omega) \, &\triangleq \, \underset{y}{\text{minimum}} & x^\top D(\omega)y \\ \text{subject to} & T(\omega)x + W(\omega)y = h(\omega) \end{split}$$

What can we do?

Back to the recourse function

$$\psi(x;\omega) \triangleq \min_{y} \quad x^{\top}D(\omega)y$$

subject to $T(\omega)x + W(\omega)y = h(\omega)$



Back to the recourse function

$$\psi(x;\omega) \triangleq \min_{y} \quad x^{\top}D(\omega)y$$

subject to $T(\omega)x + W(\omega)y = h(\omega)$

Theoretically, this is a (piecewise linear-quadratic) difference-of-convex function [Nouiehed, Pang and Razaviyayn, 2019]

However, its dc decomposition is tedious...

What can we do?

Recall the sensitivity analysis of linear programs. Let us fix \bar{x} .

Perturbed constraints: ψ is convex piecewise affine

$$\psi_{\text{cvx}}(x) \triangleq \begin{bmatrix} \min & \bar{x}^\top Dy \\ y & \text{subject to} & Tx + Wy = h \end{bmatrix}$$

Perturbed objective: ψ concave piecewise affine

$$\psi_{\text{cve}}(x) \triangleq \begin{bmatrix} \min_{y} & x^{\top} Dy \\ \text{subject to} & T\bar{x} + Wy = h \end{bmatrix}$$

What can we do?

Recall the sensitivity analysis of linear programs. Let us fix \bar{x} .

Perturbed constraints: ψ is convex piecewise affine

$$\psi_{\text{cvx}}(x) \triangleq \begin{bmatrix} \min & \bar{x}^\top Dy \\ y \\ \text{subject to} & Tx + Wy = h \end{bmatrix}$$

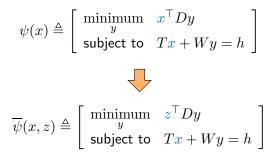
Perturbed objective: ψ concave piecewise affine

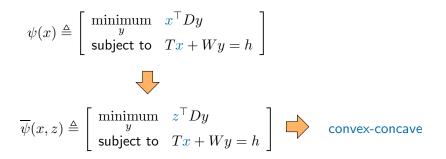
$$\psi_{\text{cve}}(x) \triangleq \begin{bmatrix} \min_{y} & x^{\top} Dy \\ \text{subject to} & T\bar{x} + Wy = h \end{bmatrix}$$

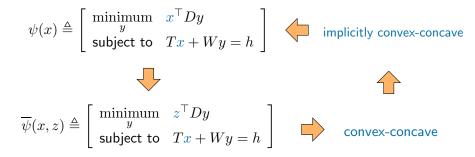
Joint perturbations:

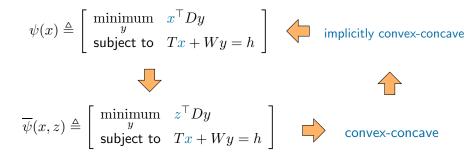
$$\psi(x) \triangleq \begin{bmatrix} \min_{y} & x^{\top} Dy \\ \text{subject to} & Tx + Wy = h \end{bmatrix}$$

Variational analysis of optimal value functions can be found in [Bonnans and Shapiro, 2000]





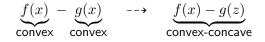


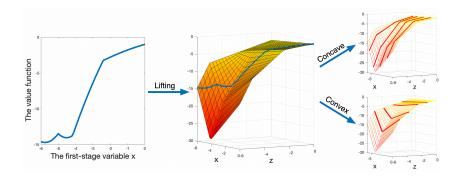


This implicitly convex-concave property holds for a broad class of optimal value functions [Cui and Pang, 2021]

$$\psi(x) \triangleq \begin{bmatrix} \min_{y} & x^{\top} Dy \\ \text{subject to} & Tx + Wy = h \end{bmatrix} \quad (\text{implicitly convex-concave})$$
$$\overline{\psi}(x, z) \triangleq \begin{bmatrix} \min_{y} & z^{\top} Dy \\ \text{subject to} & Tx + Wy = h \end{bmatrix} \quad (\text{convex-concave})$$

Note: A difference-of-convex function is explicitly convex-concave:





Implicitly convex-concave in ${\mathbb R}$

convex-concave in \mathbb{R}^2

 $\operatorname{convex}/\operatorname{concave}$ in $\mathbb R$

Moreau envelope (f may not be convex)

$$e_{\gamma}^{\text{ori}}f(x) \triangleq \inf_{y} \left\{ f(y) + \frac{1}{2\gamma} \|x - y\|^2 \right\}.$$

Moreau envelope (f may not be convex)

$$e_{\gamma}^{\operatorname{ori}}f(x) \triangleq \inf_{y} \left\{ f(y) + \frac{1}{2\gamma} \|x - y\|^2 \right\}.$$

can always be decomposed into difference-of-convex functions

$$e_{\gamma}^{\text{ori}}f(x) = \frac{1}{2\gamma} \|x\|^2 - \underbrace{\sup_{y} \left\{ -f(y) - \frac{1}{2\gamma} \|y\|^2 + \frac{1}{\gamma}y^\top x \right\}}_{\text{convex in } x \text{ even if } f \text{ is nonconvex}}$$

Moreau envelope (f may not be convex)

$$e_{\gamma}^{\operatorname{ori}}f(x) \triangleq \inf_{y} \left\{ f(y) + \frac{1}{2\gamma} \|x - y\|^2 \right\}.$$

can always be decomposed into difference-of-convex functions

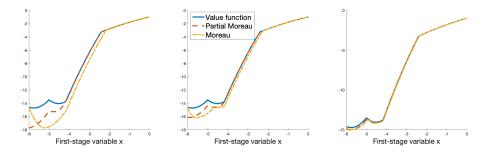
$$e_{\gamma}^{\text{ori}}f(x) = \frac{1}{2\gamma} \|x\|^2 - \underbrace{\sup_{y} \left\{ -f(y) - \frac{1}{2\gamma} \|y\|^2 + \frac{1}{\gamma} y^\top x \right\}}_{y}$$

not easy to compute if f is not Clarke-regular!

Implicitly convex-concave: surrogations

Partial Moreau envelope for an implicitly convex-concave function ψ :

$$e_{\gamma}\psi(z) \triangleq \inf_{x} \left\{ \overline{\psi}(x,z) + \frac{1}{2\gamma} \|x-z\|^{2} \right\},$$



Implicitly convex-concave: surrogations

Partial Moreau envelope for an implicitly convex-concave function ψ :

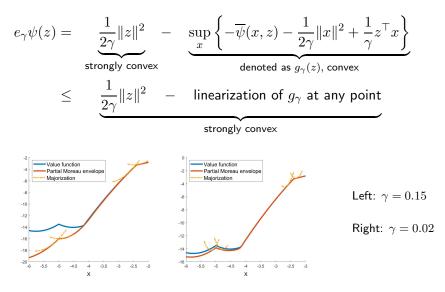
$$e_{\gamma}\psi(z) \triangleq \inf_{x} \left\{ \overline{\psi}(x,z) + \frac{1}{2\gamma} \|x-z\|^{2} \right\},$$

Difference-of-convex decomposition:

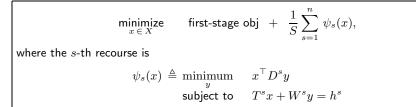
$$e_{\gamma}\psi(z) = \underbrace{\frac{1}{2\gamma} \|z\|^2}_{\text{strongly convex}} - \underbrace{\sup_{x} \left\{ -\overline{\psi}(x,z) - \frac{1}{2\gamma} \|x\|^2 + \frac{1}{\gamma} z^\top x \right\}}_{\text{denoted as } g_{\gamma}(z), \text{ convex}}.$$

The evaluation of the function value and subgradient of g_{γ} at x can be done by solving a convex problem

Implicitly convex-concave: surrogations



Fixed S scenarios $\{(D^s, T^s, W^s, h^s)\}_{s=1}^S$



Fixed S scenarios $\{(D^s,T^s,W^s,h^s)\}_{s=1}^S$

 $\begin{array}{ll} \underset{x \in X}{\text{minimize}} & \text{first-stage obj} + \frac{1}{S} \sum_{s=1}^{n} \psi_{s}(x),\\ \text{where the }s\text{-th recourse is}\\ \psi_{s}(x) \triangleq \underset{y}{\text{minimum}} & x^{\top} D^{s} y\\ \text{subject to} & T^{s} x + W^{s} y = h^{s} \end{array}$

Master problem:

$$x^{k+1} = \underset{x \in X}{\operatorname{argmin}} \left[\text{first-stage obj} \ + \ \frac{1}{S} \sum_{s=1}^{n} \widehat{e}_{\gamma} \psi_{s}(x; x^{k}) \right]$$

Subproblem: for each scenario s, solve y^s of the recourse problem at $x = x^{k+1}$ to get the next surrogation $\hat{e}_{\gamma}\psi_s(x;x^k)$ (decomposable over different scenarios)

Need an outer loop to update $\gamma \downarrow 0$

Theorem: Under technical conditions,

(a) any accumulation point is a (properly-defined) stationary point;

(b) if $\sum_{k\geq 0}\gamma_k<+\infty,$ then the objective value sequence converges.

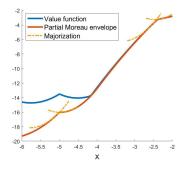
Theorem: Under technical conditions,

(a) any accumulation point is a (properly-defined) stationary point;

(b) if $\sum_{k\geq 0}\gamma_k<+\infty$, then the objective value sequence converges.

A technical note:

the surrogation is neither an upper bound nor a lower bound of the original recourse



Decomposition with sampling

For each step, we can also sample a batch of scenarios $\{(D^s, T^s, W^s, h^s)\}_{s \in S_k}$

Master problem:

$$x^{k+1} = \underset{x \in X}{\operatorname{argmin}} \left[\text{first-stage obj} + \frac{1}{|S_k|} \sum_{s \in S_k} \widehat{e}_{\gamma} \psi_s(x; x^k) \right]$$

Subproblem: for each sampled scenario $s \in S_k$, solve y^s at $x = x^{k+1}$ to get $\widehat{e}_\gamma \psi_s(x;x^k)$

Gradually add samples to the master problem

Decomposition with sampling

For each step, we can also sample a batch of scenarios $\{(D^s, T^s, W^s, h^s)\}_{s \in S_k}$

Master problem:

$$x^{k+1} = \underset{x \in X}{\operatorname{argmin}} \left[\text{first-stage obj} + \frac{1}{|S_k|} \sum_{s \in S_k} \widehat{e}_{\gamma} \psi_s(x; x^k) \right]$$

Subproblem: for each sampled scenario $s \in S_k$, solve y^s at $x = x^{k+1}$ to get $\widehat{e}_\gamma \psi_s(x;x^k)$

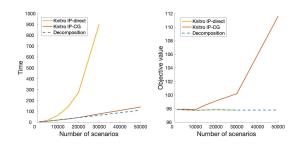
Gradually add samples to the master problem

Sample-size requirement:

$$\sum_{\nu=1}^{\infty} \frac{S_{k+1}-S_k}{S_{k+1}\left(S_k\right)^{\eta}} < \infty \quad \text{for some } \eta \in (0,1/2).$$

Numerical experiments

compared with the general purpose nonlinear programming solver Knitro



1st stage: $x \in \mathbb{R}^{10}$ 22 inequality constraints 2nd stage: $y^s \in \mathbb{R}^{40}$

93 inequality constraints

Algorithms stop if ${\rm KKT} \mbox{ residual} \leq 10^{-4}$

Sizes of the deterministic equivalent problems:

# of scenarios	10^{4}	5×10^4
# of variables (1st+2nd stages)	400,010	2,000,010
# of constraints	850,030	4,250,030

Our new monograph (2021)

Modern Nonconvex Nondifferentiable Optimization

Available at SIAM Bookstore

MODERN NONCONVEX NONDIFFERENTIABLE OPTIMIZATION

es on Or

Ying Cui Jong-Shi Pang

Thank You!