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Many optimization methods are fixed-point iterations: z"** = T(z*).

They are analyzed with inequalities, which are rigorous but often unintuitive.

Today, an alternative 2D geometric tool

= visual and intuitive
= serve as rigorous proofs

= give tight constants.
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A sample result
Fact: If f is u-strongly convex and L-Lipschitz differentiable, then
" = F — avf(zh)
converges linearly at sharp rate:

R =max{|1 — ay|,|1 — aLl}.

Diagrams:

L 1—al ap

(Vi FeF.L} {1-avf:feF.L}

(We will make them a rigorous proof.)
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Prior work that includes geometric illustrations

(Eckstein, 1989) and (Eckstein and Bertsekas, 1992) use disks to illustrate

firm-nonexpansiveness and Lipschitz continuity
(Giselsson and Boyd, 2017; Banjac and Goulart, 2018) have illustrations on
tight linear convergence rates. Lecture notes (Giselsson, 2015) used them more

thoroughly.

Many have used geometric illustrations to build initial intuitions though wrote
actual proofs with algebraic inequalities.
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Fixed-point iterations

Find T : H — H such that * = T'(z") is a solution.

Example: under proper conditions,
1. min f(z) & 2" ={I —aVf)z*
2. min f(z) + g(z) < 2" =prox, (I —aVg)z"
3. minaziBy=s f(2) + 9(y) & 2° = (I + Rynos+aryRapogs (7)—5)7"

k

To show zF+! = T'z* converge, a standard approach takes 2 steps

1. proving T is contractive or averaged

2. applying standard arguments.
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Contractive operator
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Banach fixed-point theorem: If T" is contractive (L-Lipschitz with L < 1),

k+1

then 2FT! = T2* converges linearly to 2* = Tz*.
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Averaged operator

Krasnosel’skii-Mann theorem:
If T with f-averaged, @ € (0,1), and T has a fixed point, then z**1 = Tz"
converges to a fixed point with ||z* — Tz*||> = o(1/k).

Baillon, Bruck, and Reich (1978)
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How to tell if 7" is contractive or averaged?

T is built from the scaling, addition, and inversion of identity, matrices,
gradients, and subdifferentials.

Example: T'= prox,; (I —aVyg)

——
(I+adf)=1
‘ original ‘ transform T ‘ contractive / averaged
operator: A,B T=T(A B) C Ly or Ny
geometry: | G(A),9(B) | G(I) C G(L1) or G(No)
2D shapes new shape enclosed in shape of L1, or N
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SRG of a (single/multi-valued) operator A

Pick z # y, u € Az and v € Ay. Plot a complex z = re®' with

size change: = llu—vl|
ge: r:=
llz —yll

rotation: ¢ :=+Z(u— v,z —y).

For example, if A =1, z = (1,0).
SRG consists of all such z:

G(A) :={z:2#y,u € Az,v € Ay} (U {oo} if A'is multi—valued)

For operator class, G(A) := [J, ., G(A).
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Examples of SRGs

In R?, projection to any line:

subdifferential of || - ||2 in R*:

©
i
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SRG of operator classes

M,,: p-strongly monotone operator Cg: [-cocoercive operator
8F 100 subdiff'l of pi-strgly-cvx function 6]—'0’%: gradient of %-Lip.diff.cvx function

Ly: L-Lipschitz operator Ny: O-averaged operator
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. . ? . .
Operator inclusion < SRG inclusion

TelrorNe <= G(T)CG(LL)or G(No)

For any operator class A, “T'e A = G(T) C G(A)" follows from the
definition.

The converse does not hold in general.

But fortunately, it does hold for £, and Np.
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SRG-full classes of operators

Definition: an operator class A is SRG-full if

TeA & G(T)CgGA.

Theorem: An operator class defined by 1-homogeneous equations of

lw —v|?, |z — y||?, (u — v,z — y) is SRG-full.
Therefore, classes M,,, Cz, L1, and Ny are SRG-full.
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Transformation

Drawing G(T (A)) is simplified by the following tools:
= G(BI 4+ aA) =P+ aG(A), for o, €R
r G(ATY = (gAY
and, under suitable conditions,
» G(ANB) = G(A)NG(B)
» G(A+B)=G(A) +G(B)
» G(AB) =G(A)-G(B)

On left are operations a-,+, ~*,N,+,0 in the space of operators.

On right are Minkowski-type operations in the complex plane.
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Scaling and translation

Tool: for o, B € R,
GBI+ aA)=L+ag(A).

Fact: If f is u-strongly convex and L-Lipschitz differentiable, then
P = 2% — aV f(z") converges linearly at sharp rate:

R =max{|1 —aul,|1 —aL|} < 1.

Proof by diagrams:

p L —alL —pu l-al B o
R
G(0Fu,L) G(—adFy,1L) G(I —adF,L) CG(LR)

(uses scaling, translation)

Since Lr is SRG-full, the last diagram implies I — a0F,,r C Lr.
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Transformation: inversion

Tool: G(A™!) = (Q(A))71 (operator inversion = geometric inversion).

Geometric inversion is known as reflection in the unit circle: z — z—1.
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A line is a generalized circle with infinite radius.

Including this generalization, the inversion of a circle is a circle.
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Transformation: inversion

Fact: if A is monotone and a > 0, Joa := (I + aA)™! is 1/2-averaged (firmly
nonexpansive). lteration z"7' = J,(2") has sublinear convergence.

Proof by diagrams:

i

G(aM) G(I +aM) (G +aMm)) ™
:g(([ —+ aM)_l)

Since G((I + aM)™") = G(Ni)2) and N3 is SRG-full, (I + aM) ™! C N ).
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Fact: if A is u-strongly monotone and a > 0, Jaa

Iteration 2"t = J,a(z") has linear convergence.

Proof by diagrams:

g(aM)

Since G((I+aM)™1) CG(L_1_)and £

1

G(I+ aM)

Tfan

(I+aM)_1C/.', 1.

Tfan

is 1/(1 + au)-Lipschitz.

Y

(G(I +am)) ™
:g(([ + aM)fl)

is SRG-full,
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Fact!: If f is a p-strongly convex L-Lipschitz differentiable function and
o > 0, we have

" prox,; is ﬁ—Lipschitz;

1l—ap
14+ap

= 2prox,; — I is R-Lipschitz for R = max {|

| 452E |} tight.

1+al

Proof by diagrams:

1! 1+alL / T+al 1{LH
/1 1+ap l\ /1 1
/ \ /
/ N /
GI+ adF,u,L) Q(proxa}-‘L,L) g(2proxa}-‘L’L7 I)

Middle implies prox,» , C £_1 . Right implies 2proxaf“ ,—1CLr.

Iz Tfan

!Giselsson and Boyd (2017, Thm 1)
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Composition of operators

Theorem: If A, B are SRG-full, then excluding oo - () cases

G(AB) 2 G(A)G(B).
In addition, if A or B satisfies the arc property then
G(AB) = G(BA) = G(A)G(B).
Definition: An operator (class) A satisfies the arc property if

z € G(A) = either left arc or right arc (z,2) C G(A).
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Convergence: alternating projections

Fact: For two closed convex sets C, D C R™ and C'N D # (, iteration
2! = ProjProj,z*

converges to some z* € C N D.

Since projection to a closed convex set is %—averaged, this follows from the

following result regarding Ny, Ny, .
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Composition of averaged operators

Fact®: Let Ay be the class of -averaged operators. Then,

—2
No,No, TNy, 6= M
1— 0,10,

In particular, Ny /2N7 /2 C Noys.
Diagrams for N7 oM /ot

—ote- G(N1/2)G (N1 /2)
. = G(N1/2N1/2)

*Ogura and Yamada (2002)
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Application: Tight characterization of Ny, N,

Using geometric arguments, we can show:

Theorem: For 0 < 61,02 < 1, G(Ng, Np,) is the region enclosed by the curve
(r,%) in polar coordinate:

2 () — 2r (1) (cos(¥)(1 — 61)(1 — 6a) + 6162) + (1 — 20;)(1 — 262) = 0.

Corollary: Formula of 6 on last slide for Np, Ng, C Ny is tight.

Huang, Ryu, and Yin (2020)
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Application: Plug-n-play (PnP)

PnP: replace an operator (e.g., prox/) in classic optimization methods (e.g.,
forward-backward, ADMM) by a better denoising operator (e.g., BM3D, neural
network)

Why? Use pre-trained denoisers when there is not sufficient data or time for

end-to-end training.
Example: Forward-backward PnP denoising: let
H : noisy image — less noisy image
be a denoising operator (BM3D, DnCNN), and f be a data-fidelity function.

PnP-FBS: "' = H(z" — aVf(z")).

Venkatakrishnan, Bouman, and Wohlberg (2013)
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Experiment: Super resolution

Low-res input

Other method Other method PnP-ADMM BM3D

Chan, Wang, and Elgendy (2017)
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Experiment: Single photon imaging

Binary input

g —
Other method PnP-ADMM BM3D

Chan, Wang, and Elgendy (2017)
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Other method PnP-ADMM BM3D

Chan, Wang, and Elgendy (2017)
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Convergence theory for PnP

Assume denoising operator
H : noisy image — less noisy image
is close to I in the following sense

I(H — D —(H = Dy|* < €lz —y*,  Va,y.

We can enforce this assumption in training using Real Spectrum Normalization

Ryu, Liu, Wang, Chen, Wang, and Yin (2019)
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Assume f is p-strongly convex and L-Lipschitz differentiable.

4 N
\

\
/—R R:I:max{|1—a,u\,|l—aL|}
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N G —avy)

Theorem: The PnP forward-backward operator

T =H(I-aVy)

k

is contractive (thus, zF™! = Tz* converges linearly) for e < % and

1 2 1
W+ D SYSI T Iah-

Ryu, Liu, Wang, Chen, Wang, and Yin (2019)
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Theorem: PnP-ADMM operator

T= %I—&— %(2H —I)(2prox; — I)

is contractive (thus, z**!

o >

= Tz" converges linearly) if ¢ < 1 and
(1+6j262)u .
Compare PnP-ADMM and PnP-FBS:
= With the same parameters, they have the same fixed points
= PnP-FBS is easier to implement.

= PnP-ADMM has better results (due to its wider allowed rangers of
parameters)

Ryu, Liu, Wang, Chen, Wang, and Yin (2019)
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Application: impossible results regarding “inverse Lipschitz
continuity”

Let L;l be set of y-inversely Lipschitz continuous operators, that is,

u€ Az, ve Ay = yllu—v| > |z -yl

My, C E;l strictly: there are more inversely Lipschitz operators than
strongly monotone operators.
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Metric subregularity

[Z;l implies -metric subregularity; so, if a result fails to hold with [Z;l, it will
also fails to hold with y-metric subregularity.

Definition: A is y-metric subregular at ¢ for yo € Axo if
dist(x, A" tyo) < ~dist(yo, Az) in some neighborhood of z.

For convex function subdifferentials, equivalent to “error bound conditions>”

*Luo and Tseng (1993)
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Relaxing assumptions for linear convergence :

For gradient descent, proximal-point, forward-backward, and certain ADMM
algorithms*, relaxing strong monotonicity to metric subregularity (implied
by inverse Lipschitz) maintains linear convergence.

“Leventhal (2009); Bauschke, Noll, and Phan (2015); Liang, Fadili, and Peyré
(2016); Latafat and Patrinos (2017); Karimi, Nutini, and Schmidt (2016); Bolte,
Nguyen, Peypouquet, and Suter (2017); Drusvyatskiy and Lewis (2018); Necoara,
Nesterov, and Glineur (2018); Ye, Yuan, Zeng, and Zhang (2018); Yuan, Zeng, and
Zhang (2018); Zhang (2019)
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This relaxation is not always possible

Define a parametrized class of Douglas-Rachford operators:

Davo(A,B) = {(1 = O)] + 0(2Jan — I)(2Jap —I): A€ A, B € B}.

Theorem: Let 0 < 1/y < L < oo and 0 < ¢, 0 < 0.
For A=MnNLrNM;,, and B =M, we have, for proper ¢,

DQ,G(Ay B) g [:176 and Da,G(B, A) g ['179
For A= MnNLLNL;" and B = M, we have, for any ¢ € (0,0),

Da,g(Av B) Z Li— and Da,&([i ..A) g Li_e.

(Lions and Mercier, 1979, Proposition 4) for D, g (A, B) and (Davis and Yin, 2017, Theorem 6) for
Dy,0(B, A), proved for subdifferentials of convex functions.
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Proof by diagrams for “¢Z":

Line AB is mapped to arc A'B’.

Last graph x

g(QJaB_I) g((2JaA_I)(2JaB_I))

=" relies on the arc property of 2J,5 — I.

0-averaging maintains the point 1, so € £i_..
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Summary

= SRG is a signature of an operator class.
= A few diagrams capture key ideas and can serve a rigorous proof.
For more results, such as addition of operators, tight bounds, and

impossibilities, see:

Ernest Ryu, Robert Hannah, Wotao Yin. Scaled Relative Graph:
Nonexpansive Operators via 2D Euclidean Geometry, arXiv:1902.09788.

Thank you!
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