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To the organizers ...

Thank you for running this excellent seminar series and for the invitation.
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• Shoham!

• Bedankt Mathias!
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Our problem ...
Consider the convex optimization problem:

I Find x ∈ Rn such that x minimizes the sum of

f + g .

I The structure f + g suggests splitting methods, e.g., Douglas–Rachford
method, etc...

I Our problem: is what if there is no such x , i.e., what if the problem has
no solution?

I Consider the problem: Find x ∈ Rn such that x minimizes

1
2 〈Mx | x〉+ 〈b | x〉,

M is an n× n positive semidefinite matrix and b ∈ Rn.

I Fermat’s theorem yields the equivalent problem: Find x ∈ Rn such that

Mx + b = 0.

If b 6∈ ranM then we have the problem.
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The setting

Throughout this talk

X is a real Hilbert space

with inner product 〈· | ·〉, and induced norm ‖·‖, e.g., Rn, Sn or `2.

I Recall that an operator A : X ⇒ X is monotone if

{(x , u), (y , v)} ⊆ grA⇒ 〈x − y | u − v〉 ≥ 0.

I Recall also that a monotone operator A is maximally monotone if A
cannot be properly extended without destroying monotonicity.

I Examples: Matrices with positive semidefinite parts, subdifferential
operators ∂f of convex functions and skew symmetric operators, e.g.,[

0 −1
1 0

]
.
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The problem: a more general formulation

Throughout the talk we assume that

A and B are maximally monotone operators on X .

The problem:
Find x ∈ X such that

(P) x ∈ zer(A+ B) =
{
x ∈ X

∣∣ 0 ∈ Ax + Bx
}

.

The Douglas–Rachford algorithm: One successful technique to find a
zero of A+ B is via iterating the Douglas–Rachford operator TA,B

defined for the ordered pair (A,B) by

TA,B = 1
2 (Id+RBRA).

• Id : X → X : x 7→ x . • RA := 2JA − Id = 2(Id+A)−1 − Id.
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Motivation

The problem: the differential form.

(P) Find x ∈ Rn such that x minimizes f + g .

I Suppose that f and g are smooth. Then (P) is equivalent to

find x ∈ X such that 0 =∇(f + g)(x) =∇f (x) +∇g(x).

I If we drop the assumption of smoothness, (P) reduces to

find x ∈ X such that 0 ∈ ∂(f + g)(x) = ∂f (x) + ∂g(x),

where ∂f (x) =
{
u ∈ Rn

∣∣ (∀y) 〈u, y − x |+〉f (x) ≤ f (y)
}

.

Example of Constraint Qualifications (CQs): • dom f ∩ int dom g 6= ∅.
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Examples

The problem:

(P) Find x ∈ Rn such that x minimizes f + g .

Let U be a nonempty closed convex subset of X . Recall that the
indicator function of U, denoted by ιU , is defined by

ιU (x) =

{
0, x ∈ U;

+∞, otherwise.

I Constrained convex optimization problem:
minimize f (x)
subject to x ∈ U

}
−→ find x ∈ Rn such that x minimizes f + ιU .

I Convex feasibility problem:

find x such x ∈ U ∩ V −→ find x ∈ Rn such that x minimizes ιU + ιV .
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Classical convergence results

Let x0 ∈ X . Recall that when

zer(A+ B) =
{
x ∈ X

∣∣ 0 ∈ Ax + Bx
}
6= ∅

we have:

I Lions–Mercier (1979)

xn = T nx0
weakly−−−→ some point x = Tx ∈ FixT 6= zer(A+ B).

I Combettes (2004) JA(FixT ) = zer(A+ B). Consequently,

FixT 6= ∅⇔ zer(A+ B) 6= ∅.

I Svaiter (2009)

JAT
nx0

weakly−−−→ JAx ∈ zer(A+ B).

• JA := (Id+A)−1. • RA := 2JA − Id. • T := Id−JA + JBRA.
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Classical convergence results: function version

Let x0 ∈ X . Recall that when

zer(∂f + ∂g) =
{
x ∈ X

∣∣ ∂f (x) + ∂g(x)
}
6= ∅

we have:

I Lions–Mercier (1979)

xn = T nx0
weakly−−−→ some point x = Tx ∈ FixT 6= zer(∂f + ∂g).

I Combettes (2004) Proxf (FixT ) = zer(∂f + ∂g). Consequently,

FixT 6= ∅⇔ zer(∂f + ∂g) 6= ∅.

I Lions–Mercier–Svaiter

Proxf T
nx

weakly−−−→ some point in argmin(f + g).

Proxf (x) = argminy∈X
(
f (y ) + 1

2 ‖x − y‖2
)

.
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DR for two lines in R3

f = ιU , g = ιV and T = 1
2

(
Id+(2PV − Id) ◦ (2PU − Id)

)
.
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U = the blue line,
V = the red line,
(T nx0)n∈N = the red sequence,

(PUT
nx0)n∈N = the blue sequence.



Convergence results: what if?

Let x0 ∈ X . Recall that when

zer(∂f + ∂g) = (∂f + ∂g)−1(0) 6= ∅

we have:

I Lions–Mercier (1979)

xn = T nx0
weakly−−−→ some point x = Tx ∈ FixT 6= zer(∂f + ∂g).

I Combettes (2004) Proxf (FixT ) = zer(∂f + ∂g). Consequently,

FixT 6= ∅⇔ zer(∂f + ∂g) 6= ∅.

I Lions–Mercier–Svaiter

Proxf T
nx

weakly−−−→ some point in argmin(f + g).

I Question: What happens when zer(∂f + ∂g)= ∅ ?

Proxf (x) = argminy∈X
(
f (y ) + 1

2 ‖x − y‖2
)

.
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The case of infeasible affine subspaces: Example

Figure: A GeoGebra snapshot. Two nonintersecting affine subspaces U (blue line)
and V (red line) in R3. Shown are also the first few iterates of (T nx0)n∈N (red
points) and (PUT

nx0)n∈N (blue points). In this case ‖T nx0‖ → +∞ but
(PUT

nx0)n∈N remains bounded!
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The generalized framework of the normal problem:
the right tools

I The minimal displacement vector

v := Pran(Id−T )(0).

I The normal problem: Find x ∈ X such that

x ∈ zer(−v + A+ B(· − v)).

I The generalized solution set or the normal solutions

Z =
{
x ∈ X

∣∣ 0 ∈ −v + Ax + B(x − v)
}

.
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Roots in linear algebra: least squares

I Suppose that X = Rn, let A ∈ Rn×n be such that A+ AT is positive
semidefinite (A is maximally monotone!).

I Find x ∈ Rn such that Ax = b. Set B ≡ −b. The problem reduces to:
Find x ∈ Rn such that

x ∈ zer(A+ B).

I If b 6∈ ranA then we zer(A+ B) = ∅.

I The minimal displacement vector is

v = −P(ranA)⊥(b).

I The normal solutions are the least squares solutions!
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Earlier works
Let x0 ∈ X . When zer(A+B) = ∅, equivalently, FixT = ∅, we always have

‖T nx0‖ → ∞.

Suppose that
v ∈ ran(Id−T ).

I Bauschke–Combettes–Luke (2003) proved that when (f , g) = (ιU , ιV ),
U,V nonempty closed convex subsets of X , then the shadow sequence
(PUT

nx)n∈N is bounded and its weak cluster points are minimizers of
the function ιU + ιV (· − v) (i.e., normal solutions!).

I Bauschke–M (2015) proved the strong convergence of the shadow
sequence with a linear rate and identified the limit when U,V are closed
affine subspaces.

I Bauschke–Dao–M (2015) & Bauschke–M (2016) proved the weak
convergence of the shadow sequence to a normal solution when U,V
nonempty closed convex subsets of X .

I Bauschke–M (2019) proved the weak convergence of the shadow
sequence to a normal solution when f is convex lower semicontinuous
and proper and g = ιU where U is a closed affine subspace X under the
assumption that 0 ∈ dom f ∗ + U⊥.
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Convex feasibility example

A GeoGebra snapshot. U and V are two nonintersecting sets in R2. Also,
the first few iterates of the governing sequence (T nx)n∈N (red points) and
the shadow sequence (PUT

nx)n∈N (blue points) are shown.
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Related works

Of central importance of these results was the following fact:

I Bauschke–Hare–M (2014): Suppose X is finite-dimensional and A and B
are nice, e.g., subdifferentials of convex functions f and g respectively.
Then

ran(Id−T ) = dom f − dom g ∩ dom f ∗ + dom g∗.

I Ryu–Lin–Yin (2017 and 2018 respectively) proposed a method based on
the Douglas–Rachford algorithm that identifies, in certain situations,
infeasible, unbounded, and pathological conic (and feasible and infeasible
convex, respectively) optimization problems.

I Banjac–Goulart–Stellato–Boyd (2018) showed that for certain classes of
convex optimization problems, ADMM can detect primal and dual
infeasibility of the problem and they propose a termination criterion.

I Banjac–Lygeros and Banjac (2020) extended some of the geometric
properties of the minimal displacement vector established in our 2019
work.
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More generally ...

Let x0 ∈ X .

I Can we learn more when A and B are nice maximally monotone
operators?

I As a first step: Can we characterize when the shadows are bounded?

I Suppose the shadows are bounded. Can we locate the weak cluster
points? What about full convergence??
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Our assumptions: A1

We assume that

ran(Id−T ) = domA− domB ∩ ranA+ ranB.

True, e.g., when X is finite-dimensional and (A,B) = (∂f , ∂g).

A1 holds in the optimization settings when X is finite-dimensional. !
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The beautiful geomerty and the vectors vD and vR!

Recall that ran(Id−T ) = domA− domB ∩ ranA+ ranB. We now
introduce the vectors

vD := PdomA−domB (0) and vR := PranA+ranB (0)

We can conclude

(i) vD ∈ (− rec domA)	 ∩ (rec domB)	.

(ii) vR ∈ (− rec ranA)	 ∩ (− rec ranB)	.

• recC =
{
x ∈ X

∣∣ x + C ⊆ C
}

. • C	 =
{
u ∈ X

∣∣ sup〈C | u〉 ≤ 0
}

.

Fact
Let U and V be nonempty closed convex subsets of X . Then

PU−V (0) ∈ (PU − Id)(V ) ∩ (Id−PV )(U) ⊆ (− recU)	 ∩ (recV )	.
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The beautiful geomerty
The following lemma is of crucial importance in our work.

Lemma
The following hold for A and B:

(i) (rec domA)	 ⊆ rec(ranA) and (rec domB)	 ⊆ rec(ranB).

(ii) (rec ranA)	 ⊆ rec(domA) and (rec ranB)	 ⊆ rec(domB).

Proof.
Using the celebrated Brezis–Haraux theorem

ranA+ ran NdomA ⊆ ranA+ ran NdomA = ran(A+ NdomA) = ranA

and we conclude that
ran NdomA ⊆ rec ranA.

On the other hand, using a result by Zarantonello we have

ran NdomA = ran (Id−PdomA) = (rec domA)	.

• recC =
{
x ∈ X

∣∣ x + C ⊆ C
}

. • C	 =
{
u ∈ X

∣∣ sup〈C | u〉 ≤ 0
}

.
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The beautiful geomerty and locating vD and vR!

Proposition
The following hold:

(i) 〈vD | vR 〉 = 0.

(ii) v = vD + vR .

• vD := PdomA−domB (0). • vR := PranA+ranB (0).
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Dynamic consequences

Known: Let x ∈ X . Then

JAT
nx − JBRAT

nx = JA−1T nx + JB−1 RAT
nx = T nx − T n+1x → v .

Proposition
Let x ∈ X. Then the following hold:

(i) JAT
nx − JAT

n+1x → vR .

(ii) JA−1T nx − JA−1T n+1x → vD .

Proposition (shadow convergence: necessary condition)
Let x ∈ X. Then the following hold:

(i) (JAT
nx)n∈N is asymptotically regular ⇔ vR = 0.

(ii) (JA−1T nx)n∈N is asymptotically regular ⇔ vD = 0.

• Id−T = JA − JBRA = JA−1 + JB−1 RA. • vD := PdomA−domB (0). •
vR := PranA+ranB (0). • v = vD + vR .
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Our assumptions: A2

We assume that
v ∈ ran(Id−T ).

Equivalently (proof omitted),

Z =
{
x ∈ X

∣∣ 0 ∈ −v + Ax + B(x − v)
}
6= ∅.

• v = Pran(Id−T )(0).
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And finally we see Fejér monotonicity!

Working in X × X we state the following key result:

Theorem
Suppose that v ∈ ran(Id−T ), let x ∈ X, and let n ∈N. Then the following
hold:

(i) Suppose that A and B are paramonotone (true when
(A,B) = (∂f , ∂g)). Then the sequence

((0,−v) + (JAT
nx + nvR , JA−1T nx + nvD))n∈N

is Fejér monotone with respect to Z ×K.

(ii) The sequence (JAT
nx + nvR , JA−1T nx + nvD)n∈N is bounded.

(iii) The sequence (JAT
nx)n∈N is bounded ⇔ vR = 0.

(iv) The sequence (JA−1T nx)n∈N is bounded ⇔ vD = 0.

• Z := zer(−v +A+B(· − v )). • K := zer((−v +A)−1 + (B(· − v ))−>).
• A−> = (− Id) ◦A−1 ◦ (− Id).
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The optimization setting

From now on we assume that

f and g are proper lsc convex functions on X

and that (A,B) = (∂f , ∂g). And finally we assume (A3):

vR = 0 ⇔ v = Pran(Id−T )(0) = Pdom f−dom g (0) = vD .

We use the abbreviations(
Pf ,Pf ∗ ,Pg ,Rf

)
=
(

Proxf , Proxf ∗ , Proxg , 2 Proxf − Id
)
.

Hence
T = T(∂f ,∂g ) = Id−Pf + PgRf .

• vD := PdomA−domB (0). • vR := PranA+ranB (0). • v = vD + vR . • J∂f = Pf . •
J(∂f )−1 = J∂f ∗ = Pf ∗ .
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Convergence proof in a nutshell

I Step 1: refining Z .
Because vR = 0 we learn that Z =

{
x ∈ X

∣∣ 0 ∈ ∂f (x) + ∂g(x − v)
}

.
Because Z 6= ∅ (recalling (A2) v ∈ ran(Id−T )) we prove that
Z = argmin(f + g(· − v)).

I Step 2: boundedness of the shadows.
This is a consequence of Fejér monotonicity and the assumption vR = 0.

I Step 3: locating the weak cluster points of the shadows.
We show that the weak cluster points are minimizers of f + g(· − v).

I Step 4: full weak convergence of the shadows.
We combine Step 2, Step 3 and properties of Fejér monotone sequences.
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Step 1: refining Z

Proposition
Recalling Z =

{
x ∈ X

∣∣ 0 ∈ −v + ∂f (x) + ∂g(x − v)
}

, and vR = 0, we
have:

(i) Z =
{
x ∈ X

∣∣ 0 ∈ ∂f (x) + ∂g(x − v)
}

.

(ii) Z 6= ∅ ⇒ Z = argminx∈X (f (x) + g(x − v)).

• vD := PdomA−domB (0). • vR := PranA+ranB (0). • v = vD + vR .
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Step 2: boundedness of the shadows

We proved earlier that: the sequence

((0,−v) + (JAT
nx + nvR , JA−1T nx + nvD))n∈N

is Fejér monotone with respect to Z ×K .
Using that (A,B, vR ) = (∂f , ∂g , 0) we have (JA, JA−1) = (Pf ,Pf ∗) and
therefore the sequence

((0,−v) + (Pf T
nx ,Pf ∗T

nx + nv))n∈N

is Fejér monotone with respect to Z ×K .

• vD := PdomA−domB (0). • vR := PranA+ranB (0). • v = vD + vR . •
Z := zer(∂f + ∂g (· − v )). • K := zer((∂f )−1 + (∂g (· − v ))−>).
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Step 3: locating the weak cluster points of the shadows.

Proposition
Set µ := minx∈X (f (x) + g(x − v)) and let x ∈ X. Then the following hold:

(i) (Pf T
nx)n∈N is bounded and its weak cluster points are minimizers of

f + g(· − v).

(ii) (PgRf T
nx)n∈N is bounded and its weak cluster points are minimizers of

f (·+ v) + g.

Now let z be a weak cluster point of (Pf T
nx)n∈N. Then:

(iii) f (Pf T
nx)→ f (z). (value convergence X)

(iv) g(PgRf T
nx)→ g(z − v).

(v) f (Pf T
nx) + g(PgRf T

nx)→ µ.
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Step 4: full weak convergence of the shadows.

Proposition
Let x ∈ X. Then the following hold:

(i) The sequence (Pf T
nx)n∈N converges weakly to a minimizer of

f + g(· − v).

(ii) The sequence (PgRf T
nx)n∈N converges weakly to a minimizer of

f (·+ v) + g.

Proof.
(i) We showed that the sequence (Pf T

nx ,−v + Pf ∗T
nx + nv)n∈N is Fejér

monotone with respect to Z ×K . Now let z1 and z2 be two weak cluster
points of (Pf T

nx)n∈N. On the one hand,

{z1, z2} ⊆ argmin
x∈X

(f + g(· − v)) = Z ; hence, z1 − z2 ∈ Z − Z .

On the other hand, z1 − z2 ∈ (Z − Z )⊥ (proof omitted). Altogether we
conclude that z1 − z2 ∈ (Z − Z ) ∩ (Z − Z )⊥ = {0}. Hence, z1 = z2.X
(ii) A direct consequence of (i) and earlier result.
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How critical are our assumptions?

I (A1)
ran(Id−T ) = domA− domB ∩ ranA+ ranB.

True, e.g., when X is finite-dimensional and (A,B) = (∂f , ∂g).

A1 holds in the optimization settings when X is finite-dimensional. .X
I (A3) vR = 0. We have proved that it is a necessary and sufficient

condition for convergence.X
I (A2) v ∈ ran(Id−T ).
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A2 fails and the shadows converge in one step!

I Suppose that X = R.

I Set (f , g) = (ι{0},−
√
·).

I Clearly, dom ∂f = domN{0} = {0}, dom ∂g = ]0,+∞[. Moreover,
ran ∂f = R = ran ∂f + ran ∂g .

I Hence, Z = ∅.

I ran(Id−T ) = dom ∂f − dom ∂g = [0,+∞[ and v = 0 6∈ ran(Id−T ).

I (∀n ∈N) Pf T
nx = P{0}T

nx = 0. X
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A2 fails and the shadows are unbounded.

We revisit an example by Ryu–Liu–Yin (2019).

I Suppose that X = R3.

I Let K =
{
(x1, x2, x3)

∣∣ √x2
1 + x2

2 ≤ |x3|
}

I Set (f , g) = (ιK , 〈e1 | ·〉+ ι{x2=x3}).

I Let x ∈ R×R× {0}.
I After filling in a lot of details ....

I v = 0 6∈ ran(Id−T ).

I Z = ∅.

I argmin(f + g) = K ∩ (R · (0, 1, 1)) 6= ∅.

I (∀n ∈N) ‖Pf T
nx0‖ = ‖PKT

nx‖ → +∞.X
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