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Background

N-player Nash Equilibrium Problem

@ players: N 2 {1,.-- N} is a set of N players, indexed by i
@ strategy x; and strategy set for player i: X;
X1 N
x 2 eX2 H X;.
XN i=1
@ objective of player i: fi(x;, x_;) : X — R, where x_; £ {X;}ji-
@ objective: each player minimizes its objective given rivals’ actions

min  fi(x;, x_;).
XjEXj I( Iy I)

o x* = {x7}N, is a Nash Equilibrium if for any i € A/
filxi", x2)) < fi(x;, xZ;), VX € X;.

@ no player can improve her payoff by unilaterally deviating from strategy x;*
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Background

Assumptions

@ For i € NV, the strategy set X; C R" is a closed and convex set
@ For i € NV, suppose fi(x;, Xx_;) is convex and C' in x; on an open set containing X;.

@ The resulting class of noncooperative games, referred to as g, is a class of static
convex games.
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Background

Synchronous Gradient-Response (GR) schemes

Loosely speaking, in GR schemes, player i uses the GR, given current rival strategies.

Algorithm 1 Synchronous GR scheme

Set k =0, x; 0 € X; be a given sequence.
(1) Fori=1,...,N,let x; k1 € X; be X; x,1 defined as follows

Xiks1 = Mx [Xik — YikVifi(X)] -

(2) k:=k+1;If k < K, return to (1); else STOP.

@ Computing a GR requires player i to have access to V fi(-, x_;) and x_; «
@ Lends itself to (partially) distributed implementations
@ Under some conditions, synchronous GR leads to an NE

My(y) £ arg min |ju—y
x() Jhin I
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Background

Convergence of SGR scheme

@ Consider agame ¢ € G. Then x* is an NE of ¢ if and only if x* is a solution of
VI(X, F) where
Vi fi(X)
F(x) = ;
VXN fN(X)
@ Recall that the variational inequality problem VI(X, F) requires an x € X such that
(y-x)"F(x) >0, VyeX

@ If Fis L—Lipschitz and n-strongly monotone on X, then for v x = v < 2L—;’ for all i
and k, SGR converges to (unique) NE
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Background

Synchronous lteratively Regularized Gradient-Response (GR) schemes

Algorithm 2 Synchronous RGR scheme

Set k =0, x;0 € X; be a given sequence.
(1) Fori=1,... N, let X1 € X; be X «.1 defined as follows

Xiki1 :=Mx [Xik — vik( Vi Fi(Xe)+€ikXik)] -

(2) k:=k+1;If k < K, return to (1); else STOP.

@ Suppose F is monotone on X.

@ Under suitable conditions on ~; x and ¢; x, synchronous RGR converges to
(least-norm) NE

‘ F is n-monotone if there exists 17 > 0, such that (F(x) — F(y))T (x — y) > nllx — y||2 forallx,y € X.
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Background

Non-exhaustive summary of research

4 Monograph on learning equilibria in games [Fudenberg and Tirole, 1998]
Single-timescale gradient-response schemes:

o Strongly monotone MAaps [Alpcan and Basar (2003, 2007); Pavel (2006), Pan and Pavel (2009)]

@ Monotone maps via iterative regularization (single-projection) rvin, uvs and Mehta (2011);
Kannan and UVS (2012)]

@ More recently, projected reflected gradient schemes (single projection) [Malitksy (2015)]
@ Not “fully rational”.
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Background

Synchronous Best-Response (BR) schemes

Loosely speaking, in BR schemes, player i uses the BR, given current rival strategies.

Algorithm 3 Synchronous BR scheme

Set k =0, x;0 € X; be a given sequence.
(1) Fori=1,...,N,let X;x11 € X; be X; x.1 defined as follows:

Xik+1 € argmin f,'(X,'./X,,',k).
Xi€Xj

(2) k:=k+1;If k < K, return to (1); else STOP.

@ Computing a BR requires player i to know . and x¥; but not £, j # i.
@ Lends itself to (partially) distributed implementations
@ BR schemes may converge to a NE or may cycle
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Background

Synchronous Proximal BR schemes

Algorithm 4 Synchronous proximal BR scheme

Set k =0, x;0 € X; be a given sequence.
(1) Fori=1,...,N,let X1 € X be X «.1(X) defined as follows:

~ . 1
Xi k+1(Xk) = argmin fi(x;, x_j k) + %HX,' — Xkl
X €X;

(2) k:=k+1;If k <K, return to (1); else STOP.

@ Proximal BR adds a proximal term £ [|x; — x;«||°.

@ If fi(e,x_;) is convex in x;, then fi(e, x_;) + 5| ® —X;«
BR is unique)

@ Under some conditions, proximal BR converges to an NE

[2is p-strongly convex (and
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Proximal BR [Facchinei and Pang, 2009]

¢ Fixed Point: x* = X(x*)

Distributed BR and GR schemes
000000000000000000

@ x*is an NE if and only if x* is a fixed point of the proximal BR (PBR) map X(e)
@ X1 = X(xx) converges linearly to x* when X(e) is contractive

@ Define the N x N real matrix I = [v;]N_; :

n C12,ma>< C1N,max

H+C1 min HFCY min HFCY min

21, max n C2N,ma><

ra HH+C2 min AFC2 min AFC2 min
<Nt ,max CN2,ma|>< %

H+CN min H+CN min H+CN min

with Cimin = infxex Amin (V5 fi(X)) , and Cjmax £ SUPyex [ Vi i) Vj # i

measuring the coupling of players’ subproblem.

@ If the spectral radius p(I') < 1, then there exist a scalar a € (0, 1) and monotonic

norm | || e || | such that

(X1 : y))’ ‘
[13Xpn(y ) — XNl

IA

ny1 -l

lvf -yl
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Background

Randomized proximal best-response scheme

Forany i € N, let xi« = 1 (or 0) if player i updates at iteration k (or not).

@ Assumption: Forany i € N, P(x;x = 1) = pi > 0 and x; « is independent of F.

Algorithm 5 Randomized proximal best-response scheme

Letk:=0,x,0€ Xifori=1,...,N.
(1) If xik =1, then X; k11 € X is defined as follows:

Xi k1 (X)) = argmin fi(x;, X_j k) + gHXi — X k2.
X €X;

Otherwise, Xik+1 = Xi k when Xik = 0.
(2) k:=k+1;If k< K, returnto (1); else STOP.

@ A collection of players is randomly chosen to update via proximal BR
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Background

Non-exhaustive literature review on BR schemes

o Synchronous best-response schemes [Facchinei and Pang (2009); Scutari, Facchinei, Palomar,
Song, and Pang (2013)]

@ Customized schemes in signal processing [Scutari, Palomar and Barbarossa (2008, 2009); Scutari
and Palomar (2010)]
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Background

N-player Stochastic Nash Equilibrium Problems

Key difference: Player objectives are expectation-valued; objective of player i:
f: XxRI =R

fi(xi, X=i) 2 E [0i(Xi, X_; £(w))]
where £ : Q — RY denotes a random variable

@ A direct extension of GR and BR is impossible since it requires access to either
VxE[i(xi, x=i,&)] (GR) or exact solutions to (BR) in finite time.

& Existence of a stochastic first-order oracle (SFO):
Forany i € N and x, ¢, (SFO) returns a sampled gradient V,4;(X;, Xx—i; £) s.t.

@ Unbiased: Vyfi(X;, Xx_i) = E[Vxvi(Xi, X—i; §(w))];
@ Bounded second moments: There exists M; > 0 such that for all x € X,

E[|| Vi (X, X £(w))|[P] < MF.

13/55
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Background

Stochastic variational inequality problems

@ Consider a game ¢ € G where player problems are expectation-valued. Then x*
is an NE of ¢ if and only if x* is a solution of VI(X, F) where

Vi Elfi (X, )]
F(x) £ :
Vi Elfn(X; )]

@ Consequently, algorithms for stochastic VIs or SVIs are closely related to schemes
for computing NE in stochastic regimes.
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Background

Extension of GR to Stochastic regimes

Algorithm 6 Synchronous Stochastic GR scheme

Set k =0, x;0 € X; be a given sequence.
(1) Fori=1,...,N,let X1 € X; be X «.1 defined as follows

Xik+1 = Mx [Xik — Yik Vi fi(Xe, wik)] - ‘

(2) k:=k+1;Ifk < K, return to (1); else STOP.
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Background

Non-exhaustive review for SGR schemes (and SVIs)

@ a.s. convergence for strongly monotone and Lipschitz maps [Jiang and Xu, 2008]

@ Rate statements for monotone and Lipschitz maps via extragradient schemes
[Juditsky, Nemirovski, and Tauvel, 2011], [Dang and Lan, 2015]

@ a.s. convergence for monotone and Lipschitz maps under single projection
regularized schemes [Koshal, Nedi¢ and Shanbhag (2013)]

@ Non-Lipschitzian regimes via random smoothing [Yousefian, Nedi¢ and Shanbhag (2016)]

@ Related work on non-monotone regimes (Cf. [Thompson, Jofré, lusem (2017)], [Kannan and
Shanbhag (2019)] )

16/55
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Motivation

Part I: Best-response in stochastic regimes

& Closed-form expression of proximal best-response map is unavailable in finite time
since the objective is expectation-valued
@ Part | develops several inexact proximal best-response schemes

@ best-response solutions are approximated via stochastic approximation (SA),

@ and inexactness | zero by an increasing number of projected gradient steps.

@ Extensions to asynchronous and randomized regimes

Part II: Distributed BR and GR in stochastic regimes

& Part Il develops distributed schemes for a subclass of games, i.e. “aggregative”
where player objectives are coupled via the aggregate strategy

@ Add a consensus layer for players to “learn” aggregate
@ Examine BR and GR with variance reduction+multiple communication rounds

@ Goal: Under what conditions, can linear convergence rates be achieved?
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& Convexity of subproblems

@ X is a closed, compact, convex set.

X_j € Hj;éi)(l"

@ f(x;, x_;) is convex and C? in x; over an open set containing X; for any given

«4O)>» «Fr «=)» 4«

DA
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& Proximal best-response map

X(y) £ argmin [
xeX

i=1

N
SB[ y-iw)] + GlIx - yI?

] , pn>0
The objective function is separable in x;, player i's subproblem is
Xi(y) £ argm
PAS

in
X

[E[¢i(>07Y—i?“’)] + g”X’ _yiHZ] '

«O» «Fr « =>»

<

DA
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Synchronous algorithm

Algorithm Design

Algorithm 7 Synchronous inexact proximal best-response scheme

Set k =0, x;0 € X;; Let {aj«}k>1 be a given sequence.
(1) Fori=1,...,N,let xi k11 € X; be defined as follows:

Xijr1 = Xi(Xk) + €kt

with {e; k41 } satisfying E [[|e;x+1]°|Fx] < ofy a.s., where Fyx = o{xo, - , Xk}
(2) k:=k+1;Ifk < K, return to (1); else STOP.
~ . i
Xi(Xx) £ argmin [E[r’z/;,'(x,ﬂ, X_ikw)] + 5Hx,- — Xk H .
Xi€X;
& Stochastic approximation (SA) to obtain an inexact best-response.
Zity1 =My [Zi,t — Mt (Vxﬂ/)i(zi,z,x—i,k; &)+ u(zie — Xi,k)):| , (SAi k)

where Zi1 = Xi ks Vit = 1//1(1‘ -+ 1) Set Xi k1 = Z,'./'/‘k.
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Convergence Analysis

Lemma (Error Bounds of SA [Nemirovski et al., 2009])

Define & = (&4, -+ &) %), and F = o{x0,&,i € N,0 < | < k —1}. Assume that for

anyi e N, the random var/ables {& 1 <t<ji, are iid and the random vector &;  Is
independent of Fy. Then for any t > 1 we have

E [z~ S| < s, as.

—(t+ 1)’

where Q; &

%,» and Dy, = sup{d(x;, /) : x;, x{ € X;}.

Q,
E [H&,km Hz‘]:k} = [HX, ket — Xi(Yi)| ]]—"k} < j’—; =: 02,

21/55
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Convergence Analysis

Almost Sure Convergence

Let the sequence {xk }«>0 be generated by the synchronous algorithm. Assume that
IF]] < 1, and ajx > 0 with >°.°, avjx < oo forany i € N. Then forany i € V,

lim x = x" a.s.
k— oo

Convergence in Mean and of the Variance

Let the sequence {xx}z2; be generated by the synchronous algorithm. Assume that
|IF]] < 1,and that 0 < «jx — 0 as k — oo forany i € A/. Then for any j € NV,
(a) (convergence in mean) klim E[||xix — x;*|]] = 0.

— 00

(b) (convergence of the variance of xj) klim Var(xx) = 0.
— 00
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Convergence Analysis

Geometric Convergence

Consider the synchronous scheme where E[||x;o — X||] < C Vi € N. Assume that
a= ||| <1,andthat a;x = 71" Vi € V withn € (0, 1). Define

X1, = X7l

I
&=

Uk :
[l X,k — xnl

Then, the following holds for kK > 0
(@) lfn=a,qg>aand D2 1/In((g/a)®), then ux < (uo + VNk)a < vN(C + D)g*.
(b) If n € (a,1), then ux < (\/NC+ %) g~ with g = 7.

(c) f0 <7 < a, then u, < (WC+ a@’\?) g* with g = a.

23/55
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Overall Iteration Complexity

Overall iteration complexity

Consider the synchronous scheme and let inexact solutions be computed via SA,
where E[||x;0 — x||] < C?. Assumethata= ||T|| < 1and a;x = 7* Vi € V with
n € (0,1). Then the number of projected gradient steps? for i to achieve an e—NE is no

greater than O (@)2 + (In (@))

a, K(e) . L Q;
Suppose £;(n) = Eks) Jj,k with i o = y'nzT‘H)]. Ifn < a then

In(1 /72
W In(\/N(C+D)/e)

+——— 7 where Q; £ % +202 ,q> a=|I,and D = 1/1In((q/c)®)
n(T/q) : i =2 X’ : b

Gin) < gl (YELD))

n%In(1/n?)

& The bound grows slowly in N, a desirable feature of equilibrium computation with a
large collection of players.
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Numerics

Comparison with Stochastic Gradient Response: Competitive portfolio
Investment c. ocinneide, B. Scherer, and X. Xu (2006)

4
10000 , : : 10%: »
4 e
-+ Stochastic Gradient }—/
8000 —Synchronous Algorithm 1 103 £ e
t ,,/ --Stochastic Gradient
6000 ol ’(/ —Synchronous Algorithm 1
W 3 -
> f
4000
2000
10° ; ; : ‘
0 200 400 600 800 1000 1200

0 200 400 600 800 1000 1200
1le

1/e

Figure: Empirical Communication
Complexity

Figure: Empirical Iteration Complexity
@ The iteration complexity is of the same order as stochastic gradient response
(SGR); but the constant of SG is superior to that of the synchronous BR scheme.
@ Significant decrease in communication overhead compared to SGR;
communication overhead often crucial in rendering a scheme impractical.
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Asynchronicity and delay

Asynchronous Scheme: Algorlthm Design Bertsekas and Tsitsiklis (1989)

4 Motivation:
In a large-scale network, players might not be able to make simultaneous updates nor

have access to their rivals’ latest information.
@ Description:

e T, C T={0,1,2,---}: the set of times player i updates x;

0oy 2 (Xt k—di(k)» " > Xnk—dj (ko) IS @vailable to player i if k € T;, where d/(k)
denotes the communication delay

& Assumptions

@ Almost Cyclic Rule: There exists an integer By > 0 such that each player updates
its decision at least once during any time interval of length B;

@ Partial Asynchronism: There exists an integer B, > 0 such that

0<d(k)<B, Vij=1,--,N, k>0
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Asynchronicity and delay

0000000000000 00000

Algorithm 8 Asynchronous inexact proximal BR scheme

Letk:=0,x0€ Xifori=1,...,N.
(1) Fori=1,....N,if k € Ty, then set ¥y = (X, g (> + Xnk—di (k))-
(2) Fori=1,...,N,if k € T;, then updates x; x+1 € X; as follows:

Xig1 = Xi(Yk) + Eikr1

With e; k1 satisfying E [|lej k1 ]°| k] < ofx a.s., where Fix = o{xo, -

Otherwise, if k ¢ T;, then X; 1 1= Xi k.
(3) k:=k+1;If k< K, return to (1); else STOP.

7Xk}-
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Asynchronicity and delay: Convergence Analysis

Define ng = [%L let 8; k denote the number of elements in T; that are not larger than k.

Lemma (Linear Rate of Convergence)

Let the asynchronous inexact proximal best-response scheme be applied to the

N-player stochastic Nash game, where o x.1 = n”* for somen € (0,1), and
1

E[||x0 — x| < CVi e N. Assume a = |[[||.c < 1.1Ifq > c = pB and

D> 1/In((q/c)°),

By —1

maxE[|[% — X [1 < p~ % (C+D)g* vk >0,
e

28/55
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Asynchronicity and delay: Convergence Analysis

Iteration Complexity (Impact of delay and asynchronicity)

Consider the asynchronous algorithm and let the inexact proximal solutions be
computed via SA, where «; .1 = 1"+ forn € (0,1). Suppose a = ||| < 1. Then the
number of projected gradient steps? for j to compute an e—NE is no greater than

B.
o (1P TED).

2 1

2M7

2 here max Elllxi,0 — X 121 < 2,02 2 2002 3, o0+ = maxfa, n} with ng = (g%] andn € (0,1),9 > c2 pB1 ,and
ie ’ Iz i

D> 1/ n((q/)®).

v

update | delay complexity bound
B
By B, | o1/ IE D
1 B, %) ((1/6)2(1+Bz)+5)
1 0 o (( /e)2+5)
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Asynchronicity and delay: Simulation Results

Set By = 1, the communication delays k — Tji(k) are independently generated from a

uniform distribution on the set {0,1,--- , B>}.
x10*
15
—B,=0+8,=4-B,=8+B,=12
10
4
5
0. ‘ | | |
: : : : 0 500 1000 1500 2000
0 10 20 30 40 50 B
Figure: Linear Convergence Figure: Empirical Iteration Complexity
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Randomized BR: Algorithm Design

Randomized Best-Response Scheme |

Literature review

@ The randomized block-coordinate descent method [v. Nestrerov (2012)] partitions the
coordinates into several blocks and randomly choses a single block to update
while the other blocks keep invariant at each iteration.

@ Generalized to the fixed point problem by [p. L. Combettes and J. C Pesquet (2015)], in which a
subset of block variables is randomly updated

Randomized Best-response: For any i € NV, let x;«x = 1 (or 0) if player j updates at

iteration k (or not).
@ Assumption: Forany i € N, P(x;x = 1) = pi > 0 and x; « is independent of F.
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Randomized BR: Algorithm Design

Randomized Best-Response Scheme Il

Algorithm 9 Randomized inexact proximal best-response scheme
Letk:=0, X0 € Xjfori=1,...,N.
(1) If xik =1, then x; k11 € X is defined as follows:

Xik+1 = %(Xk) + €i k1

with Ei,k+1 satisfying E [Hgi,k+1 ‘|2|fk] < O‘I?,k a.s., where Fik = O‘{Xo, s 7Xk}.
Otherwise, X; k11 = Xi x when x;x = 0.

(2) k:=k+1;If k < K, return to (1); else STOP.

32/55
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Convergence Analysis

Almost Sure Convergence

Let the sequence {x« }«>o0 be generated by the randomized algorithm. Assume that
a= ||| <t1andforanyieN,0<ajx <1and > 2, aix < oo a.s. Then for any
i €N, iMoo Xik = X a.s.

Geometric Convergence

Let the sequence {xk }«>0 be generated by the randomized algorithm.? Then the
following holds for kK > 0,

E[|lx — x*|] < VN(C + D)§".

) s ) _
B[l — X"l < CVie Nanda; k= 2Pk + for some € (0, 1). Define Big=0and; 4 = z;:()‘ Xi,pforall k > 1,

£ max{a, 7} with & = \/1 — Pmin(1 — @), 7 = \/1 — Pmin(1 — m2) and priny = minjc A7 pj, @ > & D £ 1/1n((d/8)®),

@
- N n—1,—1\1/2 B prs—1
C=c (SN o) /" and D = Dnij
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Convergence Analysis

Overall lteration Complexity

Let the randomized algorithm be applied with inexact solutions computed via SA,
where a; x = %+ for some 1 € (0,1). Suppose a = ||I|| < 1. Then expected number
of projected gradient steps? for i to compute an e—NE is no greater than

n(1/3)
max{a, 1}, D 2 1/ In((§/&)®), and D = Dn#— 1.

In(1/773)
V/Npmax | ™(1/3) In(1/&)
o ( ¢ T nd/ |
In(1/78) .
#The expected number of gradient steps is bounded by #;(n) where £;(n) £ T)ﬁﬁo%of) (1?) n(1/9) 4+ [In(1/€)-‘ , where

=2 —2 =1 A e ~ N
75 = (Pmax(n —1)+1 LEeE € §g>¢=
8- ( ) (Nomax)'/2(C+D)
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Convergence Analysis

5 X 10
4

3

<

4
2
1
0

107 0 500 1000 1500 2000
0 100 200 300
1/e
Figure: Linear Convergence Figure: Empirical Iteration Complexity

Q jik= [WW steps of SA are taken to get an inexact solution.

@ The randomized algorithm still displays linear convergence but its empirical
iteration complexity is larger than the synchronous algorithm, a less surprising
observation.
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Distributed BR and GR schemes
000000000000000000

synchronous randomized asynchronous
parameters empirical theoretical empirical theoretical empirical theoretical
n=a"> 2e-03 1.89 2.64e-03 1.98e+01 1.43e-03 1.36e+01
p=1 n= EXIE 4.76e-04 7.18e-01 7.42e-04 1.73e+01 3.24e-04 1.36e+01
n=a 1.08e-04 3.18e-01 2.27e-04 1.53e+01 7.94e-05 1.37e+01
n = 205 6.1e-03 6.98 7.88e-03 2.49e+01 4.33e-03 3.69e+01
n=2 n=a" 2.26e-03 3.89 3.3e-03 2.27e+01 1.72e-03 3.69e+01
n=a 9.39e-04 2.33 1.39e-03 2.09e+01 6.9e-04 3.69e+01
n = 05 1.83e-02 2.6e+01 2.06e-02 3.16e+01 1.11e-02 9.62e+01
u=5 [ pn=a" 7.5e-03 2.01e+01 1.24e-02 3.01e+01 6.55e-03 9.62e+01
n=a 4.8e-03 1.58e+01 8.4e-03 2.89e+01 4.2e-03 9.62e+01

Table: Comparison of theoretical and empirical error
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Summary

Summary of findings

Update scheme Asymptotic convergence Rate of convergence Iteration complexity
e-NEo:
Synchronous Algorithm a.s. convergence . 246
(using ||.||2 norm) convergence in mean geometric © ((\/N/e) )2
n € (a,1): O(N/€%)
e-NEo:
Randomized Algorithm a.s. convergence cometric 2l kj (=115
(using ||.]|> norm) convergence in mean 9 o <(\/N/e) n(fg )/ (i~ )+ )
e-NEo:
B,
: 2By (147521 )+8
Asynchronous Algorithm ) ) ol ! ( By
(Using ||| norm) convergence in mean geometric (( /€) ,
2(1+[W0+5
o(/9 )

Table: Summary of Contributions

# Key findings: the iteration complexity is O(1/e2(1+9)+9)
@ ¢ = 0 for the synchronous scheme
@ ¢ > 0 represents the positive cost of randomization in the randomized scheme
@ ¢ > 0 represents the positive cost of asynchronicity and delay
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Background

@ Game-theoretic models and tools are extensively used in networks since

o they enable a flexible control paradigm where agents autonomously control their
resource usage to optimize their own selfish objectives;

e provide potentially tractable decentralized algorithms for network control based on
“designed games” [Marden and Shamma, 2007], [Marden 2009].

@ Noncooperative games have wide application in capturing networked systems,
such as power systems, markets, communication and transportation networks
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Problem Statement

Aggregative** Stochastic Nash Games

min £(x;, X) £ E [$i(xi, X; €)
Xi€X;
e N ={1,---,n}is agroup of n players, indexed by i;

@ X; denotes the strategy set of player i while x £ (xi,- - - , xy) denotes a strategy
profile;

@ player i has an objective f,(x;, X), where X £ "7 . x; is the aggregate;
@ ¢ : Q — R™ defined on the probability space (Q, F,P).

*k
Aggregative games first discussed in [Jensen, 2010]

@ Convexity of subproblems: X; is a closed, compact, convex set; For any y € R?,
f(x;, y) is C' and convex in x; € X;.

@ Existence of a stochastic oracle returning a sampled gradient Vvi(xi, ¥; €),
Vi (X, ¥) = E[Vx; $i(x, y: €)] and E[||Vx, fi(X;,¥) — Vi, ¢i(xi, y: €)[7] < V7.
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Previous Works

@ Non-exhaustive summary of consensus and distributed optimization.
[Tsitsiklis, 1984], [Olfati-Saber and Murray, 2004] [Ren, Beard and Atkins, 2005] [Nedi¢ and Ozdaglar,
2009], [Nedié, Ozdaglar and Parrilo, 2010], [Nedi¢ and Olshevsky, 2015]

@ Distributed schemes for Nash games

o Gradient response+consensus for aggregative games [Koshal, Nedi¢, and UVS, 2016]

o Aggregative games with coupling constraints [Paccagnan et al., 2017] [Belgicioso et al., 2017], @
semi-dencentralized algorithm, requiring a central node for the update of the common
multiplier.

@ Generalized Nash equilibrium problems:

@ Distributed primal-dual algorithms [Zhu and Frazzoli, 2017; Yi and Pavel, 2017].
@ Distributed stochastic gradient scheme with constant stepsize [Yu et al., 2017], mean-squared
convergence to a neighborhood of the GNE.
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Our Work

@ The players cannot observe rival strategies, while interacting through a
communication graph (connected) G = (N, €, A):

N %
~ e £ is a collection of undirected edges;
of — M ™ o Neighbor set A = {j: (i,j) € £};
o) v @ The adjacency matrix A = [a,-j],’.’j:‘, where g; > 0 if
= j e Njand a; = 0 otherwise such that A is doubly
d stochastic.

@ We aim to design a fully distributed algorithm to compute an NE only through local
communications and computation.

@ Can we achieve the best known deterministic rates?

41/55



Introduction BR for SNEPs Distributed BR and GR schemes
0000000000000000 00000000000000000000 0000®0000000000000

Distributed schemes for aggregative games

Distributed VS-PGR

X; x: its equilibrium strategy, v; «: the average of the aggregate.

Distributed Variable Sample-size Projected Gradient-response Scheme

Initialize: Set k = 0, and v; o = x;o € X; forany i € N.
Iterate until convergence
Consensus (average among neighbors). V; x := v; x and repeat 7 times

Vik = Z ajiVi VieN or compact form Vi = A™ V.
JEN;

Strategy Update (move along the negative gradient of the payoff).
Sk
Xiks1 =[x, [Xi,k - Sik > Vot (Xik, NV ki Ef)]
p=1

reduce the noise variance by increasing Sk

Vik+1 = Vik + Xik+1 — Xi k-
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Analysis Sketch

@ Consensus error: based on ‘[A"]ij - - foraconstant® > 0and 8 € (0,1),

by defining yi = 371 viw/n and Dx = 371, max |||
1=

k
Iy — Vikll < ODx ™70 +20Dx S 3557 Wk > 0,

s=1

@ Suppose ¢(x) 2 (Vy, (X, X0, %)) . 18 n¢-strongly monotone and L-Lipschitz
continuous. Recursion on the conditional mean-squared error:

n
Elllxrt — X2 < (1= 2ams +20°L3) % — x*|* +® > 1/,
i=1
contraction property ——

noise

n
+4aanZLi||\7i,k — Ykl + 2 HZZLZ [Vik — yill?
i=1

consensus error
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Convergence Results—Geometric

Theorem 1: Linear rate of convergence
Setrk =k+1, Sk = ’Vpi(wﬂ)—‘ for some p € (0, 1). Suppose a € (0,74/L%), define
04 21— 2an, + 2a°L% and v £ max{p, 8}. Then

E[[|xc — x*[|"] = O(max{es, 7}).

Theorem 2: Complexity Bounds

Setry =k+1,a= 2L2 and Sy = [ (k1) w with p £ max{ 2L2 ,ﬂ}. For obtaining

e—NE such that E[||xx — x*||?] < ¢, the iteration complexity K = O(In(1/¢)) (optimal,
deterministic), communication complexity Zf:o m« = O(In?(1/e€)), and the oracle
complexity is K Sk = O (1/¢) (optimal, SGD).

less projections and communications than SGD O (1/¢)
best known comm. comp. in dis. opt. is K In(K)[Jakovetic, Xavier, and Moura, 14]
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Convergence Results—Polynomial

@ We need not increase the samples too fast when the oracle is costly.
@ Explore the performance with slower rates of growth of sample-size?

Proposition 1: Polynomial rate of convergence

Set 7« = [(k+1)“] and Sx = [(k + 1)"] for some u € (0,1) and v > 0. Let
a € (0,m4/L5) and define g, £ 1 — 2an, + 2a2L5. Then we obtain a polynomial rate
of convergence E[[| k1 — x*[|*] = O ((k + 1)),

Proposition 2: Complexity Bounds

Set 7 = [(k+1)Y] and S = [(k + 1)"] for some u € (0,1) and v > 0. Then the
iteration, communication, and oracle complexity to obtain an e—NE are bounded by

O((1/6)*), O((1/)“*1/¥), and © ((1 /e)1+‘/V), respectively.
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An Example: Nash Cournot Competition

@ Firms compete on the amount of output they will produce and sell in the markets,
where the aggregate is the sum of production of all firms.

@ Consider a stochastic environment in which n firms competing over L markets,
where firm i’s production quantity is x; = (x/,--- , xF) € RL.

@ There exists a random linear production cost of firm /: function
ci(xi; &) = (¢ + &) S, x! for ¢ > 0 and random disturbance ¢; with mean zero.

@ The price of products sold in market / € £ is determined by a random linear
inverse demand (or price) function p,(x;; ¢/) = a; + ¢; — biX;, where the aggregate
X =>.",x,a >0,b >0,and ¢ is zero-mean.

e Firm i has a payoff: Fi(x) = E[c,(x,-; &) — S pu(x; g,)x,’] .

46/55



Introduction BR for SNEPs Distributed BR and GR schemes
000000000000 0000 0000000000000 O0000000 000000000 e00000000

Distributed schemes for aggregative games

Numerical Validation: Distributed vs Centralized

@ Implement the distributed algorithm over Erdés—Rényi graph and the centralized
algorithm, where o = 0.01, 7 = [log(k)], Sk = [0,98*(“1)].

2 . . . = . .
7
—=centralized
1.6
14r i )\} 1
1.2+ 1
16 |
0.8 {-~, e —— 1 1
06 ‘ | T
) 50 100 150 200 250 300 350
The empirical error ]E[”"““Xij‘)“*”] by averaging across 50 sample paths.
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Numerical Validation: Network Connectivity

Run the algorithm with 7« = k + 1, a = 0.01, and S = [ﬂ‘(“ﬂ over the cycle, star,

and Erd6s—Rénvi araohs. where 3 are 0.967,0.95. 0.986 respectivelv.

0 0
10 —cycle 10 =——cycle
- star = star
~ER

relative error
relative error

0 100 200 300 400 500
#iterations #samples %10°

@ The star graph has the fastest convergence rate, which is consistent with
Theorem 1 that smaller 8 may lead to faster rate of convergence.

@ The ER graph has the best oracle complexity, which reinforces the theoretical
findings that larger 8 may lead to better oracle complexity.
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Numerical Validation: Geometric vs Polynomial

@ Set n =20, L = 13 and run the algorithm over the complete graph with geometric
and polynomial increasing sample-sizes.

(a) (b) (c)
10° 108
—geo
N = poly v=0.8 s
) -+ poly v=1 4 10
5 ﬁ 10 —geo § —geo
o 1092 [=3 = poly v=0.8 [=3 = poly v=0.8
© i S S o 102 [
e N\ S
10 10° 10°
0 500 1000 0 200 400 600 800 0 1000 2000 3000
#iterations 1/e 1/e

@ with low accuracy e the poly with smaller degree v appears to have better oracle
complexity, while for a high accuracy e, the geo and poly (with larger v) may have
better oracle complexity.

Over the complete graph, the iteration and oracle complexity to obtain an e—NE are
O(v(1/e)'/) and O (erV(1/e)‘+1/V), respectively.
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Distributed VS-PBR

Distributed Variable Sample-size Proximal Best-response Scheme

Initialize: Set k = 0, and v; o = Xio € X; forany i € N.
Iterate until convergence
Consensus. V; x := v, x Vi € N and repeat 74 times

\7,";( = Z a,,-\”/,,k VieN.
JEN;

Strategy Update (sample average objective), for any i € N/

Sk

. 1 A

X1 = argmin | o > ilxi, Nk 6) + gIIX/ — xikl?],
X €X; k =1

Vikt = Vik + Xikt1 — Xik-
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Main Resulis

@ Assumption: proximal BR map is contractive with parameter a € (0, 1).
Ti(y) 2 argmin, ¢y, [0, 7) + 5% = wl?] > o0.

@ Geometric Convergence. Set 7w = k+ 1 and Sy = [7;*2“} with n € (0,1). Then

E[lxk — X*||’] = O (max{a, v}**) , where v £ max{n, 8}. The iteration, oracle, and
communication complexity to compute an -NE are O(In(1/¢)), O (1/¢), and

o (In2(1 /e)), respectively.

@ Often computing a sampled gradient is costly and geometric growth is impractical.

‘ Polynomial growth in sample-size represents a “dial”. ‘

@ Polynomial Rate of Convergence. Set 7« = [(k +1)“] and Sk = [(k + 1)"] for
u € (0,1)and v > 0. Then E[|| X1 — x*||?] = O ((k + 1)), the iteration,
communication, and oracle complexity to obtain an e—NE are O((1/¢)'/"),
O((1/€)*M/v), and © ((1 Je)1+1/ ) respectively.

51/55



Introduction BR for SNEPs Distributed BR and GR schemes
000000000000 0000 0000000000000 O0000000 0000000000000 0e000

Distributed schemes for aggregative games

Numerical Validation: Distributed VS-PGR and VS-PBR

Run both algorithms over a Erdés—Rényi graph with « = 0.04, 7 = k + 1 and
Sk = [0.98*““)], and ;= 30.

convergence rate s oracle complexity comm. complexity
10

5 5
o 4 =
5 g1 g
2 £ 5
= 5 E
kS a2 g
o 10 s}

o

0 700 w0 w0 oo 100
0 100 200 300 400 500 0 500 1000 1500 0 500 1000 1500
#iterations 1/e 1/e
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Summary of Contributions
min - Fi(xi, x-;) £ E[¢i(x; €)] + ri(xi).
X, €RY%
Algorithm Sk Rate E[[|xx — x*||*] | Iter. Comp. | Oracle Comp. | Ass.
VS-PGR [p*("“)] Linear: O(pk) O(In(1/¢)) O(1/¢) SM
[(k+1)T | O@)+0k™) [o(/9") | o1/ /" | SM
VS-PBR |17 "] O(") O(n(i/e)) | O(ij) | CPM
[(k+ 1) ] 0@)+0k™ O/ O/ | CPM

SM: Strongly monotone, CPM: Contract. prox. BR Map
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Algorithm Sk Comm. 7 Rate E[||x, — x* Hz] Iter. Comp. Oracle Comp. Comm. Comp

dvs-par |2 k+1 Linear: O(pF) o(In(1/¢)) O(1/¢) O(In (1/ ))
[k+1)7 | Ttk+1)"] O(tk+1)"") o0 | owza™Y) | ooV

4-VS-PBR [p— (K1) k41 Linear: O(pF) o(In(1/¢)) O(1/e€) O(In 2(1/6)
[+ DY | [(k+1)"] O(k+1)~Y) o/ | owza™7) | oo v

(d-VS-PGR) and (d-VS-PBR) schemes for Aggregative games (v > 0, u € (0, 1))
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Summary and related work |

# Part I: Synch., asynch., and randomized BR schemes for stochastic Nash games

@ UVS, Jong-Shi Pang, and Suvrajeet Sen, Inexact best-response schemes for stochastic Nash games: Linear convergence
and iteration complexity, CDC 2016

@ Jinlong Lei, UVS, Jong-Shi Pang, and Suvrajeet Sen, On Synchronous, Asynchronous, and Randomized Best-Response
Schemes for Stochastic Nash Games, Mathematics of Operations Research (to appear, 2019).

& Part lI: Distributed schemes for Stochastic Nash games over graphs

@ Jinlong Lei and UVS, Linearly Convergent Variable Sample-Size Schemes for Stochastic Nash Games: Best-Response
Schemes and Distributed Gradient-Response Schemes, CDC 2018: 3547-3552

@ Jinlong Lei and UVS, Distributed Variable Sample-Size Gradient-response and Best-response Schemes for Stochastic
Nash Games over Graphs, arxiv:1811.11246.
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