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Introduction BR for SNEPs Distributed BR and GR schemes

Background

N-player Nash Equilibrium Problem

players: N , {1, · · · ,N} is a set of N players, indexed by i

strategy xi and strategy set for player i : Xi

x ,

x1
...

xN

 ∈ X ,
N∏

i=1

Xi .

objective of player i : fi (xi , x−i ) : X → R, where x−i , {xj}j 6=i .

objective: each player minimizes its objective given rivals’ actions

min
xi∈Xi

fi (xi , x−i ).

x∗ = {x∗i }
N
i=1 is a Nash Equilibrium if for any i ∈ N

fi (x∗i , x
∗
−i ) ≤ fi (xi , x∗−i ), ∀xi ∈ Xi .

no player can improve her payoff by unilaterally deviating from strategy x∗i
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Background

Assumptions

For i ∈ N , the strategy set Xi ⊆ Rni is a closed and convex set

For i ∈ N , suppose fi (xi , x−i ) is convex and C1 in xi on an open set containing Xi .

The resulting class of noncooperative games, referred to as G, is a class of static
convex games.
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Background

Synchronous Gradient-Response (GR) schemes

Loosely speaking, in GR schemes, player i uses the GR, given current rival strategies.

Algorithm 1 Synchronous GR scheme

Set k = 0, xi,0 ∈ Xi be a given sequence.

(1) For i = 1, . . . ,N, let xi,k+1 ∈ Xi be x̂i,k+1 defined as follows

x̂i,k+1 := ΠXi [xi,k − γi,k∇xi fi (xk )] .

(2) k := k + 1; If k < K , return to (1); else STOP.

Computing a GR requires player i to have access to ∇xi fi (·, x−i ) and x−i,k

Lends itself to (partially) distributed implementations

Under some conditions, synchronous GR leads to an NE

ΠX (y) , arg min
u∈X
‖u − y‖
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Background

Convergence of SGR scheme

Consider a game G ∈ G. Then x∗ is an NE of G if and only if x∗ is a solution of
VI(X ,F ) where

F (x) ,

∇x1 f1(x)
...

∇xN fN(x)

 .

Recall that the variational inequality problem VI(X ,F ) requires an x ∈ X such that

(y − x)> F (x) ≥ 0, ∀y ∈ X .

If F is L−Lipschitz and η-strongly monotone on X , then for γi,k = γ < 2η
L2 for all i

and k , SGR converges to (unique) NE
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Background

Synchronous Iteratively Regularized Gradient-Response (GR) schemes

Algorithm 2 Synchronous RGR scheme

Set k = 0, xi,0 ∈ Xi be a given sequence.

(1) For i = 1, . . . ,N, let xi,k+1 ∈ Xi be x̂i,k+1 defined as follows

x̂i,k+1 := ΠXi [xi,k − γi,k (∇xi fi (xk )+εi,k xi,k )] .

(2) k := k + 1; If k < K , return to (1); else STOP.

Suppose F is monotone on X .

Under suitable conditions on γi,k and εi,k , synchronous RGR converges to
(least-norm) NE

F is η-monotone if there exists η > 0, such that (F (x) − F (y))T (x − y) ≥ η‖x − y‖2 for all x, y ∈ X .
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Background

Non-exhaustive summary of research

u Monograph on learning equilibria in games [Fudenberg and Tirole, 1998]

Single-timescale gradient-response schemes:

Strongly monotone maps [Alpcan and Başar (2003, 2007); Pavel (2006), Pan and Pavel (2009)]

Monotone maps via iterative regularization (single-projection) [Yin, UVS and Mehta (2011);

Kannan and UVS (2012)]

More recently, projected reflected gradient schemes (single projection) [Malitksy (2015)]

Not “fully rational”.
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Background

Synchronous Best-Response (BR) schemes

Loosely speaking, in BR schemes, player i uses the BR, given current rival strategies.

Algorithm 3 Synchronous BR scheme

Set k = 0, xi,0 ∈ Xi be a given sequence.

(1) For i = 1, . . . ,N, let xi,k+1 ∈ Xi be x̂i,k+1 defined as follows:

x̂i,k+1 ∈ argmin
xi∈Xi

fi (xi , x−i,k ).

(2) k := k + 1; If k < K , return to (1); else STOP.

Computing a BR requires player i to know fi and xk
−i but not fj , j 6= i .

Lends itself to (partially) distributed implementations

BR schemes may converge to a NE or may cycle
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Background

Synchronous Proximal BR schemes

Algorithm 4 Synchronous proximal BR scheme

Set k = 0, xi,0 ∈ Xi be a given sequence.

(1) For i = 1, . . . ,N, let xi,k+1 ∈ Xi be x̂i,k+1(xk ) defined as follows:

x̂i,k+1(xk ) = argmin
xi∈Xi

fi (xi , x−i,k ) +
µ

2
‖xi − xi,k‖2.

(2) k := k + 1; If k < K , return to (1); else STOP.

Proximal BR adds a proximal term µ
2 ‖xi − xi,k‖2.

If fi (•, x−i ) is convex in xi , then fi (•, x−i ) + µ
2 ‖ • −xi,k‖2 is µ-strongly convex (and

BR is unique)

Under some conditions, proximal BR converges to an NE
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Background

Proximal BR [Facchinei and Pang, 2009]

u Fixed Point: x∗ = x̂(x∗)

x∗ is an NE if and only if x∗ is a fixed point of the proximal BR (PBR) map x̂(•)
xk+1 = x̂(xk ) converges linearly to x∗ when x̂(•) is contractive

Define the N × N real matrix Γ = [γij ]
N
i,j=1 :

Γ ,



µ
µ+ζ1,min

ζ12,max
µ+ζ1,min

. . .
ζ1N,max
µ+ζ1,min

ζ21,max
µ+ζ2,min

µ
µ+ζ2,min

. . .
ζ2N,max
µ+ζ2,min

.

.

.
. . .

ζN1,max
µ+ζN,min

ζN2,max
µ+ζN,min

. . .
µ

µ+ζN,min



with ζi,min , infx∈X λmin
(
∇2

xi
fi (x)

)
, and ζij,max , supx∈X ‖∇

2
xi xj

fi (x)‖ ∀j 6= i
measuring the coupling of players’ subproblem.
If the spectral radius ρ(Γ) < 1, then there exist a scalar a ∈ (0, 1) and monotonic
norm | ‖ • ‖ | such that

∣∣∣∣∣∣∣∣∣

∥∥∥∥∥∥∥∥∥


‖x̂1(y′) − x̂1(y)‖

.

.

.
‖x̂N (y′) − x̂N (y)‖


∥∥∥∥∥∥∥∥∥

∣∣∣∣∣∣∣∣∣ ≤ a

∣∣∣∣∣∣∣∣∣∣

∥∥∥∥∥∥∥∥∥∥


‖y′1 − y1‖

.

.

.
‖y′N − yN‖


∥∥∥∥∥∥∥∥∥∥

∣∣∣∣∣∣∣∣∣∣
.
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Background

Randomized proximal best-response scheme

For any i ∈ N , let χi,k = 1 (or 0) if player i updates at iteration k (or not).
u Assumption: For any i ∈ N , P(χi,k = 1) = pi > 0 and χi,k is independent of Fk .

Algorithm 5 Randomized proximal best-response scheme

Let k := 0, xi,0 ∈ Xi for i = 1, . . . ,N.

(1) If χi,k = 1, then xi,k+1 ∈ Xi is defined as follows:

x̂i,k+1(xk ) = argmin
xi∈Xi

fi (xi , x−i,k ) +
µ

2
‖xi − xi,k‖2.

Otherwise, xi,k+1 = xi,k when χi,k = 0.

(2) k := k + 1; If k < K , return to (1); else STOP.

A collection of players is randomly chosen to update via proximal BR
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Background

Non-exhaustive literature review on BR schemes

Synchronous best-response schemes [Facchinei and Pang (2009); Scutari, Facchinei, Palomar,

Song, and Pang (2013)]

Customized schemes in signal processing [Scutari, Palomar and Barbarossa (2008, 2009); Scutari

and Palomar (2010)]
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Background

N-player Stochastic Nash Equilibrium Problems

Key difference: Player objectives are expectation-valued; objective of player i :
fi : X × Rd → R

fi (xi , x−i ) , E [ψi (xi , x−i ; ξ(ω))]

where ξ : Ω→ Rd denotes a random variable

A direct extension of GR and BR is impossible since it requires access to either
∇xiE[ψi (xi , x−i , ξ)] (GR) or exact solutions to (BR) in finite time.

u Existence of a stochastic first-order oracle (SFO):
For any i ∈ N and x , ξ, (SFO) returns a sampled gradient ∇xiψi (xi , x−i ; ξ) s.t.

Unbiased: ∇xi fi (xi , x−i ) = E[∇xiψi (xi , x−i ; ξ(ω))];

Bounded second moments: There exists Mi > 0 such that for all x ∈ X ,

E[‖∇xiψi (xi , x−i ; ξ(ω))‖2] ≤ M2
i .
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Background

Stochastic variational inequality problems

Consider a game G ∈ G where player problems are expectation-valued. Then x∗

is an NE of G if and only if x∗ is a solution of VI(X ,F ) where

F (x) ,

∇x1E[f1(x , ξ)]
...

∇xNE[fN(x , ξ)]

 .

Consequently, algorithms for stochastic VIs or SVIs are closely related to schemes
for computing NE in stochastic regimes.
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Background

Extension of GR to Stochastic regimes

Algorithm 6 Synchronous Stochastic GR scheme

Set k = 0, xi,0 ∈ Xi be a given sequence.

(1) For i = 1, . . . ,N, let xi,k+1 ∈ Xi be x̂i,k+1 defined as follows

x̂i,k+1 := ΠXi [xi,k − γi,k∇xi fi (xk , ωi,k )] .

(2) k := k + 1; If k < K , return to (1); else STOP.
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Background

Non-exhaustive review for SGR schemes (and SVIs)

a.s. convergence for strongly monotone and Lipschitz maps [Jiang and Xu, 2008]

Rate statements for monotone and Lipschitz maps via extragradient schemes
[Juditsky, Nemirovski, and Tauvel, 2011], [Dang and Lan, 2015]

a.s. convergence for monotone and Lipschitz maps under single projection
regularized schemes [Koshal, Nedić and Shanbhag (2013)]

Non-Lipschitzian regimes via random smoothing [Yousefian, Nedić and Shanbhag (2016)]

Related work on non-monotone regimes (cf. [Thompson, Jofré, Iusem (2017)], [Kannan and

Shanbhag (2019)] )
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Background

Motivation

Part I: Best-response in stochastic regimes
u Closed-form expression of proximal best-response map is unavailable in finite time
since the objective is expectation-valued
u Part I develops several inexact proximal best-response schemes

best-response solutions are approximated via stochastic approximation (SA),

and inexactness ↓ zero by an increasing number of projected gradient steps.

Extensions to asynchronous and randomized regimes

Part II: Distributed BR and GR in stochastic regimes
u Part II develops distributed schemes for a subclass of games, i.e. “aggregative”
where player objectives are coupled via the aggregate strategy

Add a consensus layer for players to “learn” aggregate

Examine BR and GR with variance reduction+multiple communication rounds

Goal: Under what conditions, can linear convergence rates be achieved?

17 / 55



Introduction BR for SNEPs Distributed BR and GR schemes

Introduction

Slightly stricter assumptions

u Convexity of subproblems

Xi is a closed, compact, convex set.

fi (xi , x−i ) is convex and C2 in xi over an open set containing Xi for any given
x−i ∈

∏
j 6=i Xj .
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Background on Proximal Best-response

u Proximal best-response map

x̂(y) , argmin
x∈X

[
N∑

i=1

E[ψi (xi , y−i ;ω)] +
µ

2
‖x − y‖2

]
, µ > 0

The objective function is separable in xi , player i ’s subproblem is

x̂i (y) , argmin
xi∈Xi

[
E[ψi (xi , y−i ;ω)] +

µ

2
‖xi − yi‖2

]
.
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Synchronous algorithm

Algorithm Design

Algorithm 7 Synchronous inexact proximal best-response scheme

Set k = 0, xi,0 ∈ Xi ; Let {αi,k}k≥1 be a given sequence.

(1) For i = 1, . . . ,N, let xi,k+1 ∈ Xi be defined as follows:

xi,k+1 = x̂i (xk ) + εi,k+1

with {εi,k+1} satisfying E
[
‖εi,k+1‖2

∣∣Fk
]
≤ α2

i,k a.s., where Fk = σ{x0, · · · , xk}.
(2) k := k + 1; If k < K , return to (1); else STOP.

x̂i (xk ) , argmin
xi∈Xi

[
E[ψi (xi , x−i,k ;ω)] +

µ

2
‖xi − xi,k‖2

]
.

u Stochastic approximation (SA) to obtain an inexact best-response.

zi,t+1 := ΠXi

[
zi,t − γt

(
∇xiψi (zi,t , x−i,k ; ξt

i,k ) + µ(zi,t − xi,k )
)]
, (SAi,k )

where zi,1 = xi,k , γi,t = 1/µ(t + 1). Set xi,k+1 = zi,ji,k .
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Convergence Analysis

Lemma (Error Bounds of SA [Nemirovski et al., 2009])

Define ξi,k = (ξ1
i,k , · · · , ξ

ji,k
i,k ), and Fk = σ{x0, ξi,l , i ∈ N , 0 ≤ l ≤ k − 1}. Assume that for

any i ∈ N , the random variables {ξt
i,k}1≤t≤ji,k are iid and the random vector ξi,k is

independent of Fk . Then for any t ≥ 1 we have

E
[
‖zi,t − x̂i (xk )‖2∣∣Fk

]
≤ Qi

(t + 1)
, a.s.

where Qi ,
2M2

i
µ2 + 2D2

Xi
, and DXi = sup{d(xi , x ′i ) : xi , x ′i ∈ Xi}.

E
[
‖εi,k+1‖2

∣∣Fk

]
= E

[
‖xi,k+1 − x̂i(yk )‖2

∣∣Fk

]
≤ Qi

ji,k
=: α2

i,k
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Convergence Analysis

Almost Sure Convergence
Let the sequence {xk}k≥0 be generated by the synchronous algorithm. Assume that
‖Γ‖ < 1, and αi,k ≥ 0 with

∑∞
k=1 αi,k <∞ for any i ∈ N . Then for any i ∈ N ,

lim
k→∞

xi,k = x∗i a.s.

Convergence in Mean and of the Variance
Let the sequence {xk}∞k=1 be generated by the synchronous algorithm. Assume that
‖Γ‖ < 1, and that 0 ≤ αi,k → 0 as k →∞ for any i ∈ N . Then for any i ∈ N ,
(a) (convergence in mean) lim

k→∞
E[‖xi,k − x∗i ‖] = 0.

(b) (convergence of the variance of xk ) lim
k→∞

Var(xk ) = 0.
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Convergence Analysis

Geometric Convergence
Consider the synchronous scheme where E[‖xi,0 − x∗i ‖] ≤ C ∀i ∈ N . Assume that
a = ‖Γ‖ < 1, and that αi,k = ηk ∀i ∈ V with η ∈ (0, 1). Define

uk = E


∥∥∥∥∥∥∥
‖x1,k − x∗1 ‖

...
‖xN,k − x∗N‖


∥∥∥∥∥∥∥
 .

Then, the following holds for k ≥ 0
(a) If η = a, q > a and D , 1/ ln((q/a)e), then uk ≤ (u0 +

√
Nk)ak ≤

√
N(C + D)qk .

(b) If η ∈ (a, 1), then uk ≤
(√

NC +
√

Nη
η−a

)
qk with q = η.

(c) If 0 < η < a, then uk ≤
(√

NC +
√

Na
a−η

)
qk with q = a.
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Overall Iteration Complexity

Overall iteration complexity
Consider the synchronous scheme and let inexact solutions be computed via SA,
where E[‖xi,0 − x∗i ‖2] ≤ C2. Assume that a = ‖Γ‖ < 1 and αi,k = ηk ∀i ∈ V with
η ∈ (0, 1). Then the number of projected gradient stepsa for i to achieve an ε−NE is no

greater than O
(√

N
ε

)2
+
(

ln
(√

N
ε

))
.

aSuppose `i (η) =
∑K (ε)

k=1 ji,k with ji,k = d
Qi

η2(k+1)
e. If η ≤ a, then

`i (η) ≤
Qi

η4 ln(1/η2)

(√
N(C+D)
ε

) ln(1/η2)
ln(1/q) +

ln
(√

N(C+D)/ε
)

ln(1/q)
, where Qi ,

2M2
i

µ2 + 2D2
Xi
, q > a = ‖Γ‖, and D = 1/ ln((q/c)e).

u The bound grows slowly in N, a desirable feature of equilibrium computation with a
large collection of players.
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Numerics

Comparison with Stochastic Gradient Response: Competitive portfolio
Investment C. OCinneide, B. Scherer, and X. Xu (2006)

Figure: Empirical Iteration Complexity Figure: Empirical Communication
Complexity

The iteration complexity is of the same order as stochastic gradient response
(SGR); but the constant of SG is superior to that of the synchronous BR scheme.
Significant decrease in communication overhead compared to SGR;
communication overhead often crucial in rendering a scheme impractical.
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Asynchronicity and delay

Asynchronous Scheme: Algorithm Design Bertsekas and Tsitsiklis (1989)

u Motivation:
In a large-scale network, players might not be able to make simultaneous updates nor
have access to their rivals’ latest information.

u Description:

Ti ⊂ T = {0, 1, 2, · · · }: the set of times player i updates xi

y i
k , (x1,k−d i

1(k), · · · , xn,k−d i
N (k)) is available to player i if k ∈ Ti , where d i

j (k)

denotes the communication delay

u Assumptions

Almost Cyclic Rule: There exists an integer B1 > 0 such that each player updates
its decision at least once during any time interval of length B1

Partial Asynchronism: There exists an integer B2 ≥ 0 such that

0 ≤ d i
j (k) ≤ B2 ∀i , j = 1, · · · ,N, k ≥ 0
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Asynchronicity and delay

Algorithm 8 Asynchronous inexact proximal BR scheme

Let k := 0, xi,0 ∈ Xi for i = 1, . . . ,N.

(1) For i = 1, . . . ,N, if k ∈ Ti , then set y i
k , (x1,k−d i

1(k), · · · , xn,k−d i
N (k)).

(2) For i = 1, . . . ,N, if k ∈ Ti , then updates xi,k+1 ∈ Xi as follows:

xi,k+1 = x̂i (yk ) + εi,k+1

with εi,k+1 satisfying E
[
‖εi,k+1‖2

∣∣Fk
]
≤ α2

i,k a.s., where Fk = σ{x0, · · · , xk}.
Otherwise, if k /∈ Ti , then xi,k+1 := xi,k .

(3) k := k + 1; If k < K , return to (1); else STOP.
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Asynchronicity and delay: Convergence Analysis

Define n0 = d B2
B1
e, let βi,k denote the number of elements in Ti that are not larger than k .

Lemma (Linear Rate of Convergence)
Let the asynchronous inexact proximal best-response scheme be applied to the
N-player stochastic Nash game, where αi,k+1 = ηβi,k for some η ∈ (0, 1), and

E[‖xi,0 − x∗i ‖] ≤ C ∀i ∈ N . Assume a = ‖Γ‖∞ < 1. If q > c , ρ
1

B1 and
D > 1/ ln((q/c)e),

max
i∈N

E[‖x̂i,k − x∗i ‖] ≤ ρ
− B1−1

B1 (C + D)qk ∀k ≥ 0,
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Asynchronicity and delay: Convergence Analysis

Iteration Complexity (Impact of delay and asynchronicity)
Consider the asynchronous algorithm and let the inexact proximal solutions be
computed via SA, where αi,k+1 = ηβi,k for η ∈ (0, 1). Suppose a = ‖Γ‖∞ < 1. Then the
number of projected gradient stepsa for i to compute an ε−NE is no greater than

O
(

(1/ε)2B1(1+d B2
B1
e)+δ

)
.

awhere max
i∈N

E[‖xi,0 − x∗i ‖
2 ] ≤ C2, Qi ,

2M2
i

µ2 + 2{D2
Xi
}, ρn0+1 = max{a, η} with n0 = d B2

B1
e and η ∈ (0, 1), q > c , ρ

1
B1 , and

D > 1/ ln((q/c)e).

update delay complexity bound

B1 B2 O
(

(1/ε)
2B1(1+d B2

B1
e)+δ

)
1 B2 O

(
(1/ε)2(1+B2)+δ

)
1 0 O

(
(1/ε)2+δ

)
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Asynchronicity and delay: Simulation Results

Set B1 = 1, the communication delays k − τ i
j (k) are independently generated from a

uniform distribution on the set {0, 1, · · · ,B2}.

Figure: Linear Convergence Figure: Empirical Iteration Complexity
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Randomized BR: Algorithm Design

Randomized Best-Response Scheme I

Literature review

The randomized block-coordinate descent method [Y. Nestrerov (2012)] partitions the
coordinates into several blocks and randomly choses a single block to update
while the other blocks keep invariant at each iteration.

Generalized to the fixed point problem by [P. L. Combettes and J. C Pesquet (2015)], in which a
subset of block variables is randomly updated

Randomized Best-response: For any i ∈ N , let χi,k = 1 (or 0) if player i updates at
iteration k (or not).
u Assumption: For any i ∈ N , P(χi,k = 1) = pi > 0 and χi,k is independent of Fk .
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Randomized BR: Algorithm Design

Randomized Best-Response Scheme II

Algorithm 9 Randomized inexact proximal best-response scheme

Let k := 0, xi,0 ∈ Xi for i = 1, . . . ,N.

(1) If χi,k = 1, then xi,k+1 ∈ Xi is defined as follows:

xi,k+1 = x̂i (xk ) + εi,k+1

with εi,k+1 satisfying E
[
‖εi,k+1‖2

∣∣Fk
]
≤ α2

i,k a.s., where Fk = σ{x0, · · · , xk}.
Otherwise, xi,k+1 = xi,k when χi,k = 0.

(2) k := k + 1; If k < K , return to (1); else STOP.
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Convergence Analysis

Almost Sure Convergence

Let the sequence {xk}k≥0 be generated by the randomized algorithm. Assume that
a = ‖Γ‖ < 1 and for any i ∈ N , 0 ≤ αi,k < 1 and

∑∞
k=0 αi,k <∞ a.s. Then for any

i ∈ N , limk→∞ xi,k = x∗i a.s.

Geometric Convergence

Let the sequence {xk}k≥0 be generated by the randomized algorithm.a Then the
following holds for k ≥ 0,

E [‖xk − x∗‖] ≤
√

N(C̃ + D̃)q̃k .

aE[‖xi,0 − x∗i ‖] ≤ C ∀i ∈ N and αi,k = η
βi,k +1

for some η ∈ (0, 1). Define βi,0 = 0 and βi,k =
∑k−1

p=0 χi,p for all k ≥ 1,

c̃ , max{ã, η̃} with ã =
√

1 − pmin(1 − a2), η̃ =
√

1 − pmin(1 − η2) and pmin = mini∈N pi , q̃ > c̃, D , 1/ ln((q̃/c̃)e),

C̃ = C
(∑N

i=1 N−1p−1
min

)1/2
, and D̃ = Dηη̃−1
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Overall Iteration Complexity

Let the randomized algorithm be applied with inexact solutions computed via SA,
where αi,k = ηβi,k +1 for some η ∈ (0, 1). Suppose a = ‖Γ‖ < 1. Then expected number
of projected gradient stepsa for i to compute an ε−NE is no greater than

O
(√

Npmax
ε̃

) ln(1/η̃2
0 )

ln(1/q̃)
+
⌈

ln(1/ε̃)
ln(1/q̃)

⌉
.

aThe expected number of gradient steps is bounded by ˜̀
i (η) where ˜̀i (η) ,

pi Qi
η2η̃2

0 ln(1/η̃2
0 )

(
1
ε̃

) ln(1/η̃2
0 )

ln(1/q̃) +

⌈
ln(1/ε̃)
ln(1/q̃)

⌉
, where

η̃2
0 =

(
pmax(η−2 − 1) + 1

)−1
, ε̃ , ε

(Npmax)1/2(C̃+D̃)
, q̃ > c̃ , max{ã, η̃}, D , 1/ ln((q̃/c̃)e), and D̃ = Dηη̃−1.
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Figure: Linear Convergence Figure: Empirical Iteration Complexity

ji,k =
⌈

1
η

2(βi,k +1)

⌉
steps of SA are taken to get an inexact solution.

The randomized algorithm still displays linear convergence but its empirical
iteration complexity is larger than the synchronous algorithm, a less surprising
observation.
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parameters synchronous randomized asynchronous
empirical theoretical empirical theoretical empirical theoretical

µ = 1
η = a0.5 2e-03 1.89 2.64e-03 1.98e+01 1.43e-03 1.36e+01
η = a0.75 4.76e-04 7.18e-01 7.42e-04 1.73e+01 3.24e-04 1.36e+01
η = a 1.08e-04 3.18e-01 2.27e-04 1.53e+01 7.94e-05 1.37e+01

µ = 2
η = a0.5 6.1e-03 6.98 7.88e-03 2.49e+01 4.33e-03 3.69e+01
η = a0.75 2.26e-03 3.89 3.3e-03 2.27e+01 1.72e-03 3.69e+01
η = a 9.39e-04 2.33 1.39e-03 2.09e+01 6.9e-04 3.69e+01

µ = 5
η = a0.5 1.3e-02 2.6e+01 2.06e-02 3.16e+01 1.11e-02 9.62e+01
η = a0.75 7.5e-03 2.01e+01 1.24e-02 3.01e+01 6.55e-03 9.62e+01
η = a 4.8e-03 1.58e+01 8.4e-03 2.89e+01 4.2e-03 9.62e+01

Table: Comparison of theoretical and empirical error
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Summary of findings

Update scheme Asymptotic convergence Rate of convergence Iteration complexity

Synchronous Algorithm
(using ‖.‖2 norm)

a.s. convergence
convergence in mean geometric

ε-NE2:
O
(

(
√

N/ε)2+δ
)

η ∈ (a, 1): O(N/ε2)

Randomized Algorithm
(using ‖.‖2 norm)

a.s. convergence
convergence in mean geometric

ε-NE2:

O
(

(
√

N/ε)
2 ln(η̃

−1
0 )/ ln(η̃−1)+δ

)

Asynchronous Algorithm
(using ‖.‖∞ norm) convergence in mean geometric

ε-NE∞ :

O
(

(1/ε)
2B1

(
1+d B2

B1
e
)

+δ)
O
(

(1/ε)
2
(

1+d B2
N e

)
+δ)

Table: Summary of Contributions

u Key findings: the iteration complexity is O(1/ε2(1+c)+δ)

c = 0 for the synchronous scheme

c > 0 represents the positive cost of randomization in the randomized scheme

c > 0 represents the positive cost of asynchronicity and delay
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Distributed schemes for aggregative games

Background

Game-theoretic models and tools are extensively used in networks since
they enable a flexible control paradigm where agents autonomously control their
resource usage to optimize their own selfish objectives;
provide potentially tractable decentralized algorithms for network control based on
“designed games” [Marden and Shamma, 2007], [Marden 2009].

Noncooperative games have wide application in capturing networked systems,
such as power systems, markets, communication and transportation networks
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Problem Statement

Aggregative∗∗ Stochastic Nash Games

min
xi∈Xi

fi (xi , x̄) , E [ψi (xi , x̄ ; ξ)

N = {1, · · · , n} is a group of n players, indexed by i ;

Xi denotes the strategy set of player i while x , (x1, · · · , xN) denotes a strategy
profile;

player i has an objective fi (xi , x̄), where x̄ ,
∑n

i=1 xi is the aggregate;

ξ : Ω→ Rm defined on the probability space (Ω,F ,P).

** Aggregative games first discussed in [Jensen, 2010]

Convexity of subproblems: Xi is a closed, compact, convex set; For any y ∈ Rd ,
fi (xi , y) is C1 and convex in xi ∈ Xi .
Existence of a stochastic oracle returning a sampled gradient ∇xiψi (xi , y ; ξ),
∇xi fi (xi , y) = E[∇xi ψi (xi , y ; ξ)] and E[‖∇xi fi (xi , y)−∇xi ψi (xi , y ; ξ)‖2] ≤ ν2

i .
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Previous Works

Non-exhaustive summary of consensus and distributed optimization.
[Tsitsiklis, 1984], [Olfati-Saber and Murray, 2004] [Ren, Beard and Atkins, 2005] [Nedić and Ozdaglar,

2009], [Nedić, Ozdaglar and Parrilo, 2010], [Nedić and Olshevsky, 2015]

Distributed schemes for Nash games
Gradient response+consensus for aggregative games [Koshal, Nedić, and UVS, 2016]
Aggregative games with coupling constraints [Paccagnan et al., 2017] [Belgioioso et al., 2017], a
semi-dencentralized algorithm, requiring a central node for the update of the common
multiplier.
Generalized Nash equilibrium problems:

Distributed primal-dual algorithms [Zhu and Frazzoli, 2017; Yi and Pavel, 2017].
Distributed stochastic gradient scheme with constant stepsize [Yu et al., 2017], mean-squared
convergence to a neighborhood of the GNE.
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Our Work

The players cannot observe rival strategies, while interacting through a
communication graph (connected) G = (N , E ,A):

E is a collection of undirected edges;

Neighbor set Ni =
{

j : (i, j) ∈ E
}

;

The adjacency matrix A = [aij ]
n
i,j=1, where aij > 0 if

j ∈ Ni and aij = 0 otherwise such that A is doubly
stochastic.

We aim to design a fully distributed algorithm to compute an NE only through local
communications and computation.

Can we achieve the best known deterministic rates?
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Distributed VS-PGR

xi,k : its equilibrium strategy, vi,k : the average of the aggregate.

Distributed Variable Sample-size Projected Gradient-response Scheme
Initialize: Set k = 0, and vi,0 = xi,0 ∈ Xi for any i ∈ N .
Iterate until convergence

Consensus (average among neighbors). v̂i,k := vi,k and repeat τk times

v̂i,k :=
∑
j∈Ni

aij v̂j,k ∀i ∈ N or compact form V̂k = Aτk Vk .

Strategy Update (move along the negative gradient of the payoff).

xi,k+1 := ΠXi

[
xi,k −

α

Sk

Sk∑
p=1

∇xiψi
(
xi,k , nv̂i,k ; ξp

k

) ]
reduce the noise variance by increasing Sk

vi,k+1 := vi,k + xi,k+1 − xi,k .
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Analysis Sketch

Consensus error: based on
∣∣∣[Ak]

ij −
1
n

∣∣∣ ≤ θβk for a constant θ > 0 and β ∈ (0, 1),

by defining yk ,
∑n

i=1 vi,k/n and DX ,
∑n

j=1 max
xj∈Xj
‖xj‖,

‖yk − v̂i,k‖ ≤ θDXβ
∑k

p=0 τp + 2θDX

k∑
s=1

β
∑k

p=s τp ∀k ≥ 0.

Suppose φ(x) ,
(
∇xi fi (xi ,

∑n
i=1 xi )

)n
i=1 is ηφ-strongly monotone and Lφ-Lipschitz

continuous. Recursion on the conditional mean-squared error:

E[‖xk+1 − x∗‖2|Fk ] ≤
(

1− 2αηφ + 2α2L2
φ

)
︸ ︷︷ ︸

contraction property

‖xk − x∗‖2 + α2
n∑

i=1

ν2
i /Sk︸ ︷︷ ︸

noise

+ 4αnDX

n∑
i=1

Li‖v̂i,k − yk‖+ 2α2n2
n∑

i=1

L2
i ‖v̂i,k − yk‖2

︸ ︷︷ ︸
consensus error

.
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Convergence Results–Geometric

Theorem 1: Linear rate of convergence

Set τk = k + 1, Sk =
⌈
ρ−(k+1)

⌉
for some ρ ∈ (0, 1). Suppose α ∈

(
0, ηφ/L2

φ

)
, define

%φ , 1− 2αηφ + 2α2L2
φ and γ , max{ρ, β}. Then

E[‖xk − x∗‖2] = O(max{%φ, γ}k ).

Theorem 2: Complexity Bounds

Set τk = k + 1, α =
ηφ

2L2
φ

and Sk =
⌈
ρ−(k+1)

⌉
with ρ , max

{
1− η2

φ

2L2
φ

, β

}
. For obtaining

ε−NE such that E[‖xK − x∗‖2] ≤ ε, the iteration complexity K = O(ln(1/ε)) (optimal,
deterministic), communication complexity

∑K
k=0 τk = O(ln2(1/ε)), and the oracle

complexity is
∑K

k=0 Sk = O (1/ε) (optimal, SGD).

less projections and communications than SGD O (1/ε)
best known comm. comp. in dis. opt. is K ln(K )[Jakovetic, Xavier, and Moura, 14]
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Convergence Results–Polynomial

We need not increase the samples too fast when the oracle is costly.

Explore the performance with slower rates of growth of sample-size?

Proposition 1: Polynomial rate of convergence

Set τk = d(k + 1)ue and Sk = d(k + 1)ve for some u ∈ (0, 1) and v > 0. Let
α ∈

(
0, ηφ/L2

φ

)
and define %φ , 1− 2αηφ + 2α2L2

φ. Then we obtain a polynomial rate
of convergence E[‖xk+1 − x∗‖2] = O

(
(k + 1)−v),

Proposition 2: Complexity Bounds

Set τk = d(k + 1)ue and Sk = d(k + 1)ve for some u ∈ (0, 1) and v > 0. Then the
iteration, communication, and oracle complexity to obtain an ε−NE are bounded by
O((1/ε)1/v ), O((1/ε)(u+1)/v ), and O

(
(1/ε)1+1/v

)
, respectively.
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An Example: Nash Cournot Competition

Firms compete on the amount of output they will produce and sell in the markets,
where the aggregate is the sum of production of all firms.

Consider a stochastic environment in which n firms competing over L markets,
where firm i ’s production quantity is xi = (x1

i , · · · , xL
i ) ∈ RL.

There exists a random linear production cost of firm i : function
ci (xi ; ξi ) = (ci + ξi )

∑L
l=1 x l

i for ci > 0 and random disturbance ξi with mean zero.

The price of products sold in market l ∈ L is determined by a random linear
inverse demand (or price) function pl (x̄l ; ζl ) = al + ζl − bl x̄l , where the aggregate
x̄l =

∑n
i=1 x l

i , al > 0, bl > 0, and ζl is zero-mean.

Firm i has a payoff: Fi (x) = E
[
ci (xi ; ξi )−

∑L
l=1 pl (x̄l ; ζl )x l

i

]
.
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Numerical Validation: Distributed vs Centralized

Implement the distributed algorithm over Erdős–Rényi graph and the centralized
algorithm, where α = 0.01, τk = dlog(k)e, Sk =

⌈
0.98−(k+1)

⌉
.
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The empirical error E[‖xk−x∗‖]
‖x∗‖ by averaging across 50 sample paths.
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Numerical Validation: Network Connectivity

Run the algorithm with τk = k + 1, α = 0.01, and Sk =
⌈
β−(k+1)

⌉
over the cycle, star,

and Erdős–Rényi graphs, where β are 0.967, 0.95, 0.986 respectively.
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The star graph has the fastest convergence rate, which is consistent with
Theorem 1 that smaller β may lead to faster rate of convergence.

The ER graph has the best oracle complexity, which reinforces the theoretical
findings that larger β may lead to better oracle complexity.
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Numerical Validation: Geometric vs Polynomial

Set n = 20, L = 13 and run the algorithm over the complete graph with geometric
and polynomial increasing sample-sizes.
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geo

poly v=0.8

poly v=1

with low accuracy ε the poly with smaller degree v appears to have better oracle
complexity, while for a high accuracy ε, the geo and poly (with larger v ) may have
better oracle complexity.

Over the complete graph, the iteration and oracle complexity to obtain an ε−NE are
O(v(1/ε)1/v ) and O

(
ev v v (1/ε)1+1/v

)
, respectively.
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Distributed VS-PBR

Distributed Variable Sample-size Proximal Best-response Scheme

Initialize: Set k = 0, and vi,0 = xi,0 ∈ Xi for any i ∈ N .
Iterate until convergence

Consensus. v̂i,k := vi,k ∀i ∈ N and repeat τk times

v̂i,k :=
∑
j∈Ni

aij v̂j,k ∀i ∈ N .

Strategy Update (sample average objective), for any i ∈ N

xi,k+1 = argmin
xi∈Xi

[
1

Sk

Sk∑
p=1

ψi (xi , nv̂i,k ; ξp
k ) +

µ

2
‖xi − xi,k‖2

]
,

vi,k+1 := vi,k + xi,k+1 − xi,k .
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Main Results

Assumption: proximal BR map is contractive with parameter a ∈ (0, 1).

Ti (y) , argminxi∈Xi

[
fi (xi , ȳ) +

µ

2
‖xi − yi‖2

]
µ > 0.

Geometric Convergence. Set τk = k + 1 and Sk =
⌈
η−2k⌉ with η ∈ (0, 1). Then

E[‖xk − x∗‖2] = O
(
max{a, γ}2k) , where γ , max{η, β}. The iteration, oracle, and

communication complexity to compute an ε-NE are O(ln(1/ε)), O (1/ε), and
O
(

ln2(1/ε)
)

, respectively.

Often computing a sampled gradient is costly and geometric growth is impractical.

Polynomial growth in sample-size represents a “dial”.

Polynomial Rate of Convergence. Set τk = d(k + 1)ue and Sk = d(k + 1)ve for
u ∈ (0, 1) and v > 0. Then E[‖xk+1 − x∗‖2] = O

(
(k + 1)−v), the iteration,

communication, and oracle complexity to obtain an ε−NE are O((1/ε)1/v ),
O((1/ε)(u+1)/v ), and O

(
(1/ε)1+1/v

)
, respectively.
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Numerical Validation: Distributed VS-PGR and VS-PBR

Run both algorithms over a Erdős–Rényi graph with α = 0.04, τk = k + 1 and
Sk =

⌈
0.98−(k+1)

⌉
, and µ = 30.
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Summary of Contributions

min
xi∈Rdi

Fi (xi , x−i ) , E [ψi (x ; ξ)] + ri (xi ).

Algorithm Sk Rate E[‖xk − x∗‖2] Iter. Comp. Oracle Comp. Ass.

VS-PGR dρ−(k+1)e Linear: O(ρk ) O(ln(1/ε)) O(1/ε) SM
d(k + 1)ve O(qk ) +O(k−v ) O((1/ε)1/v ) O(1/ε)(1+1/v) SM

VS-PBR dρ−(k+1)e O(ρk ) O(ln(1/ε)) O(1/ε) CPM
d(k + 1)ve O(ak ) +O(k−v ) O(1/ε1/v ) O(1/ε1+1/v ) CPM

SM: Strongly monotone, CPM: Contract. prox. BR Map
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Algorithm Sk Comm. τk Rate E[‖xk − x∗‖2] Iter. Comp. Oracle Comp. Comm. Comp

d-VS-PGR dρ−(k+1)e k + 1 Linear: O(ρk ) O(ln(1/ε)) O(1/ε) O(ln2(1/ε))

d(k + 1)ve d(k + 1)ue O((k + 1)−v ) O((1/ε)1/v ) O((1/ε)1+1/v ) O((1/ε)
1+u

v )

d-VS-PBR dρ−(k+1)e k + 1 Linear: O(ρk ) O(ln(1/ε)) O(1/ε) O(ln2(1/ε))

d(k + 1)ve d(k + 1)ue O((k + 1)−v ) O((1/ε)1/v ) O((1/ε)1+1/v ) O((1/ε)
1+u

v )

(d-VS-PGR) and (d-VS-PBR) schemes for Aggregative games (v > 0, u ∈ (0, 1))
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Summary and related work I

u Part I: Synch., asynch., and randomized BR schemes for stochastic Nash games

UVS, Jong-Shi Pang, and Suvrajeet Sen, Inexact best-response schemes for stochastic Nash games: Linear convergence
and iteration complexity, CDC 2016

Jinlong Lei, UVS, Jong-Shi Pang, and Suvrajeet Sen, On Synchronous, Asynchronous, and Randomized Best-Response
Schemes for Stochastic Nash Games, Mathematics of Operations Research (to appear, 2019).

u Part II: Distributed schemes for Stochastic Nash games over graphs

Jinlong Lei and UVS, Linearly Convergent Variable Sample-Size Schemes for Stochastic Nash Games: Best-Response
Schemes and Distributed Gradient-Response Schemes, CDC 2018: 3547-3552

Jinlong Lei and UVS, Distributed Variable Sample-Size Gradient-response and Best-response Schemes for Stochastic
Nash Games over Graphs, arXiv:1811.11246.
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Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A. (2009).
Robust stochastic approximation approach to stochastic programming.
SIAM Journal on Optimization, 19(4):1574–1609.
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