Inexact and Distributed Best-Response Schemes for Stochastic Nash Equilibrium Problems

Uday V. Shanbhag

Jointly with Jinlong Lei $^+$, Jong-Shi Pang $^\%$, and Suvrajeet Sen $^\%$

Industrial and Manufacturing Engg. Pennsylvania State University University Park, PA 16802

One World Optimization Seminar November 2, 2020

+: Tongji University; %: USC

N-player Nash Equilibrium Problem

- players: $\mathcal{N} \triangleq \{1, \dots, N\}$ is a set of N players, indexed by i
- strategy x_i and strategy set for player i: X_i

$$X \triangleq \begin{pmatrix} X_1 \\ \vdots \\ X_N \end{pmatrix} \in X \triangleq \prod_{i=1}^N X_i.$$

- objective of player i: $f_i(x_i, x_{-i}) : X \to \mathbb{R}$, where $x_{-i} \triangleq \{x_j\}_{j \neq i}$.
- objective: each player minimizes its objective given rivals' actions

$$\min_{x_i \in X_i} f_i(x_i, x_{-i}).$$

• $x^* = \{x_i^*\}_{i=1}^N$ is a Nash Equilibrium if for any $i \in \mathcal{N}$

$$f_i(x_i^*, x_{-i}^*) < f_i(x_i, x_{-i}^*), \forall x_i \in X_i.$$

• no player can improve her payoff by unilaterally deviating from strategy x_i^*

Assumptions

- For $i \in \mathcal{N}$, the strategy set $X_i \subseteq \mathbb{R}^{n_i}$ is a closed and convex set
- For $i \in \mathcal{N}$, suppose $f_i(x_i, x_{-i})$ is convex and C^1 in x_i on an open set containing X_i .
- ullet The resulting class of noncooperative games, referred to as \mathcal{G} , is a class of static convex games.

Synchronous Gradient-Response (GR) schemes

Loosely speaking, in GR schemes, player *i* uses the GR, given current rival strategies.

Algorithm 1 Synchronous GR scheme

Set k = 0, $x_{i,0} \in X_i$ be a given sequence.

(1) For i = 1, ..., N, let $x_{i,k+1} \in X_i$ be $\widehat{x}_{i,k+1}$ defined as follows

$$\widehat{X}_{i,k+1} := \prod_{X_i} \left[X_{i,k} - \gamma_{i,k} \nabla_{X_i} f_i(X_k) \right].$$

- (2) k := k + 1; If k < K, return to (1); else STOP.
 - Computing a GR requires player *i* to have access to $\nabla_{x_i} f_i(\cdot, x_{-i})$ and $x_{-i,k}$
 - Lends itself to (partially) distributed implementations
 - Under some conditions, synchronous GR leads to an NE

$$\Pi_X(y) \triangleq \arg\min_{u \in X} \|u - y\|$$

Convergence of SGR scheme

• Consider a game $\mathscr{G} \in \mathcal{G}$. Then x^* is an NE of \mathscr{G} if and only if x^* is a solution of VI(X, F) where

$$F(x) \triangleq \begin{pmatrix} \nabla_{x_1} f_1(x) \\ \vdots \\ \nabla_{x_N} f_N(x) \end{pmatrix}.$$

• Recall that the variational inequality problem VI(X, F) requires an $x \in X$ such that

$$(y-x)^{\top} F(x) \geq 0, \quad \forall y \in X.$$

• If F is L-Lipschitz and η -strongly monotone on X, then for $\gamma_{i,k} = \gamma < \frac{2\eta}{L^2}$ for all i and k, SGR converges to (unique) NE

Synchronous Iteratively Regularized Gradient-Response (GR) schemes

Algorithm 2 Synchronous RGR scheme

Set k = 0, $x_{i,0} \in X_i$ be a given sequence.

(1) For i = 1, ..., N, let $x_{i,k+1} \in X_i$ be $\widehat{x}_{i,k+1}$ defined as follows

$$\widehat{\mathbf{x}}_{i,k+1} := \Pi_{\mathbf{X}_i} \left[\mathbf{x}_{i,k} - \gamma_{i,k} (\nabla_{\mathbf{x}_i} f_i(\mathbf{x}_k) + \epsilon_{i,k} \mathbf{x}_{i,k}) \right].$$

- (2) k := k + 1; If k < K, return to (1); else STOP.
 - Suppose F is monotone on X.
 - \bullet Under suitable conditions on $\gamma_{i,k}$ and $\epsilon_{i,k},$ synchronous RGR converges to (least-norm) NE

F is η -monotone if there exists $\eta > 0$, such that $(F(x) - F(y))^T(x - y) \ge \eta \|x - y\|^2$ for all $x, y \in X$.

Non-exhaustive summary of research

- ◆ Monograph on learning equilibria in games [Fudenberg and Tirole, 1998] Single-timescale gradient-response schemes:
 - Strongly monotone maps [Alpcan and Başar (2003, 2007); Pavel (2006), Pan and Pavel (2009)]
 - Monotone maps via iterative regularization (single-projection) [yin, UVS and Mehta (2011);
 Kannan and UVS (2012)]
 - More recently, projected reflected gradient schemes (single projection) [Malitksy (2015)]
 - Not "fully rational".

Synchronous Best-Response (BR) schemes

Loosely speaking, in BR schemes, player *i* uses the BR, given current rival strategies.

Algorithm 3 Synchronous BR scheme

Set k = 0, $x_{i,0} \in X_i$ be a given sequence.

(1) For i = 1, ..., N, let $x_{i,k+1} \in X_i$ be $\hat{x}_{i,k+1}$ defined as follows:

$$\widehat{x}_{i,k+1} \in \underset{x_i \in X_i}{\operatorname{argmin}} f_i(x_i, x_{-i,k}).$$

- (2) k := k + 1; If k < K, return to (1); else STOP.
 - Computing a BR requires player *i* to know f_i and x_{-i}^k but not $f_i, j \neq i$.
 - Lends itself to (partially) distributed implementations
 - BR schemes may converge to a NE or may cycle

Synchronous Proximal BR schemes

Algorithm 4 Synchronous proximal BR scheme

Set k = 0, $x_{i,0} \in X_i$ be a given sequence.

(1) For i = 1, ..., N, let $x_{i,k+1} \in X_i$ be $\widehat{x}_{i,k+1}(x_k)$ defined as follows:

$$\widehat{x}_{i,k+1}(x_k) = \underset{x_i \in X_i}{\operatorname{argmin}} \ f_i(x_i, x_{-i,k}) + \frac{\mu}{2} \|x_i - x_{i,k}\|^2.$$

- (2) k := k + 1; If k < K, return to (1); else STOP.
 - Proximal BR adds a proximal term $\frac{\mu}{2} ||x_i x_{i,k}||^2$.
 - If $f_i(\bullet, x_{-i})$ is convex in x_i , then $f_i(\bullet, x_{-i}) + \frac{\mu}{2} \| \bullet x_{i,k} \|^2$ is μ -strongly convex (and BR is unique)
 - Under some conditions, proximal BR converges to an NE

Proximal BR [Facchinei and Pang, 2009]

- ♦ Fixed Point: $x^* = \hat{x}(x^*)$
 - x^* is an NE if and only if x^* is a fixed point of the proximal BR (PBR) map $\widehat{x}(\bullet)$
 - $x_{k+1} = \widehat{x}(x_k)$ converges linearly to x^* when $\widehat{x}(\bullet)$ is contractive
 - Define the $N \times N$ real matrix $\Gamma = [\gamma_{ij}]_{i,j=1}^{N}$:

$$\Gamma \triangleq \begin{pmatrix} \frac{\mu}{\mu + \zeta_1, \min} & \frac{\zeta_{12, \max}}{\mu + \zeta_1, \min} & \cdots & \frac{\zeta_{1N, \max}}{\mu + \zeta_1, \min} \\ \frac{\zeta_{21, \max}}{\mu + \zeta_2, \min} & \frac{\mu}{\mu + \zeta_2, \min} & \cdots & \frac{\zeta_{2N, \max}}{\mu + \zeta_2, \min} \\ \vdots & & \ddots & \\ \frac{\zeta_{N1, \max}}{\mu + \zeta_{N, \min}} & \frac{\zeta_{N2, \max}}{\mu + \zeta_{N, \min}} & \cdots & \frac{\mu}{\mu + \zeta_{N, \min}} \end{pmatrix}$$

with $\zeta_{i,\min} \triangleq \inf_{x \in X} \lambda_{\min} \left(\nabla_{x_i}^2 f_i(x) \right)$, and $\zeta_{ij,\max} \triangleq \sup_{x \in X} \| \nabla_{x_i x_j}^2 f_i(x) \| \ \forall j \neq i$ measuring the coupling of players' subproblem.

• If the spectral radius $\rho(\Gamma) < 1$, then there exist a scalar $a \in (0,1)$ and monotonic norm $| \| \bullet \| |$ such that

$$\left| \left\| \begin{pmatrix} \|\widehat{x}_{1}(y') - \widehat{x}_{1}(y)\| \\ \vdots \\ \|\widehat{x}_{N}(y') - \widehat{x}_{N}(y)\| \end{pmatrix} \right\| \right| \leq a \left| \left\| \begin{pmatrix} \|y'_{1} - y_{1}\| \\ \vdots \\ \|y'_{N} - y_{N}\| \end{pmatrix} \right\| \right|.$$

Randomized proximal best-response scheme

For any $i \in \mathcal{N}$, let $\chi_{i,k} = 1$ (or 0) if player i updates at iteration k (or not).

♦ Assumption: For any $i \in \mathcal{N}$, $\mathbb{P}(\chi_{i,k} = 1) = p_i > 0$ and $\chi_{i,k}$ is independent of \mathcal{F}_k .

Algorithm 5 Randomized proximal best-response scheme

Let $k := 0, x_{i,0} \in X_i$ for i = 1, ..., N.

(1) If $\chi_{i,k} = 1$, then $x_{i,k+1} \in X_i$ is defined as follows:

$$\widehat{x}_{i,k+1}(x_k) = \underset{x_i \in X_i}{\operatorname{argmin}} \ f_i(x_i, x_{-i,k}) + \frac{\mu}{2} ||x_i - x_{i,k}||^2.$$

Otherwise, $x_{i,k+1} = x_{i,k}$ when $\chi_{i,k} = 0$.

- (2) k := k + 1; If k < K, return to (1); else STOP.
 - A collection of players is randomly chosen to update via proximal BR

Non-exhaustive literature review on BR schemes

- Synchronous best-response schemes [Facchinei and Pang (2009); Scutari, Facchinei, Palomar, Song, and Pang (2013)]
- Customized schemes in signal processing [scutari, Palomar and Barbarossa (2008, 2009); Scutari and Palomar (2010)]

N-player Stochastic Nash Equilibrium Problems

Key difference: Player objectives are expectation-valued; objective of player i: $f_i: X \times \mathbb{R}^d \to \mathbb{R}$

$$f_i(\mathbf{x}_i, \mathbf{x}_{-i}) \triangleq \mathbb{E}\left[\psi_i(\mathbf{x}_i, \mathbf{x}_{-i}; \xi(\omega))\right]$$

where $\xi: \Omega \to \mathbb{R}^d$ denotes a random variable

- A direct extension of GR and BR is impossible since it requires access to either $\nabla_{x_j} \mathbb{E}[\psi_i(x_i, x_{-i}, \xi)]$ (GR) or exact solutions to (BR) in finite time.
- ◆ Existence of a stochastic first-order oracle (SFO):

For any $i \in \mathcal{N}$ and x, ξ , (SFO) returns a sampled gradient $\nabla_{x_i} \psi_i(x_i, x_{-i}; \xi)$ s.t.

- Unbiased: $\nabla_{x_i} f_i(x_i, x_{-i}) = \mathbb{E}[\nabla_{x_i} \psi_i(x_i, x_{-i}; \xi(\omega))];$
- Bounded second moments: There exists $M_i > 0$ such that for all $x \in X$,

$$\mathbb{E}[\|\nabla_{x_i}\psi_i(x_i,x_{-i};\xi(\omega))\|^2] \leq M_i^2.$$

Stochastic variational inequality problems

• Consider a game $\mathscr{G} \in \mathcal{G}$ where player problems are expectation-valued. Then x^* is an NE of \mathcal{G} if and only if x^* is a solution of VI(X, F) where

$$F(x) \triangleq \begin{pmatrix} \nabla_{x_1} \mathbb{E}[f_1(x,\xi)] \\ \vdots \\ \nabla_{x_N} \mathbb{E}[f_N(x,\xi)] \end{pmatrix}.$$

 Consequently, algorithms for stochastic VIs or SVIs are closely related to schemes for computing NE in stochastic regimes.

Extension of GR to Stochastic regimes

Algorithm 6 Synchronous Stochastic GR scheme

Set k = 0, $x_{i,0} \in X_i$ be a given sequence.

(1) For i = 1, ..., N, let $x_{i,k+1} \in X_i$ be $\widehat{x}_{i,k+1}$ defined as follows

$$\widehat{\mathbf{x}}_{i,k+1} := \Pi_{\mathbf{X}_i} \left[\mathbf{x}_{i,k} - \gamma_{i,k} \nabla_{\mathbf{x}_i} f_i(\mathbf{x}_k, \omega_{i,k}) \right].$$

(2) k := k + 1; If k < K, return to (1); else STOP.

Non-exhaustive review for SGR schemes (and SVIs)

- a.s. convergence for strongly monotone and Lipschitz maps [Jiang and Xu, 2008]
- Rate statements for monotone and Lipschitz maps via extragradient schemes [Juditsky, Nemirovski, and Tauvel, 2011], [Dang and Lan, 2015]
- a.s. convergence for monotone and Lipschitz maps under single projection regularized schemes [Koshal, Nedić and Shanbhag (2013)]
- Non-Lipschitzian regimes via random smoothing [Yousefian, Nedić and Shanbhag (2016)]
- Related work on non-monotone regimes (cf. [Thompson, Jofré, lusem (2017)], [Kannan and Shanbhag (2019)])

Motivation

Part I: Best-response in stochastic regimes

- ◆ Closed-form expression of proximal best-response map is unavailable in finite time since the objective is expectation-valued
- ◆ Part I develops several *inexact* proximal best-response schemes
 - best-response solutions are approximated via stochastic approximation (SA),
 - and inexactness ↓ zero by an increasing number of projected gradient steps.
 - Extensions to asynchronous and randomized regimes

Part II: Distributed BR and GR in stochastic regimes

- ◆ Part II develops distributed schemes for a subclass of games, i.e. "aggregative" where player objectives are coupled via the aggregate strategy
 - Add a consensus layer for players to "learn" aggregate
 - Examine BR and GR with variance reduction+multiple communication rounds
 - Goal: Under what conditions, can linear convergence rates be achieved?

Slightly stricter assumptions

- Convexity of subproblems
 - X_i is a closed, compact, convex set.
 - $f_i(x_i, x_{-i})$ is convex and C^2 in x_i over an open set containing X_i for any given $x_{-i} \in \prod_{i \neq i} X_i$.

Proximal best-response map

$$\widehat{x}(y) \triangleq \underset{x \in X}{\operatorname{argmin}} \left[\sum_{i=1}^{N} \mathbb{E}[\psi_{i}(x_{i}, y_{-i}; \omega)] + \frac{\mu}{2} \|x - y\|^{2} \right], \quad \mu > 0$$

The objective function is separable in x_i , player i's subproblem is

$$\widehat{x}_{i}(y) \triangleq \underset{x_{i} \in X_{i}}{\operatorname{argmin}} \left[\mathbb{E}[\psi_{i}(x_{i}, y_{-i}; \omega)] + \frac{\mu}{2} \|x_{i} - y_{i}\|^{2} \right].$$

Algorithm Design

Algorithm 7 Synchronous inexact proximal best-response scheme

Set k = 0, $x_{i,0} \in X_i$; Let $\{\alpha_{i,k}\}_{k \ge 1}$ be a given sequence.

(1) For i = 1, ..., N, let $x_{i,k+1} \in X_i$ be defined as follows:

$$X_{i,k+1} = \widehat{X}_i(X_k) + \varepsilon_{i,k+1}$$

with $\{\varepsilon_{i,k+1}\}$ satisfying $\mathbb{E}\left[\|\varepsilon_{i,k+1}\|^2|\mathcal{F}_k\right] \leq \alpha_{i,k}^2$ a.s., where $\mathcal{F}_k = \sigma\{x_0, \dots, x_k\}$.

(2) k := k + 1; If k < K, return to (1); else STOP.

$$\widehat{x}_i(x_k) \triangleq \underset{x_i \in X_i}{\operatorname{argmin}} \left[\mathbb{E}[\psi_i(x_i, x_{-i,k}; \omega)] + \frac{\mu}{2} ||x_i - x_{i,k}||^2 \right].$$

Stochastic approximation (SA) to obtain an inexact best-response.

$$z_{i,t+1} := \Pi_{X_i} \left[z_{i,t} - \gamma_t \left(\nabla_{x_i} \psi_i(z_{i,t}, x_{-i,k}; \xi_{i,k}^t) + \mu(z_{i,t} - x_{i,k}) \right) \right], \tag{SA}_{i,k}$$

where $z_{i,1} = x_{i,k}$, $\gamma_{i,t} = 1/\mu(t+1)$. Set $x_{i,k+1} = z_{i,i,k}$.

Lemma (Error Bounds of SA [Nemirovski et al., 2009])

Define $\xi_{i,k}=(\xi_{i,k}^1,\cdots,\xi_{i,k}^{j_{i,k}})$, and $\mathcal{F}_k=\sigma\{x_0,\xi_{i,l},i\in\mathcal{N},0\leq l\leq k-1\}$. Assume that for any $i\in\mathcal{N}$, the random variables $\{\xi_{i,k}^t\}_{1\leq t\leq j_{i,k}}$ are iid and the random vector $\xi_{i,k}$ is independent of \mathcal{F}_k . Then for any $t\geq 1$ we have

$$\mathbb{E}\left[\left\|z_{i,t}-\widehat{x}_{i}(x_{k})\right\|^{2}\middle|\mathcal{F}_{k}\right]\leq\frac{Q_{i}}{(t+1)}, \ a.s.$$

where $Q_i \triangleq \frac{2M_i^2}{\mu^2} + 2D_{X_i}^2$, and $D_{X_i} = \sup\{d(x_i, x_i') : x_i, x_i' \in X_i\}$.

$$\left| \mathbb{E}\left[\|\varepsilon_{i,k+1}\|^2 \big| \mathcal{F}_k \right] = \mathbb{E}\left[\|x_{i,k+1} - \widehat{x}_i(y_k)\|^2 \big| \mathcal{F}_k \right] \leq \frac{Q_i}{j_{i,k}} =: \alpha_{i,k}^2$$

Almost Sure Convergence

Let the sequence $\{x_k\}_{k\geq 0}$ be generated by the synchronous algorithm. Assume that $\|\Gamma\| < 1$, and $\alpha_{i,k} \geq 0$ with $\sum_{k=1}^{\infty} \alpha_{i,k} < \infty$ for any $i \in \mathcal{N}$. Then for any $i \in \mathcal{N}$,

$$\lim_{k\to\infty} x_{i,k} = x_i^* \ a.s.$$

Convergence in Mean and of the Variance

Let the sequence $\{x_k\}_{k=1}^{\infty}$ be generated by the synchronous algorithm. Assume that $\|\Gamma\| < 1$, and that $0 \le \alpha_{i,k} \to 0$ as $k \to \infty$ for any $i \in \mathcal{N}$. Then for any $i \in \mathcal{N}$,

- (a) (convergence in mean) $\lim_{k\to\infty} \mathbb{E}[\|x_{i,k}-x_i^*\|]=0$.
- (b) (convergence of the variance of x_k) $\lim_{k \to \infty} \mathbb{V}ar(x_k) = 0$.

Geometric Convergence

Consider the synchronous scheme where $\mathbb{E}[\|x_{i,0} - x_i^*\|] \le C \ \forall i \in \mathcal{N}$. Assume that $a = \|\Gamma\| < 1$, and that $\alpha_{i,k} = \eta^k \ \forall i \in \mathcal{V}$ with $\eta \in (0,1)$. Define

$$u_k = \mathbb{E}\left[\left\|\begin{pmatrix} \|x_{1,k} - x_1^*\| \\ \vdots \\ \|x_{N,k} - x_N^*\| \end{pmatrix}\right\|\right].$$

Then, the following holds for $k \ge 0$

(a) If
$$\eta = a$$
, $q > a$ and $D \triangleq 1/\ln((q/a)^e)$, then $u_k \leq (u_0 + \sqrt{N}k)a^k \leq \sqrt{N}(C+D)q^k$.

(b) If
$$\eta \in (a, 1)$$
, then $u_k \leq \left(\sqrt{N}C + \frac{\sqrt{N}\eta}{\eta - a}\right)q^k$ with $q = \eta$.

(c) If
$$0 < \eta < a$$
, then $u_k \le \left(\sqrt{N}C + \frac{\sqrt{N}a}{a-\eta}\right)q^k$ with $q = a$.

Overall iteration complexity

Consider the synchronous scheme and let inexact solutions be computed via SA, where $\mathbb{E}[\|x_{i,0}-x_i^*\|^2] \leq C^2$. Assume that $a=\|\Gamma\|<1$ and $\alpha_{i,k}=\eta^k \ \forall i\in\mathcal{V}$ with $\eta\in(0,1)$. Then the number of projected gradient steps^a for i to achieve an $\epsilon-\mathrm{NE}$ is no greater than $\mathcal{O}\left(\frac{\sqrt{N}}{\epsilon}\right)^2+\left(\ln\left(\frac{\sqrt{N}}{\epsilon}\right)\right)$.

$$\label{eq:suppose_loss} \begin{split} ^{\text{a}}\text{Suppose } \ell_i(\eta) &= \sum_{k=1}^{K(\epsilon)} j_{i,k} \; \text{ with } j_{i,k} = \lceil \frac{Q_i}{\eta^{2(k+1)}} \rceil. \text{ If } \eta \leq a, \text{ then} \\ \ell_i(\eta) &\leq \frac{Q_i}{\eta^4 \ln(1/\eta^2)} \left(\frac{\sqrt{N}(C+D)}{\epsilon} \right) \frac{\ln(1/\eta^2)}{\ln(1/\eta)} + \frac{\ln\left(\sqrt{N}(C+D)/\epsilon\right)}{\ln(1/\eta)}, \text{ where } Q_i \triangleq \frac{2M_i^2}{\mu^2} + 2D_{X_i}^2, \; q > a = \|\Gamma\|, \text{ and } D = 1/\ln((q/c)^e). \end{split}$$

◆ The bound grows slowly in *N*, a desirable feature of equilibrium computation with a large collection of players.

Comparison with Stochastic Gradient Response: Competitive portfolio Investment c. ocinneide, B. Scherer, and X. Xu (2006)

Figure: Empirical Iteration Complexity

Figure: Empirical Communication Complexity

- The iteration complexity is of the same order as stochastic gradient response (SGR); but the constant of SG is superior to that of the synchronous BR scheme.
- Significant decrease in communication overhead compared to SGR;
 communication overhead often crucial in rendering a scheme impractical.

Asynchronous Scheme: Algorithm Design Bertsekas and Tsitsiklis (1989)

Motivation:

In a large-scale network, players might not be able to make simultaneous updates nor have access to their rivals' latest information.

◆ Description:

- $T_i \subset T = \{0, 1, 2, \cdots\}$: the set of times player i updates x_i
- $y_k^i \triangleq (x_{1,k-d_1^i(k)}, \cdots, x_{n,k-d_N^i(k)})$ is available to player i if $k \in T_i$, where $d_j^i(k)$ denotes the communication delay

Assumptions

- Almost Cyclic Rule: There exists an integer $B_1 > 0$ such that each player updates its decision at least once during any time interval of length B_1
- Partial Asynchronism: There exists an integer $B_2 \ge 0$ such that

$$0 \leq d_i^i(k) \leq B_2 \quad \forall i, j = 1, \cdots, N, \ k \geq 0$$

Algorithm 8 Asynchronous inexact proximal BR scheme

Let k := 0, $x_{i,0} \in X_i$ for i = 1, ..., N.

- (1) For i = 1, ..., N, if $k \in T_i$, then set $y_k^i \triangleq (x_{1,k-d_1^i(k)}, ..., x_{n,k-d_N^i(k)})$.
- (2) For i = 1, ..., N, if $k \in T_i$, then updates $x_{i,k+1} \in X_i$ as follows:

$$x_{i,k+1} = \widehat{x}_i(y_k) + \varepsilon_{i,k+1}$$

with $\varepsilon_{i,k+1}$ satisfying $\mathbb{E}\left[\|\varepsilon_{i,k+1}\|^2\big|\mathcal{F}_k\right] \leq \alpha_{i,k}^2$ a.s., where $\mathcal{F}_k = \sigma\{x_0, \cdots, x_k\}$. Otherwise, if $k \notin T_i$, then $x_{i,k+1} := x_{i,k}$.

(3) k := k + 1; If k < K, return to (1); else STOP.

Define $n_0 = \lceil \frac{B_2}{B_1} \rceil$, let $\beta_{i,k}$ denote the number of elements in T_i that are not larger than k.

Lemma (Linear Rate of Convergence)

Let the asynchronous inexact proximal best-response scheme be applied to the N-player stochastic Nash game, where $\alpha_{i,k+1} = \eta^{\beta_{i,k}}$ for some $\eta \in (0,1)$, and $\mathbb{E}[\|x_{i,0} - x_i^*\|] \leq C \ \forall i \in \mathcal{N}$. Assume $a = \|\Gamma\|_{\infty} < 1$. If $q > c \triangleq \rho^{\frac{1}{B_1}}$ and $D > 1/\ln((q/c)^e)$,

$$\max_{i\in\mathcal{N}}\mathbb{E}[\|\widehat{x}_{i,k}-x_i^*\|] \leq \rho^{-\frac{B_1-1}{B_1}}(C+D)q^k \ \forall k \geq 0,$$

Iteration Complexity (Impact of delay and asynchronicity)

Consider the asynchronous algorithm and let the inexact proximal solutions be computed via SA, where $\alpha_{i,k+1} = \eta^{\beta_{i,k}}$ for $\eta \in (0,1)$. Suppose $a = \|\Gamma\|_{\infty} < 1$. Then the number of projected gradient steps^a for i to compute an ϵ -NE is no greater than

$$\mathcal{O}\left(\left(1/\epsilon\right)^{2B_1\left(1+\left\lceil\frac{B_2}{B_1}\right\rceil\right)+\delta}\right).$$

$$\text{ where } \max_{i \in \mathcal{N}} \mathbb{E}[\|x_{i,0} - x_i^*\|^2] \leq C^2, \ Q_i \triangleq \frac{2M_i^2}{\mu^2} + 2\{D_{X_i}^2\}, \ \rho^{n_0+1} = \max\{a,\eta\} \text{ with } n_0 = \lceil \frac{B_2}{B_1} \rceil \text{ and } \eta \in (0,1), \ q > c \triangleq \rho^{\frac{1}{B_1}}, \text{ and } D > 1/\ln((q/c)^e).$$

update	delay	complexity bound			
B ₁	B ₂	$\mathcal{O}\left(\left(1/\epsilon\right)^{2B_1\left(1+\left\lceil\frac{B_2}{B_1}\right\rceil\right)+\delta}\right)$			
1	B ₂	$\mathcal{O}\left((1/\epsilon)^{2(1+B_2)+\delta}\right)$			
1	0	$\mathcal{O}\left((1/\epsilon)^{2+\delta}\right)$			

Set $B_1 = 1$, the communication delays $k - \tau_j^i(k)$ are independently generated from a uniform distribution on the set $\{0, 1, \dots, B_2\}$.

Figure: Linear Convergence

Figure: Empirical Iteration Complexity

Randomized Best-Response Scheme I

Literature review

- The randomized block-coordinate descent method [v. Nestrerov (2012)] partitions the coordinates into several blocks and randomly choses a single block to update while the other blocks keep invariant at each iteration.
- Generalized to the fixed point problem by [P. L. Combettes and J. C Pesquet (2015)], in which a subset of block variables is randomly updated

Randomized Best-response: For any $i \in \mathcal{N}$, let $\chi_{i,k} = 1$ (or 0) if player i updates at iteration k (or not).

♦ Assumption: For any $i \in \mathcal{N}$, $\mathbb{P}(\chi_{i,k} = 1) = p_i > 0$ and $\chi_{i,k}$ is independent of \mathcal{F}_k .

Randomized Best-Response Scheme II

Algorithm 9 Randomized inexact proximal best-response scheme

Let $k := 0, x_{i,0} \in X_i$ for i = 1, ..., N.

(1) If $\chi_{i,k} = 1$, then $\chi_{i,k+1} \in X_i$ is defined as follows:

$$X_{i,k+1} = \widehat{X}_i(X_k) + \varepsilon_{i,k+1}$$

with $\varepsilon_{i,k+1}$ satisfying $\mathbb{E}\left[\|\varepsilon_{i,k+1}\|^2\big|\mathcal{F}_k\right] \leq \alpha_{i,k}^2$ a.s., where $\mathcal{F}_k = \sigma\{x_0, \cdots, x_k\}$. Otherwise, $x_{i,k+1} = x_{i,k}$ when $x_{i,k} = 0$.

(2) k := k + 1; If k < K, return to (1); else STOP.

Almost Sure Convergence

Let the sequence $\{x_k\}_{k\geq 0}$ be generated by the randomized algorithm. Assume that $a=\|\Gamma\|<1$ and for any $i\in\mathcal{N},\,0\leq\alpha_{i,k}<1$ and $\sum_{k=0}^{\infty}\alpha_{i,k}<\infty$ a.s. Then for any $i\in\mathcal{N},\,\lim_{k\to\infty}x_{i,k}=x_i^*$ a.s.

Geometric Convergence

Let the sequence $\{x_k\}_{k\geq 0}$ be generated by the randomized algorithm.^a Then the following holds for $k\geq 0$,

$$\mathbb{E}\left[\|x_k-x^*\|\right] \leq \sqrt{N}(\widetilde{C}+\widetilde{D})\widetilde{q}^k.$$

$$\begin{split} ^{a}\mathbb{E}[\|x_{i,0}-x_{i}^{*}\|] &\leq C \ \forall i \in \mathcal{N} \ \text{and} \ \alpha_{i,k}=\eta^{\beta_{i},k^{+1}} \ \text{for some} \ \eta \in (0,1). \ \text{Define} \ \beta_{i,0}=0 \ \text{and} \ \beta_{i,k}=\sum_{p=0}^{k-1} \chi_{i,p} \ \text{for all} \ k \geq 1, \\ \tilde{c} &\triangleq \max\{\tilde{a},\tilde{\eta}\} \ \text{with} \ \tilde{a} = \sqrt{1-\rho_{\min}(1-a^{2})}, \ \tilde{\eta} = \sqrt{1-\rho_{\min}(1-\eta^{2})} \ \text{and} \ \rho_{\min} = \min_{i \in \mathcal{N}} \rho_{i}, \ \tilde{q} > \tilde{c}, \ D \triangleq 1/\ln((\tilde{q}/\tilde{c})^{\theta}), \\ \tilde{C} &= C\left(\sum_{i=1}^{N} N^{-1}\rho_{\min}^{-1}\right)^{1/2}, \ \text{and} \ \tilde{D} = D\eta\tilde{\eta}^{-1} \end{split}$$

Overall Iteration Complexity

Let the randomized algorithm be applied with inexact solutions computed via SA, where $\alpha_{i,k} = \eta^{\beta_{i,k}+1}$ for some $\eta \in (0,1)$. Suppose $a = \|\Gamma\| < 1$. Then expected number of projected gradient steps^a for i to compute an ϵ -NE is no greater than

$$\mathcal{O}\left(\frac{\sqrt{N}\rho_{\mathsf{max}}}{\tilde{\epsilon}}\right)^{\frac{\ln(1/\tilde{\eta}_0^2)}{\ln(1/\tilde{q})}} + \left\lceil \frac{\ln(1/\tilde{\epsilon})}{\ln(1/\tilde{q})} \right\rceil.$$

^aThe expected number of gradient steps is bounded by $\tilde{\ell}_j(\eta)$ where $\tilde{\ell}_j(\eta) \triangleq \frac{\rho_j Q_j}{\eta^2 \tilde{\eta}_0^2 \ln(1/\tilde{\eta}_0^2)} \left(\frac{1}{\tilde{\epsilon}}\right) \frac{\ln(1/\tilde{\eta}_0^2)}{\ln(1/\tilde{q})} + \left\lceil \frac{\ln(1/\tilde{\epsilon})}{\ln(1/\tilde{q})} \right\rceil$, where

$$\tilde{\eta}_0^2 = \left(\rho_{\max}(\eta^{-2} - 1) + 1 \right)^{-1}, \, \tilde{\epsilon} \triangleq \frac{\epsilon}{(N_{\max})^{1/2}(\tilde{C} + \widetilde{D})}, \, \tilde{q} > \tilde{c} \triangleq \max\{\tilde{a}, \, \tilde{\eta}\}, \, D \triangleq 1 / \ln((\tilde{q}/\tilde{c})^{\theta}), \, \text{and} \, \tilde{D} = D\eta \, \tilde{\eta}^{-1}.$$

Figure: Linear Convergence

Figure: Empirical Iteration Complexity

- $j_{i,k} = \left| \frac{1}{\eta^{2(\beta_{i,k}+1)}} \right|$ steps of SA are taken to get an inexact solution.
- The randomized algorithm still displays linear convergence but its empirical iteration complexity is larger than the synchronous algorithm, a less surprising observation.

parameters -		synchronous		randomized		asynchronous	
		empirical	theoretical	empirical	theoretical	empirical	theoretical
$\mu = 1$	$\eta = a^{0.5}$	2e-03	1.89	2.64e-03	1.98e+01	1.43e-03	1.36e+01
	$\eta = a^{0.75}$	4.76e-04	7.18e-01	7.42e-04	1.73e+01	3.24e-04	1.36e+01
	$\eta = a$	1.08e-04	3.18e-01	2.27e-04	1.53e+01	7.94e-05	1.37e+01
$\mu=2$	$\eta = a^{0.5}$	6.1e-03	6.98	7.88e-03	2.49e+01	4.33e-03	3.69e+01
	$\eta = a^{0.75}$	2.26e-03	3.89	3.3e-03	2.27e+01	1.72e-03	3.69e+01
	$\eta = a$	9.39e-04	2.33	1.39e-03	2.09e+01	6.9e-04	3.69e+01
$\mu = 5$	$\eta=a^{0.5}$	1.3e-02	2.6e+01	2.06e-02	3.16e+01	1.11e-02	9.62e+01
	$\eta = a^{0.75}$	7.5e-03	2.01e+01	1.24e-02	3.01e+01	6.55e-03	9.62e+01
	$\eta = a$	4.8e-03	1.58e+01	8.4e-03	2.89e+01	4.2e-03	9.62e+01

Table: Comparison of theoretical and empirical error

Summary of findings

Update scheme	Asymptotic convergence	Rate of convergence	Iteration complexity
Synchronous Algorithm (using . 2 norm)	a.s. convergence convergence in mean	geometric	$\begin{array}{c} \epsilon\text{-NE}_2:\\ \mathcal{O}\left(\left(\sqrt{N}/\epsilon\right)^{2+\delta}\right)\\ \eta\in(a,1)\colon\mathcal{O}(N/\epsilon^2) \end{array}$
Randomized Algorithm (using . 2 norm)	a.s. convergence convergence in mean	geometric	$ \mathcal{O}\left((\sqrt{N}/\epsilon)^{2\ln(\tilde{\eta}_0^{-1})/\ln(\tilde{\eta}^{-1})+\delta} \right) $
Asynchronous Algorithm (using ∥.∥∞ norm)	convergence in mean	geometric	$ \frac{\epsilon^{-NE_{\infty}}:}{\mathcal{O}\left(\left(1/\epsilon\right)^{2B_{1}}\left(1+\left\lceil\frac{B_{2}}{B_{1}}\right\rceil\right)+\delta\right)} $ $ \mathcal{O}\left(\left(1/\epsilon\right)^{2}\left(1+\left\lceil\frac{B_{2}}{N}\right\rceil\right)+\delta\right) $

Table: Summary of Contributions

- Key findings: the iteration complexity is $\mathcal{O}(1/\epsilon^{2(1+c)+\delta})$
 - c = 0 for the synchronous scheme

 - c > 0 represents the positive cost of asynchronicity and delay

Background

- Game-theoretic models and tools are extensively used in networks since
 - they enable a flexible control paradigm where agents autonomously control their resource usage to optimize their own selfish objectives;
 - provide potentially tractable decentralized algorithms for network control based on "designed games" [Marden and Shamma, 2007], [Marden 2009].
- Noncooperative games have wide application in capturing networked systems, such as power systems, markets, communication and transportation networks

Problem Statement

Aggregative** Stochastic Nash Games

$$\min_{\mathsf{x}_i \in \mathsf{X}_i} f_i(\mathsf{x}_i, \bar{\mathsf{x}}) \triangleq \mathbb{E} \left[\psi_i(\mathsf{x}_i, \bar{\mathsf{x}}; \xi) \right]$$

- $\mathcal{N} = \{1, \dots, n\}$ is a group of n players, indexed by i;
- X_i denotes the strategy set of player i while $x \triangleq (x_1, \dots, x_N)$ denotes a *strategy profile*;
- player *i* has an objective $f_i(x_i, \bar{x})$, where $\bar{x} \triangleq \sum_{i=1}^n x_i$ is the aggregate;
- $\xi: \Omega \to \mathbb{R}^m$ defined on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
- ** Aggregative games first discussed in [Jensen, 2010]
 - Convexity of subproblems: X_i is a closed, compact, convex set; For any $y \in \mathbb{R}^d$, $f_i(x_i, y)$ is C^1 and convex in $x_i \in X_i$.
 - Existence of a stochastic oracle returning a sampled gradient $\nabla_{x_i} \psi_i(x_i, y; \xi)$, $\nabla_{x_i} f_i(x_i, y) = \mathbb{E}[\nabla_{x_i} \psi_i(x_i, y; \xi)]$ and $\mathbb{E}[\|\nabla_{x_i} f_i(x_i, y) \nabla_{x_i} \psi_i(x_i, y; \xi)\|^2] \leq \nu_i^2$.

Previous Works

- Non-exhaustive summary of consensus and distributed optimization. ITsitsiklis, 1984], [Olfati-Saber and Murray, 2004] [Ren. Beard and Atkins, 2005] [Nedić and Ozdaglar, 2009], [Nedić, Ozdaglar and Parrilo, 2010], [Nedić and Olshevsky, 2015]
- Distributed schemes for Nash games
 - Gradient response+consensus for aggregative games [Koshal, Nedić, and UVS, 2016]
 - Aggregative games with coupling constraints [Paccagnan et al., 2017] [Belgioioso et al., 2017], a semi-dencentralized algorithm, requiring a central node for the update of the common multiplier.
 - Generalized Nash equilibrium problems:
 - Distributed primal-dual algorithms [Zhu and Frazzoli, 2017; Yi and Pavel, 2017].
 - Distributed stochastic gradient scheme with constant stepsize [Yu et al., 2017], mean-squared convergence to a neighborhood of the GNE.

Our Work

• The players cannot observe rival strategies, while interacting through a communication graph (connected) $\mathcal{G} = (\mathcal{N}, \mathcal{E}, A)$:

- E is a collection of undirected edges:
- Neighbor set $\mathcal{N}_i = \{j : (i,j) \in \mathcal{E}\};$
- The adjacency matrix $A = [a_{ij}]_{i,i=1}^n$, where $a_{ij} > 0$ if $j \in \mathcal{N}_i$ and $a_{ii} = 0$ otherwise such that A is doubly stochastic.
- We aim to design a fully distributed algorithm to compute an NE only through local communications and computation.
- Can we achieve the best known deterministic rates?

Distributed VS-PGR

 $x_{i,k}$: its equilibrium strategy, $v_{i,k}$: the average of the aggregate.

Distributed Variable Sample-size Projected Gradient-response Scheme

Initialize: Set k = 0, and $v_{i,0} = x_{i,0} \in X_i$ for any $i \in \mathcal{N}$.

Iterate until convergence

Consensus (average among neighbors). $\hat{v}_{i,k} := v_{i,k}$ and repeat τ_k times

$$\hat{\mathbf{v}}_{i,k} := \sum_{i \in \mathcal{N}_i} \mathbf{a}_{ij} \hat{\mathbf{v}}_{j,k} \quad \forall i \in \mathcal{N} \qquad \text{or compact form } \widehat{\mathbf{V}}_k = \mathbf{A}^{\tau_k} \mathbf{V}_k.$$

Strategy Update (move along the negative gradient of the payoff).

$$x_{i,k+1} := \Pi_{X_i} \left[x_{i,k} - \frac{\alpha}{S_k} \sum_{n=1}^{S_k} \nabla_{x_i} \psi_i \left(x_{i,k}, n \hat{v}_{i,k}; \xi_k^p \right) \right]$$

reduce the noise variance by increasing S_k

$$V_{i,k+1} := V_{i,k} + X_{i,k+1} - X_{i,k}$$

Analysis Sketch

• Consensus error: based on $\left|\left[A^k\right]_{ij}-\frac{1}{n}\right|\leq\theta\beta^k$ for a constant $\theta>0$ and $\beta\in(0,1)$, by defining $y_k\triangleq\sum_{i=1}^nv_{i,k}/n$ and $D_X\triangleq\sum_{j=1}^n\max_{x_i\in X_i}\|x_j\|$,

$$\|y_k - \hat{v}_{i,k}\| \leq \theta D_X \beta^{\sum_{p=0}^k \tau_p} + 2\theta D_X \sum_{s=1}^k \beta^{\sum_{p=s}^k \tau_p} \quad \forall k \geq 0.$$

• Suppose $\phi(x) \triangleq (\nabla_{x_i} f_i(x_i, \sum_{i=1}^n x_i))_{i=1}^n$ is η_{ϕ} -strongly monotone and L_{ϕ} -Lipschitz continuous. Recursion on the conditional mean-squared error:

$$\mathbb{E}[\|x_{k+1} - x^*\|^2 | \mathcal{F}_k] \leq \underbrace{\left(1 - 2\alpha\eta_{\phi} + 2\alpha^2 L_{\phi}^2\right)}_{\text{contraction property}} \|x_k - x^*\|^2 + \alpha^2 \underbrace{\sum_{j=1}^n \nu_i^2 / S_k}_{\text{noise}}$$

$$+ 4\alpha nD_X \sum_{i=1}^n L_i \|\hat{v}_{i,k} - y_k\| + 2\alpha^2 n^2 \sum_{i=1}^n L_i^2 \|\hat{v}_{i,k} - y_k\|^2.$$

consensus error

Convergence Results-Geometric

Theorem 1: Linear rate of convergence

Set
$$\tau_k = k+1$$
, $S_k = \left\lceil \rho^{-(k+1)} \right\rceil$ for some $\rho \in (0,1)$. Suppose $\alpha \in \left(0, \eta_\phi/L_\phi^2\right)$, define $\varrho_\phi \triangleq 1 - 2\alpha\eta_\phi + 2\alpha^2L_\phi^2$ and $\gamma \triangleq \max\{\rho,\beta\}$. Then
$$\mathbb{E}[\|x_k - x^*\|^2] = \mathcal{O}(\max\{\varrho_\phi,\gamma\}^k).$$

Theorem 2: Complexity Bounds

Set
$$\tau_k = k+1$$
, $\alpha = \frac{\eta_\phi}{2L_\phi^2}$ and $S_k = \left\lceil \rho^{-(k+1)} \right\rceil$ with $\rho \triangleq \max\left\{1 - \frac{\eta_\phi^2}{2L_\phi^2}, \beta\right\}$. For obtaining ϵ -NE such that $\mathbb{E}[\|x_K - x^*\|^2] \le \epsilon$, the iteration complexity $K = \mathcal{O}(\ln(1/\epsilon))$ (optimal, deterministic), communication complexity $\sum_{k=0}^K \tau_k = \mathcal{O}(\ln^2(1/\epsilon))$, and the oracle complexity is $\sum_{k=0}^K S_k = \mathcal{O}\left(1/\epsilon\right)$ (optimal, SGD).

less projections and communications than SGD $\mathcal{O}(1/\epsilon)$

best known comm. comp. in dis. opt. is $K \ln(K)$ [Jakovetic, Xavier, and Moura, 14]

Convergence Results—Polynomial

- We need not increase the samples too fast when the oracle is costly.
- Explore the performance with slower rates of growth of sample-size?

Proposition 1: Polynomial rate of convergence

Set $\tau_k = \lceil (k+1)^u \rceil$ and $S_k = \lceil (k+1)^v \rceil$ for some $u \in (0,1)$ and v > 0. Let $\alpha \in (0, \eta_{\phi}/L_{\phi}^2)$ and define $\rho_{\phi} \triangleq 1 - 2\alpha\eta_{\phi} + 2\alpha^2L_{\phi}^2$. Then we obtain a polynomial rate of convergence $\mathbb{E}[\|x_{k+1} - x^*\|^2] = \mathcal{O}((k+1)^{-\nu}),$

Proposition 2: Complexity Bounds

Set $\tau_k = \lceil (k+1)^u \rceil$ and $S_k = \lceil (k+1)^v \rceil$ for some $u \in (0,1)$ and v > 0. Then the iteration, communication, and oracle complexity to obtain an ϵ -NE are bounded by $\mathcal{O}((1/\epsilon)^{1/\nu})$, $\mathcal{O}((1/\epsilon)^{(u+1)/\nu})$, and $\mathcal{O}\left((1/\epsilon)^{1+1/\nu}\right)$, respectively.

An Example: Nash Cournot Competition

- Firms compete on the amount of output they will produce and sell in the markets, where the aggregate is the sum of production of all firms.
- Consider a *stochastic* environment in which *n* firms competing over *L* markets, where firm *i*'s production quantity is $x_i = (x_1^1, \dots, x_L^i) \in \mathbb{R}^L$.
- There exists a random linear production cost of firm i: function $c_i(x_i; \xi_i) = (c_i + \xi_i) \sum_{l=1}^{L} x_i^l$ for $c_i > 0$ and random disturbance ξ_i with mean zero.
- The price of products sold in market $I \in \mathcal{L}$ is determined by a random linear inverse demand (or price) function $p_l(\bar{x}_l; \zeta_l) = a_l + \zeta_l b_l\bar{x}_l$, where the aggregate $\bar{x}_l = \sum_{i=1}^n x_i^l$, $a_l > 0$, $b_l > 0$, and ζ_l is zero-mean.
- Firm i has a payoff: $F_i(x) = \mathbb{E}\left[c_i(x_i; \xi_i) \sum_{l=1}^{L} p_l(\bar{x}_l; \zeta_l) x_i^l\right]$.

Numerical Validation: Distributed vs Centralized

 Implement the distributed algorithm over Erdős–Rényi graph and the centralized algorithm, where $\alpha = 0.01$, $\tau_k = \lceil \log(k) \rceil$, $S_k = \lceil 0.98^{-(k+1)} \rceil$.

The empirical error $\frac{\mathbb{E}[\|x_k - x^*\|]}{\|x^*\|}$ by averaging across 50 sample paths.

Numerical Validation: Network Connectivity

Run the algorithm with $\tau_k = k + 1$, $\alpha = 0.01$, and $S_k = \left\lceil \beta^{-(k+1)} \right\rceil$ over the cycle, **star**, and **Erdős–Rényi** graphs, where β are 0.967, **0.95**, 0.986 respectively.

- The **star** graph has the **fastest convergence rate**, which is consistent with Theorem 1 that smaller β may lead to faster rate of convergence.
- The ER graph has the best oracle complexity, which reinforces the theoretical findings that larger β may lead to better oracle complexity.

Numerical Validation: Geometric vs Polynomial

• Set n = 20, L = 13 and run the algorithm over the complete graph with geometric and polynomial increasing sample-sizes.

• with low accuracy ϵ the poly with smaller degree v appears to have better oracle complexity, while for a high accuracy ϵ , the geo and poly (with larger v) may have better oracle complexity.

Over the complete graph, the iteration and oracle complexity to obtain an ϵ -NE are $\mathcal{O}(v(1/\epsilon)^{1/\nu})$ and $\mathcal{O}\left(\frac{e^{\nu}v^{\nu}}{(1/\epsilon)^{1+1/\nu}}\right)$, respectively.

Distributed VS-PBR

Distributed Variable Sample-size Proximal Best-response Scheme

Initialize: Set k=0, and $v_{i,0}=x_{i,0}\in X_i$ for any $i\in\mathcal{N}$.

Iterate until convergence

Consensus. $\hat{v}_{i,k} := v_{i,k} \ \forall i \in \mathcal{N}$ and repeat τ_k times

$$\hat{\mathbf{v}}_{i,k} := \sum_{j \in \mathcal{N}_i} \mathbf{a}_{ij} \hat{\mathbf{v}}_{j,k} \quad \forall i \in \mathcal{N}.$$

Strategy Update (sample average objective), for any $i \in \mathcal{N}$

$$x_{i,k+1} = \operatorname*{argmin}_{x_i \in X_i} \left[\frac{1}{S_k} \sum_{p=1}^{S_k} \psi_i(x_i, n\hat{v}_{i,k}; \xi_k^p) + \frac{\mu}{2} \|x_i - x_{i,k}\|^2 \right],$$

$$V_{i,k+1} := V_{i,k} + X_{i,k+1} - X_{i,k}$$

Main Results

• Assumption: proximal BR map is contractive with parameter $a \in (0, 1)$.

$$T_i(y) \triangleq \operatorname{argmin}_{x_i \in X_i} \left[f_i(x_i, \bar{y}) + \frac{\mu}{2} \|x_i - y_i\|^2 \right] \quad \mu > 0.$$

- Geometric Convergence. Set $\tau_k = k+1$ and $S_k = \lceil \eta^{-2k} \rceil$ with $\eta \in (0,1)$. Then $\mathbb{E}[\|x_k x^*\|^2] = \mathcal{O}\left(\max\{a,\gamma\}^{2k}\right)$, where $\gamma \triangleq \max\{\eta,\beta\}$. The iteration, oracle, and communication complexity to compute an ϵ -NE are $\mathcal{O}(\ln(1/\epsilon))$, $\mathcal{O}(1/\epsilon)$, and $\mathcal{O}\left(\ln^2(1/\epsilon)\right)$, respectively.
- Often computing a sampled gradient is costly and geometric growth is impractical.

Polynomial growth in sample-size represents a "dial".

• Polynomial Rate of Convergence. Set $\tau_k = \lceil (k+1)^u \rceil$ and $S_k = \lceil (k+1)^v \rceil$ for $u \in (0,1)$ and v > 0. Then $\mathbb{E}[\|x_{k+1} - x^*\|^2] = \mathcal{O}\left((k+1)^{-v}\right)$, the iteration, communication, and oracle complexity to obtain an ϵ -NE are $\mathcal{O}((1/\epsilon)^{1/v})$, $\mathcal{O}((1/\epsilon)^{(u+1)/v})$, and $\mathcal{O}\left((1/\epsilon)^{1+1/v}\right)$, respectively.

Numerical Validation: Distributed VS-PGR and VS-PBR

Run both algorithms over a Erdős–Rényi graph with $\alpha=0.04,\, \tau_k=k+1$ and $S_k=\left\lceil 0.98^{-(k+1)} \right\rceil$, and $\mu=30$.

Distributed schemes for aggregative games

Introduction

Summary of Contributions

$$\min_{x_i \in \mathbb{R}^{d_i}} F_i(x_i, x_{-i}) \triangleq \mathbb{E} \left[\psi_i(x; \xi) \right] + r_i(x_i).$$

Algorithm	S_k	Rate $\mathbb{E}[\ x_k - x^*\ ^2]$	Iter. Comp.	Oracle Comp.	Ass.
VS-PGR	$\lceil \rho^{-(k+1)} \rceil$	Linear: $\mathcal{O}(\rho^k)$	$\mathcal{O}(\ln(1/\epsilon))$	$\mathcal{O}(1/\epsilon)$	SM
	$\lceil (k+1)^{\nu} \rceil$	$\mathcal{O}(q^k) + \mathcal{O}(k^{-\nu})$	$\mathcal{O}((1/\epsilon)^{1/\nu})$	$\mathcal{O}(1/\epsilon)^{(1+1/\nu)}$	SM
VS-PBR	$\lceil \rho^{-(k+1)} \rceil$	$\mathcal{O}(ho^k)$	$\mathcal{O}(\ln(1/\epsilon))$	$\mathcal{O}(1/\epsilon)$	CPM
	$\lceil (k+1)^{\nu} \rceil$	$\mathcal{O}(a^k) + \mathcal{O}(k^{-\nu})$	$\mathcal{O}(1/\epsilon^{1/\nu})$	$\mathcal{O}(1/\epsilon^{1+1/\nu})$	CPM

SM: Strongly monotone, CPM: Contract. prox. BR Map

Distributed schemes for aggregative games

Algorithm	S_k	Comm. τ_k	Rate $\mathbb{E}[\ x_k - x^*\ ^2]$	Iter. Comp.	Oracle Comp.	Comm. Comp
d-VS-PGR	$\lceil \rho^{-(k+1)} \rceil$	k + 1	Linear: $\mathcal{O}(\rho^k)$	$\mathcal{O}(\ln(1/\epsilon))$	$\mathcal{O}(1/\epsilon)$	$\mathcal{O}(\ln^2(1/\epsilon))$
	$\lceil (k+1)^{\nu} \rceil$	$\lceil (k+1)^u \rceil$	$\mathcal{O}((k+1)^{-\nu})$	$\mathcal{O}((1/\epsilon)^{1/\nu})$	$\mathcal{O}((1/\epsilon)^{1+1/\nu})$	$\mathcal{O}((1/\epsilon)^{\frac{1+u}{v}})$
d-VS-PBR	$\lceil \rho^{-(k+1)} \rceil$	k + 1	Linear: $\mathcal{O}(\rho^k)$	$\mathcal{O}(\ln(1/\epsilon))$	$\mathcal{O}(1/\epsilon)$	$\mathcal{O}(\ln^2(1/\epsilon))$
u vo i bii	$\lceil (k+1)^{\nu} \rceil$	$\lceil (k+1)^{u} \rceil$	$\mathcal{O}((k+1)^{-\nu})$	$\mathcal{O}((1/\epsilon)^{1/\nu})$	$\mathcal{O}((1/\epsilon)^{1+1/\nu})$	$\mathcal{O}((1/\epsilon)^{\frac{1+u}{v}})$

(d-VS-PGR) and (d-VS-PBR) schemes for Aggregative games ($v > 0, u \in (0, 1)$)

Summary and related work I

- Part I: Synch., asynch., and randomized BR schemes for stochastic Nash games
 - UVS, Jong-Shi Pang, and Suvrajeet Sen, Inexact best-response schemes for stochastic Nash games: Linear convergence and iteration complexity. CDC 2016
 - Jinlong Lei, UVS, Jong-Shi Pang, and Suvrajeet Sen, On Synchronous, Asynchronous, and Randomized Best-Response Schemes for Stochastic Nash Games, Mathematics of Operations Research (to appear, 2019).
- Part II: Distributed schemes for Stochastic Nash games over graphs
 - Jinlong Lei and UVS, Linearly Convergent Variable Sample-Size Schemes for Stochastic Nash Games: Best-Response Schemes and Distributed Gradient-Response Schemes, CDC 2018: 3547-3552
 - Jinlong Lei and UVS. Distributed Variable Sample-Size Gradient-response and Best-response Schemes for Stochastic Nash Games over Graphs, arXiv:1811.11246.

Distributed schemes for aggregative games

