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Motivating applications

• Basis pursuit:

min
x
‖x‖1 subject to Ax = b,

where A ∈ IRm×n has full row rank, b ∈ IRm\{0}. (hence, A−1{b} 6= ∅)

• Basis pursuit with Gaussian noise:

min
x
‖x‖1 subject to ‖Ax − b‖ ≤ σ,

where A ∈ IRm×n has full row rank, b ∈ IRm, σ ∈ (0, ‖b‖).

• Other sparsity inducing objective? Other noise models?
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L1 over L2 models

• `1/`2 for compressed sensing dates back to (Yin, Esser, Xin ’14),
and has recently been extensively studied (Rahimi, Wang, Dong,
Lou ’19), (Wang, Yan, Lou ’20), (Wang, Tao, Nagy, Lou ’21)...

• Noiseless model: (Rahimi, Wang, Dong, Lou ’19)

min
x

‖x‖1

‖x‖
subject to Ax = b,

where A ∈ IRm×n has full row rank and b ∈ IRm\{0}.
• Noisy model: (Zeng, Yu, P. ’21)

min
x

‖x‖1

‖x‖
subject to q(x) ≤ 0,

where q = P1 − P2 with P1 Lipschitz differentiable and P2 convex
finite-valued, [q ≤ 0] 6= ∅ and q(0) > 0.
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L1 over L2 models cont.

Three concrete noisy models:
• Gaussian noise:

q(x) = ‖Ax − b‖2 − σ2,

where A has full row rank, b ∈ IRm, σ ∈ (0, ‖b‖).

• Cauchy noise (Carrilo, Barner, Aysal ’10):

q(x) = ‖Ax − b‖LL2,γ − σ,

where A has full row rank, b ∈ IRm, σ ∈ (0, ‖b‖LL2,γ), with

‖y‖LL2,γ :=
m∑

i=1

log
(

1 +
y2

i
γ2

)
.

Note: These q are Lipschitz differentiable.
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L1 over L2 models cont.

Three concrete noisy models cont.:
• Electromyographic + Gaussian noise (Carrilo, Barner, Aysal ’10),

(Liu, P., Takeda ’19):

q(x) = dist(Ax − b,S)2 − σ2,

where A has full row rank, b ∈ IRm, S = {z : ‖z‖0 ≤ r}, and
σ ∈ (0,dist(b,S)).

Note:
•

q(x) = min
z∈S
‖Ax − b − z‖2 − σ2

= ‖Ax − b‖2 − σ2︸ ︷︷ ︸
P1(x)

−max
z∈S
{2〈z,Ax − b〉 − ‖z‖2}︸ ︷︷ ︸

P2(x)

.

• 2AT ProjS(Ax − b) ⊆ ∂P2(x).
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Previous work

• The `1/`2 models are motivated from the spherical section
property (SSP) (Vavasis ’09, Zhang ’13).

• For noiseless model, under s-nullspace property, any s-sparse
solution is a local minimizer. (Rahimi, Wang, Dong, Lou ’19)

• A Dinkelbach-type algorithm was proposed for the noiseless case
with subsequential convergence established: (Wang, Yan, Lou ’20)x t+1 = arg min

Ax=b
‖x‖1 − ωt

‖x t‖ 〈x , x
t〉+ 1

2‖x − x t‖2,

ωt+1 = ‖x t+1‖1/‖x t+1‖.

• Does a (globally optimal) solution exist?
• What is the rate of convergence of the above algorithm?
• How about algorithm for the noisy case?
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Spherical section property

Definition: (Spherical section property) (Vavasis ’09, Zhang ’13)
Let m, n be two positive integers such that m < n. Let V be an
(n −m)-dimensional subspace of IRn and s be a positive integer. We
say that V has the s-spherical section property (s-SSP) if

inf
v∈V\{0}

‖v‖1

‖v‖
≥
√

m
s
.

Intuition: Any k -sparse vector u ∈ IRn satisfies ‖u‖1 ≤
√

k‖u‖.
Fact: (Vavasis ’09)
If A ∈ IRm×n (m < n) has i.i.d. standard Gaussian entries, then its
nullspace has the s-SSP for s = c1(log(n/m) + 1) with probability at
least 1− e−c0(n−m), where c0, c1 > 0 are independent of m and n.
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Solution existence
Theorem 1. (Zeng, Yu, P. ’21)
For the noiseless model, suppose that ker A has the s-spherical
section property for some s > 0 and there exists x̃ ∈ IRn such that

‖x̃‖0 < m/s and Ax̃ = b.

Then the set of optimal solutions is nonempty.

Idea:
• Consider F (x) := ‖x‖1/‖x‖+ δA−1{b}(x) and

ν∗d := inf {‖d‖1 : Ad = 0, ‖d‖ = 1} .

One can show that every minimizing sequence of F is bounded if
and only if ν∗d > inf F .

• Notice that

inf F ≤ ‖x̃‖1

‖x̃‖
≤
√
‖x̃‖0 <

√
m
s
≤ ν∗d .

Note: Recovery results were proved under suitable s-SSP. (Xu, Narayan, Tran, Webster ’21)
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KL property & exponent

Definition: (Attouch, Bolte, Redont, Soubeyran ’10)
Let h be proper closed and α ∈ [0,1).
• h is said to have the Kurdyka-Łojasiewicz (KL) property with

exponent α at x̄ ∈ dom ∂h if there exist c, ν, ε > 0 so that

c[h(x)− h(x̄)]α ≤ dist(0, ∂h(x))

whenever x ∈ dom ∂h, ‖x − x̄‖ ≤ ε and h(x̄) < h(x) < h(x̄) + ν.

• If h has the KL property at every x̄ ∈ dom ∂h with the same α,
then h is said to be a KL function with exponent α.

Examples:
• Proper closed semialgebraic functions are KL functions with

exponent α ∈ [0,1). (Bolte, Daniilidis, Lewis ’07)

• Piecewise linear quadratic (PLQ) functions are KL functions with
exponent 1

2 . (Li, P. ’18)
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KL calculus rules

Consider

G(x) :=
f (x)

g(x)
and Hu(x) := f (x)− f (u)

g(u)
g(x).

Theorem 2. (Zeng, Yu, P. ’21)
Let f be proper closed with inf f ≥ 0, and let g be a nonnegative
continuous function that is C1 on an open set containing dom f with
infdom f g > 0. Assume that
• f = h + δD for some locally Lipschitz function h and nonempty

closed set D, and h and D are regular at every point in D.
Let x̄ be such that 0 ∈ ∂G(x̄). Then x̄ ∈ dom ∂Hx̄ . If Hx̄ satisfies the
KL property with exponent θ ∈ [0,1) at x̄ , then so does G.

Remark:
• Proper closed convex functions are regular.
• Any closed convex set is regular.
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KL calculus rules cont.

Theorem 3. (Zeng, Yu, P. ’21)
Let p be a proper closed function, and let x̄ ∈ dom p be such that
p(x̄) > 0. Then the following statements hold.

(i) We have ∂(p2)(x) = 2p(x)∂p(x) for all x sufficiently close to x̄ .
(ii) Suppose in addition that x̄ ∈ dom ∂(p2) and p2 satisfies the KL

property at x̄ with exponent θ ∈ [0,1).
Then p satisfies the KL property at x̄ with exponent θ ∈ [0,1).

Theorem 4. (Zeng, Yu, P. ’21)
The function x 7→ ‖x‖1/‖x‖+ δA−1{b}(x) is a KL function with
exponent 1

2 .
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Proof idea

PLQ functions are KL functions with exponent 1
2 .

⇓

KL exponent of x 7→ ‖x‖2
1 −

‖x̄‖2
1

‖x̄‖2 ‖x‖2 + δA−1{b}(x) at x̄

is 1
2 .

⇓

KL exponent of x 7→ ‖x‖2
1/‖x‖2 + δA−1{b}(x) at x̄

is 1
2 .

⇓

KL exponent of x 7→ ‖x‖1/‖x‖+ δA−1{b}(x) at x̄

is 1
2 .

11 / 22



Proof idea

PLQ functions are KL functions with exponent 1
2 .

⇓

KL exponent of x 7→ ‖x‖2
1 −

‖x̄‖2
1

‖x̄‖2 ‖x‖2 + δA−1{b}(x) at x̄

is 1
2 .

⇓

KL exponent of x 7→ ‖x‖2
1/‖x‖2 + δA−1{b}(x) at x̄

is 1
2 .

⇓

KL exponent of x 7→ ‖x‖1/‖x‖+ δA−1{b}(x) at x̄

is 1
2 .

11 / 22



Proof idea

PLQ functions are KL functions with exponent 1
2 .

⇓

KL exponent of x 7→ ‖x‖2
1 −

‖x̄‖2
1

‖x̄‖2 ‖x‖2 + δA−1{b}(x) at x̄

is 1
2 .

⇓

KL exponent of x 7→ ‖x‖2
1/‖x‖2 + δA−1{b}(x) at x̄

is 1
2 .

⇓

KL exponent of x 7→ ‖x‖1/‖x‖+ δA−1{b}(x) at x̄

is 1
2 .

11 / 22



Proof idea

PLQ functions are KL functions with exponent 1
2 .

⇓

KL exponent of x 7→ ‖x‖2
1 −

‖x̄‖2
1

‖x̄‖2 ‖x‖2 + δA−1{b}(x) at x̄

is 1
2 .

⇓

KL exponent of x 7→ ‖x‖2
1/‖x‖2 + δA−1{b}(x) at x̄

is 1
2 .

⇓

KL exponent of x 7→ ‖x‖1/‖x‖+ δA−1{b}(x) at x̄

is 1
2 .

11 / 22



Proof idea

PLQ functions are KL functions with exponent 1
2 .

⇓

KL exponent of x 7→ ‖x‖2
1 −

‖x̄‖2
1

‖x̄‖2 ‖x‖2 + δA−1{b}(x) at x̄ is 1
2 .

⇓

KL exponent of x 7→ ‖x‖2
1/‖x‖2 + δA−1{b}(x) at x̄ is 1

2 .

⇓

KL exponent of x 7→ ‖x‖1/‖x‖+ δA−1{b}(x) at x̄ is 1
2 .

11 / 22



Linear convergence
Corollary 1. (Zeng, Yu, P. ’21)
Suppose that x0 satisfy Ax0 = b. Set ω0 := ‖x0‖1/‖x0‖ and updatex t+1 = arg min

Ax=b
‖x‖1 − ωt

‖x t‖ 〈x , x
t〉+ 1

2‖x − x t‖2,

ωt+1 = ‖x t+1‖1/‖x t+1‖.

If {x t} is bounded, then it converges locally linearly to a stationary
point of the function F (x) := ‖x‖1/‖x‖+ δA−1{b}(x).

Idea:
• Since F is semialgebraic, the convergence of {x t} to some x̄

follows from a standard line of analysis. (Attouch, Bolte, Svaiter ’13)
(Bolte, Sabach, Teboulle ’14)

• The role of KL exponent:

F (x t+1)− F (x̄) ≤ C1[dist(0, ∂F (x t+1))]2

≤ C2‖x t+1 − x t‖2 ≤ C3[F (x t )− F (x t+1)].

Translation to sequential convergence is standard.
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Algorithm for noisy model

The noisy model:

min
x

‖x‖1

‖x‖
subject to q(x) ≤ 0,

where
• q = P1 − P2 with [q ≤ 0] 6= ∅ and q(0) > 0.
• P1 is Lipschitz differentiable and P2 : IRn → IR is convex.

We also assume the generalized MFCQ holds at every feasible x , i.e.,

If q(x) = 0, then ∇P1(x) /∈ ∂P2(x).

Remark: The generalized MFCQ holds for our 3 choices of q.
Algorithmic ideas:
• Augmented Lagrangian?
• Moving balls approximation...
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Moving balls approximation
Moving balls approximation algorithm (Auslender, Shefi, Teboulle ’10)
was designed for

min
x

f (x) subject to gi (x) ≤ 0 ∀i = 1, . . . ,m.

Key update: At an x t satisfying max1≤i≤m gi (x t ) ≤ 0, compute

x t+1 = arg min
x

f (x t ) + 〈∇f (x t ), x − x t〉+ Lf
2 ‖x − x t‖2

s.t. gi (x t ) + 〈∇gi (x t ), x − x t〉+
Lgi
2 ‖x − x t‖2 ≤ 0 ∀i .

• The above algorithm is well defined and any accumulation point
of {x t} is stationary. (Auslender, Shefi, Teboulle ’10)

• Convergence of {x t} under convexity (Auslender, Shefi, Teboulle
’10) or semialgebraicity (Bolte, Pauwels ’16) is known.

• Variants with line-search scheme have been proposed (Lu ’12)
(Bolte, Chen, Pauwels ’20).

Subproblem needs iterative solver except for m = 1.
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MBA`1/`2: The algorithm

Algorithm 1: MBA`1/`2

Step 0. Choose x0 with q(x0) ≤ 0, α > 0 and 0 < lmin < lmax. Set
ω0 = ‖x0‖1/‖x0‖ and t = 0.
Step 1. Choose l0t ∈ [lmin, lmax] arbitrarily and set lt = l0t . Choose
ζ t ∈ ∂P2(x t ).
(1a) Solve the subproblem

x̃ = arg min
x∈IRn

‖x‖1 −
ωt

‖x t‖
〈x , x t〉+

α

2
‖x − x t‖2

s.t. q(x t ) + 〈∇P1(x t )− ζ t , x − x t〉+
lt
2
‖x − x t‖2 ≤ 0.

(1b) If q(x̃) ≤ 0, go to Step 2. Else, update lt ← 2lt and go to (1a).
Step 2. Set x t+1 = x̃ and compute ωt+1 = ‖x t+1‖1/‖x t+1‖. Set
l̄t := lt . Update t ← t + 1 and go to Step 1.
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MBA`1/`2: Subsequential convergence

Theorem 5. (Zeng, Yu, P. ’21)

(i) MBA`1/`2 is well defined.
(ii) The Slater condition holds for each subproblem.

(iii) Let {x t} be the sequence generated by MBA`1/`2 and suppose
that {x t} is bounded. Then lim

t→∞
‖x t+1 − x t‖ = 0, and any

accumulation point x∗ is a Clarke critical point, in the sense that

0 ∈ ∂ ‖x
∗‖1

‖x∗‖
+ λ̄∇P1(x∗)− λ̄∂P2(x∗)

for some λ̄ ≥ 0 satisfying λ̄q(x∗) = 0.

If q is also regular at x∗, then x∗ is stationary in the sense that

0 ∈ ∂
[
‖ · ‖1

‖ · ‖
+ δ[q≤0]

]
(x∗).
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Global convergence

Define

F̃ (x , y , ζ,w) :=
‖x‖1

‖x‖
+ δ[q̃≤0](x , y , ζ,w) + δ‖·‖≥ρ(x),

with

q̃(x , y , ζ,w) := P1(y) + 〈∇P1(y), x − y〉+ P∗2 (ζ)− 〈ζ, x〉+
w
2
‖x − y‖2,

where ρ > 0 is such that [q ≤ 0] ⊆ {x : ‖x‖ > ρ}.

Theorem 6. (Zeng, Yu, P. ’21)
Assume in addition that P1 is C2. Let {x t} be generated by MBA`1/`2

and assume that {x t} is bounded.
If F̃ is a KL function, then {x t} converges to a Clarke critical point x∗:
This x∗ is a stationary point if q is in addition regular at x∗.
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Numerical simulations I

• Solve
min

x

‖x‖1

‖x‖
subject to ‖Ax − b‖LL2,γ ≤ σ.

• Consider random instances: generate an m × n matrix A, a
k -sparse vector x̃ , a Cauchy noise vector n̂ (s.d. 0.01) and set
b = Ax̃ + n̂. Set γ = 0.02 and σ = 1.2‖n̂‖LL2,γ .

• Initialize at an approximate solution of

min
x
‖x‖1 subject to ‖Ax − b‖LL2,γ ≤ σ,

obtained via SCPls initialized at A†b.
• Terminate when ‖x t − x t−1‖ ≤ tol ·max{1, ‖x t‖}.
• (n,m, k) = i · (2560,720,80).
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Numerical simulations I

Table: tol = 10−6 for SCPls and MBA`1/`2

i CPU ‖x−x̃‖
max{1,‖x̃‖} ‖Ax − b‖LL2,γ − σ

SCPls MBA`1/`2
SCPls MBA`1/`2

SCPls MBA`1/`2
2 10.0 0.6 ( 11.1) 1.3e-01 6.5e-02 -2e-07 -8e-08
4 52.4 2.0 ( 57.5) 1.3e-01 6.6e-02 -6e-07 -2e-07
6 87.3 4.1 ( 100.9) 1.3e-01 6.6e-02 -9e-07 -2e-07
8 281.6 7.0 ( 312.1) 1.3e-01 6.5e-02 -1e-06 -3e-07
10 285.5 11.4 ( 339.5) 1.3e-01 6.5e-02 -2e-06 -4e-07

Table: tol = 10−3 for SCPls and tol = 10−6 for MBA`1/`2

i CPU ‖x−x̃‖
max{1,‖x̃‖} ‖Ax − b‖LL2,γ − σ

SCPls MBA`1/`2
SCPls MBA`1/`2

SCPls MBA`1/`2
2 3.0 50.8 ( 54.3) 1.8e+00 1.6e+00 -3e+01 -6e-05
4 11.8 457.6 ( 472.5) 4.3e+00 4.2e+00 -1e+02 -5e-04
6 30.5 4.9 ( 44.9) 2.1e-01 6.6e-02 -9e-01 -2e-07
8 37.7 78.5 ( 139.2) 9.7e+00 9.6e+00 -6e+01 -9e-03
10 71.9 3164.0 (3277.6) 2.1e+00 1.7e+00 -1e+02 -2e-04
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Numerical simulations II

• Solve
min

x

‖x‖1

‖x‖
subject to ‖Ax − b‖2 ≤ σ2.

• Generate A = [a1, · · · ,an] ∈ IRm×n with

aj =
1√
m

cos
(

2πwj
F

)
, j = 1, . . . ,m,

where w has i.i.d. entries uniformly chosen in [0,1].
• Badly scaled instances: Generate x̃ ∈ IRn in MATLAB by:
I = randperm(n); J = I(1:k); tx = zeros(n,1);
tx(J) = sign(randn(k,1)).*10.ˆ(D*rand(k,1));

• Set b = Ax̃ + n̂, where n̂ ∼ N(0,0.012I), and set σ = 1.2‖n̂‖.
• Initialize at an approximate solution computed by SPGL1,

backtrack to feasibility if necessary.
• Terminate when ‖x t − x t−1‖ ≤ 10−8 ·max{1, ‖x t‖}.
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Numerical simulations II

Table: Random tests on badly scaled CS problems with Gaussian noise

k F D CPU ‖x−x̃‖
max{1,‖x̃‖} ‖Ax − b‖2 − σ2

SPGL1 MBA`1/`2
SPGL1 MBA`1/`2

SPGL1 MBA`1/`2
8 5 2 0.07 0.13 ( 0.20) 3.2e-02 2.3e-03 -4e-05 -1e-13
8 5 3 0.06 0.14 ( 0.20) 3.2e-03 6.8e-04 -4e-05 -2e-11
8 15 2 0.08 3.92 ( 4.01) 4.7e-01 1.5e-01 -9e-05 -7e-13
8 15 3 0.11 31.46 ( 31.58) 3.8e-01 5.3e-02 2e-02 -5e-11

12 5 2 0.06 2.26 ( 2.32) 1.4e-01 3.6e-02 -3e-04 -8e-13
12 5 3 0.08 4.05 ( 4.14) 6.0e-02 3.8e-03 1e-04 -7e-11
12 15 2 0.09 8.32 ( 8.41) 5.2e-01 2.0e-01 -1e-04 -1e-12
12 15 3 0.11 403.80 (403.91) 5.2e-01 1.5e+00 6e-02 -3e-10
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Conclusion and future work
Conclusion:
• We established convergence rate of a Dinkelbach type algorithm

for noiseless compressed sensing based on `1/`2 minimization
via new KL calculus rules (for fractional objectives).

• We proposed and analyzed convergence of MBA`1/`2 for `1/`2
minimization subject to measurement noise.

Future work:
• Other fractional objectives? (Boţ, Dao, Li ’21)

• KL-type analysis for inexactly solved subproblems.
References:

• L. Zeng, P. Yu, and T. K. Pong. Analysis and algorithms for some
compressed sensing models based on L1/L2 minimization.
SIAM J. Optim., 31 (2021), pp. 1576–1603.

Thanks for coming!
. .
∠
^
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