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Energy-based models
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There is a renewed interest in energy based models!
Let (x,y) € X X Y, be a pair of output-input variables
Y is a noisy image and x is a denoised image

y is a set of stereo images, and x is the disparity image

In energy-based models, the task of inferring x from vy is defined via an
energy-minimization / optimization approach

X € argmin E(x, y)
X

The energy E(x, y) assigns a certain energy value to the configuration (x, i)
Different algorithms for finding a minimizer (or at least a stationary point)

Discrete / continuous / convex / non-convex / smooth / non-smooth ...

1 CVPR 2021 Tutorial: “Theory and Application of Energy-Based Generative Models”



Main properties

Energy-based models come along with many interesting properties:
o Energies can be hand-crafted based on first principles (physics-inspired)

o Energies can be learned from data using supervised, self-supervised or
unsupervised learning

o Energies allow for multiple solutions ¥ € X
o Characterization of the geometry of solutions via optimality conditions
o Energies E(x, y) provide a quality measure for a particular candidate x

o Direct link to statistical modeling and Bayesian inference via
p(x|y) o exp(—E(x, y))
o Synthesis of samples from p(x|y) via Langevin dynamics on E(x,y).
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( Keep optimization researchers busy ;-) )



Energy-based models in computer vision and machine learning

Computer vision:
o Discrete optimization based on MAP-inference for Markov random fields (MRFs,
CRFs) [Blake, Kohli, Rother '11]
o Continuous optimization for variational models [Mumford, Shah '89]
o Different hybrid forms such as continuous valued MRFs or minimal partitions
[Chambolle, Cremers, P. '12]

Machine learning:
o Energy-based model based on neural networks have a long tradition[Hinton et al
'03], [LeCun et al. '06], [Du, Mordatch '19], ...
o The discriminator in a Wasserstein GAN can also be seen as some sort of
energy-based model [Arjovsky et al. '17]
o Any deep-learning based classifiers (with a sofmax tail) can be related to
energy-based models and opens up generative learning [Grathwohl 2020]



How to train energy-based models?

Assume we have given a set of ground-truth output-input pairs (x,, y,). Let us
consider an energy Eg(x, 1) parametrized by some parameter vector 0 € ©.

(e]

Contrastive learning: [Hinton '02] Find 6 such that Eg(x, y) has a low energy
on ground truth pairs (x,, y,) and high energy on contrastive pairs (¥, y,):

meinz Eo(xn, Yn) = > Eo(Zn, Yn))

Bilevel optimization: [Samuel, Tappen '09] Find 6 such that the solutions
Xn € argmin, E(x, y,) minimize a loss function £(x,, £,):

mgnz L(xn,Xn), s.t. X, € argminEg(x, yy)

n X
Unrolling: [Domke '12] Find 6 such that the K-th iterate xX of an iterative
algorithm s minimizes a loss function £(x,,, xX):
meinz g(xn,x,lf), s.t. x',i” = &Q(Ee,xﬁ), k=0,..,K-1
n

Black-box differentiation: [Vlastelica et al. '19]. Restricted to linear objective
functions.



Image labeling / MAP inference

o Many problems in image processing /computer vision can be cast as graph
labeling problems [Savchynskyy '19]

Nodes i € U correspond image pixels

Edges (i, j) € € define a neighborhood system

Each node i can take a label y; € ¥ ={1,2,...,K}

Assign an energy to a certain configuration of the labels v = (v;)ic .
Task: Find the configuration with the lowest energy
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The energy
o Discrete optimization models can efficiently impose a smoothness prior.

o We consider the following classical image labeling model:

min {E(y|9) = Z 0i(yi) + Z Gi,j(yi/yj)} .

yey!7l = (i,j)e
ﬁ/(l‘r-l‘z)
filw:) °< ]
En £

e—0—0—@0—@
O—P—0—0—@

o The model depends on unary terms 6; as well as binary terms 0; ;.

o Minimizing along a certain chain amounts for solving a shortest path problem.



Markov random fields

o The energy of the image labeling problems can be interpreted as a negative log
posterior distribution

E(y|O
p(110) = 7 o0 (~E02) = 2 [ Texn(-0.0/) | ] exp(-00010, 100/,

(P (yz) 1/J1,1+1(y1/y1+1)

where Z is the partition function and T > 0 is a variance parameter.
o MAP inference maximizes p(y|0) or minimizes E(y|0).
o Marginalization requires to compute the marginals distributions p(y;|0),

pyile) =227 Z 2 Zp(yle)

Y1 Y2 Yi- Yi+1

o Both problems can be computed on tree-like graphs using dynamic programming.



Marginalization vs. Minimization

Marginalization/Expectation Minimization

@]

The energy is given by quadratic unaries and total variation (TV) pairwise terms.

@]

The variance parameter was set to T = 0.02 (no effect on the minimization).

(o]

The minimization leads to the well-known staircasing artifacts of TV.

(e]

The marginalization followed by computing the expectation seems more natural.



Lifting

The image labeling problem can be re-cast as a binary optimization problem by
means of lifting.

Lift labels y; to vectors x; = 1,,.
For example for K =5, y; = 3, one has x; = (0,0,1,0,0)
The image labeling problem becomes

min E(x,f) = Z QiTx,- + Z tr(@iT,].(x,- & x]-)) .
o eV (i,)eB

Has close relations to functional lifting approaches such as [Alberti, Bouchitte,
Dal Maso '03] for the Mumford-Shah functional.



Schlesinger's LP relaxation

o Replace binary variables x; and x; ® x; by v; and w; ;.
o Leads to the classical LP relaxation due to [Schlesinger '76]

121]11?;1 ;1/ QiTvi + (,-,]Z)el% tr(GiT,jwi,j),

st. vl1=1, ol >0,

ijl =v;, wijl=v;, w;;=0.
o Known as the marginal polytope relaxation.
o Gives favorable integrality gap guarantees [Chekuri et al '04].
o Can be cast as a huge 6(N?K?) LP in standard form
o Example: Image size N X N = 10242, K = 256 labels, 6(N2K?) ~ 7- 1010
variables.

o Important observation: The dual problem is much smaller, only 6(N?K) ~ 3 - 108
variables.



Some state-of-the-art algorithms

(o]

Solving the marginal polytope relaxation using an off-the-shelve LP solver is very
slow.

Max product belief propagation (BP) [Pearl '88] is exact on trees. For
graphs with loops it may not converge.

Move making algorithms based on graph cuts [Boykov, Veksler, Zabih '01],
[Komodakis, Tziritas '07].

Tree reweighted message passing (TRW) [Wainwright, Jaakkola, Willsky '05]
decomposes graph into trees. BP is used as a subroutine on the trees.

TRW-S [Kolmogorov '06] is a sequential version of TRW which yields a
monotonous coordinate ascent on the dual.

Smoothing approach ( min(-) ~» —logsumexp(—-)) and Nesterov's accelerated
gradient descent [Savchynskyy et al.'11]

Dual minorize maximize (DMM), highly parallel monotonous block
coordinate ascent [Shekhovtsov et al. '16].

Saddle-point algorithms featuring linearly convergent Frank-Wolfe
algorithms [Kolmogorov, P. "21] 1



Solving labeling problems on a chain

Let us restrict our image labeling problem to one line (chain) of the image:

On this chain, we consider a graph of n nodes 7 = {1, 2, ...,n}, representing the
image pixels.

The edge set is given by pairs of neighboring nodes along that line, that is
€={(,i+1): i=1,...n—-1}

Each node i € U can take a label out of a given label set Y.

(e]
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n

n-1
min E(y1, ..., yn) 1= 2, 0i(yi) + D Oiix1 (i, yis1)-

YireeeYn i=1 i=1
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Main observation

o The pairwise structure of the the energy admits the following recursive definition.

n-1 n-1

E(yi,....yn) = mlﬂ Zei(yi)+26i,z’+1(yz’r]/i+1)+ 0, (yn)

= min min 01(y1) + 01,2(y1, y2) + Z 0i(yi) + Z 0i,i+1(Yi, Yis1) + 0u(yn)

Y2,e¥n Y1 i=2 i=2
Fa(y2)
n-1 n-1
= ymlr; mln FQ(]/Q) + 92(]/2) + 0, 3(]/2, yg) + Z 0; (]/1) + Z 0; z+l(]/z; y1+1) + 0, (yn)
F3(ys)
=, .. = minFn(]/n) + 671(%1)-
Yn

13



Dynamic Programming

o The recursive definition allows for an efficient dynamic programming scheme
Fi(y1) Falye) Fa(ys) Fa(ya) Fulyn)

/

/

73(ys)

Mlll}l

03(ys) + 03,443, ya). n

Source: [Savchynskyy '19]
o In the computation of Fy,, it turns out that it is convenient to define the functions
Fi: Y - R:
Fi(s) =0, Fi(s):= ltTég; Fio1(t) + 0i-1(t) + 0i-1,i(t, 5),

which are the so-called Bellman functions or forward messages.
o The same algorithm can be run backwards, the backward messages are then
computed as
Bu(s) =0, Bi(s)= mg; Bit1(t) + Oir1(t) + O1ix1(s, t)

te

14



Min-marginals

o The min-marginals at a node w € {1, ..., n} are defined as the energy E,, at the
node w which is obtained by “minimizing out” all other nodes, that is

Ey(s)=  min  E(y1,...,Yn; 0)
yéym,yw:s

o This means that we are fixing the label of v, = s but choose all other labels such
that they minimize the overall energy.

o Using the definitions of forward messages F; and backward messages B; one can
easily see that the min-marginals are computed as

Ei(s) = Fi(s) + Bi(s) + 0i(s).

o After computing all min-marginals E;(s), the optimal labels can be simply
computed by picking in each node that label with the smallest energy.

15



Extension to grid-like graphs

o Unfortunately, the dynamic programming algorithms cannot be directly extended
to grid-like graphs such as images

o However, one can consider iterative algorithms such as loopy belief propagation
(BP) that reuses messages from previous iterations.

o A very efficient variant, called sweep BP alternates the largest trees through a
particular node [Tappen, Freeman, '03].

O0—0—0+0+0
O—>O—>(15<—O<—O
o—-0 OO0
O0—0—-0«0+0
O—>O—>(T)<—O‘—O

16



Sweep BP

o Initialize all messages F/(s), B(s), F¥(s), BY(s) with zeros

1. forit=1,2,... do

2. Compute Fl.h(s), Bl’?(s) with unaries 6;(s) = 0:(s) + F?(s) + B}(s).

3. Compute F!(s), BY(s) with unaries 0i(s) = 0;(s) + Ff(s) + Bf’(s).

4. end for

5. Compute min-marginals E;(s) = Flh(s) + BZ’?(S) + F7(s) + BY(s) + 0:(s).

6. Select optimal label: y; = arg min; E;(s).

o The algorithm does not give any guarantees for convergence, but works very well
in practice.

o There exist several variants, which fix this theoretical shortcoming, e.g. TRW-S.

17



Dual decomposition

o The labeling energy (primal problem) can be naturally split into problems acting

il
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o
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on horizontal and vertical chains

myin E(y) := E1(y) + Ea(y), T

Problem is easy to minimize in E; or E2 but not jointly
Consider the following splitting:

myin El(y) + Eg(y) = ;nin El(yl) + Eg(yg), s.t. Y1 = Y2

1,Y2

The corresponding Lagrange dual is given by
D) = ;Illyn Ev(y1) + Ea(y2) + AT (y1 — v2)
1/Y2
= = (E}(=A) + E5(1))
Of course, weak duality holds

max D(A) = min E(y) + E5'(y) < min E(y)
y Y

This relaxation is equivalent to the marginal polytope relaxation.

18



Dual minorize-maximize

o In [Shekhovtsov et al. '16] we have a dual minorize-maximize (DMM) algorithm

of the form ) =
AR+ = max DY (1) + D%(A)

A1 = max D'(4) + D¥(1), | T

k+l

o A minorant D1 k(/\) is given by the maximum amount of unaries tf\1at can| be
removed from D'(A¥) without changing its minimizer

o Yields a monotonically increasing sequence of dual function values

o A highly practical maximal modular minorant is obtained from a hierarchical
dynamic programming approach

o Can be efficiently parallelized on the GPU

o Works very well in practice.

o Disadvantage: The algorithm might get stuck in non-optimal points.
19



A more general optimization problem

o Let us consider a more general discrete optimization problem

min Z fi(Xa,),

Xe{o,1} g7

where we assume that the subproblems are tractable (e.g. DP on chains)
o In particular, we assume, we have an efficient linear minimization oracle 1mo that
can solve for a given Y the problem minyc( 34 fr(X) +(X, Y) .
o This problem can be written equivalently as
min > X! st. Xp=X, VteT,veA,
Xe{0,1}4, X1ep!,.. Xmep™ 1T
with polytopes P! = conv({[X f(X)]| X € dom f;}) € R4 X R and X! denotes
the last component of vector X! € R4 x R
o After dropping the X € {0, 1}¢ constraint, this can be written as the following
convex-concave saddle-point problem
min max ZXf) + Z Xyl st Z Yi=0
X=(X1,. XMEPIX.XP™  y=(Y))ieTver, €Y teT teT,veA; FvEA;
20



One-sided Frank-Wolfe algorithms for saddle problems *

The previous problem is just an instance of saddle-point problems of the form

min max 2(x, y) := (Kx, y)+fe(x)-h*(y), F(x)= max Z(x,y), H(y)= min L(x,y).

xeX yeY €

o The function fg = f(x) + 0% (x) is the sum of a smooth function with Lipschitz
continuous gradient and the indicator of a convex polytope and we assume the
existence of an efficient linear minimization oracle (1mo)

lmog(a) € argmin {a, x) .
XEP

o The function h* is a convex function which allows to efficiently compute its
proximal map (prox)

_ .1 - .
prox(§) = argmin o [y - il + 1 ().

*Joint work with V. Kolmogorov, ICML 2021

21



Accelerated dual proximal point algorithm

o In case f(x) is a quadratic function and h*(y) is a linear constraint we can
consider a proximal regularization on the dual:

2
7

1 ) .
%y, 5(x,y) = L(x, y)—g ly-3l", Fypx):= max 2y,5(x,y), Hy,g(y) = min%, 5(x,y)

o The iterations of an inexact dual proximal point algorithm are given by

(X,9) =¢ argmin Fy 5(x) — Hy 5(y),
(x,y)eXxY
o In x, it is the minimization of a quadratic function over a polytope, which can be

solved using linearly convergent Frank-Wolfe algorithms: AFW [Lacoste-Julien,
Jaggi '15], [Beck, Shtern '17], BCG [Braun at al. '19], DiCG [Garber, Meshi '16] .

o In y is is just the evaluation of the proximal map of h*.

o Allows the application of an inexact accelerated proximal-point algorithm [Aujol,

Dossal, '15] where we prescribe the solution accuracy of the problem in x. -



Convergence rate

Theorem. Assume the (negative) dual problem —H(y) is coercive, and the
subproblems in x are solved with a linearly convergent FW method, then the inexact
accelerated proximal point algorithm makes O(n logn) calls to 1mo during the first n
iterations, and the dual iterations satisfy:

H(y*) - H(y;) = O(1/n?).

o Can solve the relaxation exactly with guaranteed convergence rate.
o But still not as fast as BP or DMM.

23



Primal-dual algorithm

o In case f and h are more general, we can still apply the inexact primal-dual
algorithm [Rasch, Chambolle, '20].

o The proximal subproblems are given by

1
prox., () = argmin f(x) + o f|x - [|°.

o Can by again solved approximately using a linearly convergent FW algorithm.

Theorem. The inexact primal-dual algorithm makes O(n logn) calls to 1mo during the
first n iterations for which the dual iterates satisfy

H(y") = H(yy) = O(1/n).
Moreover, if domh* is a compact set, the primal iterates also satisfy

F(x¢) - F(x") = O(1/n).
24



Some results

(b) Denoised image
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Learning

‘ Unary CNN CRF D
Mmk///
'S & &
]~ » » »
Pairwise CNN
) ol “U L'-:.‘fﬁﬁ;: MAP Inference
‘ [m“ %ng'(zua.)+(l§£ﬁ,(znxwog)] k ‘

o For decades, the unary and pairwise terms have been computed based on
hand-crafted features

o By the recent advanced of deep learning, it is more than natural to compute unary
and pairwise terms based on deep convolutional networks (CNNs)



Method |: Surrogate loss”

o ldeally, we would like to solve the bilevel optimization problem:
mein L(xn,Xn), X, €argminEg(x, y,)
X

o We can construct an upper bound based on the margin rescaling technique
[Tsochantaridis et al. '04]:

max L(xy,x) < max L(xy,x)
x€argmin, Eg(x,yy) x:Eq(x,yn)<Eq(xn,yn)
< max g(-x}’l/-x)-i-EQ(-xn/yn)_Ee(xlyi’l)

- x:Eq(%,yn)<Eq(xXn,Yn)
< max ZL(xn,x)+ Eo(xn, yn) — Eo(x, yn)

=Eg¢(xXn, Yn) —minEg(x, y,) — L(xy, x)

o Computing the upper bound requires to call the CRF solver.
o The solver can be treated as a black-box.
* Joint work with P. Knobelreiter, C. Reinbacher, A. Shekhovtsov, CVPR 2017
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Graphical explanation

I - = - Margin
@® Prediction

@® True Label

Label

Example using a loss of the form £(x, ¢) = min{r7, |x — g|}
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Method Il: Unrolling of Loopy belief propagation®

Unary CNN BP-Layer
Y Unary CNN BP- Layer

[ltt]] = ¢ lr - L R
7 o 744
linll]] = -2 i) “:1/—&/

Pairwise CNN Pairwise CNN

VL(z,x")

o The normalized min-marginals E;(s) computed by the loopy BP provide a good
approximation to the true marginals.
exp(Ei(s)

Zrexp(Eq(t)

o For learning, we unroll a few iterations of BP and use a cross-entropy loss function

defined on the min-marginals.
o It turns out that the derivatives of each BP iterations can be computed efficiently
using again dynamic programming on chains.
o The solver must be treated as a white-box.
* Joint work with P. Knobelreiter, C. Sormann, F. Fraundorfer, A. Shekhovtsov, CVPR 2020

Ei(s) =

29



Some results

Stereo

Motion
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Conclusion /Discussion

o Energy (=optimization) based models for computer vision
o Fast solvers are important for learning and inference

o There is still a performance gap between fast heuristical methods and methods
with guaranteed convergence rate.

o Discussed methods for learning that can deal with the combinatorial nature of the
models (Black-box vs. white-box).
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