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Energy-based models

◦ There is a renewed interest in energy based models1

◦ Let (G, H) ∈ X× Y, be a pair of output-input variables

◦ H is a noisy image and G is a denoised image

◦ H is a set of stereo images, and G is the disparity image

◦ In energy-based models, the task of inferring G from H is defined via an
energy-minimization / optimization approach

Ĝ ∈ argmin
G

�(G, H)

◦ The energy �(G, H) assigns a certain energy value to the configuration (G, H)
◦ Different algorithms for finding a minimizer (or at least a stationary point)

◦ Discrete / continuous / convex / non-convex / smooth / non-smooth ...
1 CVPR 2021 Tutorial: “Theory and Application of Energy-Based Generative Models”
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Main properties

Energy-based models come along with many interesting properties:

◦ Energies can be hand-crafted based on first principles (physics-inspired)

◦ Energies can be learned from data using supervised, self-supervised or
unsupervised learning

◦ Energies allow for multiple solutions Ĝ ∈ -
◦ Characterization of the geometry of solutions via optimality conditions

◦ Energies �(G, H) provide a quality measure for a particular candidate G

◦ Direct link to statistical modeling and Bayesian inference via
?(G |H) ∝ exp(−�(G, H))
◦ Synthesis of samples from ?(G |H) via Langevin dynamics on E(x,y).

◦ ( Keep optimization researchers busy ;-) )
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Energy-based models in computer vision and machine learning

Computer vision:

◦ Discrete optimization based on MAP-inference for Markov random fields (MRFs,
CRFs) [Blake, Kohli, Rother ’11]

◦ Continuous optimization for variational models [Mumford, Shah ’89]

◦ Different hybrid forms such as continuous valued MRFs or minimal partitions
[Chambolle, Cremers, P. ’12]

Machine learning:

◦ Energy-based model based on neural networks have a long tradition[Hinton et al
’03], [LeCun et al. ’06], [Du, Mordatch ’19], ...

◦ The discriminator in a Wasserstein GAN can also be seen as some sort of
energy-based model [Arjovsky et al. ’17]

◦ Any deep-learning based classifiers (with a sofmax tail) can be related to
energy-based models and opens up generative learning [Grathwohl 2020]
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How to train energy-based models?
Assume we have given a set of ground-truth output-input pairs (G= , H=). Let us
consider an energy ��(G, H) parametrized by some parameter vector � ∈ Θ.

◦ Contrastive learning: [Hinton ’02] Find � such that ��(G, H) has a low energy
on ground truth pairs (G= , H=) and high energy on contrastive pairs (G̃ , H=):

min
�

∑
=

��(G= , H=) −
∑
=

��(G̃= , H=))

◦ Bilevel optimization: [Samuel, Tappen ’09] Find � such that the solutions
Ĝ= ∈ argminG �(G, H=) minimize a loss function L(G= , Ĝ=):

min
�

∑
=

L(G= , Ĝ=), s.t. Ĝ= ∈ argmin
G

��(G, H=)

◦ Unrolling: [Domke ’12] Find � such that the  -th iterate G = of an iterative
algorithm A minimizes a loss function L(G= , G = ):

min
�

∑
=

L(G= , G = ), s.t. G:+1= = A(�� , G:=), : = 0, ...,  − 1

◦ Black-box differentiation: [Vlastelica et al. ’19]. Restricted to linear objective
functions.
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Image labeling / MAP inference
◦ Many problems in image processing /computer vision can be cast as graph

labeling problems [Savchynskyy ’19]
◦ Nodes 8 ∈ V correspond image pixels
◦ Edges (8 , 9) ∈ E define a neighborhood system
◦ Each node 8 can take a label H8 ∈ Y= {1, 2, ...,  }
◦ Assign an energy to a certain configuration of the labels H = (H8)8∈V.
◦ Task: Find the configuration with the lowest energy

Stereo

Motion

Segmentation
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The energy

◦ Discrete optimization models can efficiently impose a smoothness prior.

◦ We consider the following classical image labeling model:

min
H∈Y|V|

{
�(H |�) :=

∑
8∈V

�8(H8) +
∑
(8 , 9)∈E

�8 , 9(H8 , H9)
}
.

x2x1

fi(xi)

fij(xi, xj)

◦ The model depends on unary terms �8 as well as binary terms �8 , 9.

◦ Minimizing along a certain chain amounts for solving a shortest path problem.
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Markov random fields

◦ The energy of the image labeling problems can be interpreted as a negative log
posterior distribution

?(H |�) = 1

/
exp

(
−
�(H |�)
)

)
=

1

/

=∏
8=1

exp(−�8(H8)/))︸             ︷︷             ︸
)8(H8)

=−1∏
8=1

exp(−�8 ,8+1(H8 , H8+1)/))︸                        ︷︷                        ︸
#8 ,8+1(H8 ,H8+1)

,

where / is the partition function and ) > 0 is a variance parameter.

◦ MAP inference maximizes ?(H |�) or minimizes �(H |�).
◦ Marginalization requires to compute the marginals distributions ?(H8 |�),

?(H8 |�) =
∑
H1

∑
H2

. . .
∑
H8−1

∑
H8+1

. . .
∑
H=

?(H |�).

◦ Both problems can be computed on tree-like graphs using dynamic programming.
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Marginalization vs. Minimization

0 100 200 300 400 500

Marginalization/Expectation

0 100 200 300 400 500

Minimization

◦ The energy is given by quadratic unaries and total variation (TV) pairwise terms.

◦ The variance parameter was set to ) = 0.02 (no effect on the minimization).

◦ The minimization leads to the well-known staircasing artifacts of TV.

◦ The marginalization followed by computing the expectation seems more natural.
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Lifting

◦ The image labeling problem can be re-cast as a binary optimization problem by
means of lifting.

◦ Lift labels H8 to vectors G8 = 1H8 .

◦ For example for  = 5, H8 = 3, one has G8 = (0, 0, 1, 0, 0)
◦ The image labeling problem becomes

min
G

{
�(G, 5 ) :=

∑
8∈V

�)8 G8 +
∑
(8 , 9)∈E

tr(�)8,9(G8 ⊗ G 9))
}
.

◦ Has close relations to functional lifting approaches such as [Alberti, Bouchitte,
Dal Maso ’03] for the Mumford-Shah functional.
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Schlesinger’s LP relaxation

◦ Replace binary variables G8 and G8 ⊗ G 9 by E8 and F8 , 9.

◦ Leads to the classical LP relaxation due to [Schlesinger ’76]

min
E,F

∑
8∈V

�)8 E8 +
∑
(8 , 9)∈E

tr(�)8,9F8 , 9),

s.t. E)8 1 = 1, E ;8 ≥ 0,

F)8,91 = E 9 , F8 , 91 = E8 , F8 , 9 ≥ 0.

◦ Known as the marginal polytope relaxation.

◦ Gives favorable integrality gap guarantees [Chekuri et al ’04].

◦ Can be cast as a huge O(#2 2) LP in standard form

◦ Example: Image size # × # = 10242,  = 256 labels, O(#2 2) ∼ 7 · 1010
variables.

◦ Important observation: The dual problem is much smaller, only O(#2 ) ∼ 3 · 108
variables.
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Some state-of-the-art algorithms
◦ Solving the marginal polytope relaxation using an off-the-shelve LP solver is very

slow.

◦ Max product belief propagation (BP) [Pearl ’88] is exact on trees. For
graphs with loops it may not converge.

◦ Move making algorithms based on graph cuts [Boykov, Veksler, Zabih ’01],
[Komodakis, Tziritas ’07].

◦ Tree reweighted message passing (TRW) [Wainwright, Jaakkola, Willsky ’05]
decomposes graph into trees. BP is used as a subroutine on the trees.

◦ TRW-S [Kolmogorov ’06] is a sequential version of TRW which yields a
monotonous coordinate ascent on the dual.

◦ Smoothing approach ( min(·){ −logsumexp(−·)) and Nesterov’s accelerated
gradient descent [Savchynskyy et al.’11]

◦ Dual minorize maximize (DMM), highly parallel monotonous block
coordinate ascent [Shekhovtsov et al. ’16].

◦ Saddle-point algorithms featuring linearly convergent Frank-Wolfe
algorithms [Kolmogorov, P. ’21]
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Solving labeling problems on a chain

◦ Let us restrict our image labeling problem to one line (chain) of the image:

◦ On this chain, we consider a graph of = nodes V= {1, 2, ..., =}, representing the
image pixels.

◦ The edge set is given by pairs of neighboring nodes along that line, that is
E= {(8 , 8 + 1) : 8 = 1, ..., = − 1}.

◦ Each node 8 ∈ V can take a label out of a given label set Y.

min
H1 ,....H=

�(H1 , ..., H=) :=
=∑
8=1

�8(H8) +
=−1∑
8=1

�8 ,8+1(H8 , H8+1).
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Main observation

◦ The pairwise structure of the the energy admits the following recursive definition.

�(H1 , ..., H=) = min
H1 ,...,H=

=−1∑
8=1

�8(H8) +
=−1∑
8=1

�8 ,8+1(H8 , H8+1) + �=(H=)

= min
H2 ,...,H=

min
H1

�1(H1) + �1,2(H1 , H2)︸                         ︷︷                         ︸
�2(H2)

+
=−1∑
8=2

�8(H8) +
=−1∑
8=2

�8 ,8+1(H8 , H8+1) + �=(H=)

= min
H3 ,...,H=

min
H2

�2(H2) + �2(H2) + �2,3(H2 , H3)︸                                      ︷︷                                      ︸
�3(H3)

+
=−1∑
8=3

�8(H8) +
=−1∑
8=3

�8 ,8+1(H8 , H8+1) + �=(H=)

= . . . = min
H=

�=(H=) + �=(H=).
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Dynamic Programming
◦ The recursive definition allows for an efficient dynamic programming scheme

Source: [Savchynskyy ’19]

◦ In the computation of �=, it turns out that it is convenient to define the functions
�8 : Y→ ℝ:

�1(B) = 0, �8(B) := min
C∈Y

�8−1(C) + �8−1(C) + �8−1,8(C , B),

which are the so-called Bellman functions or forward messages.
◦ The same algorithm can be run backwards, the backward messages are then

computed as

�=(B) = 0, �8(B) = min
C∈Y

�8+1(C) + �8+1(C) + �8 ,8+1(B, C)
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Min-marginals

◦ The min-marginals at a node F ∈ {1, ..., =} are defined as the energy �F at the
node F which is obtained by “minimizing out” all other nodes, that is

�F(B) = min
H∈Y|V| ,HF=B

�(H1 , ..., H=;�)

◦ This means that we are fixing the label of HF = B but choose all other labels such
that they minimize the overall energy.

◦ Using the definitions of forward messages �8 and backward messages �8 one can
easily see that the min-marginals are computed as

�8(B) = �8(B) + �8(B) + �8(B).

◦ After computing all min-marginals �8(B), the optimal labels can be simply
computed by picking in each node that label with the smallest energy.
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Extension to grid-like graphs

◦ Unfortunately, the dynamic programming algorithms cannot be directly extended
to grid-like graphs such as images

◦ However, one can consider iterative algorithms such as loopy belief propagation
(BP) that reuses messages from previous iterations.

◦ A very efficient variant, called sweep BP alternates the largest trees through a
particular node [Tappen, Freeman, ’03].
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Sweep BP

◦ Initialize all messages �ℎ
8
(B), �ℎ

8
(B), �E

8
(B), �E

8
(B) with zeros

1. for 8C = 1, 2, ... do

2. Compute �ℎ
8
(B), �ℎ

8
(B) with unaries �̃8(B) = �8(B) + �E8 (B) + �E8 (B).

3. Compute �E
8
(B), �E

8
(B) with unaries �̃8(B) = �8(B) + �ℎ8 (B) + �ℎ8 (B).

4. end for

5. Compute min-marginals �8(B) = �ℎ8 (B) + �ℎ8 (B) + �E8 (B) + �E8 (B) + �8(B).
6. Select optimal label: H8 = argminB �8(B).
◦ The algorithm does not give any guarantees for convergence, but works very well

in practice.

◦ There exist several variants, which fix this theoretical shortcoming, e.g. TRW-S.
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Dual decomposition

(a) (b)

p

(c) (d)
Figure 1: Grid structures of previous approaches. Nodes
represent pixels, while edges indicate that the smooth-
ness function operates on the adjacent nodes. (a) Four-
connected grid. (b) Scanline-based DP approaches. (c)
Tree-based DP proposed by (Veksler, 2005). (d) Approach
of (Hirschmüller, 2005) to derive the disparity of pixel p.

ing (Scharstein and Szeliski, 2002). However, a se-
vere limitation of these optimization algorithms is that
they are computationally rather expensive. Especially
for the graph-cut approach, calculation of a single dis-
parity map can still take several minutes.
To bypass the NP-complete optimization problem,

classical DP approaches (Bobick and Intille, 1999;
Ohta and Kanade, 1985; Wang et al., 2006) adopt
a greatly simplified neighbourhood structure in their
smoothness terms. They enforce smoothness only
within, but not across horizontal scanlines. The corre-
sponding grid graph is illustrated in Figure 1b. Since
there is no interconnection between horizontal scan-
lines, an energy minimum for this grid structure can
be derived by computing the optimum for each scan-
line separately. The exact optimum of (1) on each in-
dividual scanline is then determined using DP. Such
approaches are favourable for their excellent com-
putational speed. Skipping the vertical smoothness
edges, however, leads to the well-known scanline
streaking effect. This inherent problem represents a
major reason for the bad reconstruction quality of DP
in comparison to the state-of-the-art.
Recently, (Veksler, 2005) proposed approximat-

ing the four-connected grid via a tree. The motiva-
tion is that efficient DP-based optimization also works
on tree structures. Roughly spoken, the tree is con-
structed by discarding edges that show a high gradient
in the intensity image from the four-connected grid.
In contrast to scanline-based DP, horizontal and ver-
tical edges are treated symmetrically, which weakens

the streaking problem. Nevertheless, as can be seen
from Figure 1c, a large number of edges have to be
sacrificed in order to obtain a tree structure. The in-
formation of these edges remains unused, which is
most likely the reason for the only average results
of this method. Subsequent work (Deng and Lin,
2006; Lei et al., 2006) combines tree-based DP with
colour segmentation. These algorithms improve the
results on standard images such as the Middlebury
set (Scharstein and Szeliski, 2002). They, however,
fail if segments overlap disparity discontinuities.
A different approach to handle the streaking prob-

lem is to compute multiple DP passes. Two-pass
methods (Gong and Yang, 2005; Kim et al., 2005)
first apply DP on the horizontal scanlines and use the
results to bias the second pass, which operates on
the vertical scanlines. While horizontal streaks are
reduced, these algorithms introduce vertical streaks,
and their scanline-based nature is clearly visible in the
resulting disparity maps.

(Hirschmüller, 2005) proposed a hybrid approach
between local and global methods. The disparity
of each pixel is computed using the winner-takes-all
strategy, i.e. without considering the disparity assign-
ments of neighbouring pixels. Instead of aggregating
matching costs from spatially surrounding pixels, the
algorithm computes DP paths from various directions
towards each pixel p as shown in Figure 1d. Cost
aggregation is then performed by summing up the in-
dividual path costs. In Hirschmüller’s approach, the
disparity of an image point is influenced by only a
small subset of the whole image’s pixels. This repre-
sents a problem if none of the paths captures enough
texture to provide a clear cost minimum at the correct
disparity. To weaken this problem, Hirschmüller pro-
posed increasing the number of paths. Nevertheless,
this results in higher computational demands and only
partially represents a remedy to the problem. In a sub-
sequent paper (Hirschmüller, 2006), he addressed this
problem using image segmentation.

2 THE SIMPLE TREEMETHOD

The algorithm proposed in this paper performs a sep-
arate disparity computation for each individual pixel.
We apply an individual tree construction in order to
determine the disparity of a single pixel. The tree’s
root node is formed by the pixel whose disparity
needs to be computed. Although our trees prove to be
effective, their structure is relatively simple. (Hence,
we call our algorithm the Simple Tree Method.) For
now, it is only important to know that a tree spans all
pixels of the reference frame. A global minimum of

VISAPP 2008 - International Conference on Computer Vision Theory and Applications

416

(a
)

(b
)

p

(c
)

(d
)

Fi
gu
re
1:
G
rid

str
uc
tu
re
s
of
pr
ev
io
us
ap
pr
oa
ch
es
.
N
od
es

re
pr
es
en
t
pi
xe
ls,

w
hi
le
ed
ge
s
in
di
ca
te
th
at
th
e
sm
oo
th
-

ne
ss
fu
nc
tio
n
op
er
at
es
on
th
e
ad
ja
ce
nt
no
de
s.

(a
)
Fo
ur
-

co
nn
ec
te
d
gr
id
.
(b
)
Sc
an
lin
e-
ba
se
d
D
P
ap
pr
oa
ch
es
.
(c
)

Tr
ee
-b
as
ed
D
P
pr
op
os
ed
by
(V
ek
sle
r,
20
05
).
(d
)A
pp
ro
ac
h

of
(H
irs
ch
m
ül
le
r,
20
05
)t
o
de
riv
e
th
e
di
sp
ar
ity
of
pi
xe
lp
.

in
g
(S
ch
ar
ste
in
an
d
Sz
el
isk
i,
20
02
).
H
ow
ev
er
,a
se
-

ve
re
lim
ita
tio
n
of
th
es
eo
pt
im
iz
at
io
n
al
go
rit
hm
si
st
ha
t

th
ey
ar
ec
om
pu
ta
tio
na
lly
ra
th
er
ex
pe
ns
iv
e.
Es
pe
ci
al
ly

fo
rt
he
gr
ap
h-
cu
ta
pp
ro
ac
h,
ca
lc
ul
at
io
n
of
as
in
gl
ed
is-

pa
rit
y
m
ap
ca
n
sti
ll
ta
ke
se
ve
ra
lm
in
ut
es
.

To
by
pa
ss
th
eN
P-
co
m
pl
et
eo
pt
im
iz
at
io
n
pr
ob
le
m
,

cl
as
sic
al
D
P
ap
pr
oa
ch
es
(B
ob
ic
k
an
d
In
til
le
,
19
99
;

O
ht
a
an
d
K
an
ad
e,
19
85
;
W
an
g
et
al
.,
20
06
)
ad
op
t

a
gr
ea
tly
sim

pl
ifi
ed
ne
ig
hb
ou
rh
oo
d
str
uc
tu
re
in
th
ei
r

sm
oo
th
ne
ss
te
rm
s.

Th
ey
en
fo
rc
e
sm
oo
th
ne
ss
on
ly

w
ith
in
,b
ut
no
ta
cr
os
sh
or
iz
on
ta
ls
ca
nl
in
es
.T
he
co
rre
-

sp
on
di
ng
gr
id
gr
ap
h
is
ill
us
tra
te
d
in
Fi
gu
re
1b
.S
in
ce

th
er
e
is
no
in
te
rc
on
ne
ct
io
n
be
tw
ee
n
ho
riz
on
ta
ls
ca
n-

lin
es
,a
n
en
er
gy
m
in
im
um

fo
rt
hi
s
gr
id
str
uc
tu
re
ca
n

be
de
riv
ed
by
co
m
pu
tin
g
th
e
op
tim
um

fo
re
ac
h
sc
an
-

lin
e
se
pa
ra
te
ly
.T
he
ex
ac
to
pt
im
um

of
(1
)o
n
ea
ch
in
-

di
vi
du
al
sc
an
lin
e
is
th
en
de
te
rm
in
ed
us
in
g
D
P.
Su
ch

ap
pr
oa
ch
es
ar
e
fa
vo
ur
ab
le
fo
r
th
ei
r
ex
ce
lle
nt
co
m
-

pu
ta
tio
na
ls
pe
ed
.
Sk
ip
pi
ng
th
e
ve
rti
ca
ls
m
oo
th
ne
ss

ed
ge
s,
ho
w
ev
er
,
le
ad
s
to
th
e
w
el
l-k
no
w
n
sc
an
lin
e

str
ea
ki
ng
ef
fe
ct
.
Th
is
in
he
re
nt
pr
ob
le
m
re
pr
es
en
ts
a

m
aj
or
re
as
on
fo
rt
he
ba
d
re
co
ns
tru
ct
io
n
qu
al
ity
of
D
P

in
co
m
pa
ris
on
to
th
e
sta
te
-o
f-t
he
-a
rt.

Re
ce
nt
ly
,(
Ve
ks
le
r,
20
05
)
pr
op
os
ed
ap
pr
ox
im
at
-

in
g
th
e
fo
ur
-c
on
ne
ct
ed
gr
id
vi
a
a
tre
e.
Th
e
m
ot
iv
a-

tio
n
is
th
at
ef
fic
ie
nt
D
P-
ba
se
d
op
tim
iz
at
io
n
al
so
w
or
ks

on
tre
e
str
uc
tu
re
s.
Ro
ug
hl
y
sp
ok
en
,t
he
tre
e
is
co
n-

str
uc
te
d
by
di
sc
ar
di
ng
ed
ge
st
ha
ts
ho
w
ah
ig
h
gr
ad
ie
nt

in
th
e
in
te
ns
ity
im
ag
e
fro
m
th
e
fo
ur
-c
on
ne
ct
ed
gr
id
.

In
co
nt
ra
st
to
sc
an
lin
e-
ba
se
d
D
P,
ho
riz
on
ta
la
nd
ve
r-

tic
al
ed
ge
sa
re
tre
at
ed
sy
m
m
et
ric
al
ly
,w
hi
ch
w
ea
ke
ns

th
e
str
ea
ki
ng
pr
ob
le
m
.
N
ev
er
th
el
es
s,
as
ca
n
be
se
en

fro
m
Fi
gu
re
1c
,a
la
rg
e
nu
m
be
ro
fe
dg
es
ha
ve
to
be

sa
cr
ifi
ce
d
in
or
de
rt
o
ob
ta
in
a
tre
e
str
uc
tu
re
.
Th
e
in
-

fo
rm
at
io
n
of
th
es
e
ed
ge
s
re
m
ai
ns
un
us
ed
,
w
hi
ch
is

m
os
t
lik
el
y
th
e
re
as
on
fo
r
th
e
on
ly
av
er
ag
e
re
su
lts

of
th
is
m
et
ho
d.

Su
bs
eq
ue
nt
w
or
k
(D
en
g
an
d
Li
n,

20
06
;L
ei
et
al
.,
20
06
)c
om
bi
ne
s
tre
e-
ba
se
d
D
P
w
ith

co
lo
ur
se
gm
en
ta
tio
n.
Th
es
e
al
go
rit
hm
s
im
pr
ov
e
th
e

re
su
lts
on
sta
nd
ar
d
im
ag
es
su
ch
as
th
e
M
id
dl
eb
ur
y

se
t(
Sc
ha
rs
te
in
an
d
Sz
el
isk
i,
20
02
).
Th
ey
,h
ow
ev
er
,

fa
il
if
se
gm
en
ts
ov
er
la
p
di
sp
ar
ity
di
sc
on
tin
ui
tie
s.

A
di
ffe
re
nt
ap
pr
oa
ch
to
ha
nd
le
th
es
tre
ak
in
g
pr
ob
-

le
m
is
to
co
m
pu
te
m
ul
tip
le
D
P
pa
ss
es
.
Tw
o-
pa
ss

m
et
ho
ds
(G
on
g
an
d
Ya
ng
,2
00
5;
K
im

et
al
.,
20
05
)

fir
st
ap
pl
y
D
P
on
th
e
ho
riz
on
ta
ls
ca
nl
in
es
an
d
us
e
th
e

re
su
lts
to
bi
as
th
e
se
co
nd
pa
ss
,
w
hi
ch
op
er
at
es
on

th
e
ve
rti
ca
ls
ca
nl
in
es
.
W
hi
le
ho
riz
on
ta
ls
tre
ak
s
ar
e

re
du
ce
d,
th
es
e
al
go
rit
hm
s
in
tro
du
ce
ve
rti
ca
ls
tre
ak
s,

an
d
th
ei
rs
ca
nl
in
e-
ba
se
d
na
tu
re
is
cl
ea
rly
vi
sib
le
in
th
e

re
su
lti
ng
di
sp
ar
ity
m
ap
s.

(H
irs
ch
m
ül
le
r,
20
05
)p
ro
po
se
d
a
hy
br
id
ap
pr
oa
ch

be
tw
ee
n
lo
ca
l
an
d
gl
ob
al
m
et
ho
ds
.
Th
e
di
sp
ar
ity

of
ea
ch
pi
xe
li
s
co
m
pu
te
d
us
in
g
th
e
w
in
ne
r-t
ak
es
-a
ll

str
at
eg
y,
i.e
.w
ith
ou
tc
on
sid
er
in
g
th
e
di
sp
ar
ity
as
sig
n-

m
en
ts
of
ne
ig
hb
ou
rin
g
pi
xe
ls.
In
ste
ad
of
ag
gr
eg
at
in
g

m
at
ch
in
g
co
sts
fro
m
sp
at
ia
lly
su
rro
un
di
ng
pi
xe
ls,
th
e

al
go
rit
hm

co
m
pu
te
sD
P
pa
th
sf
ro
m
va
rio
us
di
re
ct
io
ns

to
w
ar
ds
ea
ch
pi
xe
l
p
as
sh
ow
n
in
Fi
gu
re
1d
.
Co
st

ag
gr
eg
at
io
n
is
th
en
pe
rfo
rm
ed
by
su
m
m
in
g
up
th
e
in
-

di
vi
du
al
pa
th
co
sts
.
In
H
irs
ch
m
ül
le
r’s
ap
pr
oa
ch
,t
he

di
sp
ar
ity
of
an
im
ag
e
po
in
ti
s
in
flu
en
ce
d
by
on
ly
a

sm
al
ls
ub
se
to
ft
he
w
ho
le
im
ag
e’
sp
ix
el
s.
Th
is
re
pr
e-

se
nt
s
a
pr
ob
le
m
if
no
ne
of
th
e
pa
th
sc
ap
tu
re
se
no
ug
h

te
xt
ur
et
o
pr
ov
id
ea
cl
ea
rc
os
tm
in
im
um

at
th
e
co
rre
ct

di
sp
ar
ity
.T
o
w
ea
ke
n
th
is
pr
ob
le
m
,H
irs
ch
m
ül
le
rp
ro
-

po
se
d
in
cr
ea
sin
g
th
e
nu
m
be
ro
fp
at
hs
.
N
ev
er
th
el
es
s,

th
is
re
su
lts
in
hi
gh
er
co
m
pu
ta
tio
na
ld
em
an
ds
an
d
on
ly

pa
rti
al
ly
re
pr
es
en
ts
ar
em
ed
y
to
th
ep
ro
bl
em
.I
n
as
ub
-

se
qu
en
tp
ap
er
(H
irs
ch
m
ül
le
r,
20
06
),
he
ad
dr
es
se
d
th
is

pr
ob
le
m
us
in
g
im
ag
e
se
gm
en
ta
tio
n.

2
TH
E
SI
M
PL
E
TR
EE

M
ET
H
O
D

Th
e
al
go
rit
hm

pr
op
os
ed
in
th
is
pa
pe
rp
er
fo
rm
sa
se
p-

ar
at
e
di
sp
ar
ity
co
m
pu
ta
tio
n
fo
re
ac
h
in
di
vi
du
al
pi
xe
l.

W
e
ap
pl
y
an
in
di
vi
du
al
tre
e
co
ns
tru
ct
io
n
in
or
de
rt
o

de
te
rm
in
e
th
e
di
sp
ar
ity
of
a
sin
gl
e
pi
xe
l.
Th
e
tre
e’
s

ro
ot
no
de
is
fo
rm
ed
by

th
e
pi
xe
l
w
ho
se
di
sp
ar
ity

ne
ed
st
o
be
co
m
pu
te
d.
A
lth
ou
gh
ou
rt
re
es
pr
ov
et
o
be

ef
fe
ct
iv
e,
th
ei
rs
tru
ct
ur
e
is
re
la
tiv
el
y
sim

pl
e.
(H
en
ce
,

w
e
ca
ll
ou
ra
lg
or
ith
m
th
e
Si
m
pl
e
Tr
ee
M
et
ho
d.
)
Fo
r

no
w,
it
is
on
ly
im
po
rta
nt
to
kn
ow

th
at
a
tre
e
sp
an
sa
ll

pi
xe
ls
of
th
e
re
fe
re
nc
e
fra
m
e.
A
gl
ob
al
m
in
im
um

of

V
IS

A
PP

 2
00

8 
- I

nt
er

na
tio

na
l C

on
fe

re
nc

e 
on

 C
om

pu
te

r V
is

io
n 

Th
eo

ry
 a

nd
 A

pp
lic

at
io

ns

41
6

+

◦ The labeling energy (primal problem) can be naturally split into problems acting
on horizontal and vertical chains

min
H
�(H) := �1(H) + �2(H),

◦ Problem is easy to minimize in �1 or �2 but not jointly
◦ Consider the following splitting:

min
H
�1(H) + �2(H) = min

H1 ,H2
�1(H1) + �2(H2), s.t. H1 = H2

◦ The corresponding Lagrange dual is given by

�(�) = min
H1 ,H2

�1(H1) + �2(H2) + �)(H1 − H2)
= −

(
�∗1(−�) + �∗2(�)

)
◦ Of course, weak duality holds

max
�

�(�) = min
H
�∗∗1 (H) + �∗∗2 (H) ≤ min

H
�(H)

◦ This relaxation is equivalent to the marginal polytope relaxation.
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Dual minorize-maximize

�k �k+1

◦ In [Shekhovtsov et al. ’16] we have a dual minorize-maximize (DMM) algorithm
of the form 

�:+
1
2 = max

�
�1,:(�) + �2(�)

�:+1 = max
�

�1(�) + �2,:(�),

◦ A minorant �1,:(�) is given by the maximum amount of unaries that can be
removed from �1(�:) without changing its minimizer

◦ Yields a monotonically increasing sequence of dual function values

◦ A highly practical maximal modular minorant is obtained from a hierarchical
dynamic programming approach

◦ Can be efficiently parallelized on the GPU

◦ Works very well in practice.

◦ Disadvantage: The algorithm might get stuck in non-optimal points.
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A more general optimization problem
◦ Let us consider a more general discrete optimization problem

min
-∈{0,1}3

∑
C∈)

5C(-�C ),

where we assume that the subproblems are tractable (e.g. DP on chains)
◦ In particular, we assume, we have an efficient linear minimization oracle lmo that

can solve for a given . the problem min-∈{0,1}�C 5C(-) + 〈-, .〉 .
◦ This problem can be written equivalently as

min
-∈{0,1}3 ,-1∈P1 ,...,-<∈P<

∑
C∈)

- C
◦ s.t. -E = -

C
E ∀C ∈ ), E ∈ �C ,

with polytopes PC = conv({[- 5 (-)] | - ∈ dom 5C}) ⊆ ℝ�C ×ℝ and - C
◦ denotes

the last component of vector - C ∈ ℝ�C ×ℝ
◦ After dropping the - ∈ {0, 1}3 constraint, this can be written as the following

convex-concave saddle-point problem

min
G=(-1 ,...,-<)∈P1×...×P<

max
H=(.CE )C∈),E∈�C ∈Y

∑
C∈)

- C
◦ +

∑
C∈),E∈�C

- C
E.

C
E , s.t.

∑
C:E∈�C

.CE = 0
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One-sided Frank-Wolfe algorithms for saddle problems ∗

The previous problem is just an instance of saddle-point problems of the form

min
G∈X

max
H∈Y

L(G, H) :=
〈
 G, H

〉
+ 5P(G)−ℎ∗(H), �(G) = max

H∈Y
L(G, H), �(H) = min

G∈X
L(G, H).

◦ The function 5P = 5 (G) + �P(G) is the sum of a smooth function with Lipschitz
continuous gradient and the indicator of a convex polytope and we assume the
existence of an efficient linear minimization oracle (lmo)

lmoP(0) ∈ argmin
G∈P
〈0, G〉 .

◦ The function ℎ∗ is a convex function which allows to efficiently compute its
proximal map (prox)

prox�ℎ∗(H̄) = argmin
H∈Y

1

2�

H − H̄2 + ℎ∗(H).
∗Joint work with V. Kolmogorov, ICML 2021
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Accelerated dual proximal point algorithm

◦ In case 5 (G) is a quadratic function and ℎ∗(H) is a linear constraint we can
consider a proximal regularization on the dual:

L�,H̄(G, H) = L(G, H)− 1

2�

H − H̄2 , ��,H̄(G) := max
H∈Y

L�,H̄(G, H), ��,H̄(H) := min
G∈X

L�,H̄(G, H).

◦ The iterations of an inexact dual proximal point algorithm are given by

(Ĝ , Ĥ) ≈� argmin
(G,H)∈X×Y

��,H̄(G) − ��,H̄(H),

◦ In G, it is the minimization of a quadratic function over a polytope, which can be
solved using linearly convergent Frank-Wolfe algorithms: AFW [Lacoste-Julien,
Jaggi ’15], [Beck, Shtern ’17], BCG [Braun at al. ’19], DiCG [Garber, Meshi ’16] .

◦ In H is is just the evaluation of the proximal map of ℎ∗.

◦ Allows the application of an inexact accelerated proximal-point algorithm [Aujol,
Dossal, ’15] where we prescribe the solution accuracy of the problem in G.
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Convergence rate

Theorem. Assume the (negative) dual problem −�(H) is coercive, and the
subproblems in G are solved with a linearly convergent FW method, then the inexact
accelerated proximal point algorithm makes $(= log =) calls to lmo during the first =
iterations, and the dual iterations satisfy:

�(H∗) − �(H4=) = $(1/=2).

◦ Can solve the relaxation exactly with guaranteed convergence rate.

◦ But still not as fast as BP or DMM.
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Primal-dual algorithm

◦ In case 5 and ℎ are more general, we can still apply the inexact primal-dual
algorithm [Rasch, Chambolle, ’20].

◦ The proximal subproblems are given by

prox� 5P(Ḡ) = argmin
G∈P

5 (G) + 1

2�
‖G − Ḡ‖2 .

◦ Can by again solved approximately using a linearly convergent FW algorithm.

Theorem. The inexact primal-dual algorithm makes $(= log =) calls to lmo during the
first = iterations for which the dual iterates satisfy

�(H∗) − �(H4=) = $(1/=).

Moreover, if domℎ∗ is a compact set, the primal iterates also satisfy

�(G4=) − �(G∗) = $(1/=).



25

Some results

(a) Noisy image (b) Denoised image
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(c) Convergence

(d) Left image (e) Disparity map
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Learning

◦ For decades, the unary and pairwise terms have been computed based on
hand-crafted features

◦ By the recent advanced of deep learning, it is more than natural to compute unary
and pairwise terms based on deep convolutional networks (CNNs)
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Method I: Surrogate loss∗

◦ Ideally, we would like to solve the bilevel optimization problem:

min
�

L(G= , Ĝ=), Ĝ= ∈ argmin
G

��(G, H=)

◦ We can construct an upper bound based on the margin rescaling technique
[Tsochantaridis et al. ’04]:

max
G∈argminG ��(G,H=)

L(G= , G) ≤ max
G:��(G,H=)≤��(G= ,H=)

L(G= , G)

≤ max
G:��(G,H=)≤��(G= ,H=)

L(G= , G) + ��(G= , H=) − ��(G, H=)

≤max
G

L(G= , G) + ��(G= , H=) − ��(G, H=)

=��(G= , H=) −min
G
��(G, H=) −L(G= , G)

◦ Computing the upper bound requires to call the CRF solver.

◦ The solver can be treated as a black-box.
∗ Joint work with P. Knöbelreiter, C. Reinbacher, A. Shekhovtsov, CVPR 2017



28

Graphical explanation

Example using a loss of the form L(G, 6) = min{�, |G − 6 |}
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Method II: Unrolling of Loopy belief propagation∗

◦ The normalized min-marginals �̃8(B) computed by the loopy BP provide a good
approximation to the true marginals.

�̃8(B) =
exp(�8(B)∑
C exp(�8(C)

◦ For learning, we unroll a few iterations of BP and use a cross-entropy loss function
defined on the min-marginals.
◦ It turns out that the derivatives of each BP iterations can be computed efficiently

using again dynamic programming on chains.
◦ The solver must be treated as a white-box.

∗ Joint work with P. Knöbelreiter, C. Sormann, F. Fraundorfer, A. Shekhovtsov, CVPR 2020
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Some results

Stereo Motion
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Conclusion/Discussion

◦ Energy (=optimization) based models for computer vision

◦ Fast solvers are important for learning and inference

◦ There is still a performance gap between fast heuristical methods and methods
with guaranteed convergence rate.

◦ Discussed methods for learning that can deal with the combinatorial nature of the
models (Black-box vs. white-box).
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