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The Role of Sufficient Conditions in Optimization

Classical: • direct verification of local optimality
• desired to be as close to necessary as possible

Modern: • design and justification of solution methodologies
• only asked to describe “typical” circumstances

Elementary example with underlying convexity

minimize smooth f (x) for x ∈ IRn, local optimality of x̄

first-order: ∇f (x̄) = 0
second-order: ∇2f (x̄) positive-definite

=⇒ local strong convexity, reduction to convex optimization

Fundamental question: similar reduction in greater generality?

do sufficienct conditions entail it? or should they?



Hidden Convexity in Classical Nonlinear Programming

Problems with equality constraints: local optimality of x̄?
minimize f0(x) subject to fi (x) = 0, i = 1, . . .m

Lagrangian: L(x , y) = f0(x) + y1f1(x) + · · ·+ ymfm(x)

first-order: ∇xL(x̄ , ȳ) = 0, ∇yL(x̄ , ȳ) = 0
second-order: ∇2

xxL(x̄ , ȳ) positive-definite relative to the
subspace S :=

{
ξ ∈ IRn

∣∣∇fi (x̄)·ξ = 0, i = 1, . . . ,m
}

no local reduction to convex optimization is evident, but . . .

augmented Lagrangian: Lr (x , y) = L(x , y) + r
2

∑m
i=1 fi (x)2

Equivalent statement revealing local convex duality

for r > 0 high enough, Lr (x , y) has a convex-concave-type
saddle point at (x̄ , ȳ), moreover with strong convexity in x

= the secret behind classical “augmented Lagrangian methods”



Framework of “Generalized Nonlinear Programming”

Problem in basic form

minimize f0(x) + g(F (x)) for F (x) = (f1(x), . . . , fm(x))

fi smooth on IRn, but g just closed proper convex on IRm

Some special cases: g = the “modeling function”

• g(u) = δK , minimize f0(x) subject to F (x) ∈ K

• g(u) = ||u|| for some norm, “regularization”

• g(u) = max{u1, . . . , um}, min of f0(x)+max{f1(x), . . . , fm(x)}

Mixtures: F (x) = (F 1(x), . . . ,F s(x)) for F j : IRn → IRmj

g(u) = g1(u1) + · · · gs(us) for uj ∈ IRmj

minimize f0(x) + g1(F 1(x)) + . . .+ g s(F s(x))

could constrain x to X through F s(x) = x and g s = δX



Generalized Augmented Lagrangians

Problem reformulation with canonical perturbations

minimize ϕ(x , u) = f0(x) + g(F (x) + u) subject to u = 0

Lagrangian: with multiplier vectors y ∈ IRm

l(x , y) = infu
{
ϕ(x , u)− y ·u

}
= L(x , y)− g∗(y)

Augmented Lagrangian: with augmentation parameter r > 0

lr (x , y) = infu
{
ϕ(x , u)− y ·u + r

2 |u|
2
}

=
L(x , y)− g∗r (y + rF (x)) or f0(x) + g r (1r y + F (x))− 1

2r |y |
2

g r (u) = minu′
{
g(u′) + r

2 |u
′ − u|2

}
with g r ∗(y) = g∗(y) + 1

2r |y |
2

gr (u) = g(u) + r
2 |u|

2 with g∗r (y) = miny ′
{
g∗(y ′) + 1

2r |y
′ − y |2

}
fi ’s ∈ C1 =⇒ lr ∈ C1, fi ’s ∈ C2 =⇒ lr ∈ C1+

Cone case: g = δK , g∗ = δY , for polar cones K and Y
=⇒ g r (u) = r

2dist
2
K (u), g∗r (y) = 1

2r dist
2
Y (y)



First-Order Optimality, Generalized KKT Conditions

Properties of the objective: ϕ(x , u) = f0(x) + g(F (x) + u)
lsc, proper, subdifferentially continuous/regular

the subgradients (v , y) ∈ ∂ϕ(x , u) are “regular” subgradients:
ϕ(x ′, u′) ≥ ϕ(x , u) + (v , y)·[(x ′, u′)− (x , u)] + o

(
|(x .u′)− (x , u)|

)
First-order condition on x̄ and a multiplier vector ȳ

(0, ȳ) ∈ ∂ϕ(x̄ , 0) (necessary under a constraint qual.)

Equivalent expression with augmented Lagrangians (any r > 0)

∇x lr (x̄ , ȳ) = 0, ∇y lr (x̄ , ȳ) = 0
[
i.e., ȳ ∈ argmax lr (x̄ , ·)

]
this is the first-order condition for a saddle point at (x̄ , ȳ)
the second part = the multiplier condition ȳ ∈ ∂g(F (x̄))

Convex optimization: the case where lr (x , y) is convex in x
but what about having just local convexity in x around x̄?



Variational Convexity of a Function

Let f : IRn → (−∞,∞] be lsc, proper, subdiff.contin./regular
v ∈ ∂f (x) ⇐⇒ f (x ′) ≥ f (x) + v ·(x ′ − x) + o(|x ′ − x ])

Definition: f is variationally convex at x̄ for v̄ ∈ ∂f (x̄) if
∃ open convex neighborhood X × V of (x̄ , v̄) for which

there exists a proper lsc convex function h ≤ f on X such that
[X × V] ∩ gph ∂h = [X × V] ∩ gph ∂f

and, for (x , v) belonging to this common set, also h(x) = f (x)

variational strong convexity has h strongly convex

Theorem — Rock. 2019

this holds ⇐⇒ ∂f is max monotone locally around (x̄ , v̄)

Observation: f variationally convex at x̄ for v̄ = 0 ∈ ∂f (x̄)
=⇒ f has a local minimum at x̄

variational strong convexity ⇐⇒ tilt stability of this min



Illuminating Examples of Variational Convexity

Recall the property: on neighborhood X × V of (x̄ , v̄) ∈ gph ∂f
there exists a proper lsc convex function h ≤ f on X such that

[X × V] ∩ gph ∂h = [X × V] ∩ gph ∂f
and, for (x , v) belonging to this common set, also h(x) = f (x)

Relation to local convexity? this results when V = whole space

Example in one dimension: f (x) = |x | − x2 for x ∈ IR
gph ∂f reduces around (x̄ , v̄) = (0, 0) to a vertical line segment

this is an instance of local maximal monotonicity

Example in two dimensions: x = (x1, x2) ∈ IR2

f (x1, x2) = x2 − x22 if x2 = x21 , but =∞ elsewhere

• strong variational convexity for x̄ = (0, 0), v̄ = (0, 0), despite
nonconvexity of dom f , through tilt stablity of min at (0, 0)

• this can be seen as a case of nonlinear programmming with a
solution satisfying the strong second-order sufficient condition



Second-Order Optimality Via Variational Sufficiency

Recall problem: min ϕ(x , u) = f0(x) + g(F (x) + u) s.t. u = 0
“unaffected” if ϕ(x , u) is replaced by ϕr (x , u) = ϕ(x , u) + r

2 |u|
2

Variationally sufficient condition for local optimality (Rock. 2019)

Combine first-order condition (0, ȳ) ∈ ∂ϕ(x̄ , 0) = ∂ϕr (x̄ , 0) with
∃r > 0 such that ϕr is variationally convex at (x̄ , 0) for (0, ȳ)

strong version: variational strong convexity

Connection of the strong version with “quadratic growth”:
⇐⇒ ∃ s > 0, convex nbhds W of (x̄ , 0) and Z of (0, ȳ), with

ϕr (x ′, u′) ≥ ϕr (x , u) + (v , y)·[(x ′, u′)− (x , u)] + s
2 |(x

′, u′)− (x , u)|2

for (x ′, u′) ∈ W when (v ′, y ′) ∈ ∂ϕr (x , u) ∩ Z

Example: case of ϕ ∈ C2

strong var. sufficiency ⇐⇒
{
∇ϕ(x̄ , 0) ⊥ S :=

{
(x , u)

∣∣ u = 0
}

∇2ϕ(x̄ , 0) pos.-def. relative to S



Saddle Characterization of Variational Sufficiency

assume just that the functions fi (x) in the problem are C1

Theorem 1

The variationally sufficient condition for local optimality holds
for x̄ with multiplier ȳ and parameter r > 0 ⇐⇒
∃ convex neighborhood X × Y of (x̄ , ȳ) such that
• lr (x , y) is convex in x ∈ X (as well as concave in y ∈ Y)
• (x̄ , ȳ) is a saddle point of lr (x , y) relative to X × Y

Local duality: locally articulated primal and dual problems
(P r
X×Y) min

x∈X
the convex function x → max

y∈Y
lr (x , y)

(Dr
X×Y) max

y∈Y
the concave function y → min

x∈X
lr (x , y)

Significance of the saddle point condition:

x̄ solves (P r
X×Y), ȳ solves (Dr

X×Y), min(P r
X×Y) = max(Dr

X×Y)



Saddle Characterization of Strong Variational Sufficiency

Theorem 2

The extra property contributes to the saddle point condition by
the strong version of variational sufficiency is that

lr (x , y) is strongly convex with respect to x ∈ X

Equivalently, this corresponds to having “augmented tilt stability”

Augmented tilt stability:
the mapping (v , y) 7→ argminx∈X

{
lr (x , y)− v ·x

}
is

single-valued Lipschitz continuous for (v , y) near (0, ȳ)

[modulus of Lipschitz continuity]=1/[modulus of strong convexity]

Implication for numerical optimization:
strong variational sufficiency is key to “methods of multipliers”



Connecting With Previous Second-Order Sufficiency

strong variational sufficiency versus other conditions?
assume now that the functions fi (x) are all C2

Revealing example: classical nonlinear programming

minimize f0(x) subject to fi (x)

{
≤ 0 for i = 1, . . . , s,
= 0 for i = s + 1, . . . ,m

(here g = δK for the cone K polar to Y = IRs
+ × IRm−s)

classical Lagrangian: L(x , y) = f0(x) + y1f1(x) + · · ·+ ymfm(x)

Strong variational sufficiency in this case

Equivalent to the “strong second-order sufficient condition”:

∇2
xxL(x̄ , ȳ) is pos.-definite relative to the subspace

S(x̄ , ȳ) =
{
ξ ∈ IRn

∣∣∇fi (x̄) · ξ = 0 for i ∈ I (x̄ , ȳ)
}

,

where I (x̄ , ȳ) =
{
i ∈ [1, s] with ȳi > 0

}
∪
{
i ∈ [s + 1,m]

}
interpretation: strong variational sufficiency is its natural extension



Characterizing With Generalized Second-Derivatives

Starting fact: if the augmented Lagrangian lr (x , y) is C2, then
strong variational sufficiency ⇐⇒ ∇2

xx lr (x̄ , ȳ) pos.-definite

but in general, fi ’s ∈ C2 only have lr ∈ C1+
nevertheless lr ∈ C1+ makes ∇2lr (x , y) exist for almost all (x , y)

Hessian bundle:

∇2
lr (x̄ , ȳ) =

{
H = lim

k→∞
∇2lr (xk , yk) for (xk , yk)→ (x̄ , ȳ)

}
any such H can be partitioned into Hxx , Hxy , Hyx , Hyy

Theorem 3

strong variational sufficiency holds ⇐⇒
every H ∈ ∇2

lr (x̄ , ȳ) has Hxx pos.-definite

Task: now translate this to the modeling functions g through

lr (x , y) = f0(x) + g r (1r y + F (x))− 1
2r |y |

2



Characterizing With Generalized Quadratic Forms

Quadratic forms: q(ω) = 1
2ω·Qω with Q pos.-semidefinite

generalized: q(ω) = 1
2ω·Qω + δS(u) for a subspace S

Generalized twice differentiability: of g at u for y ∈ ∂g(u)
the second-order difference quotient function
∆2

t g(u
∣∣ y)(ω) = [g(u + tω)− g(u)− t y ·ω]/12 t

2 for t > 0
epi-converges as t → 0 to a generalized quadratic form q

this is true for almost all (u, y) ∈ gph ∂g

Quadratic bundle: of g at ū for ȳ ∈ ∂g(ū)
consider pairs (uk , yk) ∈ gph ∂g yielding generalized forms qk

quad g(ū
∣∣ ȳ) :=

{
q = epi- lim qk as (uk , yk)→ (ū, ȳ)

}
Theorem 4, building on the multiplier condition ȳ ∈ ∂g(F (x̄))

strong variational sufficiency holds ⇐⇒
q ∈ quad g(F (x̄)

∣∣ ȳ) =⇒ q(ω) + 1
2ω·∇2

xxL(x̄ , ȳ)ω > 0 if ω 6= 0

a bit stronger than such-type conditions known in special cases



What More?

Elaborating for particular modeling functions:
instances of g associated with various useful features

in minimizing f0(x) + g
(
f1(x), . . . , fm(x)

)
Applying to the method of multipliers, ALM:

xk+1 ≈ argminx lrk (x , yk), yk+1 = yk + rk∇y lrk (xk+1, yk)

• executes the proximal point algorithm on a dual problem
• variational sufficiency yields localization in nonconvex problems

Extending to “progressive decoupling” methodology:
similar explorations in recent schemes of problem decomposition

Speculating about the bigger picture:
• the idea that convexity can elicited through primal+dual

localization seems to have far-reaching potential
• this deserves investigation in other areas, like optimal control
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