Augmented Lagrangians and Hidden Convexity in Sufficient Conditions for Local Optimality

Terry Rockafellar University of Washington, Seattle

One World Optimization Seminar 12 October 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Role of Sufficient Conditions in Optimization

- **Classical:** direct verification of local optimality
 - desired to be as close to necessary as possible
- Modern: design and justification of solution methodologies
 - only asked to describe "typical" circumstances

Elementary example with underlying convexity

minimize smooth f(x) for $x \in \mathbb{R}^n$, local optimality of \bar{x}

first-order: $\nabla f(\bar{x}) = 0$ **second-order:** $\nabla^2 f(\bar{x})$ positive-definite

 \Rightarrow local strong convexity, reduction to convex optimization

Fundamental question: similar reduction in greater generality? do sufficienct conditions entail it? or should they?

Hidden Convexity in Classical Nonlinear Programming

Problems with equality constraints: local optimality of \bar{x} ? minimize $f_0(x)$ subject to $f_i(x) = 0$, i = 1, ..., mLagrangian: $L(x, y) = f_0(x) + y_1 f_1(x) + \cdots + y_m f_m(x)$

first-order: $\nabla_x L(\bar{x}, \bar{y}) = 0$, $\nabla_y L(\bar{x}, \bar{y}) = 0$ **second-order:** $\nabla_{xx}^2 L(\bar{x}, \bar{y})$ positive-definite relative to the subspace $S := \{\xi \in \mathbb{R}^n \mid \nabla f_i(\bar{x}) \cdot \xi = 0, i = 1, ..., m\}$ no local reduction to convex optimization is **evident**, but ...

augmented Lagrangian: $L_r(x, y) = L(x, y) + \frac{r}{2} \sum_{i=1}^m f_i(x)^2$

Equivalent statement revealing local convex duality

for r > 0 high enough, $L_r(x, y)$ has a <u>convex-concave</u>-type saddle point at (\bar{x}, \bar{y}) , moreover with strong convexity in x

= the secret behind classical "augmented Lagrangian methods"

Problem in basic form

minimize $f_0(x) + g(F(x))$ for $F(x) = (f_1(x), ..., f_m(x))$

 f_i smooth on \mathbb{R}^n , but g just closed proper convex on \mathbb{R}^m

Some special cases: g =the "modeling function"

- $g(u) = \delta_K$, minimize $f_0(x)$ subject to $F(x) \in K$
- g(u) = ||u|| for some norm, "regularization"
- $g(u) = \max\{u_1, \ldots, u_m\}$, min of $f_0(x) + \max\{f_1(x), \ldots, f_m(x)\}$
- Mixtures: $F(x) = (F^1(x), \dots, F^s(x))$ for $F^j : \mathbb{R}^n \to \mathbb{R}^{m_j}$ $g(u) = g_1(u^1) + \cdots + g_s(u^s)$ for $u^j \in \mathbb{R}^{m_j}$

minimize $f_0(x) + g^1(F^1(x)) + \ldots + g^s(F^s(x))$

could constrain x to X through $F^{s}(x) = x$ and $g^{s} = \delta_{X}$

Problem reformulation with canonical perturbations

minimize $\varphi(x, u) = f_0(x) + g(F(x) + u)$ subject to u = 0

Lagrangian: with multiplier vectors $y \in \mathbb{R}^m$ $l(x, y) = \inf_u \{\varphi(x, u) - y \cdot u\} = L(x, y) - g^*(y)$

Augmented Lagrangian: with augmentation parameter r > 0

 $l_r(x, y) = \inf_u \left\{ \varphi(x, u) - y \cdot u + \frac{r}{2} |u|^2 \right\} = L(x, y) - g_r^*(y + rF(x)) \text{ or } f_0(x) + g^r(\frac{1}{r}y + F(x)) - \frac{1}{2r} |y|^2$

 $g^{r}(u) = \min_{u'} \{g(u') + \frac{r}{2}|u' - u|^{2}\} \text{ with } g^{r*}(y) = g^{*}(y) + \frac{1}{2r}|y|^{2}$ $g_{r}(u) = g(u) + \frac{r}{2}|u|^{2} \text{ with } g^{*}_{r}(y) = \min_{y'} \{g^{*}(y') + \frac{1}{2r}|y' - y|^{2}\}$ $f_{i}'s \in \mathcal{C}^{1} \Longrightarrow I_{r} \in \mathcal{C}^{1}, \qquad f_{i}'s \in \mathcal{C}^{2} \Longrightarrow I_{r} \in \mathcal{C}^{1+}$

・ロト・日本・日本・日本・日本・日本

Cone case: $g = \delta_K$, $g^* = \delta_Y$, for polar cones K and Y $\implies g^r(u) = \frac{r}{2} \text{dist}_K^2(u), \quad g_r^*(y) = \frac{1}{2r} \text{dist}_Y^2(y)$

First-Order Optimality, Generalized KKT Conditions

Properties of the objective: $\varphi(x, u) = f_0(x) + g(F(x) + u)$ lsc, proper, subdifferentially continuous/regular the subgradients $(v, y) \in \partial \varphi(x, u)$ are "regular" subgradients: $\varphi(x', u') \ge \varphi(x, u) + (v, y) \cdot [(x', u') - (x, u)] + o(|(x.u') - (x, u)|)$

First-order condition on \bar{x} and a multiplier vector \bar{y}

 $(0, \bar{y}) \in \partial \varphi(\bar{x}, 0)$ (necessary under a constraint qual.)

Equivalent expression with augmented Lagrangians (any r > 0)

 $abla_{x} l_{r}(\bar{x}, \bar{y}) = 0, \quad \nabla_{y} l_{r}(\bar{x}, \bar{y}) = 0 \quad \left[\text{i.e., } \bar{y} \in \operatorname{argmax} l_{r}(\bar{x}, \cdot)\right]$

this is the first-order condition for a **saddle point** at (\bar{x}, \bar{y}) the second part = the multiplier condition $\bar{y} \in \partial g(F(\bar{x}))$

Convex optimization: the case where $I_r(x, y)$ is convex in x but what about having just **local convexity** in x around \bar{x} ?

Let $f : \mathbb{R}^n \to (-\infty, \infty]$ be lsc, proper, subdiff.contin./regular $v \in \partial f(x) \iff f(x') \ge f(x) + v \cdot (x' - x) + o(|x' - x])$

Definition: f is variationally convex at \bar{x} for $\bar{v} \in \partial f(\bar{x})$ if \exists open convex neighborhood $\mathcal{X} \times \mathcal{V}$ of (\bar{x}, \bar{v}) for which there exists a proper lsc convex function $h \leq f$ on \mathcal{X} such that $[\mathcal{X} \times \mathcal{V}] \cap \operatorname{gph} \partial h = [\mathcal{X} \times \mathcal{V}] \cap \operatorname{gph} \partial f$ and, for (x, v) belonging to this common set, also h(x) = f(x)variational strong convexity has h strongly convex

Theorem — Rock. 2019

this holds $\iff \partial f$ is max monotone locally around (\bar{x}, \bar{v})

Observation: f variationally convex at \bar{x} for $\bar{v} = 0 \in \partial f(\bar{x})$ $\implies f$ has a local minimum at \bar{x}

variational strong convexity \iff tilt stability of this min

Illuminating Examples of Variational Convexity

Recall the property: on neighborhood $\mathcal{X} \times \mathcal{V}$ of $(\bar{x}, \bar{v}) \in \operatorname{gph} \partial f$ there exists a proper lsc convex function $h \leq f$ on \mathcal{X} such that $[\mathcal{X} \times \mathcal{V}] \cap \operatorname{gph} \partial h = [\mathcal{X} \times \mathcal{V}] \cap \operatorname{gph} \partial f$

and, for (x, v) belonging to this common set, also h(x) = f(x)

Relation to local convexity? this results when $\mathcal{V} =$ whole space

Example in one dimension: $f(x) = |x| - x^2$ for $x \in \mathbb{R}$ $gph \partial f$ reduces around $(\bar{x}, \bar{v}) = (0, 0)$ to a *vertical line segment* this is an instance of local maximal monotonicity

Example in two dimensions: $x = (x_1, x_2) \in R^2$

 $f(x_1, x_2) = x_2 - x_2^2$ if $x_2 = x_1^2$, but $= \infty$ elsewhere

- strong variational convexity for x
 = (0,0), v
 = (0,0), despite nonconvexity of dom f, through tilt stablity of min at (0,0)
- this can be seen as a case of nonlinear programming with a solution satisfying the strong second-order sufficient condition

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

Second-Order Optimality Via Variational Sufficiency

Recall problem: min $\varphi(x, u) = f_0(x) + g(F(x) + u)$ s.t. u = 0"unaffected" if $\varphi(x, u)$ is replaced by $\varphi_r(x, u) = \varphi(x, u) + \frac{r}{2}|u|^2$

Variationally sufficient condition for local optimality (Rock. 2019)

Combine first-order condition $(0, \bar{y}) \in \partial \varphi(\bar{x}, 0) = \partial \varphi_r(\bar{x}, 0)$ with $\exists r > 0$ such that φ_r is variationally convex at $(\bar{x}, 0)$ for $(0, \bar{y})$ strong version: variational strong convexity

Connection of the strong version with "quadratic growth": $\iff \exists s > 0$, convex nbhds \mathcal{W} of $(\bar{x}, 0)$ and \mathcal{Z} of $(0, \bar{y})$, with $\varphi_r(x', u') \ge \varphi_r(x, u) + (v, y) \cdot [(x', u') - (x, u)] + \frac{s}{2} |(x', u') - (x, u)|^2$ for $(x', u') \in \mathcal{W}$ when $(v', y') \in \partial \varphi_r(x, u) \cap \mathcal{Z}$

Example: case of $\varphi \in C^2$ strong var. sufficiency $\iff \begin{cases} \nabla \varphi(\bar{x}, 0) \perp S := \{(x, u) \mid u = 0\} \\ \nabla^2 \varphi(\bar{x}, 0) \text{ pos.-def. relative to } S \end{cases}$

Saddle Characterization of Variational Sufficiency

assume just that the functions $f_i(x)$ in the problem are C^1

Theorem 1

The variationally sufficient condition for local optimality holds for \bar{x} with multiplier \bar{y} and parameter $r > 0 \iff$

- \exists convex neighborhood $\mathcal{X} imes \mathcal{Y}$ of $(ar{x}, ar{y})$ such that
 - $l_r(x, y)$ is convex in $x \in \mathcal{X}$ (as well as concave in $y \in \mathcal{Y}$)
 - (\bar{x}, \bar{y}) is a saddle point of $l_r(x, y)$ relative to $\mathcal{X} \times \mathcal{Y}$

Local duality:locally articulated primal and dual problems $(P^r_{\mathcal{X} \times \mathcal{Y}})$ $\min_{x \in \mathcal{X}}$ the convex function $x \to \max_{y \in \mathcal{Y}} l_r(x, y)$ $(D^r_{\mathcal{X} \times \mathcal{Y}})$ $\max_{y \in \mathcal{Y}}$ the concave function $y \to \min_{x \in \mathcal{X}} l_r(x, y)$

Significance of the saddle point condition:

 \bar{x} solves $(P^r_{\mathcal{X} imes \mathcal{Y}})$, \bar{y} solves $(D^r_{\mathcal{X} imes \mathcal{Y}})$, $\min(P^r_{\mathcal{X} imes \mathcal{Y}}) = \max(D^r_{\mathcal{X} imes \mathcal{Y}})$

Theorem 2

The extra property contributes to the saddle point condition by the **strong** version of variational sufficiency is that

 $I_r(x,y)$ is **strongly** convex with respect to $x \in X$

Equivalently, this corresponds to having "augmented tilt stability"

Augmented tilt stability:

the mapping $(v, y) \mapsto \operatorname{argmin}_{x \in \mathcal{X}} \{ l_r(x, y) - v \cdot x \}$ is single-valued Lipschitz continuous for (v, y) near $(0, \bar{y})$ [modulus of Lipschitz continuity]=1/[modulus of strong convexity]

Implication for numerical optimization:

strong variational sufficiency is key to "methods of multipliers"

Connecting With Previous Second-Order Sufficiency

strong variational sufficiency versus other conditions? assume now that the functions $f_i(x)$ are all C^2 **Revealing example:** classical nonlinear programming minimize $f_0(x)$ subject to $f_i(x) \begin{cases} \leq 0 \text{ for } i = 1, \dots, s, \\ = 0 \text{ for } i = s + 1, \dots, m \end{cases}$ (here $g = \delta_K$ for the cone K polar to $Y = R^s_+ \times R^{m-s}$) classical Lagrangian: $L(x, y) = f_0(x) + y_1 f_1(x) + \dots + y_m f_m(x)$

Strong variational sufficiency in this case

Equivalent to the "strong second-order sufficient condition": $\nabla^2_{xx} L(\bar{x}, \bar{y}) \text{ is pos.-definite relative to the subspace}$ $S(\bar{x}, \bar{y}) = \left\{ \xi \in \mathbb{R}^n \mid \nabla f_i(\bar{x}) \cdot \xi = 0 \text{ for } i \in I(\bar{x}, \bar{y}) \right\},$ where $I(\bar{x}, \bar{y}) = \left\{ i \in [1, s] \text{ with } \bar{y}_i > 0 \right\} \cup \left\{ i \in [s + 1, m] \right\}$

interpretation: strong variational sufficiency is its natural extension

Characterizing With Generalized Second-Derivatives

Starting fact: if the augmented Lagrangian $l_r(x, y)$ is C^2 , then strong variational sufficiency $\iff \nabla^2_{xx} l_r(\bar{x}, \bar{y})$ pos.-definite

but in general, f_i 's $\in C^2$ only have $I_r \in C^{1+}$ nevertheless $I_r \in C^{1+}$ makes $\nabla^2 I_r(x, y)$ exist for almost all (x, y)

Hessian bundle:

$$\overline{\nabla}^2 I_r(\bar{x}, \bar{y}) = \left\{ H = \lim_{k \to \infty} \nabla^2 I_r(x^k, y^k) \text{ for } (x^k, y^k) \to (\bar{x}, \bar{y}) \right\}$$

any such *H* can be partitioned into *H*_{xx}, *H*_{xy}, *H*_{yx}, *H*_{yy}

Theorem 3

strong variational sufficiency holds \iff every $H \in \overline{\nabla}^2 l_r(\bar{x}, \bar{y})$ has H_{xx} pos.-definite

Task: now translate this to the modeling functions g through $l_r(x, y) = f_0(x) + g^r(\frac{1}{r}y + F(x)) - \frac{1}{2r}|y|^2$

(日本本語を本書を本書を入事)の(の)

Characterizing With Generalized Quadratic Forms

Quadratic forms: $q(\omega) = \frac{1}{2}\omega \cdot Q\omega$ with Q pos.-semidefinite generalized: $q(\omega) = \frac{1}{2}\omega \cdot Q\omega + \delta_S(u)$ for a subspace S

Generalized twice differentiability: of g at u for $y \in \partial g(u)$ the second-order difference quotient function $\Delta_t^2 g(u \mid y)(\omega) = [g(u + t\omega) - g(u) - t y \cdot \omega]/\frac{1}{2}t^2$ for t > 0epi-converges as $t \to 0$ to a generalized quadratic form q

this is true for almost all $(u, y) \in \operatorname{gph} \partial g$

Quadratic bundle: of g at \bar{u} for $\bar{y} \in \partial g(\bar{u})$ consider pairs $(u^k, y^k) \in \operatorname{gph} \partial g$ yielding generalized forms q^k quad $g(\bar{u} \mid \bar{y}) := \{q = \operatorname{epi-lim} q^k \text{ as } (u^k, y^k) \to (\bar{u}, \bar{y})\}$

Theorem 4, building on the multiplier condition $\bar{y} \in \partial g(F(\bar{x}))$ strong variational sufficiency holds \iff

 $q \in \operatorname{quad} g(F(\bar{x}) \, \big| \, \bar{y}) \Longrightarrow q(\omega) + \frac{1}{2} \omega \cdot \nabla_{xx}^2 L(\bar{x}, \bar{y}) \omega > 0 \text{ if } \omega \neq 0$

a bit stronger than such-type conditions known in special cases

What More?

Elaborating for particular modeling functions:

instances of g associated with various useful features in minimizing $f_0(x) + g(f_1(x), \dots, f_m(x))$

Applying to the method of multipliers, ALM:

 $x^{k+1} \approx \operatorname{argmin}_{x} I_{r_k}(x, y^k), \qquad y^{k+1} = y^k + r_k \nabla_y I_{r_k}(x^{k+1}, y^k)$

- executes the proximal point algorithm on a dual problem
- variational sufficiency yields localization in nonconvex problems

Extending to "progressive decoupling" methodology: similar explorations in recent schemes of problem decomposition

Speculating about the bigger picture:

- the idea that convexity can elicited through **primal+dual** localization seems to have far-reaching potential
- this deserves investigation in other areas, like optimal control

References

[1] R.T. Rockafellar (2019) "Variational convexity and local monotonicity of subgradient mappings," Vietnam Journal of Mathematics (issue in honor of A.D. loffe's 80th birthday) dx.doi.org/10.1007/s10013-019-00339-S

[2] R.T. Rockafellar (2019) "Progressive decoupling of linkages in optimization and variational inequalities with elicitable convexity or monotonicity," Set-valued and Variational Analysis dx.doi.org/10.1007/s1128-018-0496-1

[3] R.T. Rockafellar (2020) "Augmented Lagrangians and hidden convexity in sufficient conditions for local optimality," *Mathematical Programming*, recently submitted

downloads: sites.washington.edu/~rtr/mypage.html

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・