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Abstract

The purpose of this talk is to underline links between no-regret
algorithms used in learning, games and convex optimization.
In particular we will study continuous and discrete time versions
and their connections.
We will comment on recent advances on:
- Euclidean and non-euclidean approaches,
- speed of convergence of the evaluation,
- convergence of the trajectories.
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1.1. Model
V normed vector space, finite dimensional
dual V∗ and duality map 〈.|.〉
X ⊂ V compact convex

The aim is to study properties of algorithms that associate to a
trajectory of observations {ut ∈ V∗, t ≥ 0}, a process of choices
{xt ∈ X, t ≥ 0}, where xt depends on {(xs,us),0≤ s < t}.

The evaluation of the adequation of the choices to the
observation is given by the family of functions (cumulative
regret up to time t facing y):

Rt(y) =
∫ t

0
〈us|y− xs〉ds, t ≥ 0,y ∈ X (1)

or in discrete time, {xm} depending on {x1,u1, ...,xm−1,um−1}:

Rn(y) =
n

∑
m=1
〈um|y− xm〉, y ∈ X. (2)



The procedure satisfies the no-regret property if:

Rt(y)≤ o(t), ∀y ∈ X, (3)

or
Rn(y)≤ o(n), ∀y ∈ X. (4)

This means that the time average regret is asymptotically less
than 0.



A) We compare the performance of the algorithms in terms of
regret under three (increasing) assumptions:
(I) general case: {ut} is a bounded measurable process in V∗,
(II) closed form: ut = φ(xt) for a continuous vector field
φ : X→ V∗,
(III) convex gradient: ut =−∇f (xt), f : X→ IR, C 1 convex
function
(with similar properties in discrete time).

B) We consider three different procedures:
a) Projected dynamics (PD),
b) Mirror descent (MD),
c) Dual averaging (DA).

C) We analyze the relations between the continuous and
discrete time processes, in particular in terms of speed of
convergence to 0 of the average regret.

D) We also study the convergence of the trajectories of {xt} or
{xn} (in classes (II) and (III)).



1.2. Comments

Framework (I) corresponds to the usual model of on-line
learning where the agent observes {us,s < t} and chooses xt.

Note that since no hypothesis is made on the process ut, no
prediction makes sense but the no-regret condition expresses a
desirable a-posteriori property.

The notion of regret appears in Hannan, 1957 [32], Blackwell,
1956 [12] in a game theoretical set-up.

Algorithms and properties are studied in this spirit in Foster and
Vohra, 1993 [26], Fudenberg and Levine, 1995 [29], Foster and
Vohra, 1999 [27], Hart and Mas-Colell, 2000 [33], Lehrer, 2003
[50] , Benaim, Hofbauer and Sorin, 2005 [11], Cesa-Bianchi
and Lugosi, 2006 [20], Viossat and Zapechelnyuk, 2013 [93], ...
among others.



This topic is analyzed in the following books:

Fudenberg and Levine (1998) The Theory of Learning in
Games, MIT Press.
Young (2004) Strategic Learning and Its Limits, Oxford U. P.
Cesa-Bianchi and Lugosi (2006) Prediction, Learning and
Games, Cambridge University Press.
Hart and Mas-Colell (2013) Simple Adaptive Strategies: From
Regret-Matching to Uncoupled Dynamics, World Scientific
Publishing.

and the connection with related notions of approachability and
consistency is well presented in the survey:

Perchet (2014) Approachability, regret and calibration:
implications and equivalences.



Similar tools and properties occur in statistics and in the
learning community:

Vvok, 1990 [94], Cover, 1991 [23], Littlestone and Warmuth,
1994 [52], Freund and Shapire, 1999 [28], Auer, Cesa-Bianchi,
Freund and Shapire, 2002 [6], Cesa-Bianchi and Lugosi, 2003
[19], Stoltz and Lugosi, 2005 [87], Kalai and Vempala, 2005
[43], Blum and Mansour, 2007 [13], ...



The next two frameworks (II) and (III), describe more specific
cases where the observation ut is a function of the action xt.

Famework (II), closed form, is relevant for game dynamics and
variational inequalities.

Consider a strategic game Γ(φ) with a finite set of players I,
where the equilibrium set E is given by the solutions x ∈ X of the
following variational inequalities:

〈φ i(x)|xi− yi〉 ≥ 0, ∀yi ∈ Xi,∀i ∈ I.

Here Xi ⊂ V i is the strategy set of player i ∈ I, X = ∏i Xi, and
φ i : X→ V i∗ is her evaluation function.



Examples include:
- finite games (with mixed extension): φ i is the vector payoff
VGi.
- continuous games with payoff Gi, C 1 and concave wrt xi, ∀i ∈ I
then φ i is the gradient of Gi w.r.t. xi.
- population games (Wardrop equilibria), Xi is the simplex ∆(Si)
and φ i corresponds to the outcome function Fi : Si×X −→ IR.

For each player i, the reference process is ui
t = φ i(xt) which, as

a function of xt, is determined by the behavior of all players.
Hence the overall global dynamics of {xt} is generated by a
family of unilateral procedures since for each i, xi

t depends on
(ui,xi) only.
In particular for each player i, the knowledge of φ j, j 6= i is not
assumed.

Thus for each player individually the situation is like (I), general
case, while the private observations of the players are linked
via xt.



We will analyze the consequences on the process {xt},
assuming only that each player uses a procedure satisfying the
no-regret condition.

Obviously the (global) algorithm associated to φ = {φ i} will also
share the no-regret property since:∫ t

0
〈φ i(xs)|xi− xi

s〉ds≤ o(t), ∀xi ∈ Xi, ∀i ∈ I,

implies: ∫ t

0
〈φ(xs)|x− xs〉ds≤ o(t), ∀x ∈ X.

But in addition it is decentralized in the sense that xi depends
upon φ i only.



Framework (III) covers the case of convex optimization where
the observation, after the choice xt, is the gradient of the
(unknown) convex function and ut =−∇f (xt).

The research in this area is extremely active and very diverse;
it links basic optimization algorithms, Polyak, 1987 [70],
Nemirovski and Yudin, 1983 [61], Nesterov, 2004 [64], to
on-line procedures, see e.g. Zinkevich, 2003 [99].



Recent books and lecture notes include:

Bubeck S. (2011) Introduction to online optimization, Lecture
Notes.
Bubeck S. (2015) Convex optimization: Algorithms and
complexity, Fondations and Trends in Machine Learning, 8,
231-357.
Hazan E. (2011)The convex optimization approach to regret
minimization, Optimization for machine learning, S. Sra, S.
Nowozin, S. Wright eds, MIT Press, 287-303.
Hazan E. (2015) Introduction to Online Convex Optimization,
Fondations and Trends in Optimization, 2, 157-325.
Hazan E. (2019) Optimization for Machine Learning ,
https://arxiv.org/pdf/1909.03550.pdf.
Rakhlin A. (2009) Lecture notes on on-line learning.
Shalev-Shwartz S. (2012) Online Learning and Online Convex
Optimization, Foundations and Trends in Machine Learning, 4,
107-194.



Related algorithms have also been developped in Operations
Research (transportation, networks), see e.g. Dupuis and
Nagurney, 1993 [24], Nagurney and Zhang, 1996 [60], Smith,
1984 [79].

Note that each community (learning, game theory, optimization)
has its own terminology and point of view.

One of the aims of the current work is to clarify the relations
between several approaches and results and to unify the
analysis.

In particular we will show that few basic principles are in use
and we will underline the analogy between continuous and
discrete time.



Section 2 is devoted to the closed form, framework (II), and
explores the links between no-regret criteria, solutions of
variational inequalities and convex optimization.

Section 3 deals with continuous time dynamics.
After introducing level functions, we describe the three
algorithms (PD, MD, DA), prove that they satisfy the no-regret
property and compare their performances.

Section 4 is the discrete time analog of Section 3.

Section 5 considers basically framework (III) under a regularity
hypothesis on the convex function f .
Subsection 5.4 on ”Mirror prox” recalls related results using
similar tools.

Concluding comments are in Section 6.
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2.1. Definitions and notations

We describe here some relations with variational inequalities
when the observation process has a closed form: u = φ(x).

Notation 2.1
NE(φ) is the set of (internal) solutions, in X, of the variational
inequality:

〈φ(x)|y− x〉 ≤ 0, ∀y ∈ X. (5)



Recall that in an Hilbertian framework (20) is equivalent to:

ΠX(x+φ(x)) = x (6)

where ΠC denotes the projection operator on a closed convex
set C, or to the solutions in X of:

ΠTX(x)(φ(x)) = 0 (7)

where TX(x) is the tangent cône to X at x, see e.g. Kinderlehrer
and Stampacchia (1980) [44], Facchinei and Pang (2007) [25].



〈φ(x)|y− x〉 ≤ 0, ∀y ∈ X.

a) If φ is the evaluation function in a game Γ(φ), NE(φ)
corresponds to the set of equilibria.

b) The minimization of a C 1 convex function f on X corresponds
to the variational inequality with φ =−∇f .
This case presents two properties:
φ is dissipative,
φ is a gradient.
The general definitions are as follows.



Definition 2.1
φ : X→ V∗ is dissipative if it satisfies:

〈φ(x)−φ(y)|x− y〉 ≤ 0, ∀x,y ∈ X. (8)

A game Γ(φ) is dissipative if φ is dissipative.
This notion is related to the monotonicity requirement in Rosen
(1965) [73].
The terminology is "stable" in Hofbauer and Sandholm (2009)
[40], "contractive" in Sandholm (2015) [76] and "dissipative" in
Sorin and Wan, 2016 [86].



Notation 2.2
SE(φ) is the set of (external) solutions, in X, of the variational
inequality:

〈φ(y)|y− x〉 ≤ 0, ∀y ∈ X. (9)

Notice that SE(φ) is convex.

Recall, see Minty, 1967 [57], that if φ is dissipative, then :

NE(φ)⊂ SE(φ) 6= /0

and if φ is continuous the reverse inclusion is satisfied:

SE(φ)⊂ NE(φ) 6= /0.

If NE(φ) = SE(φ) we will also use the notation E(φ) = E for this
set.

Fundamental example: 0-sum game
If F : X = X1×X2→ IR is C 1 and concave/convex, the vector
field φ = (∇1F,−∇2F) is dissipative, Rockafellar (1970) [72].
The elements of NE(φ) = SE(φ) = E are optimal strategies of
the associated 0-sum game.



We now define a potential for a vector field, see e.g. Sorin and
Wan (2016) [86].

Definition 2.2
A real function W of class C 1 on X, is a potential for φ if there
exist strictly positive functions µ i on X, i ∈ I, such that:〈

∇
iW(x)−µ

i(x)φ i(x),yi− xi〉= 0, ∀x ∈ X,∀yi ∈ Xi, ∀i ∈ I. (10)

A game Γ(φ) corresponding to such φ is a potential game.
Alternative previous definitions include:
Monderer and Shapley [58] for finite games,
Sandholm [74] for population games.



The following result is classical, see e.g. Sandholm (2001) [74].

Proposition 2.1
Let φ be a vector field with potential Φ.
1. Every local maximum of Φ belongs to NE(φ).
2. If Φ is concave on X, then any element in NE(φ) is a global
maximum of Φ on X.
Proof:
Since a local maximum x of Φ on the convex set X satisfies:

〈∇Φ(x),x− y〉 ≥ 0, ∀y ∈ X, (11)

it follows from (10) that 〈µ i(x)φ i(x),xi−yi〉≥0 for all i and all
y∈X.
On the other hand, if Φ is concave on X, a solution x of (11) is a
global maximum of Φ on X.



2.2. Results
Assume that the procedure satisfies the no-regret property:

Rt(y)≤ o(t), ∀y ∈ X,

where:
Rt(y) =

∫ t

0
〈φ(xs)|y− xs〉ds, t ≥ 0,y ∈ X

A first property deals with convergent trajectories {xt}.
Lemma 2.1
If φ is continuous and xs→ x, then x ∈ NE(φ).
Proof:
Since Rt(y) =

∫ t
0〈φ(xs)|y− xs〉ds:

Rt(y)
t
→ 〈φ(x)|y− x〉, ∀y ∈ X. (12)

and Rt(y)≤ o(t) implies x ∈ NE(φ).

In particular, if x is a stationary point for the discrete or
continuous time procedure, then x ∈ NE(φ).



Define the time average trajectories :

x̄t =
1
t

∫ t

0
xsds and x̄n =

1
n

n

∑
m=1

xm.

Lemma 2.2
If φ is dissipative, the accumulation points of {x̄t} or {x̄n} are in
SE(φ).
Proof:

Rt(y)
t

=
1
t

∫ t

0
〈φ(xs)|y− xs〉 ≥

1
t

∫ t

0
〈φ(y)|y− xs〉= 〈φ(y)|y− x̄t〉.

Hence under the no-regret property any accumulation point x̂ of
{x̄t} will satisfy 〈φ(y)|y− x̂〉 ≤ 0.

This result implies the non-emptiness of SE(φ) for dissipative φ .
In particular the minmax theorem (in the C 1 case) follows from
the existence of no-regret procedures.



Class (III): convex gradient.

Since ut =−∇f (xt) with f C 1 convex, recall that this
corresponds to a specific case of dissipative and continuous
vector field φ , hence: SE(φ) = NE(φ) = E = argminX f .

Use that:
〈∇f (xt)|y− xt〉 ≤ f (y)− f (xt)

to obtain with ut =−∇f (xt) in the definition of the regret Rt(y):∫ t

0
[f (xs)− f (y)]ds≤

∫ t

0
〈−∇f (xs)|y− xs〉ds = Rt(y)

which implies by Jensen’s inequality:

f (x̄t)− f (y)≤ 1
t

∫ t

0
[f (xs)− f (y)]ds≤ Rt(y)

t
. (13)



In particular one obtains:

Lemma 2.3
i) The accumulation points of {x̄t} or {x̄n} belong to E.
ii) If t 7→ f (xt) (resp. n 7→ f (xn)) is decreasing, the accumulation
points of {xt} or {xn} belong to E.
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We describe in this section three procedures in continuous time
that satisfy the no-regret property. Their discrete time
counterparts will be analyzed in the next section.

As usual, discrete time dynamics are easier to describe but
their mathematical properties are more difficult to establish.
This explain why we choose to start with the continuous time
versions.

In addition a very useful tool in the form of a level function is
available in this set-up and we start by analyzing it.



3.1. Level functions
Definition 3.1
P : IR+×X→ IR+ is a level function (for {ut,xt}) if:

〈ut,xt− y〉 ≥ d
dt

P(t;y), ∀t ∈ IR+,∀y ∈ X. (14)

Proposition 3.1
Rt(y) =

∫ t
0〈us|y− xs〉ds≤ P(0;y)−P(t;y) is bounded.

(1) no-regret property: Rate of convergence 1/t.
(2) Class (II): Assume y∗ ∈ SE(φ), then P(t;y∗) is decreasing:

d
dt

P(t;y∗)≤ 〈φ(xt),xt− y∗〉 ≤ 0.

(3) Class (III): If {xt} is a descent procedure ( d
dt f (xt)≤ 0),

E(t;y) = t(f (xt)− f (y))+P(t;y)

is decreasing, for all y ∈ X.



3.2. Positive correlation
Given a dynamics ẋt = D(xt), f decreases on trajectories if:

d
dt

f (xt) = 〈∇f (xt)|ẋt〉 ≤ 0.

The analogous property for a vector field φ is:

〈φ(xt)|ẋt〉 ≥ 0.

In the framework of games, a similar condition was described in
discrete time as Myopic Adjustment Dynamics, Swinkels (1993)
[90] : if xi

n+1 6= xi
n then Gi(xi

n+1,x
−i
n )> Gi(xi

n,x
−i
n ).

The corresponding property in continuous time corresponds to
positive correlation, (between the dynamics and the vector
field), Sandholm (2010) [75]:

ẋi
t 6= 0 =⇒ 〈φ i(xt), ẋi

t〉> 0.



The use of this notion for potential vector fields is a follows:

Proposition 3.2
Consider a vector field φ with potential Φ.
If the dynamics satisfies positive correlation, then Φ is a strict
Lyapunov function.
All ω-limit points are rest points.
Proof:
Let Vt = Φ(xt) for t ≥ 0. Then:

V̇t = 〈∇Φ(xt)|ẋt〉= ∑
i∈I
〈∇i

Φ(xt)|ẋi
t〉= ∑

i∈I
µ

i(x)〈φ i(xt)|ẋi
t〉 ≥ 0.

Moreover 〈φ i(xt)|ẋi
t〉= 0,∀i ∈ I, holds if and only if ẋt = 0.

One concludes by using Lyapunov’s theorem (e.g. Theorem
2.6.1 in [41]).



This result is proved by Sandholm (2001) [74] for his version of
potential population game, see extensions in Benaim, Hofbauer
and Sorin (2005) [11].
A similar property for fictitious play in discrete time is
established in Monderer and Shapley (1996) [58].

We will show that this property holds for the three dynamics
defined below.



We now introduce and study three dynamics:

- Projected dynamics (PD),
- Mirror descent (MD),
- Dual averaging (DA).

In each case we first define the dynamics, then control the
values of the regret by exhibiting a level function and finally
study the trajectories for class (II) and (III).



3.3 Hilbertian framework: Projected Dynamics

V Hilbert, X ⊂ V, convex closed.

Dynamics

analogous to projected gradient descent (Levitin and Polyak,
1966) and defined, as projected dynamics (PD), by xt ∈ X with:

〈ut− ẋt,y− xt〉 ≤ 0,∀y ∈ X. (15)

which is:
ẋt = ΠTX(xt)(ut). (16)

since TC(x) is a cône.



Values

Proposition 3.3

V(t;y) =
1
2
‖xt− y‖2, y ∈ X, (17)

is a level function.
Proof:
(15) gives:

〈ut,y− xt〉 ≤ 〈ẋt,y− xt〉=−
d
dt

V(t;y).



Trajectories

Proposition 3.4
Assume φ dissipative and E 6= /0.
{xt} converges weakly to a point in E.
Proof:
- {xt} is bounded hence has weak accumulation points.
- The weak limit points of {xt} are in E
- ‖xt− y∗‖ converges when y∗ ∈ E
Hence by Opial’s lemma, xt converges weakly to a point in E.



Lemma 3.1
Positive correlation holds.
Proof:

〈φ(xt), ẋt〉= ‖ẋt‖2

since 〈ut− ẋt, ẋt〉= 0 by (15) and Moreau’s decomposition,
Moreau, 1965 [59].

Consider class (III): ut =−∇f (xt).

Proposition 3.5
f (xt) is decreasing and converges to f ∗ = minX f at speed 1/t
Assume E 6= /0. {xt} weakly converges to a point in E.
Proof:
Weak accumulation points of {xt} are in E.
Then Opial’s lemma applies.



3.4. Mirror descent

Continuous version of “Mirror descent algorithm”,
Nemirovski and Yudin (1983), Beck and Teboulle (2003).

Dynamics

H strictly convex, C 2,
X, compact, convex ⊂ dom H.
The continuous time process mirror descent (MD) satisfies,
xt ∈ X and:

〈ut−
d
dt

∇H(xt)|y− xt〉 ≤ 0,∀y ∈ X. (18)

The previous analysis corresponds to the case: H(x) = 1
2‖x‖

2.



Values

Bregman distance associated to H:

DH(y,x) = H(y)−H(x)−〈∇H(x)|y− x〉(≥ 0).

d
dt

DH(y,xt) = 〈−
d
dt

∇H(xt)|y− xt〉, (19)

so that (18) implies:

〈ut|y− xt〉 ≤ −
d
dt

DH(y,xt).

Proposition 3.6
P(t;y) = DH(y,xt) is a level function.



Trajectories

The use of special functions H adapted to X allows to produce
a trajectory that remains in int X hence to get rid of the normal
cône .
This leads to:

d
dt

∇H(xt) = ut (20)

ẋt = ∇
2H(xt)

−1ut. (21)

which corresponds to a Riemannian metric, see Bolte and
Teboulle, 2003 [14], Alvarez, Bolte and Brahic, 2004 [1],
Mertikopoulos and Sandholm, 2018 [55].

Lemma 3.2
Positive correlation holds.
Proof :

〈φ(xt)|ẋt〉= 〈φ(xt)|∇2H(xt)
−1

φ(xt)〉 ≥ 0.



Consider now class (III).

By Lemma 2.3 the accumulation points of {xt} are in E.

To prove convergence one introduces the following :

Hypothesis [H1]: if zk→ y∗ ∈ S then DH(y∗,zk)→ 0.
For example H is L-smooth (see e.g. Nesterov, 2004 [64]
Section 1.2.2.) and then:

0≤ DH(x,y)≤
L
2
‖x− y‖2.

Hypothesis [H2]: if DH(y∗,zk)→ 0,y∗ ∈ S then zk→ y∗.
For example H is β -strongly convex (see e.g. Nesterov, 2004
[64] Section 2.1.3.) and then:

DH(x,y)≥
β

2
‖x− y‖2.



Proposition 3.7
Consider class (III). If H is smooth and strongly convex, {xt}
converges weakly to some x∗ ∈ E.
Proof:
Let x∗ be an accumulation point of {xt}. Then x∗ ∈ E by Lemma
2.3 and thus DH(x∗,xt) is decreasing. Since this sequence is
decreasing to 0 on a subsequence xtk → x∗ by [H1], it is
decreasing to 0, hence by [H2] xt→ x∗.



3.5. Dual averaging
Continuous version of dual averaging Nesterov, 2009 [65].
We follow Kwon and Mertikopoulos, 2017 [48].

Dynamics

Assume h bounded strictly convex s.c.i. with domh = X ⊂ V
convex compact.
Let h∗(w) = supx∈V〈w|x〉−h(x) be the Fenchel conjugate. h∗ is
differentiable.
Introduce :

Ut =
∫ t

0
usds

and let the dual averaging (DA) dynamics be defined by:

xt = argmax{〈Ut|x〉−h(x); x ∈ V}= argmax{〈Ut|x〉−h(x); x ∈ X}.

The dynamics can be written as:

xt = ∇h∗(Ut) ∈ X (22)



Values
Consider:

W(t;y) = h∗(Ut)+h(y)−〈Ut|y〉 (≥ 0). (23)

d
dt

h∗(Ut) = 〈ut|∇h∗(Ut)〉= 〈ut|xt〉 (24)

thus:
d
dt

W(t;y) = 〈ut|xt− y〉

Proposition 3.8
W is a level function.



Trajectories

Lemma 3.3
Positive correlation holds.
Proof:

〈φ(xt)|ẋt〉= 〈φ(xt)|∇2h∗(Ut)(ut)〉

with ut = φ(xt).

Hence in class (III), using Lemma 2.3 the accumulation points
of {xt} are in E.



3.6. Comments on the continuous dynamics
framework

1) Existence of a level function and same speed of
convergence of the no-regret quantities in classes (I), (II) or (III)
: O(1

t ), which is optimal, Nesterov, 2004 [64].

2) Hence by Section 2 the accumulation point of the average
{x̄t} in class (II) with φ dissipative are in SE(φ).

3) In addition (weak) convergence of the average {x̄t} holds in
class (II) with φ dissipative, under (PD), via Opial’s lemma.
The linear aspect of the derivative of the level function seems
crucial to obtain this property.

4) Similarly (weak) convergence of {xt} in case (III) holds for
(PD), and (MD) with adapted penalization function H.

5) The accumulation points of {xt} are in E in case (III) under
(DA) .



6) For vector fields φ with potential W, W(xt) is decreasing in
(PD) and (DA), and under conditions on H for (MD).

7) In the framework of games the entropy function:

h(x) = ∑
p∈S

xpLogxp

defined on the simplex X = ∆(S) leads (via (MD) or (DA) ) to the
replicator dynamics on int X , Taylor and Jonker, 1978 [91],
Hofbauer and Sigmund, 1998 [41], Sorin, 2009 [81], 2020 [83].
The corresponding Riemannian metric is introduced in
Shahshahani, 1979 [78].

On the other hand, h(x) = 1
2‖x

2‖ leads to the local/direct
projection dynamics, for a comparison, see Lahkar and
Sandholm, 2008 [49], Sandholm, Dokumaci and Lahkar, 2008
[77].



Recal that the replicator dynamics is the continuous version of
the multiplicative weight algorithm, Littlestone and Warmuth,
1994 [52], Vovk, 1990 [94], Sorin, 2009 [81], 2020 [83].

8) There is an important literature on continuous time dynamics
with similar features, see e.g. :
- in convex optimization: Attouch and Teboulle, 2004 [2],
Attouch, Bolte, Redont and Teboulle, 2004 [3], Auslender and
Teboulle, 2006 [7], 2009 [8]... Teboulle, 2018 [92],
- in game theory: Hofbauer and Sandholm, 2009 [40],
Coucheney, Gaujal and Mertikopoulos, 2015 [22],
Mertikopoulos and Sandholm, 2016 [54], Mertikopoulos and
Sandholm (2018) [55], Mertikopoulos and Zhou (2019) [56] ...
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We consider now discrete time algorithms.

Remark that the dynamics depends on an additional parameter,
the step size.



4.1. Hilbertian framework: PD

Dynamics

Levitin and Polyak (1966) Polyak (1987) gradient projection
method:

xm+1 = argminX{−〈um,x〉+
1

2ηm
‖x− xm‖2},

= argmaxX{〈um,x〉−
1

2ηm
‖x− xm‖2}, (25)

(ηm decreasing) which corresponds to:

xm+1 = ΠX[xm +ηmum], (26)

or with variational characterization:

〈xm +ηmum− xm+1,y− xm+1〉 ≤ 0,∀y ∈ X. (27)



Values

Let m(X) be the diameter of X. Assume ‖um‖= ‖um‖∗ ≤M.

Proposition 4.1

Rn(x)≤
1

2ηn
m(X)2 +

M2

2

n

∑
m=1

ηm

hence with ηn = 1/
√

n:

Rn(x)≤ O(
√

n).



Trajectories

Lemma 4.1
For x∗ ∈ SE(φ), ‖xm− x∗‖ converges if ηn ∈ `2.

Proposition 4.2
If ηn ∈ `2 and g is dissipative, {xn} converges to a point in SE(φ).



4.2. Mirror descent

Assumption:
H, L-strongly convex for some norm ‖.‖ on V = IRn.
‖un‖∗ ≤M.

Dynamics

Nemirovski and Yudin (1983), Beck and Teboulle (2003)
The mirror descent algorithm is given by :

xm+1 = argminX{−〈um| x〉+
1

ηm
DH(x,xm)}, (28)

Variational formulation:

〈∇H(xm)+ηmum−∇H(xm+1)|x− xm+1〉 ≤ 0,∀x ∈ X. (29)



Values

Proposition 4.3

Rn(x)≤
DH(x,x1)

η
+nη

M2

2L
.

Then η = 1/
√

n and Rn(x)≤ O(
√

n).
Same property with ηn = 1/

√
n via double trick.



Trajectories

Lemma 4.2
For x∗ ∈ SE(φ), DH(x∗,xn) converges if {ηn} ∈ `2.



4.3. Dual averaging

Assumptions:
a) h is a l.s.c. function from V to IR∪{+∞}, L-strongly convex
for some norm ‖.‖ on V = IRn, with domh = X.
b) ‖um‖∗ ≤M,∀n ∈ IN.

Dynamics

Dual averaging, Nesterov (2009).
Let Um = ∑

m
k=1 uk

The algorithm is again given by a maximization property:

xm+1 = argminX{−〈Um|x〉+(1/ηm)h(x)},
= argmaxX{〈Um|x〉− (1/ηm)h(x)} (30)

which is:
xm+1 = ∇h∗(ηmUm).

and {ηm} is decreasing.



Values

Xiao (2010) or discrete approximation of (22) Kwon and
Mertikopoulos (2017).

Proposition 4.4

Rn(x) =
n

∑
m=1
〈um|x− xm〉 ≤

rX(h)
ηn

+
∑

n
m=1 ηm−1‖um‖2

∗
2L

. (31)

Assume: ‖um‖∗ ≤M.
Hence the convergence rate O(

√
n) with time varying

parameters ηm = 1/
√

m.



4.4. Comments on the discrete dynamics framework

1) The three algorithms achieve the same bound O(1/
√

n) for
the speed of convergence of the average regret, which is
optimal already in class (III), Nesterov, 2004 [64] , using time
varying step sizes ηn = 1/

√
n.

2) More precise properties concerning the trajectories are
available only in the (PD) set-up. The results are similar to the
ones in the continuous case, Section 3.2, if ηn ∈ `2. (Compare
to the analysis in Peypouquet and Sorin, 2010 [69] for
dynamics induced by maximal monotone operators in discrete
and continuous time.)

3) For vector fields φ with potential W one does not have the
property W(xn) decreasing.
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This section deals mainly with class (III) convex gadient, where
in addition f satisfies some regularity properties.

Recall that f is β smooth if:

|f (y)− f (x)−〈∇f (x)|y− x〉| ≤ β

2
‖x− y‖2. (32)

Equivalently, ∇f is β -Lipschitz.

A last part is devoted to the so-called mirror-prox procedure,
class (II) with a vector field φ β -Lipschitz.



5.1. Hilbertian framework: Projected Dynamics

Assumption: f is β smooth.

Same procedure with constant steps:

xm+1 = ΠX(xm−η∇f (xm)).

The analysis in this section is standard, see e.g. Nesterov,
2004 [64].
Take η = 1/β and define vn = β (xn+1− xn).

The main tool is the following:

Lemma 5.1 (Descent lemma)

f (xn+1)− f (y)≤ 〈vn,y− xn〉−
1

2β
‖vn‖2.

In particular f (xn) decreasing and {‖vn‖} ∈ `2.



Values

n[f (xn+1)− f (y)]≤ Rn(y)−
1

2β
‖

n

∑
m=1
‖vm‖2 =

β

2
‖y− x1‖2.

Hence convergence rate of the order 1
n .



Trajectories

Lemma 5.2
Let y∗ ∈ E. Then ‖xn− y∗‖ decreases.

Proposition 5.1
{xn} converges to a point in E.



5.2. Mirror descent

The dynamics is still:

〈∇H(xn)−λ∇f (xn)−∇H(xn+1)|x− xn+1〉 ≤ 0,∀x ∈ X.

We follow Bauschke, Bolte and Teboulle, 2017 [9]

H and f C 1

Hypothesis [A]: there exists L > 0 such that:

L DH−Df ≥ 0

(preorder: L H− f convex, Nguyen, 2017 [66])

If H is strongly convex and f is smooth, [A] holds.



Values

One has, by [A]:

f (x)≤ f (y)+ 〈∇f (z)|x− y〉+LDh(x,z)−Df (y,z)

(the last term is ≤ 0 when f is convex).
Take 2λL = 1

Proposition 5.2
Assume H convex.
1) f (xn) is decreasing.
2) ∑DH(xn+1,xn)<+∞.
3) Assume f convex, lower bounded.

f (xn)− f (y)≤ 2L
n

DH(y,x1)

Very recent result: Bui and Combettes, 2020 [18] Theorem 3.9:
variable metrics Hn allow to reach f (xn)− f ∗ = o(1/n).



Trajectories

Proposition 5.3
Assume f convex.
1) y∗ ∈ E implies DH(y∗,xn) decreases.
2) Assume:
[H1] : xk→ x∗ ∈ E⇒ DH(x∗,xk)→ 0
[H2] : x∗ ∈ E,DH(x∗,xk)→ 0⇒ xk→ x∗

Then {xn} converges to a point in E.



5.3. Dual averaging

We follow Lu, Freund and Nesterov (2018)

Dual averaging with constant step size under Hypothesis [A]:
L h− f convex
f convex and C 1

h : V→ IR∪{+∞} l.s.c. with dom h = X.

xm+1 = argmaxX{〈Um|x〉−L h(x)} (33)

with uk =−∇f (xk).



Values

Proposition 5.4
f convex, lower bounded.

f (x̄n)− f (y)≤ L
n

h(y), ∀y ∈ X.



5.4. Comments on the regular case

1) In the three cases (PD), (MD) and (DA) the speed of
convergence of the values is O(1/n) and the algorithms use a
constant step parameter.

2) Using (PD) with f smooth implies f (xn) decreasing and the
convergence of {xn}.

3) The approach in Section 5.2 shows that similar results can
be obtained using (MD) without assuming f with Lipschitz
gradient if the regularization function H is adapted to f :
condition (A).

4) Analogous results for the values are much simpler to obtain
in the (DA) framework. However the properties concern the
value at the average f (x̄n) and no result is available on the
trajectories.



5.5. Mirror prox

We follow Korpelevich, 1976 [45], Nemirovski, 2004 [62].

Assume φ to be β Lipschitz.

Dynamics (Korpelevich)

xn gives yn+1 via usual MD i.e. vn = φ(xn)

〈∇H(xn)+λφ(xn)−∇H(yn+1)|x− yn+1〉 ≤ 0,∀x ∈ X

xn gives xn+1 via translated MD i.e. un = φ(yn+1)

〈∇H(xn)+λφ(yn+1)−∇H(xn+1)|x− xn+1〉 ≤ 0,∀x ∈ X



Values(Nemirovski)

Proposition 5.5
If H is α strongly convex and α ≥ λβ :

λ

n

∑
m=1
〈φ(ym)|u− ym〉 ≤ DH(u,x1)−DH(u,xn).



Trajectories (Korpelevich)

Proposition 5.6
Assume φ dissipative. xn converges to a point in E
- Hilbert framework and (PD)
- (MD) case with regularity on H.
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For the three dynamics (PG), (MD) and (DA) 1), 2) and 3)
below holds:

1) In continuous time the speed of convergence of the average
regret to 0, of the order O(1/t) is not better in the general
gradient convex case than in on-line learning.

2) In discrete time the speed of convergence of the average
regret to 0, of the order O(1/

√
n) is not better in the general

gradient convex case than in on-line learning.

3) Adding a regularity hypothesis on the convex function does
not change the convergence rate in continuous time but allow a
better convergence in discrete time from O(1/

√
n) to O(1/n) .



4) A similar phenomena appears with the so-called acceleration
procedures following Nesterov, 1983 [63].

In the continuous time case a second order ODE leads to a
speed of convergence f (xt)− f (x∗)≤ O( 1

t2 ) with no further
hypothesis on f , see Su, Boyd and Candes, 2014 [88], 2016
[89], Krichene, Bayen and Bartlett, 2015 [46], 2016 [47],
Wibisono, Wilson and Jordan, 2016 [95], Attouch and
Peypouquet, 2016 [4], Attouch, Chbani, Peypouquet and
Redont, 2018 [5]...

To obtain a similar property in discrete time, namely
f (xn)− f (x∗)≤ O( 1

n2 ) one has to assume f smooth

The same remark apply to the (weak) convergence of the
trajectory, where the smooth hypothesis on f is needed in
discrete time and not in continuous time, Chambolle and
Dossal, 2015[21], Attouch, Chbani, Peypouquet, Redont 2018
[5]...



5) Concerning the link between discrete and continuous time
dynamics, there are no direct results of the form: no-regret
property in continuous time imply no-regret property in discrete
time but analogy of the tools used and ad-hoc choice of the
stage parameters, see Sorin, 2009 [81], Kwon and
Mertikopoulos, 2017 [48] and the Lyapounov functions in
Krichene, Bayen and Bartlett, 2015 [46], 2016 [47], Wibisono,
Wilson and Jordan, 2016 [95].

6) The Hilbert framework for (PD) allows to obtain convergence
results on the trajectories. The two other algorithms are more
flexible and can achieve better explicit speed of convergence of
the values by choosing an adequate norm, adapted to the
problem, see the discussion in Bauschke, Bolte and Teboulle,
2017 [9]. For (MD), specific regularization functions H can also
lead to convergence of the trajectories. (DA) is much simpler to
implement due to its integral formulation. However no
convergence properties of the trajectories are in general
available.
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