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0. Complexity in Optimization

Complexity: Finding bounds on the amount of computation for an
algorithm and / or problems in a certain class.

Computation can be measured in several ways, including

Iterations (sometimes broken down into different levels of iteration:
outer and inner);

Oracle: how many queries for information about the functions are
required to find an approximate solution. Sometimes separated into
function evaluations, first-derivative, second-derivative information.

In this talk, we deal with upper bounds on the computation required by a
given algorithm for all problems in a certain class.

(There’s also interest in lower bounds.)
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Complexity in Optimization: Nemirovski and Yudin
[Nemirovski and Yudin, 1983] is a founding document in complexity of
continuous optimization problems and algorithms. Identified 3 ingredients:

class of problems

sources of information about the problem e.g. values of f (x) and
∇f (x) for a given x : oracles (attributed to Bakhvalov)

methods for definining error / solution accuracy.

Discusses different types of complexity:

iterations (“laboriousness”)

elementary operations

memory.

Complexity N(ε) depends on (relative) error ε in approximate solution.

Convex only: general, strongly convex, mirror descent, nonlinear conjugate
gradient...

(They comment that global minimization of nonconvex functions is
exponential in the dimension.)
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Complexity in Optimization: Nonlinear
Complexity results in convex optimization.

polynomial interior-point for LP, convex QP, feasible sets with
self-concordant barriers (80s-90s).

momentum methods for nonlinear convex (heavy ball, Nesterov):
faster rates than steepest descent (80s, then 2010-)

subgradient and stochastic subgradient: convergence rates for
averaged iterates.

Interest in complexity for nonconvex optimization is more recent, and
focuses on finding approximate second-order points (or higher-order),
rather than global solutions.

Enhances the theory, possibly the practice too.

Nonconvex applications from machine learning (e.g. matrix
optimization) have nice properties such as

I all saddle points are strict, or
I all local minima are global.
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Philosophy

There’s a rich collection of practical algorithms for nonlinear
nonconvex optimization — unconstrained, simple constraints,
nonlinear constraints.

Typical convergence theory is about local convergence rates or
accumulation points are stationary or perhaps accumulation points
satisfy second-order necessary conditions.

Can we build on these algorithms, modifying to equip them with
global complexity properties without sacrificing practical appeal?

Interested mostly in algorithms that find approximate second-order points
but that don’t require evaluation of second-derivative information
(Hessians) explicitly.

Then can use computational differentiation to obtain Hessian-vector
products, based on code for first derivatives: Apply computational
differentiation to ∇f (x)T d to get ∇2f (x)d , for a given d .
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1. Smooth Nonconvex Unconstrained Optimization
minx∈Rn f (x) where f is smooth and nonconvex.

Seek a second-order necessary (2oN) point:

∇f (x) = 0, ∇2f (x) � 0.

Let D be an open set containing level set {x | f (x) ≤ f (x0)}. Assume

f is bounded below: f (x) ≥ flow for all x .

Gradient and Hessian are Lipschitz continuous: For all y , z ∈ D, have

‖∇f (y)−∇f (z)‖ ≤ Lg‖y − z‖, ‖∇2f (y)−∇2f (z)‖ ≤ LH‖y − z‖.

At any x , have quadratic and cubic upper bounds on f over all D:

f (x + p) ≤ f (x) +∇f (x)T p +
Lg

2
‖p‖2,

f (x + p) ≤ f (x) +∇f (x)T p +
1

2
pT∇2f (x)p +

LH

6
‖p‖3.
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Approximate 2oN Points & Guarantees

Seek approximate 2oN points satisfying

‖∇f (x)‖ ≤ εg , ∇2f (x) � −εH I ,

where εg and εH are small positive tolerances.

Seek iteration complexities for finding such points. Also seek operation
complexities in terms of the number of fundamental operations required.
Bound these in terms of εg and εH . (Also Lg and LH .)

We take the “fundamental operations” to be

gradient evaluations ∇f (x), and

Hessian-vector products ∇2f (x)d for arbitrary d .

whose cost is comparable — see earlier discussion about computational
differentiation.

Explicit knowledge of ∇2f (x) is not required!
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A Basic Algorithm with Pretty Good Complexity

When Lg and LH are known, there is an elementary steepest-descent +
negative curvature method that finds an approximate 2oN point in
O(max(ε−2

g , ε−3
H )) iterations.

For k = 0, 1, 2, . . . :

If ‖∇f (xk )‖ > εg , take a short steepest-descent step:

xk+1 = xk − 1
Lg
∇f (xk ).

Use quadratic upper bound to get a decrease of ≥ ε2
g/(2Lg ).

Otherwise, if ∇2f (xk ) 6� −εH I , find direction dk such that

‖dk‖ = 1, (dk )T∇2f (xk )dk = λk
min < −εH , ∇f (xk )T dk ≤ 0.

Take a step of length 2|λk
min|/LH along dk to get decrease of

≥ 2
3ε

3
H/L2

H , using cubic upper bound.
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Iteration and Operation Complexity
Because of the lower bound flow, the number of iterations is at most

max

(
2Lg ε

−2
g ,

3

2
L2

Hε
−3
H

)
(f (x0)− flow).

Each iteration in this scheme requires gradient evaluation and (sometimes)
cost of finding the most negative eigenvalue of ∇2f (xk ).

In fact, for the negative curvature direction, need only d such that

dT∇2f (xk )d ≤ −1
2εH‖d‖2.

If λmin(∇2f (xk )) ≤ −εH , this can be computed to probability 1− δ using
randomly-started Lanczos iteration at a cost of

min

{
n,O

(√
Lg

εH
| log δ|

)}
Hessian-vector products (without necessarily knowing ∇2f explicitly).

Operation complexity is a factor of ε
−1/2
H greater than iteration complexity.
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Literature on Complexity for Second Order Points

[Nesterov and Polyak, 2006] proposed adding a cubic regularization term
to the second-order Taylor-series model, to find approximate second-order
points with complexity guarantees:

f (x + p) ≤ f (x) +∇f (x)T p +
1

2
pT∇2f (x)p +

M

6
‖p‖3.

(Cubic regularization previously proposed by [Griewank, 1981].)

Many later papers on iteration complexity for second-order points:

Cubic regularization and trust-region methods
[Nesterov and Polyak, 2006, Birgin and Mart́ınez, 2017,
Cartis et al., 2012, Curtis et al., 2017a, Curtis et al., 2017b,
Mart́ınez and Raydan, 2017, Cartis et al., 2019a]

p-order necessary points (p ≥ 2)
[Cartis et al., 2020a, Cartis et al., 2020b]
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Algorithms with good operation complexity described in

Cubic regularization [Agarwal et al., 2017];

Adapting accelerated gradient in various ways
[Carmon et al., 2017a, Carmon et al., 2017b];

Gradient descent (+ acceleration), with noise injection to escape from
saddles [Jin et al., 2017a, Jin et al., 2017b].
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1a. Line-Search Newton-CG Procedure

The method in [Royer et al., 2020] uses two kind of directions pk :

“sufficient” negative curvature for ∇2f (xk );

approximate (slightly) damped Newton −(∇2f (xk ) + 2εH I )−1∇f (xk )
(provided it’s a descent direction).

Does a backtracking line search along each such direction.

CG is used to find damped Newton step OR detect and return a
direction of “sufficient negative curvature”

Monitor the CG procedure to ensure that no more than O(ε
−1/2
H )

steps are taken. (Requires some complicated termination tests.)

As a backup to CG (rarely needed), use randomized Lanczos to search
for the “sufficient negative curvature” direction for ∇2f (xk ).

Follows the traditional line-search Newton-CG approach, but the new
features yield provable complexity, and exploit negative curvature explicitly.
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Modified CG (Modifications in red)
Define

H̄ := H + 2εI , κ :=
M + 2ε

ε
, T :=

4κ4

(1−
√

1− τ)2
, τ :=

1√
κ+ 1

;

y0 ← 0, r0 ← g , p0 ← −g , j ← 0;
if p>0 H̄p0 < ε‖p0‖2 then

Set d = p0 and terminate with d type=NC;
end if
while TRUE do
αj ← r>j rj/p>j H̄pj ;
yj+1 ← yj + αj pj ;
rj+1 ← rj + αj H̄pj ;
βj+1 ← (r>j+1rj+1)/(r>j rj );
pj+1 ← −rj+1 + βj+1pj ;
j ← j + 1;
Perform Termination Tests;

end while
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Modified CG Properties
Four Termination Tests!

1. ‖rj‖ ≤ ζ̂‖r0‖: approx damped Newton step.
2,3. Either yj or pj has negative curvature, less than −ε. Return it!
4. “Residual norm ‖rj‖ is decreasing slowly and this is an indication
that H has an eigenvalue less than −ε.” Moreover, a direction of
negative curvature can be recovered by combining two of the iterates
yi encountered so far.

Case 4 uses an idea of [Carmon et al., 2017b] for accelerated gradient (but
requires significant modification for CG). Based on an earlier argument of
Bubeck (2014).

Complexity of Modified CG:

min

(
n, Õ

(√
Lg

ε

))
.

(Similar to accelerated gradient.)

Since we usually set ε = εH = ε
1/2
g , this is O(ε

−1/4
g ).
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Minimum Eigenvalue Oracle (MEO)

Inputs: Symmetric H ∈ Rn×n, scalar M with λmax(H) ≤ M, and ε > 0;
Set parameter δ ∈ [0, 1);
Outputs: Estimate λ of λmin(H) such that λ ≤ −ε/2, and vector v
with ‖v‖ = 1 such that v>Hv = λ OR certificate that λmin(H) ≥ −ε.

(If the certificate is output, it is false with probability δ.)

Need MEO, as Modified CG alone may not suffice to identify negative
curvature directions, e.g. when ∇f (xk ) = 0 (a possible saddle point).

Can be implemented with randomized Lanczos. Theory from
[Kuczyński and Woźniakowski, 1992, Kuczyński and Woźniakowski, 1994]
shows that this requires Õ((Lg/ε)

1/2) matrix-vector multiplications with H.
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Line-Search Newton-CG (Step k)
if ‖∇f (xk )‖ > εg then

Call CG to obtain d and step type;
if step type = “negative curvature” then

Scale and flip sign of d to get dk ;
else {step type is “approx damped Newton”}

dk ← d ;
end if

else
Call MEO to output v ;
if MEO certifies that λmin(∇2f (xk )) ≥ −εH then

Terminate;
else

Scale and flip sign of v to get dk ; (negative curvature direction)
end if

end if
Backtrack to find αk s.t. f (xk + αk dk ) < f (xk )− η

6α
3
k‖dk‖3;

xk+1 ← xk + αk dk ;
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Operation Complexity Result

If εH = ε
1/2
g , the method finds an approximate 2oN point in

Õ(ε
−7/4
g | log δ|) operations (with δ = probability of failure).

Also, Õ(ε
−7/4
g ) operations needed to find a point satisfying approximate

1oN conditions ‖∇f (x)‖ ≤ εg , with no probability of failure: deterministic!

(Õ hides log factors.)

Independent of dimension n, for large n. (But the constants in Õ depend
on Lipschitz constants.)
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1b. Trust-Region Newton-CG

Trust-region Newton methods for minimizing smooth f solve at k :

sk = arg min
‖s‖≤δk

mk (s) := ∇f (xk )T s + 1
2 sT∇2f (xk )s,

where δk is the trust-region (TR) radius.

Define ratio ρk of actual to predicted decrease in f :

ρk :=
f (xk )− f (xk + sk )

mk (0)−mk (sk )
.

If ρk ≥ η (for some small positive η), take step xk+1 = xk + sk and
choose δk+1 > δk . Otherwise decrease δk and compute a new sk .

Line-search methods choose direction first, then steplength.

Trust-region methods choose steplength bound first, then direction.
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Steihaug’s method (1980)
Steihaug (1980) applies CG to minimization of model mk (s).

Start from s = 0;

If it crosses the TR boundary, stop at the TR boundary and return;

If negative curvature direction in ∇2f (xk ) is detected, move along
that direction to the TR boundary, then return.

If TR boundary does not interfere, keep iterating to the minimum of
mk . (At most n iterations.)

Properties:

Popular and practical.

First step of CG is to the “Cauchy point,” which is enough to
guarantee overall convergence to a first-order point.

Each CG step reduces model mk , and moves further away from 0.

(No second-order guarantees; method does not move away from a
saddle point.)

No complexity guarantees.
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TR Newton-CG: Modifying for Complexity Guarantees

[Curtis et al., 2019]: Keep the spirit of Steihaug’s method, but modify to
enable convergence guarantees.

Add regularization term to model function:

mk (s) := ∇f (xk )T s + 1
2 sT∇2f (xk )s + εHsT s.

Use the same CG method as in the line-search method, but with
explicit cap on the number of iterations, and modified to stay inside
the trust region.

Add the minimum eigenvalue oracle (MEO) to check explicitly for
negative curvature. Such directions are almost always found in CG, so
in practice MEO is usually invoked only as a final check, at the last
iteration.
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Complexity Results

The approach broadly follows the line-search method:

CG called at every iteration to compute a step sk — either approx
solution to the damped trust-region subproblem OR negative
curvature direction.

MEO called as check when CG does not return a useful result and
gradient ∇f (xk ) is small (typically only at last iteration).

Complexity results are broadly the same as line-search too:

To find a point x with

‖∇f (x)‖ ≤ εg , ∇2f (x) � −εH I ,

with εH =
√
εg , and with high probability, need Õ(ε

−3/2
g ) iterations and

Õ(ε
−7/4
g ) operations.
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Computational Results: Iterations
Problems from the CUTEst set with dimension n ∈ [100, 1000] All variants
solve ≥ 101/109 problems within 104n iterations. εg = 10−5, εH = 10−2.5.

Variants include inexact (CG) and exact subproblems solution. (The
analyzed method is TR-Newton-CG-explicit — purple line.)
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Computational Results: Hessian-vector products
Two variants have damped subproblems, consistent with our analysis;
the others omit the damping.
Two variants have explicit caps on CG iterations; the other two don’t.

The damped variants use slightly more CG iterations.
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1c. Matrix Optimization with Strict Saddles
Low-Rank Matrix Problems: Want to find a rank r solution to the matrix
optimization problem:

min
X∈Rn×m

f (X ), subject to rank(X ) = r ,

Matrix completion:

min
X

1

2
‖(X − X ∗)Ω‖2

F , subject to X low-rank,

where Ω is the set of observed entries and X ∗Ω are given.

Matrix sensing:

min
X

1

2
‖A(X − X ∗)‖2, subject to X low-rank,

where A : Rn×m → Rp is a known linear measurement operator and
A(X ∗) ∈ Rp is given.
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Reformulation and Strict Saddle Property
Commonly reformulated in terms of U ∈ Rn×r and V ∈ Rm×r :

min
W

F (W ) := f (UV T ) where W =

[
U
V

]
∈ R(n+m)×r .

Add a regularization term to eliminate scaling ambiguity:

G (W ) = F (W ) + 1
8‖U

T U − V T V ‖2
F .

While nonconvex, this formulation satisfies the robust strict saddle
property: For any W ∈ R(n+m)×r at least one of the following holds:

1 W is in the neighborhood of a local minimizer W ∗ and G (W ) obeys
a regularity condition for all W in this neighborhood (for α, β > 0):

〈∇G (W ),W −W ∗〉 ≥ α dist(W ,W ∗)2 + β‖∇G (W )‖2
F .

2 λmin(∇2G (W )) ≤ −γ; or

3 ‖∇G (W )‖F ≥ ρ.
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Related Work

We use the global geometry of [Zhu et al., 2017].

Spectral Initialization: Specialized initialization followed by gradient
descent. Overall complexity is cost of initialization (e.g. a rank r SVD)
plus O(log max{ε−1

g , ε−1
H }) iterations of gradient descent.

Nonconvex Optimization: Descent method with a saddle point escaping
mechanism. When the strict saddle parameters are known at runtime,
complexity of gradient descent with occasional perturbations is
O(log max{ε−1

g , ε−1
H }).

Issue: Strict saddle parameters for low-rank matrix problems depend on
the singular values of the optimal solution — so we can’t realistically
assume advance knowledge.

Question: Can we design an algorithm without expensive initialization
that does not depend on the strict saddle parameters with a worst case
complexity of O(log max{ε−1

g , ε−1
H })?
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Approach

Maintain γk as an upper estimate of strict saddle parameter γ
(separation of λmin∇2G (W ) from 0 around strict saddles).

Define estimates of the regularity parameters αk and βk (used in
Local Phase) in terms of γk .

Use these estimates to check the large gradient condition 3 and the
large negative curvature condition 2.

If either of these are satisfied, the appropriate type of step is taken.

Otherwise, we enter the Local Phase, within which gradient descent
on G converges at a linear rate.

(If we entered the local phase prematurely — because our estimate γk

was too large — we return to the main algorithm expeditiously.)
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Line-Search Algorithm

initial point W 0; initial guess γ0 ≥ σr (X ∗);
Iteration k :
if ‖∇G (W k )‖F ≥ γ

3/2
k then {Large Gradient; Steepest Descent}

Find W k+1 by backtracking on −∇G (W k ); γk+1 ← γk ;
else

Call MEO to approximate λmin(∇2G (W k ));
if MEO certifies λmin(∇2G (W k )) ≥ −γk then {Local Phase}
if Local Phase successful then

TERMINATE;
else
γk+1 ← γk/2;

end if
else {MEO Found Negative Curvature Direction Dk}

Find W k+1 by backtracking on Dk ;
γk+1 ← γk ;

end if
end if
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MEO: A Complication?

The usual MEO implementation based on randomized Lanczos introduces
a term O(ε−1/2) into the complexity (for finding a direction with curvature
less than −ε in ∇2G (W )).

This seems to destroy our hope of log ε operation complexity!

But we note two things:

1 We can bound the curvature below in terms of easily evaluated terms:

λmin(∇2G (W )) ≥ −2‖∇f (X )‖F − 1
2‖U

T U − V T V ‖2,

and use this to monitor convergence.

2 When we call MEO, we seek negative curvatures of −1
2γk , which is

independent of εH ! Thus the cost of MEO is bounded by log γ−1.

Conclusion: MEO does not mess up the operation complexity after all.
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Complexity Results
When a large gradient or large negative curvature step is taken, get

G (W k+1) ≤ G (W k )−O(γ3
k ).

γk never gets reduced below 1
2γ.

Theorem [O’Neill and Wright, 2020]

W.h.p. the algorithm terminates in at most

O

(
σr (X ∗)−3 +

log max{ε−1
g , ε−1

H }
log(1/(1− σr (X ∗)/Lg ))

)

iterations at an approximate second-order point, where σr (X ∗) is the r -th
singular value at the optimal solution X ∗ and Lg is the Lipschitz constant
of ∇F (W ). Operation complexity is

O

(
min

{
(n + m)rσr (X ∗)−3, σr (X ∗)−7/2

}
+

log max{ε−1
g , ε−1

H }
log(1/(1− σr (X ∗)/Lg ))

)
.
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2. Nonnegativity Bounds: Optimality Conditions
The most elementary inequality constrained problem.

min
x≥0

f (x)

First-order conditions: 0 ≤ x ⊥ ∇f (x) ≥ 0.

Less tersely: Can partition {1, 2, . . . , n} = A ∪ I ∪ D such that

xi = 0, ∇i f (x) > 0 for i ∈ A (active);
xi > 0, ∇i f (x) = 0 for i ∈ I (inactive);
xi = 0, ∇i f (x) = 0 for i ∈ D (degenerate).

The strongest 2oN conditions are that v T∇2f (x∗)v ≥ 0 for v such that

S2 = {vi = 0, i ∈ A; vi ≥ 0, i ∈ D}.
But it can be NP-hard to check this condition. e.g. f (x) := xT Qx for
symmetric Q. Satisfies first-order conditions with D = {1, 2, . . . , n}. But
in this case 2oN conditions = copositivity of Q.

The standard “cop-out” is to aim for a weaker form of 2oN conditions:

[∇2f (x∗)]II � 0.
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2a. Log-Barrier Method: Approximate Optimality

Define x̄ = min(x , 1) and X̄ = diag(x̄).

We work with the following approximate 2oN conditions (similar to
[Haeser et al., 2018], except that they use X instead of X̄ ).

Approx first-order: x > 0, ∇f (x) > −ε1, ‖X̄∇f (x)‖∞ ≤ ε,
Approx second-order: X̄∇2f (x)X̄ � −

√
εI .
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Log-Barrier Approximation

We reduce the bound-constrained problem to unconstrained minimization
of the log-barrier function:

φµ(x) := f (x)− µ
n∑

i=1

log(xi )

for some µ > 0. Only defined on the interior of the set x ≥ 0.

We minimize this for a single (small) value of µ, chosen so that
near-optimal second-order points for φµ satisfy the approximate
second-order conditions for the bound-constrained problem.

Approach [O’Neill and Wright, 2019]: Use the Newton-CG approach for
unconstrained minimization — modified to ensure positivity of all iterates
xk and well conditioned linear systems — to minimize this function.
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Modifying Newton-CG for the Log-Barrier Function

Gradient and Hessian of the log-barrier function are:

∇φµ(x) = ∇f (x)− µX−1e and ∇2φµ(x) = ∇2f (x) + µX−2.

Modify Newton-CG as follows:

Fix µ = 1
4ε.

Precondition / scale the Newton equations with the diagonal X̄ .

Keep iterates interior to the nonnegative orthant with a
“fraction-to-the-boundary” rule:

xk + dk ≥ (1− β)xk , for fixed β ∈ [
√
ε, 1).

Decrease in terms of optimality conditions: Add extra termination
test to Modified CG (‖r j‖∞ ≤ ζ̄µ).
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Log-Barrier Newton-CG
if Not first-order optimal then

Call Modified CG with H = X̄k∇2φµ(xk )X̄k and g = X̄k∇φµ(xk );
if step type = “negative curvature” then

Scale d to stay interior and flip sign to get dk ;
else {step type is “damped Newton”}

Scale d to stay interior to get dk

end if
else

Call MEO with H = X̄k∇2f (xk )X̄k to output v ;
if MEO certifies that λmin(X̄k∇2f (xk )X̄k ) ≥ −

√
ε then

Terminate;
else {direction of sufficient negative curvature found}

Scale v to stay interior and flip sign to get dk ;
end if

end if
Line Search: Require φµ(xk + αk X̄k dk ) < φµ(xk )− η

6α
3
k‖dk‖3;

xk+1 ← xk + αk X̄k dk ;
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Theorem [O’Neill and Wright, 2019]

Assume f smooth and bounded below, and we use Log-Barrier Newton-CG
to seek an approximate second-order point.

Iteration complexity is K̄2 = Õ
(
nε−1/2 + ε−3/2

)
with probability at

least (1− δ)K̄2 .

Operation complexity is Õ(nε−3/4 + ε−7/4) for large n and Õ(nε−3/2)
for smaller n.

The “n” term seems to be an unavoidable consequence of using the
log-barrier function. Best previous result is Õ(nε−3/2) — we do
better in the “large n” case.

If we assume a priori that {xk} is bounded, get Õ(ε−7/4) operation
complexity.

Complexities to get an approximate first-order point are the same, but
without the possibility of failure in MEO.

Wright (UW-Madison) Nonconvex Optimization Sep 2020 38 / 50



2b. Projected Newton-CG
Bounds on a subset I ⊂ {1, 2, . . . , n} of the components of x :

min f (x) subject to xi ≥ 0 for all i ∈ I.

For feasible x and small positive threshold ε, define active set I active(x)
and free set I free(x):

I active(x) := {i ∈ I | 0 ≤ xi ≤
√
ε}

I free(x) := {i ∈ I | xi >
√
ε} ∪ Ic

Define diagonal scaling matrix S(x) to have ith diagonal 1 when
i ∈ I free(x) and xi when i ∈ I active(x).

Approx first-order conditions at feasible x :

‖S(x)∇f (x)‖ ≤ 2ε,

∇i f (x) ≥ −ε, i ∈ I free(x),

∇i f (x) ≥ −ε3/4, i ∈ I active(x).

Approx second-order condition: S(x)∇2f (x)S(x) � −
√
εI .
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Projected Newton-CG: Details

Use g k = ∇f (xk ), Hk = ∇2f (xk ), Sk = S(xk );
g k

active, Hk
active, Sk,active are the parts corresponding to I active(xk ).

1 If ‖g k
free‖ > ε, apply Modified CG to (Hk

free + 2
√
εI )d = −g k

free to
obtain either an approximate reduced Newton direction or negative
curvature direction dfree. Fill out with zeros to get dk ∈ Rn.

2 Else If g k
i < −ε3/4 for some i ∈ I active(xk ) or ‖Sk,activeg k

active‖ > ε, set
dk = −g k (negative gradient).

3 Else call MEO with Sk Hk Sk . If a direction d found with
dT (Sk Hk Sk )d < −(

√
ε/2)‖d‖2, search along Sk d (scaled negative

curvature).

For each direction dk , obtain steplength α by backtracking along the
projected path: P(xk + αdk ), where P(·) is projection onto feasibility.

An approach like this investigated for convex QP in [Wright, 1990] and
general nonconvex in [Lin and Moré, 1999].
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Projected Newton-CG: Result

Theorem [Xie and Wright, 2020]

The algorithm will terminate at a point satisfying the approximate
first-order conditions in O(ε−3/2) iterations. With high probability, the
same iteration complexity holds for the approximate second-order
conditions.

Operation complexity (gradients and Hessian-vector products) is a factor
of O(ε−1/4) greater.

No explicit dependence on dimension n. (But there is dependence on
Lipschitz constants.)

Similar results as for the unconstrained case!
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3. Nonconvex Optimization with Equality Constraints

min f (x) s.t. c(x) = 0,

where f : Rn → R is smooth, and c : Rn → Rm (m ≤ n) is a smooth
vector function of equality constraints.

∇c(x) ∈ Rn×m is the matrix of first partial derivatives of c .

Approx first-order (ε-1o):

‖∇f (x) +∇c(x)λ‖ ≤ ε, ‖c(x)‖ ≤ ε.

Approx second-order (ε-2o):

dT

(
∇2f (x) +

m∑
i=1

λi∇2ci (x)

)
d ≥ −ε‖d‖2,

for any d ∈ Rn such that ∇c(x)T d = 0.
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3a. Proximal Augmented Lagrangian (PAL) algorithm
The augmented Lagrangian is

Lρ(x , λ) , f (x) + λT c(x) +
ρ

2
‖c(x)‖2,

where ρ > 0 and λ , (λ1, . . . , λm)T .

PAL Algorithm:

0. Initialize x0, λ0 and fix ρ > 0, β > 0; Set k := 0;

1. Update xk : Find approximate solution xk+1 to

argmin Lρ(x , λk ) +
β

2
‖x − xk‖2;

2. Update λk : λk+1 := λk + ρc(xk+1);

3. If termination criterion is satisfied, STOP; otherwise, k := k + 1 and
go to Step 1.

[Xie and Wright, 2019]
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Complexities and Assumptions
PAL involves two levels of iteration: the outer iteration, and the inner
iterations to solve the nonconvex unconstrained subproblem.

Three types of complexity:

Outer iteration complexity

Total iteration complexity: total number of iterations of the inner
loop. (a.k.a. “evaluation complexity”)

Operation complexity: bound on number of gradient evaluations /
Hessian-vector products.

The assumptions vary between results, but include the following:

f and c are twice Lipschitz continuously differentiable.

f (x) + (ρ0/2)‖c(x)‖2
2 has compact level sets, for some ρ0 ≥ 0.

∇c(x) has uniformly full rank m for all x in a compact level set.

Note: We don’t assume that β is large enough to make the subproblem
convex i.e. swamp out the negative curvature in Lρ.
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PAL Outer Iteration Complexity

For any ε > 0 and η ∈ [0, 2], choose

Prox parameter β = εη/2 (small)

Penalty parameter ρ = O(ε−η) and above some threshold.

Outer iterations for ε-1o: Assume that an approx first-order point is found
for each subproblem with gradient ≤ 1

2ε, and ‖c(x0)‖ = O(εη/2). Then an
ε-1o solution is found in O(εη−2) outer iterations.

η = 2: need only O(1) outer iterations! (But then the subproblems are
extremely ill conditioned.)

η = 0: (settings of β and ρ are independent of ε), get O(ε−2) outer
iterations.

Outer iterations for ε-2o: Require η ∈ [1, 2], and additionally that
subproblem solutions have Hessian � −1

2εI . Then an ε-2o point is found
in O(εη−2) outer iterations.
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PAL Total Iteration and Operation Complexity
Use line-search Newton-CG to solve the subproblems inexactly. Then get
estimates of total iteration complexity and operation complexity. Require

∇xLρ(xk+1, λk ) + β(xk+1 − xk ) = r̃k+1,

∇2
xxLρ(xk+1, λk ) + βI � −1

2εI ,

with ‖r̃k‖ ≤ min(1/k, 1
2ε).

Total Iter Complexity: η ∈ [1, 2], ε-2o point w.h.p.:

Constraints Total Iter. Optimal

nonlinear O(ε−2η−5) O(ε−7) (η = 1)
linear O(εη−5) O(ε−3) (η = 2)

Operation Complexity: η ∈ [1, 2], ε-2o point w.h.p.:

Constraints Operations Optimal

nonlinear O(ε−5η/2−11/2) O(ε−8) (η = 1)

linear O(εη/2−11/2) O(ε−9/2) (η = 2)
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PAL: Choosing ρ

Recall that ρ = O(ε−η), but it also has to be above a certain threshold
(depending on many problem-dependent parameters).

Can wrap an outer loop around PAL in which ρ is increased by a constant
factor on each loop.

For each ρ, run PAL for the # of outer iterations predicted by the theory.
If an ε-2o point is not found by then, increase ρ and try again.

Increases total iteration complexity by a factor of only log ε.
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Related Work
There are many related works on nonconvex constrained optimization,
with complexity analyses of various types. See [Xie and Wright, 2020].

Often in more limited settings (e.g. linear constraints, approximate
first-order optimality, iteration / evaluation complexity only, explicit
second derivatives, use original feasible set in subproblems).

Augmented Lagrangian type: [Grapiglia and Yuan, 2019],
[Birgin and Mart́ınez, 2019]

(Modified) Proximal AL (linear constraints): [Zhang and Luo, 2020],
[Hajinezhad and Hong, 2019]

Other algorithms: Exact penalty [Cartis et al., 2011], two-phase
target-following [Cartis et al., 2014, Cartis et al., 2019b] and others.

Methods that use the original feasible set in the subproblems: SQP
[Nouiehed et al., 2018], cubic regularization
[Cartis et al., 2015, Cartis et al., 2020a], active set
[Birgin and Mart́ınez, 2018], interior-point [Haeser et al., 2018].
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Conclusions

Second-order necessary points are of interest in some new applications

Complexity analysis of (nearly) practical methods for finding such
points is interesting too

Significant open questions, particularly surrounding nonconvex
nonlinear constrained:

I primal-dual interior-point methods;
I exact penalty functions;
I can some “impractial” methods with good complexity inspire

“practical” methods?

Thanks to OWOS Organizers!
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