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The Linearly Constrained Convex Optimization Model

We focus on the linearly constrained convex optimization problem defined by

(P) min
x∈Rn
{Ψ (x) : Ax = b} ,

where

Ψ : Rn → (−∞,+∞] is proper, lsc and σ-strongly convex with σ ≥ 0.

A : Rn → Rm is a linear mapping.

b ∈ Rm.

The feasible set of problem (P) is denoted by F = {x ∈ Rn : Ax = b} 6= ∅.

Main goal. To unify, simplify, and improve the convergence rate analysis
of Lagrangian-based methods for solving model (P).

Main contribution. A framework of Faster LAGrangian (FLAG) methods
with new non-ergodic rate of convergence results!
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Important Particular Instances of Model (P)
Linear composite model

min
u∈Rp
{f (u) + g (Au)} = min

u∈Rp,v∈Rq
{f (u) + g (v) : Au = v} ,

where f : Rp → (−∞,+∞] and g : Rq → (−∞,+∞] are proper, lower semi-continuous
and convex functions, and A : Rp → Rq is a linear mapping.

Block linear constrained model

min
u∈Rp,v∈Rq

{f (u) + g (v) : Au + Bv = b} ,

where f : Rp → (−∞,+∞] and g : Rq → (−∞,+∞] are proper, lower semi-continuous
and convex functions, A : Rp → Rm and B : Rq → Rm are linear mappings. It fits into
model (P), with x =

(
uT , vT )T

, Ψ (x) := f (u) + g (v) and Ax = Au + Bv .

Additive smooth/non-smooth composite objective

min
x∈Rn
{f (x) + h (x) : Ax = b} ,

where f : Rn → (−∞,+∞] is a proper, lsc and convex function, while h : Rn → R is a
continuously differentiable function with a Lipschitz continuous gradient.
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Preliminaries on the Convex Model (P)

We recall problem (P)
(P) min

x∈Rn
{Ψ (x) : Ax = b} ,

The corresponding Lagrangian and augmented Lagrangian, are given by:

L (x , y) = Ψ (x) + 〈y ,Ax − b〉 ,

and, for any ρ > 0,
Lρ (x , y) = L (x , y) +

ρ

2
‖Ax − b‖2 .

Assumption
The Lagrangian L has a saddle point, that is, there exists (x∗, y∗) such that

L (x∗, y) ≤ L (x∗, y∗) ≤ L (x , y∗) , ∀ x ∈ Rn, ∀ y ∈ Rm.

It can be warranted, for instance, under standard CQ on the problem’s data.
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Lagrangian-based Methods for Model (P)

The starting point is that all Lagrangian-based methods update a couple (x , y) by

x+ ∈ P (x , y) ,

y+ = y + µρ
(
Ax+ − b

)
,

where µ > 0 is a scaling parameter and P is a primal algorithmic map.

Augmented Lagrangian (Hestenes (69), Powell (69))

1. Input: µ > 0.

2. Initialization: Start with any (x , y) ∈ Rn × Rm.

3. Main step: Given (x , y), update the new point
(
x+, y+

)
via:

x+ ∈ argmin
{
Lρ (ξ, y) : ξ ∈ Rn} ,

y+ = y + µρ
(
Ax+ − b

)
.

In this case, P is an exact minimization applied on the augmented Lagrangian.
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The starting point is that all Lagrangian-based methods update a couple (x , y) by

x+ ∈ P (x , y) ,

y+ = y + µρ
(
Ax+ − b

)
,

where µ > 0 is a scaling parameter and P is a primal algorithmic map.

Proximal Linearized Augmented Lagrangian
1. Input: M � 0 and µ > 0.

2. Initialization: Start with any (x , y) ∈ Rn × Rm.

3. Main step: Given (x , y), update the new point
(
x+, y+

)
via:

x+ ∈ argmin
{

Ψ (ξ) +
〈
ξ,AT (y + ρ (Ax − b))

〉
+

1
2
‖ξ − x‖2

M : ξ ∈ Rn
}
,

y+ = y + µρ
(
Ax+ − b

)
.

In this case, P is a proximal gradient applied on the augmented Lagrangian.
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Lagrangian-based Methods for Block Models

As discussed above, Model (P) covers the following block model

min
(u,v)∈Rn

{f (u) + g (v) : Au + Bv = b} .

Note: Here, we only need to assume that one of the functions is strongly convex.

The block structure can be exploited in designing Lagrangian-based methods.

Alternating Direction Method of Multipliers (ADMM) (Glowinski and Marroco (75),

Gabay and Mercier (76))

1. Input: µ > 0.

2. Initialization: Start with any (u, v , y) ∈ Rn × Rm × Rm.

3. Main step: Given (u, v , y), update the new point
(
u+, v+, y+

)
via:

u+ = argmin
{
Lρ (ξ, v , y) : ξ ∈ Rn} ,

v+ = argmin
{
Lρ
(
u+, η, y

)
: η ∈ Rm} ,

y+ = y + µρ
(
Au+ + Bv+ − b

)
.

In this case, P is an alternating minimization applied on Lρ.
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min
(u,v)∈Rn

{f (u) + g (v) : Au + Bv = b} .

In this case, the augmented Lagrangian is given by

Lρ (u, v , y) = f (u) + g (v) + 〈y ,Au + Bv − b〉+
ρ

2
‖Au + Bv − b‖2 .

Proximal Linearized ADMM (Chambolle and Pock (11), He and Yuan (12))

1. Input: M1,M2 � 0 and µ > 0.

2. Initialization: Start with any (u, v , y) ∈ Rn × Rm × Rm.

3. Main step: Given (u, v , y), update the new point
(
u+, v+, y+

)
via:

u+ = argminξ

{
f (ξ) +

〈
AT (y + ρ (Au + Bv − b)) , ξ − u

〉
+

1
2
‖ξ − u‖2

M1

}
,

v+ = argminη

{
g (η) +

〈
BT (y + ρ

(
Au+ + Bv − b

))
, η − v

〉
+

1
2
‖η − v‖2

M2

}
,

y+ = y + µρ
(
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)
.

In this case, P is a alternating proximal gradient applied on Lρ.
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Nice Primal Algorithmic Map

Adopting the following point of view of Lagrangian-based methods:

x+ ∈ P (x , y) ,

y+ = y + µρ
(
Ax+ − b

)
.

Definition (Nice primal algorithmic map)

Given ρ, t > 0. A primal algorithmic map Primt : Rn × Rm → Rn that generates
z+ ∈ Primt (z, λ), is called nice, if there exist δ ∈ (0, 1] and P,Q � 0, such that for
any ξ ∈ F we have

Lρt

(
z+, λ

)
−Lρt (ξ, λ) ≤ τt ∆P

(
ξ, z, z+)−τt

2
∥∥z+ − z

∥∥2
Q−

σ

2
∥∥ξ − z+

∥∥2−δρt

2
∥∥Az+ − b

∥∥2

where ρt = ρ and τt = 1 (when σ = 0) or ρt = ρt and τt = t (when σ > 0).

Notations.
For any matrix P � 0 and any three vectors u, v ,w ∈ Rn:

∆P (u, v ,w) :=
1
2
‖u − v‖2

P −
1
2
‖u − w‖2

P .

When P ≡ In, the identity matrix, we simply write ∆P (u, v ,w) ≡ ∆ (u, v ,w).
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Examples of Nice Primal Algorithmic Maps

Lemma (Proximal augmented Lagrangian is nice)
Let M � 0, then the algorithmic map defined by

z+ = Primt (z, λ) ≡ argminξ
{

Ψ (ξ) + 〈λ,Aξ − b〉+
ρt

2
‖Aξ − b‖2 +

τt

2
‖ξ − z‖2

M

}
,

is nice with δ = 1 and P = Q = M.

Lemma (Proximal linearized AL is nice)

Let M � ρATA, then the algorithmic map defined by

z+ = Primt (z, λ) ≡ argminξ
{

Ψ (ξ) + 〈λ,Aξ − b〉+ ρt 〈Az − b,Aξ〉+
τt

2
‖ξ − z‖2

M

}
,

is nice with δ = 1 and P = Q = M − ρATA � 0.

All well-known Lagrangian-based methods admit a nice primal algorithmic maps!

More examples later.
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A Unified Framework
FLAG – Faster LAGrangian based method

1. Input: Problem data [Ψ,A, b, σ], and a nice primal algorithmic map Primt (·).
2. Initialization: Set t0 = 1, µ ∈ (0, δ] and ρ > 0. Start with any

(
x0, z0, y0).

3. Iterations: Generate
{(

xk , zk , y k)}
k∈N and {tk}k∈N via

3.1. If σ = 0, let ρk = ρ, or, if σ > 0, let ρk = ρtk . Compute

λk = yk + ρk (tk − 1)
(
Axk − b

)
.

3.2. Update the sequence
{(

xk , zk , yk)}
k∈N by

zk+1 ∈ Primk

(
zk , λk

)
,

yk+1 = yk + µρk

(
Azk+1 − b

)
,

3.3. Update the sequence {tk}k∈N by solving the equation tp
k+1 − tp

k = tp−1
k+1 , i.e.,

tk+1 =


tk + 1, p = 1 (convex case),(

1 +
√

1 + 4t2
k

)
/2, p = 2 (strongly convex case).
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FLAG - A Few Comments

Setting tk ≡ 1 in FLAG, implies ρk ≡ ρ, λk ≡ y k , and xk ≡ zk , thus recovering the
classical basic Lagrangian-based methods.

A main new feature of FLAG is the auxiliary variable λk defined by:

λk = y k + ρk (tk − 1)
(
Axk − b

)
,

which enable us to derive the new faster non-ergodic rate of convergence results!

As we shall see, when λk coincides with y k , only ergodic type rates (classical
and fast) can be obtained.

The augmented parameter ρk and the prox parameter τk defined via tk :
tk+1 = tk + 1 ρk = ρ τk = 1, (convex case),

tk+1 = 1
2

(
1 +

√
1 + 4t2

k

)
ρk = ρtk τk = tk , (strongly convex case).

Primt is assumed to be nice primal algorithmic map and this is all we need to
guarantee rate of convergence results (classical and fast)!
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Types of Rate of Convergence Results

We focus on iteration complexity using the following two classical measures:

(i) Function values gap in terms of Ψ
(
xk)−Ψ (x∗).

(ii) Feasibility violation of the constraints of problem (P) in terms of
∥∥Axk − b

∥∥.

Other measures in the literature: Lagrangian,
∥∥xk − x∗

∥∥2
,
∥∥xk+1 − xk

∥∥2
, etc.

When discussing these measures, we also distinguish between rates expressed in
terms of the original produced sequence or of the ergodic sequence.

Ergodic O(1/N) rate of convergence result for the Linearized ADMM was proven
first in (He and Yuan (12)), (Chambolle and Pock (11)) and (Monteiro and Svaiter (13)).

Many more rate of convergence results in the literature! Mostly ergodic.

Non-ergodic O(1/N) result for
∥∥xk+1 − xk

∥∥2
(He and Yuan (15)).

Non-ergodic O(1/N2) result for
∥∥xk − x∗

∥∥2
, in the strongly convex setting

(Chambolle and Pock (11)).

Non-ergodic O(1/N) rate of convergence result in terms of function values and
feasibility violation for the specific Linearized ADMM (Li and Lin (19)).
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Main Results - Non-Ergodic Rate O(1/N2)

In the results below, we let c > 0 be a constant such that c ≥ 2 ‖y∗‖, where y∗ is an
optimal solution of the dual problem.

The strongly convex case σ > 0.

Theorem 1. (A fast non-ergodic function values and feasibility violation rates)

Let
{(

xk , zk , y k)}
k∈N be a sequence generated by FLAG. Suppose that σ > 0 and

0 � P � (σ/2) In. Then, for any optimal solution x∗ of problem (P), we have

Ψ
(

xN
)
−Ψ (x∗) ≤ Bρ,c (x∗)

2N2 and
∥∥∥AxN − b

∥∥∥ ≤ Bρ,c (x∗)
cN2 ,

where Bρ,c (x∗) := 4
(∥∥x∗ − z0

∥∥2
P + 1

µρ

(∥∥y0
∥∥+ c

)2
)

.
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Main Results - Non-Ergodic Rate O(1/N)

The convex case σ = 0.

Theorem 2. (A non-ergodic function values and feasibility violation rates)

Let
{(

xk , zk , y k)}
k∈N be a sequence generated by FLAG and suppose that σ = 0.

Then, for any optimal solution x∗ of problem (P), we have

Ψ
(

xN
)
−Ψ (x∗) ≤ Bρ,c (x∗)

2N
and

∥∥∥AxN − b
∥∥∥ ≤ Bρ,c (x∗)

cN
,

where Bρ,c (x∗) := 2
(∥∥x∗ − z0

∥∥2
P + 1

µρ

(∥∥y0
∥∥+ c

)2
)

.
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Ergodic Version

FLAG
1. Input: Problem data [Ψ,A, b, σ], and a nice primal algorithmic map Primt (·).
2. Initialization: Set t0 = 1, µ ∈ (0, 1 + δ] and ρ > 0. Start with any

(
z0, y0).

3. Iterations: Generate
{(

zk , y k)}
k∈N and {tk}k∈N via

3.1. Update the sequence
{(

zk , yk)}
k∈N by

zk+1 ∈ Primk

(
zk , yk

)
,

yk+1 = yk + µρk

(
Azk+1 − b

)
,

where ρk = ρ (if σ = 0), or ρk = ρtk (if σ > 0).
3.2. Update the sequence {tk}k∈N by

tk+1 =


1, (convex case),(

1 +
√

1 + 4t2
k

)
/2, (strongly convex case).

In the ergodic version, the sequences
{

xk}
k∈N and

{
λk}

k∈N are not used!
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Ergodic Rate of Convergence Results

Corollary (A fast ergodic function values and feasibility violation rates)

Let
{(

zk , y k)}
k∈N be a sequence generated by FLAG. Suppose that σ > 0 and

0 � P � (σ/2) In. Then, for any optimal solution z∗ of problem (P), the following holds
for the ergodic sequence z̄N = t−2

N−1

∑N−1
k=0 tk zk+1

Ψ
(

z̄N
)
−Ψ (z∗) ≤ Bρ,c (z∗)

2N2 and
∥∥∥Az̄N − b

∥∥∥ ≤ Bρ,c (z∗)
cN2 ,

where Bρ,c (z∗) := 4
(∥∥z∗ − z0

∥∥2
P + 1

µρ

(∥∥y0
∥∥+ c

)2
)

.

Corollary (An ergodic function values and feasibility violation rates)

Let
{(

zk , y k)}
k∈N be a sequence generated by FLAG with σ = 0 and tk = 1 for all

k ∈ N. Then, for any optimal solution z∗ of problem (P), the following holds for the
ergodic sequence z̄N = N−1∑N−1

k=0 zk+1

Ψ
(

z̄N
)
−Ψ (z∗) ≤ Bρ,c (z∗)

2N
and

∥∥∥Az̄N − b
∥∥∥ ≤ Bρ,c (z∗)

cN
,

where Bρ,c (z∗) := 2
(∥∥z∗ − x0

∥∥2
P + 1

µρ

(∥∥y0
∥∥+ c

)2
)

.
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Nice Primal Algorithmic Maps for Block Model

The notion of nice algorithmic map is flexible and easily adapt to the block setting.
Recalling the model

min
(u,v)∈Rn

{f (u) + g (v) : Au + Bv = b} .

In the block model, we can assume that either f or g is possibly strongly convex.
Here, without loss of generality, the σ-strong convexity is assumed in g.

Definition (Nice primal algorithmic map - Block version)

Given ρ, t > 0. A primal algorithmic map Primt : Rn × Rm → Rn that generates
z+ =

(
u+, v+

)
via z+ ∈ Primt (z, λ), is called nice, if there exist a parameter

δ ∈ (0, 1] and matrices P1,Q1 ∈ Sp
+ and P2,Q2 ∈ Sq

+ with P = (P1,P2) and
Q = (Q1,Q2), such that for any (ξ1, ξ2) ∈ F we have

Lρt

(
z+, λ

)
− Lρt (ξ, λ) ≤ ∆P1

(
ξ1, u, u+

)
−

1
2

∥∥u+ − u
∥∥2

Q1

+ τt ∆P2

(
ξ2, v , v+

)
−
τt

2

∥∥v+ − v
∥∥2

Q2
−
σ

2

∥∥ξ2 − v+
∥∥2

−
δρt

2

∥∥Az+ − b
∥∥2
,

where τt = 1 and ρt = ρ (when σ = 0) or τt = t and ρt = ρt (when σ > 0).
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Iconic Lagrangian-based Methods Admit a Nice Primal Algorithmic Map!

Augmented Lagrangian Methods (classical, proximal, and prox-linearized)

Alternating Direction Method of Multipliers ADMM

Proximal ADMM

Proximal Linearized ADMM

Chambolle-Pock Method

Proximal Jacobi Direction Method of Multipliers

Predictor Corrector Proximal Multipliers

For each method the explicit parameter δ and the matrices P,Q can be found!
(See details in paper.)

Meaning, they all admit Nice Primal Algorithmic Map!

Therefore, our non-ergodic convergence rate results can be applied.

In addition, nice primal algorithmic maps, can be also be identified for problems with
composite objective...
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Model (P) with Additional Smooth Function

We consider the following model

min
x∈Rn
{f (x) + h (x) : Ax = b} ,

where f : Rn → (−∞,+∞] and h : Rn → R is a proper, lower semi-continuous and
σ-strongly convex (with σ ≥ 0) while h is convex and continuously differentiable with
L-Lipschitz continuous gradient.

Lemma (Proximal AL is nice)
Let M � LIn, the primal algorithmic map Primt (·) defined by

z+ = argminξ
{

f (ξ) + 〈∇h (z) , ξ〉+ 〈λ,Aξ − b〉+
ρt

2
‖Aξ − b‖2 +

τt

2
‖ξ − z‖2

M

}
,

is nice with δ = 1 and P = M and Q = M − LIn.

Lemma (Proximal Linearized AL is nice)

Let M � ρATA+ LIn, the primal algorithmic map Primt (·) defined by

z+ = argminξ
{

f (ξ) + 〈∇h (z) , ξ〉+ 〈λ,Aξ − b〉+ ρt 〈Az − b,Aξ〉+
τt

2
‖ξ − z‖2

M

}
,

is nice with δ = 1 and P = M − ρATA and Q = M − ρATA− LIn.
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To summarize

A Recipe for Rate of Convergence of Lagrangian-based Methods

(i) Formulate the problem at hand via model (P), i.e., identify the relevant problem
data [Ψ,A, b, σ]. The value of σ will determine the type of rate that can be
achieved (classical or fast).

(ii) Define the desired iterative step(s) of the primal algorithmic map Primt (·)
applied on the augmented Lagrangian Lρt (·) of model (P).

(iii) Show that the defined primal algorithmic map is nice, i.e., determine the
parameter δ and the matrices P and Q.

(iv) Apply Theorem 1 (if σ > 0) or Theorem 2 (if σ = 0) to obtain a faster
non-ergodic rate of convergence for the designed method.

Therefore, there is no need any more to enter into the machinery of the proofs!
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For more information and results see

Sabach, S. and Teboulle, M.: Faster Lagrangian-Based Methods in Convex
Optimization, SIAM Journal on Optimization (2022).

Thanks for your attention!

Email: ssabach@technion.ac.il

Website: http://ssabach.net.technion.ac.il/
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