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Simple Bilevel Optimization
A simple bilevel optimization problem is defined as:

w" = min w(x) (BLP)

where X* is the set of minimizers of the convex problem (P)

ot = min o(x) (P)
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A simple bilevel optimization problem is defined as:

w* = min w(x) (BLP)

xeX*

where X* is the set of minimizers of the convex problem (P)

.
© —gﬁgnw(X)

Background:

@ We are concerned with the case where both w and ¢ are convex.
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Simple Bilevel Optimization

A simple bilevel optimization problem is defined as:

w* = min w(x) (BLP)

xeX*

where X* is the set of minimizers of the convex problem (P)
" = min o(x) (P)
Background:
@ We are concerned with the case where both w and ¢ are convex.
@ Used to solve underdetermined problems in ML and signal processing.

@ Example: Finding an optimal solution to

i = ||Ax — b||?
)pg;Rr}sO(X) [Ax — b|

which is the sparsest: w(x) = ||x||1, the densest: w(x) = ||x||3.
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e ¢ is usually not “simple”, first-order methods such as (sub-)gradient
projection cannot be used.
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@ The (BLP) is equivalent to:

min  w(x)

st p(x) < (BLPY)

e ¢ is usually not “simple”, first-order methods such as (sub-)gradient
projection cannot be used.

@ This problem does not satisfy regularity conditions.

o Therefore strong duality and KKT conditions cannot be used.
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Challenges

@ The (BLP) is equivalent to:

min  w(x)

st p(x) < (BLPY)

@ is usually not “simple”, first-order methods such as (sub-)gradient
projection cannot be used.

This problem does not satisfy regularity conditions.

Therefore strong duality and KKT conditions cannot be used.

Even if ¢* is only approximated to high accuracy, the problem will be
“almost irregular”, which leads to numerical issues.

Shimrit Shtern FO Bilevel- ITALEX



Regularization

@ One of the well known methods to approximate bilevel problems is via
regularization

min (x) + a(x) (Ra)
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Regularization

@ One of the well known methods to approximate bilevel problems is via
regularization

min ¢(x) + aw(x) (Ra)
@ For example, for the case ¢(x) = ||Ax — b||?

o When w(x) = ||x||> (Tikhonov regularization) - ridge regression.
e When w(x) = ||x|]1 - LASSO.

Shimrit Shtern FO Bilevel- ITALEX



Regularization

@ One of the well known methods to approximate bilevel problems is via
regularization

min ¢(x) + aw(x) (Ra)
@ For example, for the case ¢(x) = ||Ax — b||?

o When w(x) = ||x||> (Tikhonov regularization) - ridge regression.
e When w(x) = ||x|]1 - LASSO.

o Equivalent to a Lagrangian relaxation of the problem

min {p(x) : w(x) < w'}.
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Regularization

@ One of the well known methods to approximate bilevel problems is via
regularization

min o(x) + aw(x) (Ra)
@ For example, for the case ¢(x) = ||Ax — b||?

e When w(x) = ||x||> (Tikhonov regularization) - ridge regression.
e When w(x) = ||x||1 - LASSO.

o Equivalent to a Lagrangian relaxation of the problem

min {p(x) : w(x) < @'},

@ Unclear how to find the right o > 0 when w* is unknown.
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Regularization

@ One of the well known methods to approximate bilevel problems is via
regularization

min o(x) + aw(x) (Ra)
@ For example, for the case ¢(x) = ||Ax — b||?

e When w(x) = ||x||> (Tikhonov regularization) - ridge regression.
e When w(x) = ||x||1 - LASSO.

o Equivalent to a Lagrangian relaxation of the problem

min {p(x) : w(x) < @'},

@ Unclear how to find the right o > 0 when w* is unknown.

@ Solving a sequence of (R,) for decreasing values of o may be
computationally demanding.
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First-Order Methods for Iterative Regularization

@ A class of methods that at iteration k perform one step of an iterative
optimization algorithm on the problem (R,,)

min ¢(x) + axw(x)

where oy — 0 as k — oo.
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First-Order Methods for Iterative Regularization

@ A class of methods that at iteration k perform one step of an iterative
optimization algorithm on the problem (R,,)
min ¢(x) + aw(x)
xeRn

where oy — 0 as k — oo.

@ The methods differ by the assumptions on the problem and the type
of step performed.
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First-Order Methods for Iterative Regularization

@ A class of methods that at iteration k perform one step of an iterative
optimization algorithm on the problem (R,,)

min o(x) + apw(x)

where a — 0 as k — oo.

@ The methods differ by the assumptions on the problem and the type
of step performed.

o IR-PG[Solodov 2007]: Asymptotic convergence to the solution of
(BLP)
Assumptions: ¢(x) = f(x) + dc(x) where f(x) is Ls-smooth, C closed and
convex, and w is L,-smooth.
Step: Projected gradient x*™ = Proj(x* — t(VFf(x*) + axVw(x¥))) ,

te < [FE
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First-Order Methods for Iterative Regularization
@ A class of methods that at iteration k perform one step of an iterative
optimization algorithm on the problem (R,,)

min o(x) + akw(x)

where oy — 0 as k — 0.

@ The methods differ by the assumptions on the problem and the type
of step performed.

o IR-PG[Solodov 2007]: Asymptotic convergence to the solution of
(BLP)

o IR-1G [Amini and Yousefian 2019]: O(1/k%>=#), 3 € (0,0.5)
convergence of p(x).
Assumptions: ¢(x) = >, fi(x) + dc(x), fi proper, closed, and convex, C
convex and compact, w is strongly convex.
Step: Incremental projected subgradient.
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First-Order Methods for Iterative Regularization

@ A class of methods that at iteration k perform one step of an iterative
optimization algorithm on the problem (R,,)

min o(x) + apw(x)

where a, — 0 as k — oo.

@ The methods differ by the assumptions on the problem and the type
of step performed.

o IR-PGJSolodov 2007]: Asymptotic convergence to the solution of
(BLP)

o IR-1G [Amini and Yousefian 2019]: O(1/k%>=#), B € (0,0.5)
convergence of o(x).

@ SBP [Dutta and Pandit 2020]: Asymptotic.

Assumptions: Convexity.
Step: Proximal point (limited applicability)
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Other First-order Methods

@ Assuming

@ w is smooth and strongly convex.
o ¢(x) = f(x) + g(x) is composite function.
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Other First-order Methods

@ Assuming

@ w is smooth and strongly convex.
o ¢(x) = f(x) + g(x) is composite function.

@ The following methods provide a rate of convergence of ¢(x) to ¢*
and asymptotic convergence to the solution of (BLP)
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Other First-order Methods

@ Assuming

@ w is smooth and strongly convex.
o ¢(x) = f(x) + g(x) is composite function.

@ The following methods provide a rate of convergence of ¢(x) to ¢*
and asymptotic convergence to the solution of (BLP)

o MNG|[Beck and Sabach 2014]: Convergence rate of O(1/v/k).

Based on the notion of cutting-planes.
Requires optimizing w on the intersection of two half spaces in each iteration.
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Other First-order Methods

@ Assuming

e w is smooth and strongly convex.
e p(x) = f(x) + g(x) is composite function.

@ The following methods provide a rate of convergence of ¢(x) to ¢*
and asymptotic convergence to the solution of (BLP)

o MNG|[Beck and Sabach 2014]: Convergence rate of O(1/v/k).
o BiG-SAM][Sabach and Shtern 2017]: Convergence rate of O(1/k).

Based sequential averaging of the gradient step for w and proximal gradient
step for .

Extension to cases where w is a sum of Lipschitz continuous and smooth
functions.
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Other First-order Methods

@ Assuming

e w is smooth and strongly convex.
e p(x) = f(x) + g(x) is composite function.

@ The following methods provide a rate of convergence of ¢(x) to ¢*
and asymptotic convergence to the solution of (BLP)
o MNG|[Beck and Sabach 2014]: Convergence rate of O(1/v/k).

o BiG-SAM][Sabach and Shtern 2017]: Convergence rate of O(1/k).

o iBiG-SAM]|Shehu, Vuong, and Zemkoho 2021]: Asymptotic convergence.
Running an inertial extrapolation over BiG-SAM steps.
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Contribution

@ Motivation - w(:) = |||l1
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o We do not require w to be neither smooth nor strongly-convex.
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@ Motivation - w(-) = ||-|l1
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to solve (BLP):
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o Easily applied to /, norms.
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Contribution

@ Motivation - w(-) = ||-|l1

o |Terative Approximation and Level-set EXpansion (ITALEX) scheme
to solve (BLP):

o We do not require w to be neither smooth nor strongly-convex.

o Easily applied to /, norms.

e For any £ > 0 produces a solution x¥ such that

() <9 e, wx) - w" < O(Ve).
where e = O(1/k).
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Bilevel methods - comparison

Method p=Ff+g w properties Convergence Convergence
properties to px to w*

IR-PG [Solodov | Classical composite Smooth Asymptotic ~ Asymptotic

2007]

MNG [Beck and | Classical composite Smooth, strongly (0] (ﬁ) Asymptotic

Sabach 2014] convex

BiG-SAM Classical composite Smooth, strongly (0] (%) Asymptotic

[Sabach and Shtern convex

2017]

IR-IG [Amini and | f is a finite sum, Strongly convex (0] (,(05%5) Asymptotic

Yousefian 2019] g = dc, C compact B € (0,0.5)

SBP [Dutta and | General General Asymptotic ~ Asymptotic

Pandit 2020]

ITALEX Classical composite (0] %

[This 2=0 Norm-like function O (%) Super-

paper] optimal
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Reformulating (BLP)

@ The key idea: if w is a simple function we can compute
projection/linear oracle on its level set.
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Reformulating (BLP)

@ The key idea: if w is a simple function we can compute
projection/linear oracle on its level set.

@ For any a € R we can define the extended valued function

h(a) = min{p(x) + [x — 7|* :w(z) < a} (Pa)
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Reformulating (BLP)

@ The key idea: if w is a simple function we can compute
projection/linear oracle on its level set.

@ For any a € R we can define the extended valued function

h(a) = min{p(x) + [x — 7|* :w(z) < a} (Pa)

o We will approximately solve a sequence of (P,).
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Reformulating (BLP)

@ The key idea: if w is a simple function we can compute
projection/linear oracle on its level set.

@ For any a € R we can define the extended valued function

h(a) = min{p(x) + [x — z[* : w(z) < a} (Pa)
o We will approximately solve a sequence of (P,).

@ We will look for the smallest o such that h(«) is € close to ¢*.
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Approach

o ITerative Approximation and Level-set EXpansion is based on two
main operations:
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Approach

o ITerative Approximation and Level-set EXpansion is based on two
main operations:

@ Approximate h(«a) - the optimal value of (P,)

@ If h(«) is too big, then increase a
Expansion of the level set while maintaining o < w*.
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Approach

o ITerative Approximation and Level-set EXpansion is based on two
main operations:

@ Approximate h(«a) - the optimal value of (P,)

@ If h(«) is too big, then increase a
Expansion of the level set while maintaining o < w*.

Fooh - O\ |-
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ITALEX - General algorithm

Algorithm 1: ITALEX- General Scheme

Inputs <, 5 € [, " + 51,
ap < w*, x% € dom(yp), 2° € Lev,(ap)

Approximation oracle O“ ¥, Expansion oracle £¥,

forall k=1,2,... do
(pi, (xK,2K)) = O ((xk71, 2571), a1, B, 5)
. P k k|2 « =
if o(x*) + [|x* —2"]|* < @+ 5 then
return xX
else
ar = E(ak-1, 9, pk)
end if
end for
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ITALEX - General algorithm

Algorithm 2: ITALEX- General Scheme

Input: ¢, ¢ € [¢p*, 0" + 5],
ap < w*, x0 € dom(yp), 2° € Lev,(ao)
Approximation oracle O“ ¥, Expansion oracle £¥,
for all k=1,2,... do
(pk, (x*,25)) = 092 (X1, 2" 71), a1, 6, 5)
if o(x¥) + [xk — 25> < $ + § then
return xX
else
ax = E(ok-1, P, pk)
end if
end for

What should we require from these oracles to guarantee ITALEX
converges to the solution of (BLP)?
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Expansion Oracle
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Expansion Oracle

Definition (Expansion Oracle)

An operator £“?(a, @, p) which for any p < h(a) — @ returns o < § < w*
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Expansion Oracle

Definition (Expansion Oracle)

An operator £“?(a, @, p) which for any p < h(a) — @ returns o < § < w*

How do we construct such an operator?
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Constructing an Expansion Oracle - Assumptions
Assumption (Norm-like function)

w : R™ — R is convex and satisfies the following properties.
@ For any a € R, The level set Lev, () is compact.

@ There exists a y-global error-bound of w, i.e.,

Jy > 0:Vx € R” dist(x, Levy,(@)) < vy[w(x) — a]+.
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Constructing an Expansion Oracle - Assumptions
Assumption (Norm-like function)

w : R" — R is convex and satisfies the following properties.
@ For any a € R, The level set Lev, () is compact.

@ There exists a y-global error-bound of w, i.e.,

Iy > 0:Vx € R", dist(x, Lev,(a)) < vy[w(x) — a]+.

@ (i) holds if w is coercive (e.g., any norm).
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Constructing an Expansion Oracle - Assumptions
Assumption (Norm-like function)

w : R" — R is convex and satisfies the following properties.
@ For any a € R, The level set Lev, () is compact.

@ There exists a y-global error-bound of w, i.e.,

Iy > 0:Vx € R", dist(x, Lev,(a)) < vy[w(x) — a]+.

@ (i) holds if w is coercive (e.g., any norm).

@ Using [Lewis and Pang 1998, Theorem 1], (ii) can be verified for
various functions by calculating

= |vn)1:{||v|| v € Jw(x),w(x) > al.
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Constructing an Expansion Oracle - Assumptions
Assumption (Norm-like function)

w : R" — R is convex and satisfies the following properties.
@ For any a € R, The level set Lev,, () is compact.

@ There exists a v-global error-bound of w, i.e.,

Iy > 0: Vx € R", dist(x, Lev,(a)) < vy[w(x) — a]+.

@ (i) holds if w is coercive (e.g., any norm).

@ Using [Lewis and Pang 1998, Theorem 1], (ii) can be verified for
various functions by calculating

= |vn)1:{||v\| 1V € Jw(x),w(x) > a}.

@ Examples: ¢,-norm, Q-norm, Elastic net (||x[|1 + t||x||3).
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Constructing an Expansion Oracle - cont.

Let w be a norm-like function. Then for any p < h(«) — @, the operator

8w(a,g5,p) =a+ g

is a valid expansion oracle.
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Constructing an Expansion Oracle - cont.

Let w be a norm-like function. Then for any p < h(«) — @, the operator

/P

Ea, p,p) =+ o

is a valid expansion oracle.

Proof sketch:
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@ Let x* be an optimal solution of (BLP).
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Constructing an Expansion Oracle - cont.

Let w be a norm-like function. Then for any p < h(«) — @, the operator

/P

Ea, p,p) =+ o

is a valid expansion oracle.

Proof sketch:
@ Let x* be an optimal solution of (BLP).
@ Then (x,z) = (x*, Proji ey, ()(X")) is sub-optimal for (Py).

p < hla)—¢
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Constructing an Expansion Oracle - cont.

Let w be a norm-like function. Then for any p < h(«) — @, the operator

/P

Ea, p,p) =+ o

is a valid expansion oracle.

Proof sketch:
@ Let x* be an optimal solution of (BLP).
@ Then (x,z) = (x*, Proji ey, ()(X")) is sub-optimal for (Py).

p < h(a) — ¢ < @(x*) + dist(x*, Lev,,(a))? — @ < dist(x*, Lev,,(a))?.
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Constructing an Expansion Oracle - cont.

Let w be a norm-like function. Then for any p < h(«) — @, the operator

/P

Ea, p,p) =+ o

is a valid expansion oracle.

Proof sketch:
@ Let x* be an optimal solution of (BLP).
@ Then (x,z) = (x*, Proji ey, ()(X")) is sub-optimal for (Py).

p < h(a) — ¢ < @(x*) + dist(x*, Lev,,(a))? — @ < dist(x*, Lev,,(a))?.

@ Since w is norm-like

dist(x*, Lev, () < y(w* — ).
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Constructing an Expansion Oracle - cont.

Let w be a norm-like function. Then for any p < h(«) — @, the operator

/P

Ea, p,p) =+ o

is a valid expansion oracle.

Proof sketch:
@ Let x* be an optimal solution of (BLP).
@ Then (x,z) = (x*, Proji ey, ()(X")) is sub-optimal for (Py).

p < h(a) — ¢ < @(x*) + dist(x*, Lev,,(a))? — @ < dist(x*, Lev,,(a))?.

@ Since w is norm-like
dist(x*, Lev, () < y(w* — ).

@ Thus, &“(a, @, p) < w*.
"



Convergence.
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Convergence.

We can now bound N (the number of ITALEX outer iterations)
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Convergence.

We can now bound N (the number of ITALEX outer iterations)

Corollary

Let w be a norm-like function, and € > 0. Then ITALEX with the above
expansion oracle has at most N iterations where

M {7 (w* —W(ZO)W _

&

Moreover,
w(xV) —w* < 0V

where £,, o is the Lipschitz constant of w on the compact set

WPl = {x € R" : dist(x, Lev,,(ap)) < (@ — w(z%) + Ve}.
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Approximation Oracle
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Approximation Oracle

Definition (Approximation Oracle)

An operator O“%((x,z), a, ¢, ) for any € > 0,
@ > ¢*, a > mingern{w(x)} = w which determines
Q If h(a) — @ > 5 and returns 5 < p < h(a) — @.
@ If we found x such that (x) + ||x — z||? — @ < ¢ returns (x, z).
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Approximation Oracle

Definition (Approximation Oracle)

An operator O“*¥((x,z),a, @,€) for any € > 0,
¢ > ", a > mingern{w(x)} = w which determines
Q If h(a) — @ > 5 and returns 5 < p < h(a) — @.
O If we found x such that p(x) + [|x — z||?> — @ < ¢ returns (x, z).

@ There is an overlap between the two possible outputs if
5<h(a)-p<e.

Shimrit Shtern FO Bilevel- ITALEX 16



Approximation Oracle

Definition (Approximation Oracle)

An operator O“*¥((x,z),a, @,€) for any € > 0,
¢ > ", a > mingern{w(x)} = w which determines
Q If h(a) — @ > 5 and returns 5 < p < h(a) — @.
O If we found x such that p(x) + [|x — z||?> — @ < ¢ returns (x, z).

@ There is an overlap between the two possible outputs if
5<h(a)-p<e.

How do we construct such an operator?
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Approximation Oracle

Assumption

The inner function ¢ = f + g satisfies the following:

@ {:R" — Ris closed, convex, continuously differentiable with a
Lipschitz-continuous gradient with constant L¢, i.e.,

[IVE(x) = VIl < Lellx =yl vx,y € R”
Q@ g:R"— RU{oco} is a proper, closed, and convex function.
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Approximation Oracle

Assumption

The inner function ¢ = f + g satisfies the following:

@ {:R" — Ris closed, convex, continuously differentiable with a
Lipschitz-continuous gradient with constant L¢, i.e.,

[IVE(x) = VIl < Lellx =yl vx,y € R”
Q@ g:R"— RU{oco} is a proper, closed, and convex function.

@ Fory = (y1,y2) € R" x R” defining
$2(y) = @(y1) + llyr — ¥2II* + SLev., () (¥2)
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Approximation Oracle

Assumption

The inner function ¢ = f + g satisfies the following:

@ f:R"” — Ris closed, convex, continuously differentiable with a
Lipschitz-continuous gradient with constant L¢, i.e.,

IVE(x) = VI < Lelx = yl|, ¥x,y € R”
@ g:R" - RU{oco} is a proper, closed, and convex function.

@ Fory = (y1,y2) € R" x R” defining
2(y) = @(y1) + [ly1 — ¥2/1* + SLev, (a) (¥2)

o oY = Fy g% is a composite function.
o f(y) = f(y1) + |ly1 — y2||? has an (Ls + 2)-Lipschitz continuous
gradient.
o 2%(y) = &(y1) + OLev. () (y2) is separable.

Shimrit Shtern
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Generalized Conditional Gradient
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Generalized Conditional Gradient

@ Generalized Conditional Gradeint (GCG) composite functions:

o GCG step . . . .
Yy =y + t(p(y*) — "),

where

p(y) € argmin {(Vf(y),p) + g(p)}
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Generalized Conditional Gradient

@ Generalized Conditional Gradeint (GCG) composite functions:

o GCG step . . . .
Yy =y + t(p(y*) — "),

where

p(y) € argmin {(Vf(y),p) + g(p)}

e Bound on the optimality gap:
S(y) = (V£(y),y —p(y)) + &(y) — g(p(y))
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Generalized Conditional Gradient

@ Generalized Conditional Gradeint (GCG) composite functions:

o GCG step . . . .
Yy =y + t(p(y*) — "),

where

p(y) € argmin {(Vf(y),p) + g(p)}

e Bound on the optimality gap:
S(y) = (VF(y),y—p(y))+&(y)—g(p(y)) = ¢(y)—»(p(y)) > ¢(y)—¢"
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Generalized Conditional Gradient

@ Generalized Conditional Gradeint (GCG) composite functions:
o GCG step i1 . . .
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where
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e Bound on the optimality gap:
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e For a proper choice of step-size, admits sufficient decrease
[ (S("))?
k k+1 k
o) = oty 1) = g min { sy, SEOL L
where D is an upper bound on the diameter of dom(g)
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Generalized Conditional Gradient

@ Generalized Conditional Gradeint (GCG) composite functions:
o GCG step i1 . . .
Yy =y + a(p(y) —y),
where

p(y) € argmin {(Vf(y),p) + g(p)}
e Bound on the optimality gap:
S(y) = (V£E(y),y—p(y))+&(y)—g(p(y)) > ¢(y)—¢(p(y)) > ¢(y)—¢"

e For a proper choice of step-size, admits sufficient decrease

1. (S(y))?
Ky o(yk )y > & K
P(y") —(y™) = 5 min {S(y ), L.D2 [
where D is an upper bound on the diameter of dom(g)

o Leads to O(1/k) convergence.
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Generalized Conditional Gradient

@ Generalized Conditional Gradeint (GCG) composite functions:

o GCG step i1 . . .
Yy =y + t(p(y*) — "),

where
p(y) € argmin { (V7 (y),p) +2°(p)}

e Bound on the optimality gap:
SU(y) = (V) y—p))+2°()=2" (p(y)) = 2" (y)—"(p(y)) = #"(y) — h()

o For a proper choice of step-size, admits sufficient decrease

- (5" ()2
aaf kY aof k+1 > = ok
2 - ) = gmin {5, S
where D,, is an upper bound on the diameter of dom(g) x Lev,,(w*)

o Leads to O(1/k) convergence.
Applying the algorithm to ¢.
.



Generalized Conditional Gradient

@ Generalized Conditional Gradeint (GCG) composite functions:

o GCG step . . . .
Yy =y + t(p(y*) — ¥),

where

pi(y) =argmin{(Vf(y1)+2(y1 —y2),p1) + g(p1)}

p(y)= (pl(Y)=p2(Y)){p2(y) = argmi(n){<2(y2 —y1),p2)}
p2€lev,, (a

@ Bound on the optimality gap:
S (y) = (VF(y),y—p(y))+2°(y)—2"(p(y)) = 2" (y)—2"(p(y)) = & (y) — h(a)

o For a proper choice of step-size, admits sufficient decrease

. R 1 (5" (y))?
ayky _ 5o (ykty > = S« k
) - ) = gmin {50 0 s |
where D,, is an upper bound on the diameter of dom(g) x Lev,,(w*)

o Leads to O(1/k) convergence. Is this convergence rate maintained?

Applying the algorithm to ¢.
s



GCG based Approximation Oracle

Algorithm 3: A GCG based Approximation Algorithm

Input: Initial point y> =x€ CnN Levo (@), a < w™, ¢ > ¢*, ¢,
for j =10,1,2,... do
Apply one iteration of GCG at point ¥ to obtain ¥ and S%(y/).
if 3%(y/) — @ < ¢ then
Exit algorithm and return (p,y) = (0,y/)
end if
if °(y)) — @ — S*(y/) > £ then
Exit and return (p,y) = (2°(y/) — & — S*(¥)),¥')
(Note that 5 < p = ¢%(y) — & — S%(¥/) < () — & — $°(¥)) + h(a) = h(a) — & < h(a) — o
end if
end for
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GCG based Approximation Oracle

Algorithm 4: A GCG based Approximation Algorithm

Input: Initial point y* = x € CNLevy,(a), a <w*, §> ¢*, ¢
for j =10,1,2,... do
Apply one iteration of GCG at point ¥ to obtain ¥ and S%(y/).
if 3*(y) — @ < ¢ then
Exit algorithm and return (p,y) = (0,y/)
end if
if 3°(y/) — 3 - S°(y) >  th .
Exit and return (p,y) = (gﬁ ( ) — 3 — S%(y¥),¥)

(Note that 5 < p = ¢%(y) — & — S%(¥/) < () — & — $°(¥)) + h(a) = h(a) — & < h(a) — o
end if

end for

During a run of ITALEX using the GCG based approximation oracle, the
total number of GCG iterations (inner iterations) is at most K + N, where

K = O(1/¢) and N is the number of calls to the expansion oracle (outer
iterations).
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Flexibility

@ For the above oracle implementation the inner iteration complexity is
K+ N=0(1/e).
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Flexibility
@ For the above oracle implementation the inner iteration complexity is
K+ N = 0(1/e).
@ Lf can be approximated locally. [Pedregosa et al. 2020]

@ Our methodology is more general and other oracle implementations
may be considered.

o Specifically, instead of GCG we can use the proximal gradient (PG)
method and get similar guarantees.

@ On one hand, we note that S%(y) is not computed during the run of
PG.

@ On the other hand, PG generates a decreasing sequence and does not

require dom(g) to be compact.
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Numerical experiments
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Numerical experiments

@ Given a sparse x'™® ¢ R19%0 e create b = Axt™e 4 v,
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Numerical experiments

@ Given a sparse x'™® ¢ R19%0 e create b = Axt™e 4 v,
o ¢ = [|Ax —b|?, w(x) = [x[l1 + p[[x|[3 with p = 0.5.
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Numerical experiments
o Given a sparse xt"¢ ¢ R1090 e create b = Axtre + v.
o ¢ = | Ax— b|2, w(x) = x| + plxII3 with p = 0.5.
@ Averaged over 100 simulations of v.

Baart Foxgood Phillips

100 100 107 10
t [sec]
10"
3 107
\ .
] T ;
10'1 -
e e 10°
10° 100 100 10 10° 10t 100 10 10° 100 100 10°
t [sec] t [sec] t [sec]

[+—ITALEX - PG ——ITALEX - GCG ——BiG-SAM § = I —+BiG-SAM § = 10~° ——IR-IG]
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Numerical experiments -

® w(x) = [|x]|1-

o PG faster than GCG
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Numerical experiments -

o w(x) = ||x[1.
o PG faster than GCG

@ Benchmark: iterative regularization where with regularization
parameter 2ie)\maX(ATA) for ¢ € [15].
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Numerical experiments -

o w(x) = ||x[1.
o PG faster than GCG

@ Benchmark: iterative regularization where with regularization
parameter 2ie)\maX(ATA) for ¢ € [15].

%107 Baart %102 Foxgood 003 Phillips
7 0.9 s
\ 0.0225 |~
5.25 0.675 ¢ N
S S S &
q 15 q 045" 4 0.015
1.75 0.225 0.0075
0 0 0
0 0.25 0.5 1 0 0.25 0.5 1 0 0.25 0.5
1-Aw 1-—Aw 1-Aw
——ITALEX - PG ——ITALEX - GCG - ¢ - Regularization
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Summary

o ITALEX has proven O(1/k) feasibility and O(1/v/k) optimality rate
for (BLP) with norm-like w.
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Summary

o ITALEX has proven O(1/k) feasibility and O(1/v/k) optimality rate
for (BLP) with norm-like w.

@ More on ITALEX project:
@ ¢ does not need to be fixed in advance.
o Getting super-optimal solutions when g = 0.
o Accelerated rates under additional conditions on ¢ and w.

o Allowing outer function of the form w(Lx).
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Thank you for listening!
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Proximal Gradient @

@ Proximal Gradient for composite functions:
o PG step y**! = T,,(y*) where

. L 1
Tig(y) = argrmin { )+ F Iy = -9 ¢) - ul’
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Proximal Gradient @

@ Proximal Gradient for composite functions:
o PG step y**! = T,,(y*) where

. L 1
Tig(y) = argrmin { )+ F Iy = -9 ¢) - ul’

o Assuming that Lev,(¢(y)) < D(y):

S5(y) = 2max {so(y) — (T (y)). \/%D(W(w(y) — (TLf(y)))}
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@ Proximal Gradient for composite functions:
o PG step y**! = T,,(y*) where

. L 1
Tig(y) = argrmin { )+ F Iy = -9 ¢) - ul’
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Proximal Gradient

@ Proximal Gradient for composite functions:
o PG step y**! = T,,(y*) where

. L 1
Tig(y) = argrmin { )+ F Iy = -9 ¢) - ul’

o Assuming that Lev,(¢(y)) < D(y):

S5(y) = 2max {w(y) — (T (y)). \/%D(W(w(y) — (TLf(y)))}

> SD(y)(y)

Lemma

S(y) satisfies:
o S(y) > p(y) — ¢* i}
o oly) — o(T1,(y)) > & min {3(y). 2590}
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Proximal Gradient

@ Proximal Gradient for composite functions:

o PG step y*t!1 = T/ (y¥) where
o . o Le+2 1 ~
Tialy) = armin {0+ 52y - 5 Vi) - ul?

o Assuming-that Levao (¢°(y)) < D.(y):

5%(y) = 2max {@”(y) — (T2 L(y), \/ # D (y)2((y) — ¢ (Tﬁ+z(y)))}

> Spiy)(¥)

Lemma

S°(y) satisfies:
° 5%(y) = ¢°(y) — h(«)
o Na 5 2
0 6°(y) = £°(Th, ) 2 dmin {3°(y), 50
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Proximal Gradient

@ Proximal Gradient for composite functions:
o PG step y*t!1 = T ,(y*) where

. ) . T (y) = prox 1, (y1 - ﬁ(vf(ﬁ) +2(y1 — Y2)))
TL}+2(Y) = (T1'(y), T5'(y)), o . Lrys+2y:
T2 (y) - PrOJLevw(oz) (W)
o Assuming-that Lev.. (¢(y)) < D.(y):

5%(y) = 2max {@“(y) — G (TEa(y) \/# Do (y)2 (2 (y) — ¢~ (Tﬁ+z(y)))}
> Spiy(¥)

S°(y) satisfies:
o 5%(y) > ¢°(y) — h(«)

N rof To . Ca S(y)?
o 2°(y) = (T, () 2 3 min {5°(v), 2% }

.
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Proximal Gradient

@ Proximal Gradient for composite functions:
o PG step y*t!1 = T ,(y*) where

. . . T (y) = prox 1, (y1 - ﬁ(vf(ﬁ) +2(y1 — Y2)))
TL}+2(Y) = (T1'(y), T5'(y)), o . Lrys+2y:
T2 (y) - PrOJLevw(a) (W)
o Assuming-that Lev.. (¢(y)) < D.(y):

5%(y) = 2max {@“(y) — G (TEa(y) \/# Do (y)2 (2 (y) — ¢~ (Tﬁ+z(y)))}
> Spiy(¥)

S°(y) satisfies:
o S%(y) > 4“(y) — h(«) - enables early stopping

N rof To . Ca 5o (y)?
o 2°(y) = (T, () 2 3 min {5°(v), 25 ¥ }

O(%) convergence

.

Shimrit Shtern FO Bilevel- ITALEX 27



	ITALEX - General scheme
	Summary
	References

