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Simple Bilevel Optimization

A simple bilevel optimization problem is defined as:

ω∗ = min
x∈X∗

ω(x) (BLP)

where X ∗ is the set of minimizers of the convex problem (P)

φ∗ = min
x∈Rn

φ(x) (P)

Background:

We are concerned with the case where both ω and φ are convex.

Used to solve underdetermined problems in ML and signal processing.

Example: Finding an optimal solution to

min
x∈Rn

φ(x) = ∥Ax− b∥2

which is the sparsest: ω(x) = ∥x∥1, the densest: ω(x) = ∥x∥22.
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Challenges

The (BLP) is equivalent to:

min ω(x)

s.t. φ(x) ≤ φ∗ (BLP’)

φ is usually not “simple”, first-order methods such as (sub-)gradient
projection cannot be used.

This problem does not satisfy regularity conditions.

Therefore strong duality and KKT conditions cannot be used.

Even if φ∗ is only approximated to high accuracy, the problem will be
“almost irregular”, which leads to numerical issues.
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Regularization

One of the well known methods to approximate bilevel problems is via
regularization

min
x∈Rn

φ(x) + αω(x) (Rα)

For example, for the case φ(x) = ∥Ax− b∥2

When ω(x) = ∥x∥2 (Tikhonov regularization) - ridge regression.

When ω(x) = ∥x∥1 - LASSO.

Equivalent to a Lagrangian relaxation of the problem

min
x∈Rn

{φ(x) : ω(x) ≤ ω∗}.

Unclear how to find the right α > 0 when ω∗ is unknown.

Solving a sequence of (Rα) for decreasing values of α may be
computationally demanding.
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First-Order Methods for Iterative Regularization

A class of methods that at iteration k perform one step of an iterative
optimization algorithm on the problem (Rαk

)

min
x∈Rn

φ(x) + αkω(x)

where αk → 0 as k → ∞.

The methods differ by the assumptions on the problem and the type
of step performed.

IR-PG[Solodov 2007]: Asymptotic convergence to the solution of
(BLP)

IR-IG [Amini and Yousefian 2019]: O(1/k0.5−β), β ∈ (0, 0.5)
convergence of φ(x).

SBP [Dutta and Pandit 2020]: Asymptotic.
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i=1 fi (x) + δC (x), fi proper, closed, and convex, C
convex and compact, ω is strongly convex.
Step:Step:Step:Step:Step:Step:Step:Step:Step:Step:Step:Step:Step:Step:Step:Step:Step: Incremental projected subgradient.

SBP [Dutta and Pandit 2020]: Asymptotic.
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First-Order Methods for Iterative Regularization

A class of methods that at iteration k perform one step of an iterative
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Other First-order Methods

Assuming

ω is smooth and strongly convex.
φ(x) = f (x) + g(x) is composite function.

The following methods provide a rate of convergence of φ(x) to φ∗

and asymptotic convergence to the solution of (BLP)

MNG[Beck and Sabach 2014]: Convergence rate of O(1/
√
k).

BiG-SAM[Sabach and Shtern 2017]: Convergence rate of O(1/k).

iBiG-SAM[Shehu, Vuong, and Zemkoho 2021]: Asymptotic convergence.
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The following methods provide a rate of convergence of φ(x) to φ∗

and asymptotic convergence to the solution of (BLP)

MNG[Beck and Sabach 2014]: Convergence rate of O(1/
√
k).

Based on the notion of cutting-planes.
Requires optimizing ω on the intersection of two half spaces in each iteration.
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and asymptotic convergence to the solution of (BLP)

MNG[Beck and Sabach 2014]: Convergence rate of O(1/
√
k).

BiG-SAM[Sabach and Shtern 2017]: Convergence rate of O(1/k).

Based sequential averaging of the gradient step for ω and proximal gradient
step for φ.
Extension to cases where ω is a sum of Lipschitz continuous and smooth
functions.

iBiG-SAM[Shehu, Vuong, and Zemkoho 2021]: Asymptotic convergence.
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√
k).

BiG-SAM[Sabach and Shtern 2017]: Convergence rate of O(1/k).

iBiG-SAM[Shehu, Vuong, and Zemkoho 2021]: Asymptotic convergence.
Running an inertial extrapolation over BiG-SAM steps.
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Contribution

Motivation - ω(·) = ∥·∥1

ITerative Approximation and Level-set EXpansion (ITALEX) scheme
to solve (BLP):

We do not require ω to be neither smooth nor strongly-convex.

Easily applied to lp norms.

For any ε > 0 produces a solution xk such that

φ(xk) ≤ φ∗ + ε, ω(xk)− ω∗ ≤ O(
√
ϵ).

where ε = O(1/k).
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Bilevel methods - comparison

Method φ = f + g
properties

ω properties Convergence
to φ∗

Convergence
to ω∗

IR-PG [Solodov

2007]

Classical composite Smooth Asymptotic Asymptotic

MNG [Beck and

Sabach 2014]

Classical composite Smooth, strongly
convex

O
(

1√
k

)
Asymptotic

BiG-SAM
[Sabach and Shtern

2017]

Classical composite Smooth, strongly
convex

O
(
1
k

)
Asymptotic

IR-IG [Amini and

Yousefian 2019]

f is a finite sum,
g = δC , C compact

Strongly convex O
(

1
k0.5−β

)
β ∈ (0, 0.5)

Asymptotic

SBP [Dutta and

Pandit 2020]

General General Asymptotic Asymptotic

ITALEX
[This
paper]

Classical composite
Norm-like function O

(
1
k

) O
(

1√
k

)
g = 0 Super-

optimal
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Reformulating (BLP)
The key idea: if ω is a simple function we can compute
projection/linear oracle on its level set.

For any α ∈ R we can define the extended valued function

h(α) = min
x,z

{φ(x) + ∥x− z∥2 : ω(z) ≤ α} (Pα)

We will approximately solve a sequence of (Pα).

We will look for the smallest α such that h(α) is ε close to φ∗.
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Approach

ITerative Approximation and Level-set EXpansion is based on two
main operations:

i Approximate h(α) - the optimal value of (Pα)

ii If h(α) is too big, then increase α
Expansion of the level set while maintaining α ≤ ω∗.
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ITALEX - General algorithm

Algorithm 1: ITALEX- General Scheme

Input: ε, φ̄ ∈ [φ∗, φ∗ + ε
2 ],

α0 ≤ ω∗, x0 ∈ dom(φ), z0 ∈ Levω(α0)
Approximation oracle Oω,φ, Expansion oracle Eω,

for all k = 1, 2, ... do
(ρk , (x

k , zk)) = Oω,φ((xk−1, zk−1), αk−1, φ̄,
ε
2)

if φ(xk) + ∥xk − zk∥2 ≤ φ̄+ ε
2 then

return xk

else
αk = Eω(αk−1, φ̄, ρk)

end if
end for

What should we require from these oracles to guarantee ITALEX
converges to the solution of (BLP)?
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Expansion Oracle

Definition (Expansion Oracle)

An operator Eω,φ(α, φ̄, ρ) which for any ρ ≤ h(α)− φ̄ returns α < β ≤ ω∗

How do we construct such an operator?
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Constructing an Expansion Oracle - Assumptions

Assumption (Norm-like function)

ω : Rn → R is convex and satisfies the following properties.

(i) For any α ∈ R, The level set Levω(α) is compact.

(ii) There exists a γ-global error-bound of ω, i.e.,

∃γ > 0 : ∀x ∈ Rn, dist(x, Levω(α)) ≤ γ[ω(x)− α]+.

(i) holds if ω is coercive (e.g., any norm).

Using [Lewis and Pang 1998, Theorem 1], (ii) can be verified for
various functions by calculating

γ−1 = inf
v,x

{∥v∥ : v ∈ ∂ω(x), ω(x) > α}.

Examples: ℓp-norm, Q-norm, Elastic net (∥x∥1 + t∥x∥22).
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Constructing an Expansion Oracle - cont.

Theorem

Let ω be a norm-like function. Then for any ρ ≤ h(α)− φ̄, the operator

Eω(α, φ̄, ρ) = α+

√
ρ

γ

is a valid expansion oracle.

Proof sketch:

Let x∗ be an optimal solution of (BLP).

Then (x, z) = (x∗,ProjLevω(α)(x
∗)) is sub-optimal for (Pα).

ρ ≤ h(α)− φ̄ ≤ φ(x∗) + dist(x∗, Levω(α))
2 − φ̄ ≤ dist(x∗, Levω(α))

2.

Since ω is norm-like

dist(x∗, Levω(α)) ≤ γ(ω∗ − α).

Thus, Eω(α, φ̄, ρ) ≤ ω∗.
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Convergence.

We can now bound N (the number of ITALEX outer iterations)

Corollary

Let ω be a norm-like function, and ε > 0. Then ITALEX with the above
expansion oracle has at most N iterations where

N ≤

⌈
γ
(
ω∗ − ω(z0)

)
ε

⌉
.

Moreover,
ω(xN)− ω∗ ≤ ℓω,0

√
ϵ

where ℓω,0 is the Lipschitz constant of ω on the compact set

W0 =
{
x ∈ Rn : dist(x, Levω(α0)) ≤ γ(ω̄ − ω(z0)) +

√
ϵ
}
.
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Approximation Oracle

Definition (Approximation Oracle)

An operator Oω,φ((x, z), α, φ̄, ε) for any ε > 0,
φ̄ ≥ φ∗, α ≥ minx∈Rn{ω(x)} ≡

¯
ω which determines

1 If h(α)− φ̄ ≥ ε
2 and returns ε

2 ≤ ρ ≤ h(α)− φ̄.

2 If we found x such that φ(x) + ∥x− z∥2 − φ̄ ≤ ε returns (x, z).

There is an overlap between the two possible outputs if
ε
2 ≤ h(α)− φ̄ ≤ ε.

How do we construct such an operator?
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Approximation Oracle

Assumption

The inner function φ ≡ f + g satisfies the following:

i f : Rn → R is closed, convex, continuously differentiable with a
Lipschitz-continuous gradient with constant Lf , i.e.,

∥∇f (x)−∇f (y)∥ ≤ Lf ∥x− y∥, ∀x, y ∈ Rn

ii g : Rn → R ∪ {∞} is a proper, closed, and convex function.

For y = (y1, y2) ∈ Rn × Rn defining

φ̂α(y) = φ(y1) + ∥y1 − y2∥2 + δLevω(α)(y2)

φ̂α = f̂ + ĝα is a composite function.

f̂ (y) = f (y1) + ∥y1 − y2∥2 has an (Lf + 2)-Lipschitz continuous
gradient.
ĝα(y) = g(y1) + δLevω(α)(y2) is separable.
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Generalized Conditional Gradient

Generalized Conditional Gradeint (GCG) composite functions:

GCG step
yk+1 = yk + tk(p(y

k)− yk),

where

p(y) ∈ argmin {⟨∇f (y),p⟩+ g(p)}

Bound on the optimality gap:

S(y) = ⟨∇f (y), y − p(y)⟩+ g(y)− g(p(y))

≥ φ(y)− φ(p(y)) ≥

For a proper choice of step-size, admits sufficient decrease

φ(yk)− φ(yk+1) ≥ 1

2
min

{
S(yk),

(S(yk))2

LfD2

}
,

where D is an upper bound on the diameter of

Leads to O(1/k) convergence.

Applying the algorithm to φ̂α.
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where
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Sα(y) = ⟨∇f̂ (y), y−p(y)⟩+ĝα(y)−ĝα(p(y)) ≥ φ̂α(y)−φ̂α(p(y)) ≥ φ̂α(y)− h(α)

For a proper choice of step-size, admits sufficient decrease

φ̂α(yk)− φ̂α(yk+1) ≥ 1

2
min

{
Sα(yk),

(Sα(yk))2

(Lf + 2)LfD2
α

}
,

where Dα is an upper bound on the diameter of dom(g)× Levω(ω
∗)

Leads to O(1/k) convergence.

Applying the algorithm to φ̂α.

Shimrit Shtern FO Bilevel- ITALEX 18



Generalized Conditional Gradient
Generalized Conditional Gradeint (GCG) composite functions:

GCG step
yk+1 = yk + tk(p(y

k)− yk),

where

p(y)= (p1(y),p2(y))

{
p1(y) = argmin{⟨∇f (y1) + 2(y1 − y2),p1⟩+ g(p1)}
p2(y) = argmin

p2∈Levω(α)

{⟨2(y2 − y1),p2⟩}

Bound on the optimality gap:
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Leads to O(1/k) convergence. Is this convergence rate maintained?

Applying the algorithm to φ̂α.
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GCG based Approximation Oracle

Algorithm 3: A GCG based Approximation Algorithm

Input: Initial point y0 ≡ x ∈ C ∩ Levω(α), α ≤ ω∗, φ̄ ≥ φ∗, ε,
for j = 0, 1, 2, ... do

Apply one iteration of GCG at point yj to obtain yj+1 and Sα(yj).
if φ̂α(yj)− φ̄ ≤ ε then

Exit algorithm and return (ρ, y) = (0, yj)
end if
if φ̂α(yj)− φ̄− Sα(yj) ≥ ε

2
then

Exit and return (ρ, y) = (φ̂α(yj)− φ̄− Sα(yj), yj)(
Note that ε

2
≤ ρ = φ̂α(yj ) − φ̄ − Sα(yj ) ≤ φ̂α(yj ) − φ̄ − φ̂α(yj ) + h(α) = h(α) − φ̄ ≤ h(α) − φ∗

)
end if

end for

Theorem

During a run of ITALEX using the GCG based approximation oracle, the
total number of GCG iterations (inner iterations) is at most K + N, where
K = O(1/ε) and N is the number of calls to the expansion oracle (outer
iterations).
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Flexibility

For the above oracle implementation the inner iteration complexity is
K + N = O(1/ε).

Lf can be approximated locally. [Pedregosa et al. 2020]

Our methodology is more general and other oracle implementations
may be considered.

Specifically, instead of GCG we can use the proximal gradient (PG)
method and get similar guarantees.

On one hand, we note that Sα(y) is not computed during the run of
PG.

On the other hand, PG generates a decreasing sequence and does not
require dom(g) to be compact.
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Numerical experiments

Given a sparse xtrue ∈ R1000 we create b = Axtrue + ν.

φ = ∥Ax− b∥2, ω(x) = ∥x∥1 + ρ∥x∥22 with ρ = 0.5.

Averaged over 100 simulations of ν.
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Numerical experiments -

ω(x) = ∥x∥1.

PG faster than GCG

Benchmark: iterative regularization where with regularization
parameter 1

2ℓ
λmax(A⊤A) for ℓ ∈ [15].
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Summary

ITALEX has proven O(1/k) feasibility and O(1/
√
k) optimality rate

for (BLP) with norm-like ω.

More on ITALEX project:

ε does not need to be fixed in advance.

Getting super-optimal solutions when g = 0.

Accelerated rates under additional conditions on φ and ω.

Allowing outer function of the form ω(Lx).

Shimrit Shtern FO Bilevel- ITALEX 23



Summary

ITALEX has proven O(1/k) feasibility and O(1/
√
k) optimality rate

for (BLP) with norm-like ω.

More on ITALEX project:

ε does not need to be fixed in advance.

Getting super-optimal solutions when g = 0.

Accelerated rates under additional conditions on φ and ω.

Allowing outer function of the form ω(Lx).

Shimrit Shtern FO Bilevel- ITALEX 23



Thank you for listening!
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Proximal Gradient

Proximal Gradient for composite functions:
PG step yk+1 = TLf

(yk) where

TLf
(y) = argmin

u

{
g(x) +

Lf
2
∥y − 1

Lf
∇f (y)− u∥2

}

Assuming that Levφ(φ(y)) ≤ D(y):

S̃(y) = 2max

{
φ(y)− φ (TLf

(y)) ,

√
Lf
2
D(y)2(φ(y)− φ (TLf

(y)))

}

≥ SD(y)(y)

Lemma

S̃(y) satisfies:

S̃(y) ≥ φ(y)− φ∗

φ(y)− φ(TLf (y)) ≥
1
2 min

{
S̃(y), 2S̃(y)2

Lf D(y)2

}

O(1ϵ ) convergence
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Proximal Gradient

Proximal Gradient for composite functions:
PG step yk+1 = Tα

Lf +2(y
k) where

Tα
Lf +2(y) = argmin

u

{
ĝα(x) +

Lf + 2

2
∥y − 1

Lf + 2
∇f̂ (y)− u∥2

}
Assuming that Levφ̂α(φ̂α(y)) ≤ Dα(y):

S̃α(y) = 2max

{
φ̂α(y)− φ̂α

(
Tα
Lf +2(y)

)
,

√
Lf + 2

2
Dα(y)2(φ̂α(y)− φ̂α

(
Tα
Lf +2(y)

)
)

}
≥ Sα

D(y)(y)
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