

First-Order Algorithms for Solving Simple Convex Bilevel Optimization Problems

Shimrit Shtern Joint work with Lior Doron (Technion)

One World Optimization Seminar February 28th 2022

A simple bilevel optimization problem is defined as:

$$\omega^* = \min_{\mathbf{x} \in X^*} \omega(\mathbf{x}) \tag{BLP}$$

where X^* is the set of minimizers of the convex problem (P)

$$\varphi^* = \min_{\mathbf{x} \in \mathbb{R}^n} \varphi(\mathbf{x}) \tag{P}$$

A simple bilevel optimization problem is defined as:

$$\omega^* = \min_{\mathbf{x} \in X^*} \omega(\mathbf{x}) \tag{BLP}$$

where X^* is the set of minimizers of the convex problem (P)

$$\varphi^* = \min_{\mathbf{x} \in \mathbb{R}^n} \varphi(\mathbf{x}) \tag{P}$$

Background:

• We are concerned with the case where both ω and φ are convex.

A simple bilevel optimization problem is defined as:

$$\omega^* = \min_{\mathbf{x} \in X^*} \omega(\mathbf{x}) \tag{BLP}$$

where X^* is the set of minimizers of the convex problem (P)

$$\varphi^* = \min_{\mathbf{x} \in \mathbb{R}^n} \varphi(\mathbf{x}) \tag{P}$$

Background:

- We are concerned with the case where both ω and φ are convex.
- Used to solve underdetermined problems in ML and signal processing.

A simple bilevel optimization problem is defined as:

$$\omega^* = \min_{\mathbf{x} \in X^*} \omega(\mathbf{x}) \tag{BLP}$$

where X^* is the set of minimizers of the convex problem (P)

$$\varphi^* = \min_{\mathbf{x} \in \mathbb{R}^n} \varphi(\mathbf{x}) \tag{P}$$

Background:

- We are concerned with the case where both ω and φ are convex.
- Used to solve underdetermined problems in ML and signal processing.
- Example: Finding an optimal solution to

$$\min_{\mathbf{x}\in\mathbb{R}^n}\varphi(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$$
which is the sparsest: $\omega(\mathbf{x}) = \|\mathbf{x}\|_1$, the densest: $\omega(\mathbf{x}) = \|\mathbf{x}\|_2^2$.

• The (BLP) is equivalent to:

$$\begin{array}{ll} \min & \omega(\mathbf{x}) \\ \text{s.t.} & \varphi(\mathbf{x}) \leq \varphi^* \end{array} \tag{BLP'}$$

• The (BLP) is equivalent to:

$$\begin{array}{l} \min \ \ \omega(\mathbf{x}) \\ {\rm s.t.} \ \ \varphi(\mathbf{x}) \leq \varphi^* \end{array} \tag{BLP'}$$

• φ is usually not "simple", first-order methods such as (sub-)gradient projection cannot be used.

• The (BLP) is equivalent to:

$$\begin{array}{ll} \min & \omega(\mathbf{x}) \\ \text{s.t.} & \varphi(\mathbf{x}) \leq \varphi^* \end{array} \tag{BLP'}$$

- φ is usually not "simple", first-order methods such as (sub-)gradient projection cannot be used.
- This problem does not satisfy regularity conditions.
- Therefore strong duality and KKT conditions cannot be used.

• The (BLP) is equivalent to:

$$\begin{array}{ll} \min & \omega(\mathbf{x}) \\ \text{s.t.} & \varphi(\mathbf{x}) \leq \varphi^* \end{array} \tag{BLP'}$$

- φ is usually not "simple", first-order methods such as (sub-)gradient projection cannot be used.
- This problem does not satisfy regularity conditions.
- Therefore strong duality and KKT conditions cannot be used.
- Even if φ^* is only approximated to high accuracy, the problem will be "almost irregular", which leads to numerical issues.

• One of the well known methods to approximate bilevel problems is via regularization

$$\min_{\mathbf{x}\in\mathbb{R}^n}\varphi(\mathbf{x})+\alpha\omega(\mathbf{x}) \tag{R}_{\alpha}$$

• One of the well known methods to approximate bilevel problems is via regularization

$$\min_{\mathbf{x}\in\mathbb{R}^n}\varphi(\mathbf{x})+\alpha\omega(\mathbf{x}) \tag{R}_{\alpha}$$

- For example, for the case $arphi(\mathbf{x}) = \|\mathbf{A}\mathbf{x} \mathbf{b}\|^2$
 - When $\omega(\mathbf{x}) = \|\mathbf{x}\|^2$ (Tikhonov regularization) ridge regression.
 - When $\omega(\mathbf{x}) = \|\mathbf{x}\|_1$ LASSO.

One of the well known methods to approximate bilevel problems is via regularization

$$\min_{\mathbf{x}\in\mathbb{R}^n}\varphi(\mathbf{x})+\alpha\omega(\mathbf{x}) \tag{R}_{\alpha}$$

- For example, for the case $arphi(\mathbf{x}) = \|\mathbf{A}\mathbf{x} \mathbf{b}\|^2$
 - When $\omega(\mathbf{x}) = \|\mathbf{x}\|^2$ (Tikhonov regularization) ridge regression.

• When
$$\omega(\mathbf{x}) = \|\mathbf{x}\|_1$$
 - LASSO.

• Equivalent to a Lagrangian relaxation of the problem

$$\min_{\mathbf{x}\in\mathbb{R}^n}\{\varphi(\mathbf{x}):\omega(\mathbf{x})\leq\omega^*\}.$$

One of the well known methods to approximate bilevel problems is via regularization

$$\min_{\mathbf{x}\in\mathbb{R}^n}\varphi(\mathbf{x})+\alpha\omega(\mathbf{x}) \tag{R}_{\alpha}$$

- For example, for the case $\varphi(\mathbf{x}) = \|\mathbf{A}\mathbf{x} \mathbf{b}\|^2$
 - When $\omega(\mathbf{x}) = \|\mathbf{x}\|^2$ (Tikhonov regularization) ridge regression.

• When
$$\omega(\mathbf{x}) = \|\mathbf{x}\|_1$$
 - LASSO.

• Equivalent to a Lagrangian relaxation of the problem

$$\min_{\mathbf{x}\in\mathbb{R}^n}\{\varphi(\mathbf{x}):\omega(\mathbf{x})\leq\omega^*\}.$$

• Unclear how to find the right $\alpha > 0$ when ω^* is unknown.

One of the well known methods to approximate bilevel problems is via regularization

$$\min_{\mathbf{x}\in\mathbb{R}^n}\varphi(\mathbf{x})+\alpha\omega(\mathbf{x}) \tag{R}_{\alpha}$$

- For example, for the case $\varphi(\mathbf{x}) = \|\mathbf{A}\mathbf{x} \mathbf{b}\|^2$
 - When $\omega(\mathbf{x}) = \|\mathbf{x}\|^2$ (Tikhonov regularization) ridge regression.

• When
$$\omega(\mathbf{x}) = \|\mathbf{x}\|_1$$
 - LASSO.

• Equivalent to a Lagrangian relaxation of the problem

$$\min_{\mathbf{x}\in\mathbb{R}^n}\{\varphi(\mathbf{x}):\omega(\mathbf{x})\leq\omega^*\}.$$

- Unclear how to find the right $\alpha > 0$ when ω^* is unknown.
- Solving a sequence of (R_{α}) for decreasing values of α may be computationally demanding.

A class of methods that at iteration k perform one step of an iterative optimization algorithm on the problem (R_{αk})

$$\min_{\mathbf{x}\in\mathbb{R}^n}\varphi(\mathbf{x})+\alpha_k\omega(\mathbf{x})$$

where $\alpha_k \to 0$ as $k \to \infty$.

A class of methods that at iteration k perform one step of an iterative optimization algorithm on the problem (R_{αk})

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}\varphi(\boldsymbol{x})+\alpha_k\omega(\boldsymbol{x})$$

where $\alpha_k \to 0$ as $k \to \infty$.

• The methods differ by the assumptions on the problem and the type of step performed.

A class of methods that at iteration k perform one step of an iterative optimization algorithm on the problem (R_{αk})

$$\min_{\mathbf{x}\in\mathbb{R}^n}\varphi(\mathbf{x})+\alpha_k\omega(\mathbf{x})$$

where $\alpha_k \to 0$ as $k \to \infty$.

• The methods differ by the assumptions on the problem and the type of step performed.

 IR-PG[Solodov 2007]: Asymptotic convergence to the solution of (BLP)

<u>Assumptions</u>: $\varphi(\mathbf{x}) = f(\mathbf{x}) + \delta_C(\mathbf{x})$ where $f(\mathbf{x})$ is L_f -smooth, C closed and convex, and ω is L_{ω} -smooth. Step: Projected gradient $\mathbf{x}^{k+1} = \operatorname{Proj}_C(\mathbf{x}^k - t_k(\nabla f(\mathbf{x}^k) + \alpha_k \nabla \omega(\mathbf{x}^k)))$,

$$t_k \leq \frac{1}{L_f + \alpha_k L_\omega}.$$

A class of methods that at iteration k perform one step of an iterative optimization algorithm on the problem (R_{αk})

$$\min_{\mathbf{x}\in\mathbb{R}^n}\varphi(\mathbf{x})+\alpha_k\omega(\mathbf{x})$$

```
where \alpha_k \to 0 as k \to \infty.
```

- The methods differ by the assumptions on the problem and the type of step performed.
 - IR-PG[Solodov 2007]: Asymptotic convergence to the solution of (BLP)
 - IR-IG [Amini and Yousefian 2019]: O(1/k^{0.5-β}), β ∈ (0, 0.5) convergence of φ(**x**).
 <u>Assumptions:</u> φ(**x**) = ∑_{i=1}^m f_i(**x**) + δ_C(**x**), f_i proper, closed, and convex, C convex and compact, ω is strongly convex.
 <u>Step:</u> Incremental projected subgradient.

>

A class of methods that at iteration k perform one step of an iterative optimization algorithm on the problem (R_{αk})

$$\min_{\mathbf{x}\in\mathbb{R}^n}\varphi(\mathbf{x})+\alpha_k\omega(\mathbf{x})$$

where $\alpha_k \to 0$ as $k \to \infty$.

- The methods differ by the assumptions on the problem and the type of step performed.
 - IR-PG[Solodov 2007]: Asymptotic convergence to the solution of (BLP)
 - IR-IG [Amini and Yousefian 2019]: $O(1/k^{0.5-\beta}), \ \beta \in (0, 0.5)$ convergence of $\varphi(\mathbf{x})$.
 - **SBP** [Dutta and Pandit 2020]: Asymptotic. <u>Assumptions:</u> Convexity. <u>Step:</u> Proximal point (limited applicability)

- Assuming
 - ω is smooth and strongly convex.
 - $\varphi(\mathbf{x}) = f(\mathbf{x}) + g(\mathbf{x})$ is composite function.

- Assuming
 - ω is smooth and strongly convex.
 - $\varphi(\mathbf{x}) = f(\mathbf{x}) + g(\mathbf{x})$ is composite function.
- The following methods provide a rate of convergence of $\varphi(\mathbf{x})$ to φ^* and asymptotic convergence to the solution of (BLP)

- Assuming
 - ω is smooth and strongly convex.
 - $\varphi(\mathbf{x}) = f(\mathbf{x}) + g(\mathbf{x})$ is composite function.
- The following methods provide a rate of convergence of $\varphi(\mathbf{x})$ to φ^* and asymptotic convergence to the solution of (BLP)
 - MNG[Beck and Sabach 2014]: Convergence rate of O(1/√k).
 Based on the notion of cutting-planes.
 Requires optimizing ω on the intersection of two half spaces in each iteration.

- Assuming
 - ω is smooth and strongly convex.
 - $\varphi(\mathbf{x}) = f(\mathbf{x}) + g(\mathbf{x})$ is composite function.
- The following methods provide a rate of convergence of $\varphi(\mathbf{x})$ to φ^* and asymptotic convergence to the solution of (BLP)
 - **MNG**[Beck and Sabach 2014]: Convergence rate of $O(1/\sqrt{k})$.
 - BiG-SAM[Sabach and Shtern 2017]: Convergence rate of O(1/k).
 Based sequential averaging of the gradient step for ω and proximal gradient step for φ.
 Extension to cases where ω is a sum of Lipschitz continuous and smooth functions.

- Assuming
 - ω is smooth and strongly convex.
 - $\varphi(\mathbf{x}) = f(\mathbf{x}) + g(\mathbf{x})$ is composite function.
- The following methods provide a rate of convergence of $\varphi(\mathbf{x})$ to φ^* and asymptotic convergence to the solution of (BLP)
 - **MNG**[Beck and Sabach 2014]: Convergence rate of $O(1/\sqrt{k})$.
 - **BiG-SAM**[Sabach and Shtern 2017]: Convergence rate of O(1/k).
 - **iBiG-SAM**[Shehu, Vuong, and Zemkoho 2021]: Asymptotic convergence. Running an inertial extrapolation over BiG-SAM steps.

• Motivation - $\omega(\cdot) = \|\cdot\|_1$

- Motivation $\omega(\cdot) = \|\cdot\|_1$
- IT erative Approximation and Level-set EX pansion (ITALEX) scheme to solve (BLP):

- Motivation $\omega(\cdot) = \|\cdot\|_1$
- IT erative Approximation and Level-set EX pansion (ITALEX) scheme to solve (BLP):
 - We do not require ω to be neither smooth nor strongly-convex.

- Motivation $\omega(\cdot) = \|\cdot\|_1$
- IT erative Approximation and Level-set EX pansion (ITALEX) scheme to solve (BLP):
 - ${\scriptstyle \bullet }$ We do not require ω to be neither smooth nor strongly-convex.
 - Easily applied to I_p norms.

- Motivation $\omega(\cdot) = \|\cdot\|_1$
- IT erative Approximation and Level-set EX pansion (ITALEX) scheme to solve (BLP):
 - ${\ensuremath{\,\circ}}$ We do not require ω to be neither smooth nor strongly-convex.
 - Easily applied to I_p norms.
 - For any $\varepsilon > 0$ produces a solution \mathbf{x}^k such that

$$\varphi(\mathbf{x}^k) \leq \varphi^* + \varepsilon, \quad \omega(\mathbf{x}^k) - \omega^* \leq O(\sqrt{\epsilon}).$$

where $\varepsilon = O(1/k)$.

Bilevel methods - comparison

Method	arphi = f + g properties	ω properties	Convergence to $\varphi*$	Convergence to ω^*
IR-PG [Solodov	Classical composite	Smooth	Asymptotic	Asymptotic
2007]				
MNG [Beck and	Classical composite	Smooth, strongly	$O\left(\frac{1}{\sqrt{k}}\right)$	Asymptotic
Sabach 2014]		convex		
BiG-SAM	Classical composite	Smooth, strongly	$O\left(\frac{1}{k}\right)$	Asymptotic
[Sabach and Shtern		convex		
2017]				
IR-IG [Amini and	f is a finite sum,	Strongly convex	$O\left(\frac{1}{k^{0.5-\beta}}\right)$	Asymptotic
Yousefian 2019]	$g = \delta_C$, C compact		$eta \in (0, 0.5)$	
SBP [Dutta and	General	General	Asymptotic	Asymptotic
Pandit 2020]				
ITALEX	Classical composite		O(1)	$O\left(\frac{1}{\sqrt{k}}\right)$
lhis	g = 0	Norm-like function	$O\left(\frac{1}{k}\right)$	Super-
paper				optimal

• The key idea: if *ω* is a simple function we can compute projection/linear oracle on its level set.

• The key idea: if *ω* is a simple function we can compute projection/linear oracle on its level set.

• For any $\alpha \in \mathbb{R}$ we can define the extended valued function

$$h(\alpha) = \min_{\mathbf{x}, \mathbf{z}} \{ \varphi(\mathbf{x}) + \|\mathbf{x} - \mathbf{z}\|^2 : \omega(\mathbf{z}) \le \alpha \}$$
(P_{\alpha})

• The key idea: if *ω* is a simple function we can compute projection/linear oracle on its level set.

 \bullet For any $\alpha \in \mathbb{R}$ we can define the extended valued function

$$h(\alpha) = \min_{\mathbf{x}, \mathbf{z}} \{ \varphi(\mathbf{x}) + \|\mathbf{x} - \mathbf{z}\|^2 : \omega(\mathbf{z}) \le \alpha \}$$
(P_{\alpha})

• The key idea: if *ω* is a simple function we can compute projection/linear oracle on its level set.

 \bullet For any $\alpha \in \mathbb{R}$ we can define the extended valued function

$$h(\alpha) = \min_{\mathbf{x}, \mathbf{z}} \{ \varphi(\mathbf{x}) + \|\mathbf{x} - \mathbf{z}\|^2 : \omega(\mathbf{z}) \le \alpha \}$$
(P_{\alpha})

• We will approximately solve a sequence of (P_{α}) .

• The key idea: if *ω* is a simple function we can compute projection/linear oracle on its level set.

• For any $\alpha \in \mathbb{R}$ we can define the extended valued function

$$h(\alpha) = \min_{\mathbf{x}, \mathbf{z}} \{ \varphi(\mathbf{x}) + \|\mathbf{x} - \mathbf{z}\|^2 : \omega(\mathbf{z}) \le \alpha \}$$
(P_{\alpha})

- We will approximately solve a sequence of (P_{α}) .
- We will look for the smallest α such that $h(\alpha)$ is ε close to φ^* .

• IT *erative* Approximation and Level-set EX pansion is based on two main operations:

- IT *erative* Approximation and Level-set EX pansion is based on two main operations:
 - Approximate $h(\alpha)$ the optimal value of (P_{α})

- IT *erative* Approximation and Level-set EX pansion is based on two main operations:
 - Approximate $h(\alpha)$ the optimal value of (P_{α})
 - If $h(\alpha)$ is too big, then increase α Expansion of the level set while maintaining $\alpha \leq \omega^*$.

- IT *erative* Approximation and Level-set EX pansion is based on two main operations:
 - Approximate $h(\alpha)$ the optimal value of (P_{α})
 - If h(α) is too big, then increase α
 Expansion of the level set while maintaining α ≤ ω*.

ITALEX - General algorithm

Algorithm 1: ITALEX- General Scheme

Input:
$$\varepsilon$$
, $\overline{\varphi} \in [\varphi^*, \varphi^* + \frac{\varepsilon}{2}]$,
 $\alpha_0 \leq \omega^*$, $\mathbf{x}^0 \in \operatorname{dom}(\varphi)$, $\mathbf{z}^0 \in \operatorname{Lev}_{\omega}(\alpha_0)$
Approximation oracle $\mathcal{O}^{\omega,\varphi}$, Expansion oracle \mathcal{E}^{ω} ,
for all $k = 1, 2, ...$ do
 $(\rho_k, (\mathbf{x}^k, \mathbf{z}^k)) = \mathcal{O}^{\omega,\varphi}((\mathbf{x}^{k-1}, \mathbf{z}^{k-1}), \alpha_{k-1}, \overline{\varphi}, \frac{\varepsilon}{2})$
if $\varphi(\mathbf{x}^k) + \|\mathbf{x}^k - \mathbf{z}^k\|^2 \leq \overline{\varphi} + \frac{\varepsilon}{2}$ then
return \mathbf{x}^k
else
 $\alpha_k = \mathcal{E}^{\omega}(\alpha_{k-1}, \overline{\varphi}, \rho_k)$
end if
end for

ITALEX - General algorithm

Algorithm 2: ITALEX- General Scheme

Input:
$$\varepsilon$$
, $\overline{\varphi} \in [\varphi^*, \varphi^* + \frac{\varepsilon}{2}]$,
 $\alpha_0 \leq \omega^*$, $\mathbf{x}^0 \in \operatorname{dom}(\varphi)$, $\mathbf{z}^0 \in \operatorname{Lev}_{\omega}(\alpha_0)$
Approximation oracle $\mathcal{O}^{\omega,\varphi}$, Expansion oracle \mathcal{E}^{ω} ,
for all $k = 1, 2, ...$ do
 $(\rho_k, (\mathbf{x}^k, \mathbf{z}^k)) = \mathcal{O}^{\omega,\varphi}((\mathbf{x}^{k-1}, \mathbf{z}^{k-1}), \alpha_{k-1}, \overline{\varphi}, \frac{\varepsilon}{2})$
if $\varphi(\mathbf{x}^k) + \|\mathbf{x}^k - \mathbf{z}^k\|^2 \leq \overline{\varphi} + \frac{\varepsilon}{2}$ then
return \mathbf{x}^k
else
 $\alpha_k = \mathcal{E}^{\omega}(\alpha_{k-1}, \overline{\varphi}, \rho_k)$
end if
end for

What should we require from these oracles to guarantee ITALEX converges to the solution of (BLP)?

Expansion Oracle

Expansion Oracle

Definition (Expansion Oracle)

An operator $\mathcal{E}^{\omega,\varphi}(\alpha,\bar{\varphi},\rho)$ which for any $\rho \leq h(\alpha) - \bar{\varphi}$ returns $\alpha < \beta \leq \omega^*$

Expansion Oracle

Definition (Expansion Oracle)

An operator $\mathcal{E}^{\omega,\varphi}(\alpha,\bar{\varphi},\rho)$ which for any $\rho \leq h(\alpha) - \bar{\varphi}$ returns $\alpha < \beta \leq \omega^*$

How do we construct such an operator?

Assumption (Norm-like function)

 $\omega:\mathbb{R}^n\to\mathbb{R}$ is convex and satisfies the following properties.

- **(**) For any $\alpha \in \mathbb{R}$, The level set $\text{Lev}_{\omega}(\alpha)$ is compact.
- If there exists a γ -global error-bound of ω , *i.e.*,

 $\exists \gamma > 0 : \forall \mathbf{x} \in \mathbb{R}^n, \mathsf{dist}(\mathbf{x}, \mathsf{Lev}_{\omega}(\alpha)) \leq \gamma[\omega(\mathbf{x}) - \alpha]_+.$

Assumption (Norm-like function)

 $\omega:\mathbb{R}^n\to\mathbb{R}$ is convex and satisfies the following properties.

- **(**) For any $\alpha \in \mathbb{R}$, The level set $\text{Lev}_{\omega}(\alpha)$ is compact.
- **(D)** There exists a γ -global error-bound of ω , *i.e.*,

 $\exists \gamma > 0 : \forall \mathbf{x} \in \mathbb{R}^{n}, \mathsf{dist}(\mathbf{x}, \mathsf{Lev}_{\omega}(\alpha)) \leq \gamma[\omega(\mathbf{x}) - \alpha]_{+}.$

• (i) holds if ω is coercive (e.g., any norm).

Assumption (Norm-like function)

 $\omega:\mathbb{R}^n\to\mathbb{R}$ is convex and satisfies the following properties.

- **(**) For any $\alpha \in \mathbb{R}$, The level set $\text{Lev}_{\omega}(\alpha)$ is compact.
- **(D)** There exists a γ -global error-bound of ω , *i.e.*,

 $\exists \gamma > 0 : \forall \mathbf{x} \in \mathbb{R}^{n}, \mathsf{dist}(\mathbf{x}, \mathsf{Lev}_{\omega}(\alpha)) \leq \gamma[\omega(\mathbf{x}) - \alpha]_{+}.$

- (i) holds if ω is coercive (*e.g.*, any norm).
- Using [Lewis and Pang 1998, Theorem 1], (ii) can be verified for various functions by calculating

$$\gamma^{-1} = \inf_{\mathbf{v}, \mathbf{x}} \{ \|\mathbf{v}\| : \mathbf{v} \in \partial \omega(\mathbf{x}), \omega(\mathbf{x}) > \alpha \}.$$

Assumption (Norm-like function)

 $\omega:\mathbb{R}^n\to\mathbb{R}$ is convex and satisfies the following properties.

- **(**) For any $\alpha \in \mathbb{R}$, The level set $\text{Lev}_{\omega}(\alpha)$ is compact.
- There exists a γ -global error-bound of ω , *i.e.*,

 $\exists \gamma > 0 : \forall \mathbf{x} \in \mathbb{R}^{n}, \mathsf{dist}(\mathbf{x}, \mathsf{Lev}_{\omega}(\alpha)) \leq \gamma[\omega(\mathbf{x}) - \alpha]_{+}.$

- (i) holds if ω is coercive (*e.g.*, any norm).
- Using [Lewis and Pang 1998, Theorem 1], (ii) can be verified for various functions by calculating

$$\gamma^{-1} = \inf_{\mathbf{v}, \mathbf{x}} \{ \|\mathbf{v}\| : \mathbf{v} \in \partial \omega(\mathbf{x}), \omega(\mathbf{x}) > \alpha \}.$$

• Examples: ℓ_p -norm, Q-norm, Elastic net $(||\mathbf{x}||_1 + t||x||_2^2)$.

Theorem

Let ω be a norm-like function. Then for any $ho \leq h(lpha) - ar{arphi}$, the operator

$$\mathcal{E}^{\omega}(lpha,ar{arphi},
ho)=lpha+rac{\sqrt{
ho}}{\gamma}$$

is a valid expansion oracle.

Theorem

Let ω be a norm-like function. Then for any $ho \leq h(lpha) - ar{arphi}$, the operator

$$\mathcal{E}^{\omega}(lpha,ar{arphi},
ho)=lpha+rac{\sqrt{
ho}}{\gamma}$$

is a valid expansion oracle.

Proof sketch:

Theorem

Let ω be a norm-like function. Then for any $ho \leq h(lpha) - ar{arphi}$, the operator

$$\mathcal{E}^{\omega}(lpha,ar{arphi},
ho)=lpha+rac{\sqrt{
ho}}{\gamma}$$

is a valid expansion oracle.

Proof sketch:

• Let **x**^{*} be an optimal solution of (BLP).

Theorem

Let ω be a norm-like function. Then for any $ho \leq h(lpha) - ar{arphi}$, the operator

$$\mathcal{E}^{\omega}(lpha,ar{arphi},
ho)=lpha+rac{\sqrt{
ho}}{\gamma}$$

is a valid expansion oracle.

Proof sketch:

- Let **x**^{*} be an optimal solution of (BLP).
- Then $(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^*, \operatorname{Proj}_{\operatorname{Lev}_{\omega}(\alpha)}(\mathbf{x}^*))$ is sub-optimal for (P_{α}) .

 $\rho \leq h(\alpha) - \bar{\varphi}$

Theorem

Let ω be a norm-like function. Then for any $ho \leq h(lpha) - ar{arphi}$, the operator

$$\mathcal{E}^{\omega}(lpha,ar{arphi},
ho)=lpha+rac{\sqrt{
ho}}{\gamma}$$

is a valid expansion oracle.

Proof sketch:

- Let **x**^{*} be an optimal solution of (BLP).
- Then $(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^*, \operatorname{Proj}_{\operatorname{Lev}_{\omega}(\alpha)}(\mathbf{x}^*))$ is sub-optimal for (P_{α}) .

 $\rho \leq h(\alpha) - \bar{\varphi} \leq \varphi(\mathbf{x}^*) + \mathsf{dist}(\mathbf{x}^*, \mathsf{Lev}_\omega(\alpha))^2 - \bar{\varphi} \leq \mathsf{dist}(\mathbf{x}^*, \mathsf{Lev}_\omega(\alpha))^2.$

Theorem

Let ω be a norm-like function. Then for any $ho \leq h(lpha) - ar{arphi}$, the operator

$$\mathcal{E}^{\omega}(lpha,ar{arphi},
ho)=lpha+rac{\sqrt{
ho}}{\gamma}$$

is a valid expansion oracle.

Proof sketch:

- Let **x**^{*} be an optimal solution of (BLP).
- Then $(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^*, \operatorname{Proj}_{\operatorname{Lev}_{\omega}(\alpha)}(\mathbf{x}^*))$ is sub-optimal for (P_{α}) .

$$\rho \leq \textit{h}(\alpha) - \bar{\varphi} \leq \varphi(\textbf{x}^*) + \mathsf{dist}(\textbf{x}^*, \mathsf{Lev}_\omega(\alpha))^2 - \bar{\varphi} \leq \mathsf{dist}(\textbf{x}^*, \mathsf{Lev}_\omega(\alpha))^2.$$

• Since ω is norm-like

$$dist(\mathbf{x}^*, Lev_{\omega}(\alpha)) \leq \gamma(\omega^* - \alpha).$$

Theorem

Let ω be a norm-like function. Then for any $ho \leq h(lpha) - ar{arphi}$, the operator

$$\mathcal{E}^{\omega}(lpha,ar{arphi},
ho)=lpha+rac{\sqrt{
ho}}{\gamma}$$

is a valid expansion oracle.

Proof sketch:

- Let x* be an optimal solution of (BLP).
- Then $(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^*, \operatorname{Proj}_{\operatorname{Lev}_{\omega}(\alpha)}(\mathbf{x}^*))$ is sub-optimal for (P_{α}) .

$$\rho \leq \textit{h}(\alpha) - \bar{\varphi} \leq \varphi(\textbf{x}^*) + \mathsf{dist}(\textbf{x}^*, \mathsf{Lev}_\omega(\alpha))^2 - \bar{\varphi} \leq \mathsf{dist}(\textbf{x}^*, \mathsf{Lev}_\omega(\alpha))^2.$$

• Since ω is norm-like

$$\mathsf{dist}(\mathbf{x}^*,\mathsf{Lev}_\omega(lpha)) \leq \gamma(\omega^*-lpha).$$

• Thus, $\mathcal{E}^{\omega}(\alpha, \bar{\varphi}, \rho) \leq \omega^*$.

Convergence.

Convergence.

We can now bound N (the number of ITALEX outer iterations)

Convergence.

We can now bound N (the number of ITALEX outer iterations)

Corollary

Let ω be a norm-like function, and $\varepsilon > 0$. Then ITALEX with the above expansion oracle has at most N iterations where

$$N \leq \left\lceil rac{\gamma \left(\omega^* - \omega(\mathbf{z}^0)
ight)}{arepsilon}
ight
ceil$$

Moreover,

$$\omega(\mathbf{x}^N) - \omega^* \le \ell_{\omega,0}\sqrt{\epsilon}$$

where $\ell_{\omega,0}$ is the Lipschitz constant of ω on the compact set

$$\mathcal{W}^0 = \left\{ \mathbf{x} \in \mathbb{R}^n : \mathsf{dist}(\mathbf{x}, \mathsf{Lev}_\omega(lpha_0)) \leq \gamma(ar \omega - \omega(\mathbf{z}^0)) + \sqrt{\epsilon}
ight\}$$
 .

Definition (Approximation Oracle)

An operator $\mathcal{O}^{\omega,\varphi}((\mathbf{x},\mathbf{z}),\alpha,\bar{\varphi},\varepsilon)$ for any $\varepsilon > 0$, $\bar{\varphi} \ge \varphi^*, \alpha \ge \min_{\mathbf{x} \in \mathbb{R}^n} \{\omega(\mathbf{x})\} \equiv \underline{\omega}$ which determines 1 If $h(\alpha) - \bar{\varphi} \ge \frac{\varepsilon}{2}$ and returns $\frac{\varepsilon}{2} \le \rho \le h(\alpha) - \bar{\varphi}$. 2 If we found \mathbf{x} such that $\varphi(\mathbf{x}) + \|\mathbf{x} - \mathbf{z}\|^2 - \bar{\varphi} \le \varepsilon$ returns (\mathbf{x}, \mathbf{z}) .

Definition (Approximation Oracle)

An operator $\mathcal{O}^{\omega,\varphi}((\mathbf{x},\mathbf{z}),\alpha,\bar{\varphi},\varepsilon)$ for any $\varepsilon > 0$, $\bar{\varphi} \ge \varphi^*, \alpha \ge \min_{\mathbf{x} \in \mathbb{R}^n} \{\omega(\mathbf{x})\} \equiv \underline{\omega}$ which determines If $h(\alpha) - \bar{\varphi} \ge \frac{\varepsilon}{2}$ and returns $\frac{\varepsilon}{2} \le \rho \le h(\alpha) - \bar{\varphi}$. If we found \mathbf{x} such that $\varphi(\mathbf{x}) + \|\mathbf{x} - \mathbf{z}\|^2 - \bar{\varphi} \le \varepsilon$ returns (\mathbf{x}, \mathbf{z}) .

• There is an overlap between the two possible outputs if $\frac{\varepsilon}{2} \leq h(\alpha) - \bar{\varphi} \leq \varepsilon$.

Definition (Approximation Oracle)

An operator $\mathcal{O}^{\omega,\varphi}((\mathbf{x},\mathbf{z}),\alpha,\bar{\varphi},\varepsilon)$ for any $\varepsilon > 0$, $\bar{\varphi} \ge \varphi^*, \alpha \ge \min_{\mathbf{x} \in \mathbb{R}^n} \{\omega(\mathbf{x})\} \equiv \underline{\omega}$ which determines 1 If $h(\alpha) - \bar{\varphi} \ge \frac{\varepsilon}{2}$ and returns $\frac{\varepsilon}{2} \le \rho \le h(\alpha) - \bar{\varphi}$. 2 If we found \mathbf{x} such that $\varphi(\mathbf{x}) + \|\mathbf{x} - \mathbf{z}\|^2 - \bar{\varphi} \le \varepsilon$ returns (\mathbf{x}, \mathbf{z}) .

• There is an overlap between the two possible outputs if $\frac{\varepsilon}{2} \leq h(\alpha) - \bar{\varphi} \leq \varepsilon$.

How do we construct such an operator?

Assumption

The inner function $\varphi \equiv f + g$ satisfies the following:

• $f : \mathbb{R}^n \to \mathbb{R}$ is closed, convex, continuously differentiable with a Lipschitz-continuous gradient with constant L_f , *i.e.*,

$$\|
abla f(\mathbf{x}) -
abla f(\mathbf{y})\| \leq L_f \|\mathbf{x} - \mathbf{y}\|, \ \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$$

($g: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is a proper, closed, and convex function.

Assumption

The inner function $\varphi \equiv f + g$ satisfies the following:

• $f : \mathbb{R}^n \to \mathbb{R}$ is closed, convex, continuously differentiable with a Lipschitz-continuous gradient with constant L_f , *i.e.*,

$$\|
abla f(\mathbf{x}) -
abla f(\mathbf{y})\| \leq L_f \|\mathbf{x} - \mathbf{y}\|, \ \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$$

($g: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is a proper, closed, and convex function.

• For
$$\mathbf{y} = (\mathbf{y}_1, \mathbf{y}_2) \in \mathbb{R}^n \times \mathbb{R}^n$$
 defining
 $\hat{\varphi}^{\alpha}(\mathbf{y}) = \varphi(\mathbf{y}_1) + \|\mathbf{y}_1 - \mathbf{y}_2\|^2 + \delta_{\mathsf{Lev}_{\omega}(\alpha)}(\mathbf{y}_2)$

Assumption

The inner function $\varphi \equiv f + g$ satisfies the following:

• $f : \mathbb{R}^n \to \mathbb{R}$ is closed, convex, continuously differentiable with a Lipschitz-continuous gradient with constant L_f , *i.e.*,

$$\|
abla f(\mathbf{x}) -
abla f(\mathbf{y})\| \leq L_f \|\mathbf{x} - \mathbf{y}\|, \ \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$$

($g: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is a proper, closed, and convex function.

• For
$$\mathbf{y} = (\mathbf{y}_1, \mathbf{y}_2) \in \mathbb{R}^n \times \mathbb{R}^n$$
 defining
 $\hat{\varphi}^{\alpha}(\mathbf{y}) = \varphi(\mathbf{y}_1) + \|\mathbf{y}_1 - \mathbf{y}_2\|^2 + \delta_{\mathsf{Lev}_{\omega}(\alpha)}(\mathbf{y}_2)$

•
$$\hat{arphi}^{lpha}=\hat{f}+\hat{g}^{lpha}$$
 is a composite function.

- $\hat{f}(\mathbf{y}) = f(\mathbf{y}_1) + ||\mathbf{y}_1 \mathbf{y}_2||^2$ has an $(L_f + 2)$ -Lipschitz continuous gradient.
- $\hat{g}^{\alpha}(\mathbf{y}) = g(\mathbf{y}_1) + \delta_{\mathsf{Lev}_{\omega}(\alpha)}(\mathbf{y}_2)$ is separable.

- Generalized Conditional Gradeint (GCG) composite functions:
 - GCG step

$$\mathbf{y}^{k+1} = \mathbf{y}^k + t_k(\mathbf{p}(\mathbf{y}^k) - \mathbf{y}^k),$$

where

$$\mathbf{p}(\mathbf{y}) \in rg\min\left\{\langle
abla f(\mathbf{y}), \mathbf{p}
angle + g(\mathbf{p})
ight\}$$

- Generalized Conditional Gradeint (GCG) composite functions:
 - GCG step

$$\mathbf{y}^{k+1} = \mathbf{y}^k + t_k(\mathbf{p}(\mathbf{y}^k) - \mathbf{y}^k),$$

where

$$\mathbf{p}(\mathbf{y}) \in rg\min\left\{\langle
abla f(\mathbf{y}), \mathbf{p}
angle + g(\mathbf{p})
ight\}$$

• Bound on the optimality gap:

$$S(\mathbf{y}) = \langle
abla f(\mathbf{y}), \mathbf{y} - \mathbf{p}(\mathbf{y})
angle + g(\mathbf{y}) - g(\mathbf{p}(\mathbf{y}))$$

- Generalized Conditional Gradeint (GCG) composite functions:
 - GCG step

$$\mathbf{y}^{k+1} = \mathbf{y}^k + t_k(\mathbf{p}(\mathbf{y}^k) - \mathbf{y}^k),$$

where

$$\mathbf{p}(\mathbf{y}) \in rg\min\left\{ \langle
abla f(\mathbf{y}), \mathbf{p}
angle + g(\mathbf{p})
ight\}$$

• Bound on the optimality gap:

$$S(\mathbf{y}) = \langle
abla f(\mathbf{y}), \mathbf{y} - \mathbf{p}(\mathbf{y})
angle + g(\mathbf{y}) - g(\mathbf{p}(\mathbf{y})) \ge arphi(\mathbf{y}) - arphi(\mathbf{p}(\mathbf{y})) \ge arphi(\mathbf{y}) - arphi^*$$

- Generalized Conditional Gradeint (GCG) composite functions:
 - GCG step

$$\mathbf{y}^{k+1} = \mathbf{y}^k + t_k(\mathbf{p}(\mathbf{y}^k) - \mathbf{y}^k),$$

where

$$\mathbf{p}(\mathbf{y}) \in rg\min\left\{ \langle
abla f(\mathbf{y}), \mathbf{p}
angle + g(\mathbf{p})
ight\}$$

• Bound on the optimality gap:

$$\mathcal{S}(\mathbf{y}) = \langle
abla f(\mathbf{y}), \mathbf{y} - \mathbf{p}(\mathbf{y})
angle + g(\mathbf{y}) - g(\mathbf{p}(\mathbf{y})) \geq arphi(\mathbf{y}) - arphi(\mathbf{p}(\mathbf{y})) \geq arphi(\mathbf{y}) - arphi^*$$

• For a proper choice of step-size, admits sufficient decrease $\varphi(\mathbf{y}^k) - \varphi(\mathbf{y}^{k+1}) \geq \frac{1}{2} \min \left\{ S(\mathbf{y}^k), \frac{(S(\mathbf{y}^k))^2}{L_f D^2} \right\},$

where D is an upper bound on the diameter of dom(g)

- Generalized Conditional Gradeint (GCG) composite functions:
 - GCG step

$$\mathbf{y}^{k+1} = \mathbf{y}^k + t_k(\mathbf{p}(\mathbf{y}^k) - \mathbf{y}^k),$$

where

$$\mathbf{p}(\mathbf{y}) \in rg\min\left\{ \langle
abla f(\mathbf{y}), \mathbf{p}
angle + g(\mathbf{p})
ight\}$$

• Bound on the optimality gap:

$$S(\mathbf{y}) = \langle
abla f(\mathbf{y}), \mathbf{y} - \mathbf{p}(\mathbf{y})
angle + g(\mathbf{y}) - g(\mathbf{p}(\mathbf{y})) \ge \varphi(\mathbf{y}) - \varphi(\mathbf{p}(\mathbf{y})) \ge \varphi(\mathbf{y}) - \varphi^*$$

• For a proper choice of step-size, admits sufficient decrease $\varphi(\mathbf{y}^k) - \varphi(\mathbf{y}^{k+1}) \geq \frac{1}{2} \min \left\{ S(\mathbf{y}^k), \frac{(S(\mathbf{y}^k))^2}{L_f D^2} \right\},$

where D is an upper bound on the diameter of dom(g)

• Leads to O(1/k) convergence.
Generalized Conditional Gradient

- Generalized Conditional Gradeint (GCG) composite functions:
 - GCG step

$$\mathbf{y}^{k+1} = \mathbf{y}^k + t_k(\mathbf{p}(\mathbf{y}^k) - \mathbf{y}^k),$$

where

$$\mathbf{p}(\mathbf{y}) \in rg\min\left\{ \langle
abla f(\mathbf{y}), \mathbf{p}
angle + g(\mathbf{p})
ight\}$$

• Bound on the optimality gap:

$$\mathcal{S}(\mathbf{y}) = \langle
abla f(\mathbf{y}), \mathbf{y} - \mathbf{p}(\mathbf{y})
angle + g(\mathbf{y}) - g(\mathbf{p}(\mathbf{y})) \geq arphi(\mathbf{y}) - arphi(\mathbf{p}(\mathbf{y})) \geq arphi(\mathbf{y}) - arphi^*$$

• For a proper choice of step-size, admits sufficient decrease $\varphi(\mathbf{y}^k) - \varphi(\mathbf{y}^{k+1}) \geq \frac{1}{2} \min \left\{ S(\mathbf{y}^k), \frac{(S(\mathbf{y}^k))^2}{L_f D^2} \right\},$

where D is an upper bound on the diameter of dom(g)

• Leads to O(1/k) convergence.

Applying the algorithm to $\hat{\varphi}^{\alpha}$.

Generalized Conditional Gradient

- Generalized Conditional Gradeint (GCG) composite functions:
 - GCG step

$$\mathbf{y}^{k+1} = \mathbf{y}^k + t_k(\mathbf{p}(\mathbf{y}^k) - \mathbf{y}^k),$$

where

$$\mathbf{p}(\mathbf{y})\in rg\min\left\{ \langle
abla \hat{f}(\mathbf{y}),\mathbf{p}
angle + \hat{g}^{lpha}(\mathbf{p})
ight\}$$

• Bound on the optimality gap:

 $\mathcal{S}^{\alpha}(\mathbf{y}) = \langle \nabla \hat{f}(\mathbf{y}), \mathbf{y} - \mathbf{p}(\mathbf{y}) \rangle + \hat{g}^{\alpha}(\mathbf{y}) - \hat{g}^{\alpha}(\mathbf{p}(\mathbf{y})) \geq \hat{\varphi}^{\alpha}(\mathbf{p}(\mathbf{y})) \geq \hat{\varphi}^{\alpha}(\mathbf{y}) - h(\alpha)$

• For a proper choice of step-size, admits sufficient decrease

$$\hat{\varphi}^{lpha}(\mathbf{y}^k) - \hat{\varphi}^{lpha}(\mathbf{y}^{k+1}) \geq rac{1}{2} \min\left\{S^{lpha}(\mathbf{y}^k), rac{(S^{lpha}(\mathbf{y}^k))^2}{(L_f+2)L_f D_{lpha}^2}
ight\},$$

where D_lpha is an upper bound on the diameter of $\mathrm{dom}(g) imes\mathsf{Lev}_\omega(\omega^*)$

• Leads to O(1/k) convergence.

Applying the algorithm to $\hat{\varphi}^{\alpha}$.

Generalized Conditional Gradient

- Generalized Conditional Gradeint (GCG) composite functions:
 - GCG step

$$\mathbf{y}^{k+1} = \mathbf{y}^k + t_k(\mathbf{p}(\mathbf{y}^k) - \mathbf{y}^k),$$

where

$$\mathbf{p}(\mathbf{y}) = (\mathbf{p}_1(\mathbf{y}), \mathbf{p}_2(\mathbf{y})) \begin{cases} \mathbf{p}_1(\mathbf{y}) &= \arg\min\{\langle \nabla f(\mathbf{y}_1) + 2(\mathbf{y}_1 - \mathbf{y}_2), \mathbf{p}_1 \rangle + g(\mathbf{p}_1)\} \\ \mathbf{p}_2(\mathbf{y}) &= \arg\min_{\mathbf{p}_2 \in \mathsf{Lev}_\omega(\alpha)} \{\langle 2(\mathbf{y}_2 - \mathbf{y}_1), \mathbf{p}_2 \rangle\} \end{cases}$$

Bound on the optimality gap:

 $\mathcal{S}^{\alpha}(\mathbf{y}) = \langle \nabla \hat{f}(\mathbf{y}), \mathbf{y} - \mathbf{p}(\mathbf{y}) \rangle + \hat{g}^{\alpha}(\mathbf{y}) - \hat{g}^{\alpha}(\mathbf{p}(\mathbf{y})) \geq \hat{\varphi}^{\alpha}(\mathbf{p}(\mathbf{y})) \geq \hat{\varphi}^{\alpha}(\mathbf{y}) - h(\alpha)$

• For a proper choice of step-size, admits sufficient decrease

$$\hat{\varphi}^{lpha}(\mathbf{y}^k) - \hat{\varphi}^{lpha}(\mathbf{y}^{k+1}) \geq rac{1}{2} \min\left\{S^{lpha}(\mathbf{y}^k), rac{(S^{lpha}(\mathbf{y}^k))^2}{(L_f+2)L_f D_{lpha}^2}
ight\},$$

where D_{α} is an upper bound on the diameter of $\operatorname{dom}(g) imes \operatorname{Lev}_{\omega}(\omega^*)$

• Leads to O(1/k) convergence. Is this convergence rate maintained?

Applying the algorithm to $\hat{\varphi}^{\alpha}$.

GCG based Approximation Oracle

Algorithm 3: A GCG based Approximation Algorithm

Input: Initial point $\mathbf{y}^0 \equiv \mathbf{x} \in C \cap \text{Lev}_{\omega}(\alpha)$, $\alpha \leq \omega^*$, $\bar{\varphi} \geq \varphi^*$, ε , for j = 0, 1, 2, ... do Apply one iteration of GCG at point \mathbf{y}^j to obtain \mathbf{y}^{j+1} and $S^{\alpha}(\mathbf{y}^j)$. if $\hat{\varphi}^{\alpha}(\mathbf{y}^j) - \bar{\varphi} \leq \varepsilon$ then Exit algorithm and return $(\rho, \mathbf{y}) = (0, \mathbf{y}^j)$ end if if $\hat{\varphi}^{\alpha}(\mathbf{y}^j) - \bar{\varphi} - S^{\alpha}(\mathbf{y}^j) \geq \frac{\varepsilon}{2}$ then Exit and return $(\rho, \mathbf{y}) = (\hat{\varphi}^{\alpha}(\mathbf{y}^j) - \bar{\varphi} - S^{\alpha}(\mathbf{y}^j), \mathbf{y}^j)$ (Note that $\frac{\varepsilon}{2} \leq \rho = \hat{\varphi}^{\alpha}(\mathbf{y}^j) - \bar{\varphi} - S^{\alpha}(\mathbf{y}^j) - \bar{\varphi} - \hat{\varphi}^{\alpha}(\mathbf{y}^j) + h(\alpha) = h(\alpha) - \bar{\varphi} \leq h(\alpha) - \varphi^*$) end if end for

GCG based Approximation Oracle

Algorithm 4: A GCG based Approximation Algorithm

Input: Initial point $\mathbf{y}^0 \equiv \mathbf{x} \in C \cap \operatorname{Lev}_{\omega}(\alpha)$, $\alpha \leq \omega^*$, $\bar{\varphi} \geq \varphi^*$, ε , for j = 0, 1, 2, ... do Apply one iteration of GCG at point \mathbf{y}^j to obtain \mathbf{y}^{j+1} and $S^{\alpha}(\mathbf{y}^j)$. if $\hat{\varphi}^{\alpha}(\mathbf{y}^j) - \bar{\varphi} \leq \varepsilon$ then Exit algorithm and return $(\rho, \mathbf{y}) = (0, \mathbf{y}^j)$ end if if $\hat{\varphi}^{\alpha}(\mathbf{y}^j) - \bar{\varphi} - S^{\alpha}(\mathbf{y}^j) \geq \frac{\varepsilon}{2}$ then Exit and return $(\rho, \mathbf{y}) = (\hat{\varphi}^{\alpha}(\mathbf{y}^j) - \bar{\varphi} - S^{\alpha}(\mathbf{y}^j), \mathbf{y}^j)$ (Note that $\frac{\varepsilon}{2} \leq \rho = \hat{\varphi}^{\alpha}(\mathbf{y}^j) - \bar{\varphi} - S^{\alpha}(\mathbf{y}^j) - \bar{\varphi} - \hat{\varphi}^{\alpha}(\mathbf{y}^j) + h(\alpha) = h(\alpha) - \bar{\varphi} \leq h(\alpha) - \varphi^*$) end if end for

Theorem

During a run of ITALEX using the GCG based approximation oracle, the total number of GCG iterations (inner iterations) is at most K + N, where $K = O(1/\varepsilon)$ and N is the number of calls to the expansion oracle (outer iterations).

• For the above oracle implementation the inner iteration complexity is $K + N = O(1/\varepsilon)$.

- For the above oracle implementation the inner iteration complexity is $K + N = O(1/\varepsilon)$.
- L_f can be approximated locally. [Pedregosa et al. 2020]

- For the above oracle implementation the inner iteration complexity is $K + N = O(1/\varepsilon)$.
- L_f can be approximated locally. [Pedregosa et al. 2020]
- Our methodology is more general and other oracle implementations may be considered.

- For the above oracle implementation the inner iteration complexity is $K + N = O(1/\varepsilon)$.
- L_f can be approximated locally. [Pedregosa et al. 2020]
- Our methodology is more general and other oracle implementations may be considered.
- Specifically, instead of GCG we can use the proximal gradient (PG) method and get similar guarantees.

- For the above oracle implementation the inner iteration complexity is $K + N = O(1/\varepsilon)$.
- L_f can be approximated locally. [Pedregosa et al. 2020]
- Our methodology is more general and other oracle implementations may be considered.
- Specifically, instead of GCG we can use the proximal gradient (PG) method and get similar guarantees.
- On one hand, we note that S^α(y) is not computed during the run of PG.

- For the above oracle implementation the inner iteration complexity is $K + N = O(1/\varepsilon)$.
- L_f can be approximated locally. [Pedregosa et al. 2020]
- Our methodology is more general and other oracle implementations may be considered.
- Specifically, instead of GCG we can use the proximal gradient (PG) method and get similar guarantees.
- On one hand, we note that S^α(y) is not computed during the run of PG.
- On the other hand, PG generates a decreasing sequence and does not require dom(g) to be compact.

• Given a sparse $\mathbf{x}^{true} \in \mathbb{R}^{1000}$ we create $\mathbf{b} = \mathbf{A}\mathbf{x}^{true} + \nu$.

- Given a sparse $\mathbf{x}^{true} \in \mathbb{R}^{1000}$ we create $\mathbf{b} = \mathbf{A}\mathbf{x}^{true} + \nu$.
- $\varphi = \|\mathbf{A}\mathbf{x} \mathbf{b}\|^2$, $\omega(\mathbf{x}) = \|\mathbf{x}\|_1 + \rho \|\mathbf{x}\|_2^2$ with $\rho = 0.5$.

- Given a sparse $\mathbf{x}^{true} \in \mathbb{R}^{1000}$ we create $\mathbf{b} = \mathbf{A}\mathbf{x}^{true} + \nu$.
- $\varphi = \|\mathbf{A}\mathbf{x} \mathbf{b}\|^2$, $\omega(\mathbf{x}) = \|\mathbf{x}\|_1 + \rho \|\mathbf{x}\|_2^2$ with $\rho = 0.5$.
- Averaged over 100 simulations of ν .

- $\omega(\mathbf{x}) = \|\mathbf{x}\|_{1}$.
- PG faster than GCG

- $\omega(\mathbf{x}) = \|\mathbf{x}\|_1.$
- PG faster than GCG
- Benchmark: iterative regularization where with regularization parameter $\frac{1}{2^{\ell}}\lambda_{\max}(\mathbf{A}^{\top}\mathbf{A})$ for $\ell \in [15]$.

- $\omega(\mathbf{x}) = \|\mathbf{x}\|_1$.
- PG faster than GCG
- Benchmark: iterative regularization where with regularization parameter $\frac{1}{2\ell}\lambda_{\max}(\mathbf{A}^{\top}\mathbf{A})$ for $\ell \in [15]$.

• ITALEX has proven O(1/k) feasibility and $O(1/\sqrt{k})$ optimality rate for (BLP) with norm-like ω .

Summary

- ITALEX has proven O(1/k) feasibility and $O(1/\sqrt{k})$ optimality rate for (BLP) with norm-like ω .
- More on ITALEX project:
 - ε does not need to be fixed in advance.
 - Getting super-optimal solutions when g = 0.
 - Accelerated rates under additional conditions on φ and $\omega.$
 - Allowing outer function of the form $\omega(\mathbf{Lx})$.

Thank you for listening!

Bibliography I

- [AY19] M. Amini and F. Yousefian. "An Iterative Regularized Incremental Projected Subgradient Method for a Class of Bilevel Optimization Problems". In: <u>2019 American Control Conference (ACC)</u>. July 2019, pp. 4069–4074. DOI: https://doi.org/10.23919/ACC.2019.8814637.
- [BS14] Amir Beck and Shoham Sabach. "A first order method for finding minimal norm-like solutions of convex optimization problems". In: <u>Math Program</u> 147.1 (Oct. 2014), pp. 25–46. DOI: https://doi.org/10.1007/s10107-013-0708-2.
- [DP20] Joydeep Dutta and Tanushree Pandit. "Algorithms for Simple Bilevel Programming". In: Bilevel Optimization: Advances and Next Challenges. Ed. by Stephan Dempe and Alain Zemkoho. Cham: Springer International Publishing, 2020, pp. 253–291. DOI: https://doi.org/10.1007/978-3-030-52119-6_9.
- [LP98] Adrian S. Lewis and Jong-Shi Pang. "Error Bounds for Convex Inequality Systems". In: <u>Generalized Convexity, Generalized Monotonicity</u>. Ed. by Martinez-Legaz J. Crouziex J. and Volle M. Kluwer Academic Publishers, 1998. Chap. 3, pp. 75–110.
- [Ped+20] Fabian Pedregosa et al. "Linearly convergent Frank-Wolfe with backtracking line-search". In: International Conference on Artificial Intelligence and Statistics. PMLR. 2020, pp. 1–10.
- [Sol07] M. Solodov. "An Explicit Descent Method for Bilevel Convex Optimization". In: J Convex Anal 14 (Jan. 2007), pp. 227–237.

Bibliography II

- [SS17] Shoham Sabach and Shimrit Shtern. "A First Order Method for Solving Convex Bilevel Optimization Problems". In: <u>SIAM J. Optim.</u> 27.2 (2017), pp. 640–660. DOI: https://doi.org/10.1137/16M105592X.
- [SVZ21] Yekini Shehu, Phan Tu Vuong, and Alain Zemkoho. "An inertial extrapolation method for convex simple bilevel optimization". In: <u>Optim Methods Softw</u> 36.1 (2021), pp. 1–19. DOI: https://doi.org/10.1080/10556788.2019.1619729.

• Proximal Gradient for composite functions:

• PG step
$$\mathbf{y}^{k+1} = T_{L_f}(\mathbf{y}^k)$$
 where

$$T_{L_f}(\mathbf{y}) = \arg\min_{\mathbf{u}} \left\{ g(\mathbf{x}) + \frac{L_f}{2} \|\mathbf{y} - \frac{1}{L_f} \nabla f(\mathbf{y}) - \mathbf{u}\|^2 \right\}$$

• Proximal Gradient for composite functions:

• PG step
$$\mathbf{y}^{k+1} = T_{L_f}(\mathbf{y}^k)$$
 where

$$T_{L_f}(\mathbf{y}) = \underset{\mathbf{u}}{\operatorname{arg\,min}} \left\{ g(\mathbf{x}) + \frac{L_f}{2} \|\mathbf{y} - \frac{1}{L_f} \nabla f(\mathbf{y}) - \mathbf{u}\|^2 \right\}$$

• Assuming that $\operatorname{Lev}_{\varphi}(\varphi(\mathbf{y})) \leq D(\mathbf{y})$:

$$\tilde{S}(\mathbf{y}) = 2 \max \left\{ \varphi(\mathbf{y}) - \varphi(T_{L_f}(\mathbf{y})), \sqrt{\frac{L_f}{2} D(\mathbf{y})^2 (\varphi(\mathbf{y}) - \varphi(T_{L_f}(\mathbf{y})))} \right\}$$

• Proximal Gradient for composite functions:

• PG step
$$\mathbf{y}^{k+1} = T_{L_f}(\mathbf{y}^k)$$
 where

$$T_{L_f}(\mathbf{y}) = \operatorname*{arg\,min}_{\mathbf{u}} \left\{ g(\mathbf{x}) + \frac{L_f}{2} \|\mathbf{y} - \frac{1}{L_f} \nabla f(\mathbf{y}) - \mathbf{u}\|^2 \right\}$$

• Assuming that $\operatorname{Lev}_{\varphi}(\varphi(\mathbf{y})) \leq D(\mathbf{y})$:

$$egin{aligned} ilde{\mathcal{S}}(\mathbf{y}) &= 2 \max \left\{ arphi(\mathbf{y}) - arphi\left(\mathcal{T}_{L_f}(\mathbf{y})
ight), \sqrt{rac{L_f}{2} D(\mathbf{y})^2 (arphi(\mathbf{y}) - arphi\left(\mathcal{T}_{L_f}(\mathbf{y})
ight))}
ight\} \ &\geq S_{D(\mathbf{y})}(\mathbf{y}) \end{aligned}$$

۲

• Proximal Gradient for composite functions:

PG step
$$\mathbf{y}^{k+1} = \mathcal{T}_{L_f}(\mathbf{y}^k)$$
 where
 $\mathcal{T}_{L_f}(\mathbf{y}) = \operatorname*{arg\,min}_{\mathbf{u}} \left\{ g(\mathbf{x}) + \frac{L_f}{2} \|\mathbf{y} - \frac{1}{L_f} \nabla f(\mathbf{y}) - \mathbf{u}\|^2 \right\}$

• Assuming that $\operatorname{Lev}_{\varphi}(\varphi(\mathbf{y})) \leq D(\mathbf{y})$:

$$\begin{split} ilde{\mathcal{S}}(\mathbf{y}) &= 2 \max \left\{ arphi(\mathbf{y}) - arphi\left(T_{L_f}(\mathbf{y})
ight), \sqrt{rac{L_f}{2} D(\mathbf{y})^2 (arphi(\mathbf{y}) - arphi\left(T_{L_f}(\mathbf{y})
ight))}
ight\} \\ &\geq \mathcal{S}_{D(\mathbf{y})}(\mathbf{y}) \end{split}$$

Lemma

 $\tilde{S}(\mathbf{y})$ satisfies:

•
$$ilde{S}(\mathbf{y}) \geq arphi(\mathbf{y}) - arphi^*$$

•
$$\varphi(\mathbf{y}) - \varphi(\mathcal{T}_{L_f}(\mathbf{y})) \geq \frac{1}{2} \min\left\{ \widetilde{S}(\mathbf{y}), \frac{2\widetilde{S}(\mathbf{y})^2}{L_f D(\mathbf{y})^2}
ight\}$$

• Proximal Gradient for composite functions:

• PG step
$$\mathbf{y}^{k+1} = T_{L_f+2}^{\alpha}(\mathbf{y}^k)$$
 where
 $T_{L_f+2}^{\alpha}(\mathbf{y}) = \operatorname*{arg\,min}_{\mathbf{u}} \left\{ \hat{g}^{\alpha}(\mathbf{x}) + \frac{L_f+2}{2} \|\mathbf{y} - \frac{1}{L_f+2} \nabla \hat{f}(\mathbf{y}) - \mathbf{u}\|^2 \right\}$
• Assuming that $\operatorname{Lev}_{\hat{\varphi}^{\alpha}}(\hat{\varphi}^{\alpha}(\mathbf{y})) \leq D_{\alpha}(\mathbf{y})$:
 $\tilde{S}^{\alpha}(\mathbf{y}) = 2 \max \left\{ \hat{\varphi}^{\alpha}(\mathbf{y}) - \hat{\varphi}^{\alpha} \left(T_{L_f+2}^{\alpha}(\mathbf{y}) \right), \sqrt{\frac{L_f+2}{2}} D_{\alpha}(\mathbf{y})^2 (\hat{\varphi}^{\alpha}(\mathbf{y}) - \hat{\varphi}^{\alpha} \left(T_{L_f+2}^{\alpha}(\mathbf{y}) \right)) \right\}$
 $\geq S_{D(\mathbf{y})}^{\alpha}(\mathbf{y})$

Lemma

$$\begin{split} &\tilde{S}^{\alpha}(\mathbf{y}) \text{ satisfies:} \\ &\bullet \quad \tilde{S}^{\alpha}(\mathbf{y}) \geq \hat{\varphi}^{\alpha}(\mathbf{y}) - h(\alpha) \\ &\bullet \quad \hat{\varphi}^{\alpha}(\mathbf{y}) - \hat{\varphi}^{\alpha}(T^{\alpha}_{L_{f}+2}(\mathbf{y})) \geq \frac{1}{2} \min \left\{ \tilde{S}^{\alpha}(\mathbf{y}), \frac{2\tilde{S}(\mathbf{y})^{2}}{(L_{f}+2)D_{\alpha}(\mathbf{y})^{2}} \right\} \end{split}$$

Proximal Gradient for composite functions:
 PG step y^{k+1} = T^α_{lr+2}(y^k) where

$$\mathcal{T}_{L_{f}+2}^{\alpha}(\mathbf{y}) = (\mathcal{T}_{1}^{\alpha}(\mathbf{y}), \mathcal{T}_{2}^{\alpha}(\mathbf{y})), \begin{cases} \mathcal{T}_{1}^{\alpha}(\mathbf{y}) = \operatorname{prox}_{\frac{1}{L_{f}+2}g} \left(\mathbf{y}_{1} - \frac{1}{L_{f}+2} (\nabla f(\mathbf{y}_{1}) + 2(\mathbf{y}_{1} - \mathbf{y}_{2})) \right) \\ \mathcal{T}_{2}^{\alpha}(\mathbf{y}) = \operatorname{Proj}_{\operatorname{Lev}_{\omega}(\alpha)} \left(\frac{L_{f}\mathbf{y}_{2} + 2\mathbf{y}_{1}}{L_{f}+2} \right) \end{cases}$$

• Assuming that
$$Lev_{\hat{\varphi}^{\alpha}}(\hat{\varphi}^{\alpha}(\mathbf{y})) \leq D_{\alpha}(\mathbf{y})$$
:

$$ilde{S}^{lpha}(\mathbf{y}) = 2 \max \left\{ \hat{arphi}^{lpha}(\mathbf{y}) - \hat{arphi}^{lpha}\left(T^{lpha}_{L_{f}+2}(\mathbf{y})
ight), \sqrt{rac{L_{f}+2}{2}} D_{lpha}(\mathbf{y})^{2}(\hat{arphi}^{lpha}(\mathbf{y}) - \hat{arphi}^{lpha}\left(T^{lpha}_{L_{f}+2}(\mathbf{y})
ight))
ight\} \\ \geq S^{lpha}_{D(\mathbf{y})}(\mathbf{y})$$

Lemma

$$\begin{split} &\tilde{S}^{\alpha}(\mathbf{y}) \text{ satisfies:} \\ &\bullet \quad \tilde{S}^{\alpha}(\mathbf{y}) \geq \hat{\varphi}^{\alpha}(\mathbf{y}) - h(\alpha) \\ &\bullet \quad \hat{\varphi}^{\alpha}(\mathbf{y}) - \hat{\varphi}^{\alpha}(T^{\alpha}_{L_{f}+2}(\mathbf{y})) \geq \frac{1}{2} \min \left\{ \tilde{S}^{\alpha}(\mathbf{y}), \frac{2\tilde{S}(\mathbf{y})^{2}}{(L_{f}+2)D_{\alpha}(\mathbf{y})^{2}} \right\} \end{split}$$

Proximal Gradient for composite functions:
 PG step y^{k+1} = T^α_{lr+2}(y^k) where

$$\mathcal{T}_{L_{f}+2}^{\alpha}(\mathbf{y}) = (\mathcal{T}_{1}^{\alpha}(\mathbf{y}), \mathcal{T}_{2}^{\alpha}(\mathbf{y})), \begin{cases} \mathcal{T}_{1}^{\alpha}(\mathbf{y}) = \operatorname{prox}_{\frac{1}{L_{f}+2}g} \left(\mathbf{y}_{1} - \frac{1}{L_{f}+2} (\nabla f(\mathbf{y}_{1}) + 2(\mathbf{y}_{1} - \mathbf{y}_{2})) \right) \\ \mathcal{T}_{2}^{\alpha}(\mathbf{y}) = \operatorname{Proj}_{\mathsf{Lev}_{\omega}(\alpha)} \left(\frac{L_{f}\mathbf{y}_{2} + 2\mathbf{y}_{1}}{L_{f}+2} \right) \end{cases}$$

• Assuming that
$$Lev_{\hat{\varphi}^{\alpha}}(\hat{\varphi}^{\alpha}(\mathbf{y})) \leq D_{\alpha}(\mathbf{y})$$
:

$$ilde{S}^{lpha}(\mathbf{y}) = 2 \max \left\{ \hat{arphi}^{lpha}(\mathbf{y}) - \hat{arphi}^{lpha}\left(T^{lpha}_{L_{f}+2}(\mathbf{y})
ight), \sqrt{rac{L_{f}+2}{2}} D_{lpha}(\mathbf{y})^{2}(\hat{arphi}^{lpha}(\mathbf{y}) - \hat{arphi}^{lpha}\left(T^{lpha}_{L_{f}+2}(\mathbf{y})
ight))
ight\} \\ \geq S^{lpha}_{D(\mathbf{y})}(\mathbf{y})$$

Lemma

$$\begin{split} \tilde{S}^{\alpha}(\mathbf{y}) & \text{satisfies:} \\ \bullet & \tilde{S}^{\alpha}(\mathbf{y}) \geq \hat{\varphi}^{\alpha}(\mathbf{y}) - h(\alpha) \text{ - enables early stopping} \\ \bullet & \hat{\varphi}^{\alpha}(\mathbf{y}) - \hat{\varphi}^{\alpha}(T^{\alpha}_{L_{f}+2}(\mathbf{y})) \geq \frac{1}{2} \min\left\{\tilde{S}^{\alpha}(\mathbf{y}), \frac{2\tilde{S}^{\alpha}(\mathbf{y})^{2}}{(L_{f}+2)D_{\alpha}(\mathbf{y})^{2}}\right\} \\ & O(\frac{1}{\epsilon}) \text{ convergence} \end{split}$$