# First-Order Algorithms for Solving Simple Convex Bilevel Optimization Problems 

Shimrit Shtern<br>Joint work with Lior Doron (Technion)

One World Optimization Seminar<br>February 28th 2022

## Simple Bilevel Optimization

A simple bilevel optimization problem is defined as:

$$
\begin{equation*}
\omega^{*}=\min _{\mathbf{x} \in X^{*}} \omega(\mathbf{x}) \tag{BLP}
\end{equation*}
$$

where $X^{*}$ is the set of minimizers of the convex problem ( P )

$$
\begin{equation*}
\varphi^{*}=\min _{\mathbf{x} \in \mathbb{R}^{n}} \varphi(\mathbf{x}) \tag{P}
\end{equation*}
$$

## Simple Bilevel Optimization

A simple bilevel optimization problem is defined as:

$$
\begin{equation*}
\omega^{*}=\min _{\mathbf{x} \in X^{*}} \omega(\mathbf{x}) \tag{BLP}
\end{equation*}
$$

where $X^{*}$ is the set of minimizers of the convex problem ( P )

$$
\begin{equation*}
\varphi^{*}=\min _{\mathbf{x} \in \mathbb{R}^{n}} \varphi(\mathbf{x}) \tag{P}
\end{equation*}
$$

## Background:

- We are concerned with the case where both $\omega$ and $\varphi$ are convex.


## Simple Bilevel Optimization

A simple bilevel optimization problem is defined as:

$$
\begin{equation*}
\omega^{*}=\min _{\mathbf{x} \in X^{*}} \omega(\mathbf{x}) \tag{BLP}
\end{equation*}
$$

where $X^{*}$ is the set of minimizers of the convex problem ( P )

$$
\begin{equation*}
\varphi^{*}=\min _{\mathbf{x} \in \mathbb{R}^{n}} \varphi(\mathbf{x}) \tag{P}
\end{equation*}
$$

## Background:

- We are concerned with the case where both $\omega$ and $\varphi$ are convex.
- Used to solve underdetermined problems in ML and signal processing.


## Simple Bilevel Optimization

A simple bilevel optimization problem is defined as:

$$
\begin{equation*}
\omega^{*}=\min _{\mathbf{x} \in X^{*}} \omega(\mathbf{x}) \tag{BLP}
\end{equation*}
$$

where $X^{*}$ is the set of minimizers of the convex problem ( P )

$$
\begin{equation*}
\varphi^{*}=\min _{\mathbf{x} \in \mathbb{R}^{n}} \varphi(\mathbf{x}) \tag{P}
\end{equation*}
$$

## Background:

- We are concerned with the case where both $\omega$ and $\varphi$ are convex.
- Used to solve underdetermined problems in ML and signal processing.
- Example: Finding an optimal solution to

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} \varphi(x)=\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}
$$

which is the sparsest: $\omega(\mathbf{x})=\|\mathbf{x}\|_{1}$, the densest: $\omega(\mathbf{x})=\|\mathbf{x}\|_{2}^{2}$.

## Challenges

## Challenges

- The (BLP) is equivalent to:

$$
\begin{array}{ll}
\min & \omega(\mathbf{x}) \\
\text { s.t. } & \varphi(\mathbf{x}) \leq \varphi^{*}
\end{array}
$$

## Challenges

- The (BLP) is equivalent to:

$$
\begin{array}{ll}
\min & \omega(\mathbf{x}) \\
\text { s.t. } & \varphi(\mathbf{x}) \leq \varphi^{*}
\end{array}
$$

- $\varphi$ is usually not "simple", first-order methods such as (sub-)gradient projection cannot be used.


## Challenges

- The (BLP) is equivalent to:

$$
\begin{array}{ll}
\min & \omega(\mathbf{x}) \\
\text { s.t. } & \varphi(\mathbf{x}) \leq \varphi^{*}
\end{array}
$$

- $\varphi$ is usually not "simple", first-order methods such as (sub-)gradient projection cannot be used.
- This problem does not satisfy regularity conditions.
- Therefore strong duality and KKT conditions cannot be used.


## Challenges

- The (BLP) is equivalent to:

$$
\begin{array}{ll}
\min & \omega(\mathbf{x}) \\
\text { s.t. } & \varphi(\mathbf{x}) \leq \varphi^{*}
\end{array}
$$

- $\varphi$ is usually not "simple", first-order methods such as (sub-)gradient projection cannot be used.
- This problem does not satisfy regularity conditions.
- Therefore strong duality and KKT conditions cannot be used.
- Even if $\varphi^{*}$ is only approximated to high accuracy, the problem will be "almost irregular", which leads to numerical issues.


## Regularization

- One of the well known methods to approximate bilevel problems is via regularization

$$
\min _{x \in \mathbb{R}^{n}} \varphi(\mathbf{x})+\alpha \omega(\mathbf{x})
$$

## Regularization

- One of the well known methods to approximate bilevel problems is via regularization

$$
\min _{x \in \mathbb{R}^{n}} \varphi(\mathbf{x})+\alpha \omega(\mathbf{x})
$$

- For example, for the case $\varphi(\mathbf{x})=\|\mathbf{A x}-\mathbf{b}\|^{2}$
- When $\omega(\mathbf{x})=\|\mathbf{x}\|^{2}$ (Tikhonov regularization) - ridge regression.
- When $\omega(\mathbf{x})=\|\mathbf{x}\|_{1}$ - LASSO.


## Regularization

- One of the well known methods to approximate bilevel problems is via regularization

$$
\min _{x \in \mathbb{R}^{n}} \varphi(\mathbf{x})+\alpha \omega(\mathbf{x})
$$

- For example, for the case $\varphi(\mathbf{x})=\|\mathbf{A x}-\mathbf{b}\|^{2}$
- When $\omega(\mathbf{x})=\|\mathbf{x}\|^{2}$ (Tikhonov regularization) - ridge regression.
- When $\omega(\mathbf{x})=\|\mathbf{x}\|_{1}$ - LASSO.
- Equivalent to a Lagrangian relaxation of the problem

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}}\left\{\varphi(\mathbf{x}): \omega(\mathbf{x}) \leq \omega^{*}\right\}
$$

## Regularization

- One of the well known methods to approximate bilevel problems is via regularization

$$
\min _{x \in \mathbb{R}^{n}} \varphi(\mathbf{x})+\alpha \omega(\mathbf{x})
$$

- For example, for the case $\varphi(\mathbf{x})=\|\mathbf{A x}-\mathbf{b}\|^{2}$
- When $\omega(\mathbf{x})=\|\mathbf{x}\|^{2}$ (Tikhonov regularization) - ridge regression.
- When $\omega(\mathbf{x})=\|\mathbf{x}\|_{1}$ - LASSO.
- Equivalent to a Lagrangian relaxation of the problem

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}}\left\{\varphi(\mathbf{x}): \omega(\mathbf{x}) \leq \omega^{*}\right\}
$$

- Unclear how to find the right $\alpha>0$ when $\omega^{*}$ is unknown.


## Regularization

- One of the well known methods to approximate bilevel problems is via regularization

$$
\min _{x \in \mathbb{R}^{n}} \varphi(\mathbf{x})+\alpha \omega(\mathbf{x})
$$

- For example, for the case $\varphi(\mathbf{x})=\|\mathbf{A x}-\mathbf{b}\|^{2}$
- When $\omega(\mathbf{x})=\|\mathbf{x}\|^{2}$ (Tikhonov regularization) - ridge regression.
- When $\omega(\mathbf{x})=\|\mathbf{x}\|_{1}$ - LASSO.
- Equivalent to a Lagrangian relaxation of the problem

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}}\left\{\varphi(\mathbf{x}): \omega(\mathbf{x}) \leq \omega^{*}\right\}
$$

- Unclear how to find the right $\alpha>0$ when $\omega^{*}$ is unknown.
- Solving a sequence of $\left(R_{\alpha}\right)$ for decreasing values of $\alpha$ may be computationally demanding.


## First-Order Methods for Iterative Regularization

- A class of methods that at iteration $k$ perform one step of an iterative optimization algorithm on the problem $\left(R_{\alpha_{k}}\right)$

$$
\min _{x \in \mathbb{R}^{n}} \varphi(\mathbf{x})+\alpha_{k} \omega(\mathbf{x})
$$

where $\alpha_{k} \rightarrow 0$ as $k \rightarrow \infty$.

## First-Order Methods for Iterative Regularization

- A class of methods that at iteration $k$ perform one step of an iterative optimization algorithm on the problem $\left(R_{\alpha_{k}}\right)$

$$
\min _{x \in \mathbb{R}^{n}} \varphi(\mathbf{x})+\alpha_{k} \omega(\mathbf{x})
$$

where $\alpha_{k} \rightarrow 0$ as $k \rightarrow \infty$.

- The methods differ by the assumptions on the problem and the type of step performed.


## First-Order Methods for Iterative Regularization

- A class of methods that at iteration $k$ perform one step of an iterative optimization algorithm on the problem $\left(R_{\alpha_{k}}\right)$

$$
\min _{x \in \mathbb{R}^{n}} \varphi(\mathbf{x})+\alpha_{k} \omega(\mathbf{x})
$$

where $\alpha_{k} \rightarrow 0$ as $k \rightarrow \infty$.

- The methods differ by the assumptions on the problem and the type of step performed.
- IR-PG[Solodov 2007]: Asymptotic convergence to the solution of (BLP)
Assumptions: $\varphi(\mathbf{x})=f(\mathbf{x})+\delta_{C}(\mathbf{x})$ where $f(\mathbf{x})$ is $L_{f}$-smooth, $C$ closed and convex, and $\omega$ is $L_{\omega}$-smooth.
Step: Projected gradient $\mathbf{x}^{k+1}=\operatorname{Proj}_{C}\left(\mathbf{x}^{k}-t_{k}\left(\nabla f\left(\mathbf{x}^{k}\right)+\alpha_{k} \nabla \omega\left(\mathbf{x}^{k}\right)\right)\right)$, $\overline{t_{k}} \leq \frac{1}{L_{f}+\alpha_{k} L_{\omega}}$.


## First-Order Methods for Iterative Regularization

- A class of methods that at iteration $k$ perform one step of an iterative optimization algorithm on the problem $\left(R_{\alpha_{k}}\right)$

$$
\min _{x \in \mathbb{R}^{n}} \varphi(\mathbf{x})+\alpha_{k} \omega(\mathbf{x})
$$

where $\alpha_{k} \rightarrow 0$ as $k \rightarrow \infty$.

- The methods differ by the assumptions on the problem and the type of step performed.
- IR-PG[Solodov 2007]: Asymptotic convergence to the solution of (BLP)
- IR-IG [Amini and Yousefian 2019]: $O\left(1 / k^{0.5-\beta}\right), \beta \in(0,0.5)$ convergence of $\varphi(\mathbf{x})$.
Assumptions: $\varphi(\mathbf{x})=\sum_{i=1}^{m} f_{i}(\mathbf{x})+\delta_{C}(\mathbf{x}), f_{i}$ proper, closed, and convex, $C$ convex and compact, $\omega$ is strongly convex.
Step: Incremental projected subgradient.


## First-Order Methods for Iterative Regularization

- A class of methods that at iteration $k$ perform one step of an iterative optimization algorithm on the problem $\left(R_{\alpha_{k}}\right)$

$$
\min _{x \in \mathbb{R}^{n}} \varphi(\mathbf{x})+\alpha_{k} \omega(\mathbf{x})
$$

where $\alpha_{k} \rightarrow 0$ as $k \rightarrow \infty$.

- The methods differ by the assumptions on the problem and the type of step performed.
- IR-PG[Solodov 2007]: Asymptotic convergence to the solution of (BLP)
- IR-IG [Amini and Yousefian 2019]: $O\left(1 / k^{0.5-\beta}\right), \beta \in(0,0.5)$ convergence of $\varphi(\mathbf{x})$.
- SBP [Dutta and Pandit 2020]: Asymptotic.

Assumptions: Convexity.
Step: Proximal point (limited applicability)

## Other First-order Methods

- Assuming
- $\omega$ is smooth and strongly convex.
- $\varphi(\mathbf{x})=f(\mathbf{x})+g(\mathbf{x})$ is composite function.


## Other First-order Methods

- Assuming
- $\omega$ is smooth and strongly convex.
- $\varphi(\mathbf{x})=f(\mathbf{x})+g(\mathbf{x})$ is composite function.
- The following methods provide a rate of convergence of $\varphi(\mathbf{x})$ to $\varphi^{*}$ and asymptotic convergence to the solution of (BLP)


## Other First-order Methods

- Assuming
- $\omega$ is smooth and strongly convex.
- $\varphi(\mathbf{x})=f(\mathbf{x})+g(\mathbf{x})$ is composite function.
- The following methods provide a rate of convergence of $\varphi(\mathbf{x})$ to $\varphi^{*}$ and asymptotic convergence to the solution of (BLP)
- MNG[Beck and Sabach 2014]: Convergence rate of $O(1 / \sqrt{k})$.

Based on the notion of cutting-planes.
Requires optimizing $\omega$ on the intersection of two half spaces in each iteration.

## Other First-order Methods

- Assuming
- $\omega$ is smooth and strongly convex.
- $\varphi(\mathbf{x})=f(\mathbf{x})+g(\mathbf{x})$ is composite function.
- The following methods provide a rate of convergence of $\varphi(\mathbf{x})$ to $\varphi^{*}$ and asymptotic convergence to the solution of (BLP)
- MNG[Beck and Sabach 2014]: Convergence rate of $O(1 / \sqrt{k})$.
- BiG-SAM[Sabach and Shtern 2017]: Convergence rate of $O(1 / k)$.

Based sequential averaging of the gradient step for $\omega$ and proximal gradient step for $\varphi$.
Extension to cases where $\omega$ is a sum of Lipschitz continuous and smooth functions.

## Other First-order Methods

- Assuming
- $\omega$ is smooth and strongly convex.
- $\varphi(\mathbf{x})=f(\mathbf{x})+g(\mathbf{x})$ is composite function.
- The following methods provide a rate of convergence of $\varphi(\mathbf{x})$ to $\varphi^{*}$ and asymptotic convergence to the solution of (BLP)
- MNG[Beck and Sabach 2014]: Convergence rate of $O(1 / \sqrt{k})$.
- BiG-SAM[Sabach and Shtern 2017]: Convergence rate of $O(1 / k)$.
- iBiG-SAM[Shehu, Vuong, and Zemkoho 2021]: Asymptotic convergence. Running an inertial extrapolation over BiG-SAM steps.


## Contribution

- Motivation - $\omega(\cdot)=\|\cdot\|_{1}$


## Contribution

- Motivation - $\omega(\cdot)=\|\cdot\|_{1}$
- ITerative Approximation and Level-set EXpansion (ITALEX) scheme to solve (BLP):


## Contribution

- Motivation - $\omega(\cdot)=\|\cdot\|_{1}$
- ITerative Approximation and Level-set EXpansion (ITALEX) scheme to solve (BLP):
- We do not require $\omega$ to be neither smooth nor strongly-convex.


## Contribution

- Motivation - $\omega(\cdot)=\|\cdot\|_{1}$
- ITerative Approximation and Level-set EXpansion (ITALEX) scheme to solve (BLP):
- We do not require $\omega$ to be neither smooth nor strongly-convex.
- Easily applied to $I_{p}$ norms.


## Contribution

- Motivation - $\omega(\cdot)=\|\cdot\|_{1}$
- ITerative Approximation and Level-set EXpansion (ITALEX) scheme to solve (BLP):
- We do not require $\omega$ to be neither smooth nor strongly-convex.
- Easily applied to $I_{p}$ norms.
- For any $\varepsilon>0$ produces a solution $\mathbf{x}^{k}$ such that

$$
\varphi\left(\mathbf{x}^{k}\right) \leq \varphi^{*}+\varepsilon, \quad \omega\left(\mathbf{x}^{k}\right)-\omega^{*} \leq O(\sqrt{\epsilon}) .
$$

where $\varepsilon=O(1 / k)$.

## Bilevel methods - comparison

| Method | $\varphi=f+g$ <br> properties | $\omega$ properties | Convergence <br> to $\varphi *$ | Convergence <br> to $\omega^{*}$ |
| :--- | :--- | :--- | :--- | :--- |
| IR-PG [Solodov <br> 2007] | Classical composite | Smooth | Asymptotic | Asymptotic |
| MNG [Beck and <br> Sabach 2014] | Classical composite | Smooth, strongly <br> convex | $O\left(\frac{1}{\sqrt{k}}\right)$ | Asymptotic |
| BiG-SAM <br> [Sabach and Shtern <br> 2017] | Classical composite | Smooth, strongly <br> convex | $O\left(\frac{1}{k}\right)$ | Asymptotic |
| IR-IG [Amini and <br> Yousefian 2019] | $f$ is a finite sum, |  |  |  |
| $g=\delta_{C}, C$ compact | Strongly convex | $O\left(\frac{1}{k 0.5-\beta}\right)$ <br> $\beta \in(0,0.5)$ | Asymptotic |  |
| SBP [Dutta and <br> Pandit 2020] | General | General | Asymptotic | Asymptotic |
| ITALEX <br> [This <br> paper] | Classical composite | Norm-like function | $O\left(\frac{1}{k}\right)$ | $O\left(\frac{1}{\sqrt{k}}\right)$ |
|  | $g=0$ |  |  | Super- <br> optimal |

## Reformulating (BLP)

- The key idea: if $\omega$ is a simple function we can compute projection/linear oracle on its level set.


## Reformulating (BLP)

- The key idea: if $\omega$ is a simple function we can compute projection/linear oracle on its level set.
- For any $\alpha \in \mathbb{R}$ we can define the extended valued function

$$
h(\alpha)=\min _{\mathbf{x}, \mathbf{z}}\left\{\varphi(\mathbf{x})+\|\mathbf{x}-\mathbf{z}\|^{2}: \omega(\mathbf{z}) \leq \alpha\right\}
$$

## Reformulating (BLP)

- The key idea: if $\omega$ is a simple function we can compute projection/linear oracle on its level set.
- For any $\alpha \in \mathbb{R}$ we can define the extended valued function

$$
h(\alpha)=\min _{\mathbf{x}, \mathbf{z}}\left\{\varphi(\mathbf{x})+\|\mathbf{x}-\mathbf{z}\|^{2}: \omega(\mathbf{z}) \leq \alpha\right\}
$$

## Reformulating (BLP)

- The key idea: if $\omega$ is a simple function we can compute projection/linear oracle on its level set.
- For any $\alpha \in \mathbb{R}$ we can define the extended valued function

$$
h(\alpha)=\min _{\mathbf{x}, \mathbf{z}}\left\{\varphi(\mathbf{x})+\|\mathbf{x}-\mathbf{z}\|^{2}: \omega(\mathbf{z}) \leq \alpha\right\}
$$

- We will approximately solve a sequence of $\left(P_{\alpha}\right)$.



## Reformulating (BLP)

- The key idea: if $\omega$ is a simple function we can compute projection/linear oracle on its level set.
- For any $\alpha \in \mathbb{R}$ we can define the extended valued function

$$
h(\alpha)=\min _{\mathbf{x}, \mathbf{z}}\left\{\varphi(\mathbf{x})+\|\mathbf{x}-\mathbf{z}\|^{2}: \omega(\mathbf{z}) \leq \alpha\right\}
$$

- We will approximately solve a sequence of $\left(P_{\alpha}\right)$.
- We will look for the smallest $\alpha$ such that $h(\alpha)$ is $\varepsilon$ close to $\varphi^{*}$.



## Approach

- ITerative Approximation and Level-set EXpansion is based on two main operations:


## Approach

- ITerative Approximation and Level-set EXpansion is based on two main operations:
( Approximate $h(\alpha)$ - the optimal value of $\left(P_{\alpha}\right)$


## Approach

- ITerative Approximation and Level-set EXpansion is based on two main operations:
(1) Approximate $h(\alpha)$ - the optimal value of $\left(P_{\alpha}\right)$
(-) If $h(\alpha)$ is too big, then increase $\alpha$
Expansion of the level set while maintaining $\alpha \leq \omega^{*}$.


## Approach

- ITerative Approximation and Level-set EXpansion is based on two main operations:
( Approximate $h(\alpha)$ - the optimal value of $\left(P_{\alpha}\right)$
(1) If $h(\alpha)$ is too big, then increase $\alpha$

Expansion of the level set while maintaining $\alpha \leq \omega^{*}$.


## ITALEX - General algorithm

## Algorithm 1: ITALEX- General Scheme

Input: $\varepsilon, \bar{\varphi} \in\left[\varphi^{*}, \varphi^{*}+\frac{\varepsilon}{2}\right]$,
$\alpha_{0} \leq \omega^{*}, \mathbf{x}^{0} \in \operatorname{dom}(\varphi), \mathbf{z}^{0} \in \operatorname{Lev}_{\omega}\left(\alpha_{0}\right)$
Approximation oracle $\mathcal{O}^{\omega, \varphi}$, Expansion oracle $\mathcal{E}^{\omega}$,
for all $k=1,2, \ldots$ do
$\left(\rho_{k},\left(\mathbf{x}^{k}, \mathbf{z}^{k}\right)\right)=\mathcal{O}^{\omega, \varphi}\left(\left(\mathbf{x}^{k-1}, \mathbf{z}^{k-1}\right), \alpha_{k-1}, \bar{\varphi}, \frac{\varepsilon}{2}\right)$
if $\varphi\left(\mathbf{x}^{k}\right)+\left\|\mathbf{x}^{k}-\mathbf{z}^{k}\right\|^{2} \leq \bar{\varphi}+\frac{\varepsilon}{2}$ then
return $x^{k}$
else

$$
\alpha_{k}=\mathcal{E}^{\omega}\left(\alpha_{k-1}, \bar{\varphi}, \rho_{k}\right)
$$

end if
end for

## ITALEX - General algorithm

## Algorithm 2: ITALEX- General Scheme

Input: $\varepsilon, \bar{\varphi} \in\left[\varphi^{*}, \varphi^{*}+\frac{\varepsilon}{2}\right]$,
$\alpha_{0} \leq \omega^{*}, \mathbf{x}^{0} \in \operatorname{dom}(\varphi), \mathbf{z}^{0} \in \operatorname{Lev}_{\omega}\left(\alpha_{0}\right)$
Approximation oracle $\mathcal{O}^{\omega, \varphi}$, Expansion oracle $\mathcal{E}^{\omega}$,
for all $k=1,2, \ldots$ do
$\left(\rho_{k},\left(\mathbf{x}^{k}, \mathbf{z}^{k}\right)\right)=\mathcal{O}^{\omega, \varphi}\left(\left(\mathbf{x}^{k-1}, \mathbf{z}^{k-1}\right), \alpha_{k-1}, \bar{\varphi}, \frac{\varepsilon}{2}\right)$
if $\varphi\left(\mathbf{x}^{k}\right)+\left\|\mathbf{x}^{k}-\mathbf{z}^{k}\right\|^{2} \leq \bar{\varphi}+\frac{\varepsilon}{2}$ then
return $x^{k}$
else

$$
\alpha_{k}=\mathcal{E}^{\omega}\left(\alpha_{k-1}, \bar{\varphi}, \rho_{k}\right)
$$

end if
end for

What should we require from these oracles to guarantee ITALEX converges to the solution of (BLP)?

## Expansion Oracle

## Expansion Oracle

## Definition (Expansion Oracle)

An operator $\mathcal{E}^{\omega, \varphi}(\alpha, \bar{\varphi}, \rho)$ which for any $\rho \leq h(\alpha)-\bar{\varphi}$ returns $\alpha<\beta \leq \omega^{*}$

## Expansion Oracle

## Definition (Expansion Oracle)

An operator $\mathcal{E}^{\omega, \varphi}(\alpha, \bar{\varphi}, \rho)$ which for any $\rho \leq h(\alpha)-\bar{\varphi}$ returns $\alpha<\beta \leq \omega^{*}$

How do we construct such an operator?

## Constructing an Expansion Oracle - Assumptions

## Assumption (Norm-like function)

$\omega: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex and satisfies the following properties.
(D) For any $\alpha \in \mathbb{R}$, The level set $\operatorname{Lev}_{\omega}(\alpha)$ is compact.
(1) There exists a $\gamma$-global error-bound of $\omega$, i.e.,

$$
\exists \gamma>0: \forall \mathbf{x} \in \mathbb{R}^{n}, \operatorname{dist}\left(\mathbf{x}, \operatorname{Lev}_{\omega}(\alpha)\right) \leq \gamma[\omega(\mathbf{x})-\alpha]_{+} .
$$

## Constructing an Expansion Oracle - Assumptions

## Assumption (Norm-like function)

$\omega: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex and satisfies the following properties.
(D) For any $\alpha \in \mathbb{R}$, The level set $\operatorname{Lev}_{\omega}(\alpha)$ is compact.
(1) There exists a $\gamma$-global error-bound of $\omega$, i.e.,

$$
\exists \gamma>0: \forall \mathbf{x} \in \mathbb{R}^{n}, \operatorname{dist}\left(\mathbf{x}, \operatorname{Lev}_{\omega}(\alpha)\right) \leq \gamma[\omega(\mathbf{x})-\alpha]_{+} .
$$

- (i) holds if $\omega$ is coercive (e.g., any norm).


## Constructing an Expansion Oracle - Assumptions

## Assumption (Norm-like function)

$\omega: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex and satisfies the following properties.
(D) For any $\alpha \in \mathbb{R}$, The level set $\operatorname{Lev}_{\omega}(\alpha)$ is compact.
(1) There exists a $\gamma$-global error-bound of $\omega$, i.e.,

$$
\exists \gamma>0: \forall \mathbf{x} \in \mathbb{R}^{n}, \operatorname{dist}\left(\mathbf{x}, \operatorname{Lev}_{\omega}(\alpha)\right) \leq \gamma[\omega(\mathbf{x})-\alpha]_{+} .
$$

- (i) holds if $\omega$ is coercive (e.g., any norm).
- Using [Lewis and Pang 1998, Theorem 1], (ii) can be verified for various functions by calculating

$$
\gamma^{-1}=\inf _{\mathbf{v}, \mathbf{x}}\{\|\mathbf{v}\|: \mathbf{v} \in \partial \omega(\mathbf{x}), \omega(\mathbf{x})>\alpha\}
$$

## Constructing an Expansion Oracle - Assumptions

## Assumption (Norm-like function)

$\omega: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex and satisfies the following properties.
(1) For any $\alpha \in \mathbb{R}$, The level set $\operatorname{Lev}_{\omega}(\alpha)$ is compact.
(1) There exists a $\gamma$-global error-bound of $\omega$, i.e.,

$$
\exists \gamma>0: \forall \mathbf{x} \in \mathbb{R}^{n}, \operatorname{dist}\left(\mathbf{x}, \operatorname{Lev}_{\omega}(\alpha)\right) \leq \gamma[\omega(\mathbf{x})-\alpha]_{+} .
$$

- (i) holds if $\omega$ is coercive (e.g., any norm).
- Using [Lewis and Pang 1998, Theorem 1], (ii) can be verified for various functions by calculating

$$
\gamma^{-1}=\inf _{\mathbf{v}, \mathbf{x}}\{\|\mathbf{v}\|: \mathbf{v} \in \partial \omega(\mathbf{x}), \omega(\mathbf{x})>\alpha\}
$$

- Examples: $\ell_{p}$-norm, $Q$-norm, Elastic net $\left(\|\mathbf{x}\|_{1}+t\|x\|_{2}^{2}\right)$.


## Constructing an Expansion Oracle - cont.

## Theorem

Let $\omega$ be a norm-like function. Then for any $\rho \leq h(\alpha)-\bar{\varphi}$, the operator

$$
\mathcal{E}^{\omega}(\alpha, \bar{\varphi}, \rho)=\alpha+\frac{\sqrt{\rho}}{\gamma}
$$

is a valid expansion oracle.

## Constructing an Expansion Oracle - cont.

## Theorem

Let $\omega$ be a norm-like function. Then for any $\rho \leq h(\alpha)-\bar{\varphi}$, the operator

$$
\mathcal{E}^{\omega}(\alpha, \bar{\varphi}, \rho)=\alpha+\frac{\sqrt{\rho}}{\gamma}
$$

is a valid expansion oracle.
Proof sketch:

## Constructing an Expansion Oracle - cont.

## Theorem

Let $\omega$ be a norm-like function. Then for any $\rho \leq h(\alpha)-\bar{\varphi}$, the operator

$$
\mathcal{E}^{\omega}(\alpha, \bar{\varphi}, \rho)=\alpha+\frac{\sqrt{\rho}}{\gamma}
$$

is a valid expansion oracle.
Proof sketch:

- Let $\mathbf{x}^{*}$ be an optimal solution of (BLP).


## Constructing an Expansion Oracle - cont.

## Theorem

Let $\omega$ be a norm-like function. Then for any $\rho \leq h(\alpha)-\bar{\varphi}$, the operator

$$
\mathcal{E}^{\omega}(\alpha, \bar{\varphi}, \rho)=\alpha+\frac{\sqrt{\rho}}{\gamma}
$$

is a valid expansion oracle.
Proof sketch:

- Let $\mathbf{x}^{*}$ be an optimal solution of (BLP).
- Then $(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{*}, \operatorname{Proj}_{\operatorname{Lev}_{\omega}(\alpha)}\left(\mathbf{x}^{*}\right)\right)$ is sub-optimal for $\left(P_{\alpha}\right)$.

$$
\rho \leq h(\alpha)-\bar{\varphi}
$$

## Constructing an Expansion Oracle - cont.

## Theorem

Let $\omega$ be a norm-like function. Then for any $\rho \leq h(\alpha)-\bar{\varphi}$, the operator

$$
\mathcal{E}^{\omega}(\alpha, \bar{\varphi}, \rho)=\alpha+\frac{\sqrt{\rho}}{\gamma}
$$

is a valid expansion oracle.
Proof sketch:

- Let $\mathbf{x}^{*}$ be an optimal solution of (BLP).
- Then $(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{*}, \operatorname{Proj}_{\operatorname{Lev}_{\omega}(\alpha)}\left(\mathbf{x}^{*}\right)\right)$ is sub-optimal for $\left(P_{\alpha}\right)$.

$$
\rho \leq h(\alpha)-\bar{\varphi} \leq \varphi\left(\mathbf{x}^{*}\right)+\operatorname{dist}\left(\mathbf{x}^{*}, \operatorname{Lev}_{\omega}(\alpha)\right)^{2}-\bar{\varphi} \leq \operatorname{dist}\left(\mathbf{x}^{*}, \operatorname{Lev}_{\omega}(\alpha)\right)^{2} .
$$

## Constructing an Expansion Oracle - cont.

## Theorem

Let $\omega$ be a norm-like function. Then for any $\rho \leq h(\alpha)-\bar{\varphi}$, the operator

$$
\mathcal{E}^{\omega}(\alpha, \bar{\varphi}, \rho)=\alpha+\frac{\sqrt{\rho}}{\gamma}
$$

is a valid expansion oracle.
Proof sketch:

- Let $\mathbf{x}^{*}$ be an optimal solution of (BLP).
- Then $(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{*}, \operatorname{Proj}_{\operatorname{Lev}_{\omega}(\alpha)}\left(\mathbf{x}^{*}\right)\right)$ is sub-optimal for $\left(P_{\alpha}\right)$.

$$
\rho \leq h(\alpha)-\bar{\varphi} \leq \varphi\left(\mathbf{x}^{*}\right)+\operatorname{dist}\left(\mathbf{x}^{*}, \operatorname{Lev}_{\omega}(\alpha)\right)^{2}-\bar{\varphi} \leq \operatorname{dist}\left(\mathbf{x}^{*}, \operatorname{Lev}_{\omega}(\alpha)\right)^{2}
$$

- Since $\omega$ is norm-like

$$
\operatorname{dist}\left(\mathbf{x}^{*}, \operatorname{Lev}_{\omega}(\alpha)\right) \leq \gamma\left(\omega^{*}-\alpha\right)
$$

## Constructing an Expansion Oracle - cont.

## Theorem

Let $\omega$ be a norm-like function. Then for any $\rho \leq h(\alpha)-\bar{\varphi}$, the operator

$$
\mathcal{E}^{\omega}(\alpha, \bar{\varphi}, \rho)=\alpha+\frac{\sqrt{\rho}}{\gamma}
$$

is a valid expansion oracle.
Proof sketch:

- Let $\mathbf{x}^{*}$ be an optimal solution of (BLP).
- Then $(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{*}, \operatorname{Proj}_{\operatorname{Lev}_{\omega}(\alpha)}\left(\mathbf{x}^{*}\right)\right)$ is sub-optimal for $\left(P_{\alpha}\right)$.

$$
\rho \leq h(\alpha)-\bar{\varphi} \leq \varphi\left(\mathbf{x}^{*}\right)+\operatorname{dist}\left(\mathbf{x}^{*}, \operatorname{Lev}_{\omega}(\alpha)\right)^{2}-\bar{\varphi} \leq \operatorname{dist}\left(\mathbf{x}^{*}, \operatorname{Lev}_{\omega}(\alpha)\right)^{2}
$$

- Since $\omega$ is norm-like

$$
\operatorname{dist}\left(\mathbf{x}^{*}, \operatorname{Lev}_{\omega}(\alpha)\right) \leq \gamma\left(\omega^{*}-\alpha\right)
$$

- Thus, $\mathcal{E}^{\omega}(\alpha, \bar{\varphi}, \rho) \leq \omega^{*}$.


## Convergence.

## Convergence.

We can now bound $N$ (the number of ITALEX outer iterations)

## Convergence.

We can now bound $N$ (the number of ITALEX outer iterations)

## Corollary

Let $\omega$ be a norm-like function, and $\varepsilon>0$. Then ITALEX with the above expansion oracle has at most $N$ iterations where

$$
N \leq\left\lceil\frac{\gamma\left(\omega^{*}-\omega\left(\mathbf{z}^{0}\right)\right)}{\varepsilon}\right\rceil
$$

Moreover,

$$
\omega\left(\mathbf{x}^{N}\right)-\omega^{*} \leq \ell_{\omega, 0} \sqrt{\epsilon}
$$

where $\ell_{\omega, 0}$ is the Lipschitz constant of $\omega$ on the compact set

$$
\mathcal{W}^{0}=\left\{\mathbf{x} \in \mathbb{R}^{n}: \operatorname{dist}\left(\mathbf{x}, \operatorname{Lev}_{\omega}\left(\alpha_{0}\right)\right) \leq \gamma\left(\bar{\omega}-\omega\left(\mathbf{z}^{0}\right)\right)+\sqrt{\epsilon}\right\} .
$$

## Approximation Oracle

## Approximation Oracle

## Definition (Approximation Oracle)

An operator $\mathcal{O}^{\omega, \varphi}((\mathbf{x}, \mathbf{z}), \alpha, \bar{\varphi}, \varepsilon)$ for any $\varepsilon>0$, $\bar{\varphi} \geq \varphi^{*}, \alpha \geq \min _{\mathbf{x} \in \mathbb{R}^{n}}\{\omega(\mathbf{x})\} \equiv \underline{\omega}$ which determines
(1) If $h(\alpha)-\bar{\varphi} \geq \frac{\varepsilon}{2}$ and returns $\frac{\varepsilon}{2} \leq \rho \leq h(\alpha)-\bar{\varphi}$.
(2) If we found $\mathbf{x}$ such that $\varphi(\mathbf{x})+\|\mathbf{x}-\mathbf{z}\|^{2}-\bar{\varphi} \leq \varepsilon$ returns $(\mathbf{x}, \mathbf{z})$.

## Approximation Oracle

## Definition (Approximation Oracle)

An operator $\mathcal{O}^{\omega, \varphi}((\mathbf{x}, \mathbf{z}), \alpha, \bar{\varphi}, \varepsilon)$ for any $\varepsilon>0$, $\bar{\varphi} \geq \varphi^{*}, \alpha \geq \min _{\mathbf{x} \in \mathbb{R}^{n}}\{\omega(\mathbf{x})\} \equiv \underline{\omega}$ which determines
(1) If $h(\alpha)-\bar{\varphi} \geq \frac{\varepsilon}{2}$ and returns $\frac{\varepsilon}{2} \leq \rho \leq h(\alpha)-\bar{\varphi}$.
(2) If we found $\mathbf{x}$ such that $\varphi(\mathbf{x})+\|\mathbf{x}-\mathbf{z}\|^{2}-\bar{\varphi} \leq \varepsilon$ returns $(\mathbf{x}, \mathbf{z})$.

- There is an overlap between the two possible outputs if $\frac{\varepsilon}{2} \leq h(\alpha)-\bar{\varphi} \leq \varepsilon$.


## Approximation Oracle

## Definition (Approximation Oracle)

An operator $\mathcal{O}^{\omega, \varphi}((\mathbf{x}, \mathbf{z}), \alpha, \bar{\varphi}, \varepsilon)$ for any $\varepsilon>0$, $\bar{\varphi} \geq \varphi^{*}, \alpha \geq \min _{\mathbf{x} \in \mathbb{R}^{n}}\{\omega(\mathbf{x})\} \equiv \underline{\omega}$ which determines
(1) If $h(\alpha)-\bar{\varphi} \geq \frac{\varepsilon}{2}$ and returns $\frac{\varepsilon}{2} \leq \rho \leq h(\alpha)-\bar{\varphi}$.
(2) If we found $\mathbf{x}$ such that $\varphi(\mathbf{x})+\|\mathbf{x}-\mathbf{z}\|^{2}-\bar{\varphi} \leq \varepsilon$ returns $(\mathbf{x}, \mathbf{z})$.

- There is an overlap between the two possible outputs if $\frac{\varepsilon}{2} \leq h(\alpha)-\bar{\varphi} \leq \varepsilon$.

How do we construct such an operator?

## Approximation Oracle

## Assumption

The inner function $\varphi \equiv f+g$ satisfies the following:
(1) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is closed, convex, continuously differentiable with a Lipschitz-continuous gradient with constant $L_{f}$, i.e.,

$$
\|\nabla f(\mathbf{x})-\nabla f(\mathbf{y})\| \leq L_{f}\|\mathbf{x}-\mathbf{y}\|, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}
$$

(1) $g: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is a proper, closed, and convex function.

## Approximation Oracle

## Assumption

The inner function $\varphi \equiv f+g$ satisfies the following:
(1) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is closed, convex, continuously differentiable with a Lipschitz-continuous gradient with constant $L_{f}$, i.e.,

$$
\|\nabla f(\mathbf{x})-\nabla f(\mathbf{y})\| \leq L_{f}\|\mathbf{x}-\mathbf{y}\|, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}
$$

(1) $g: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is a proper, closed, and convex function.

- For $\mathbf{y}=\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$ defining

$$
\hat{\varphi}^{\alpha}(\mathbf{y})=\varphi\left(\mathbf{y}_{1}\right)+\left\|\mathbf{y}_{1}-\mathbf{y}_{2}\right\|^{2}+\delta_{\operatorname{Lev}_{\omega}(\alpha)}\left(\mathbf{y}_{2}\right)
$$

## Approximation Oracle

## Assumption

The inner function $\varphi \equiv f+g$ satisfies the following:
(1) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is closed, convex, continuously differentiable with a Lipschitz-continuous gradient with constant $L_{f}$, i.e.,

$$
\|\nabla f(\mathbf{x})-\nabla f(\mathbf{y})\| \leq L_{f}\|\mathbf{x}-\mathbf{y}\|, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}
$$

(1) $g: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is a proper, closed, and convex function.

- For $\mathbf{y}=\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$ defining

$$
\hat{\varphi}^{\alpha}(\mathbf{y})=\varphi\left(\mathbf{y}_{1}\right)+\left\|\mathbf{y}_{1}-\mathbf{y}_{2}\right\|^{2}+\delta_{\operatorname{Lev}_{\omega}(\alpha)}\left(\mathbf{y}_{2}\right)
$$

- $\hat{\varphi}^{\alpha}=\hat{f}+\hat{g}^{\alpha}$ is a composite function.
- $\hat{f}(\mathbf{y})=f\left(\mathbf{y}_{1}\right)+\left\|\mathbf{y}_{1}-\mathbf{y}_{2}\right\|^{2}$ has an $\left(L_{f}+2\right)$-Lipschitz continuous gradient.
- $\hat{g}^{\alpha}(\mathbf{y})=g\left(\mathbf{y}_{1}\right)+\delta_{\operatorname{Lev}_{\omega}(\alpha)}\left(\mathbf{y}_{2}\right)$ is separable.


## Generalized Conditional Gradient

## Generalized Conditional Gradient

- Generalized Conditional Gradeint (GCG) composite functions:
- GCG step

$$
\mathbf{y}^{k+1}=\mathbf{y}^{k}+t_{k}\left(\mathbf{p}\left(\mathbf{y}^{k}\right)-\mathbf{y}^{k}\right),
$$

where

$$
\mathbf{p}(\mathbf{y}) \in \arg \min \{\langle\nabla f(\mathbf{y}), \mathbf{p}\rangle+g(\mathbf{p})\}
$$

## Generalized Conditional Gradient

- Generalized Conditional Gradeint (GCG) composite functions:
- GCG step

$$
\mathbf{y}^{k+1}=\mathbf{y}^{k}+t_{k}\left(\mathbf{p}\left(\mathbf{y}^{k}\right)-\mathbf{y}^{k}\right),
$$

where

$$
\mathbf{p}(\mathbf{y}) \in \arg \min \{\langle\nabla f(\mathbf{y}), \mathbf{p}\rangle+g(\mathbf{p})\}
$$

- Bound on the optimality gap:

$$
S(\mathbf{y})=\langle\nabla f(\mathbf{y}), \mathbf{y}-\mathbf{p}(\mathbf{y})\rangle+g(\mathbf{y})-g(\mathbf{p}(\mathbf{y}))
$$

## Generalized Conditional Gradient

- Generalized Conditional Gradeint (GCG) composite functions:
- GCG step

$$
\mathbf{y}^{k+1}=\mathbf{y}^{k}+t_{k}\left(\mathbf{p}\left(\mathbf{y}^{k}\right)-\mathbf{y}^{k}\right),
$$

where

$$
\mathbf{p}(\mathbf{y}) \in \arg \min \{\langle\nabla f(\mathbf{y}), \mathbf{p}\rangle+g(\mathbf{p})\}
$$

- Bound on the optimality gap:

$$
S(\mathbf{y})=\langle\nabla f(\mathbf{y}), \mathbf{y}-\mathbf{p}(\mathbf{y})\rangle+g(\mathbf{y})-g(\mathbf{p}(\mathbf{y})) \geq \varphi(\mathbf{y})-\varphi(\mathbf{p}(\mathbf{y})) \geq \varphi(\mathbf{y})-\varphi^{*}
$$

## Generalized Conditional Gradient

- Generalized Conditional Gradeint (GCG) composite functions:
- GCG step

$$
\mathbf{y}^{k+1}=\mathbf{y}^{k}+t_{k}\left(\mathbf{p}\left(\mathbf{y}^{k}\right)-\mathbf{y}^{k}\right),
$$

where

$$
\mathbf{p}(\mathbf{y}) \in \arg \min \{\langle\nabla f(\mathbf{y}), \mathbf{p}\rangle+g(\mathbf{p})\}
$$

- Bound on the optimality gap:

$$
S(\mathbf{y})=\langle\nabla f(\mathbf{y}), \mathbf{y}-\mathbf{p}(\mathbf{y})\rangle+g(\mathbf{y})-g(\mathbf{p}(\mathbf{y})) \geq \varphi(\mathbf{y})-\varphi(\mathbf{p}(\mathbf{y})) \geq \varphi(\mathbf{y})-\varphi^{*}
$$

- For a proper choice of step-size, admits sufficient decrease

$$
\varphi\left(\mathbf{y}^{k}\right)-\varphi\left(\mathbf{y}^{k+1}\right) \geq \frac{1}{2} \min \left\{S\left(\mathbf{y}^{k}\right), \frac{\left(S\left(\mathbf{y}^{k}\right)\right)^{2}}{L_{f} D^{2}}\right\}
$$

where $D$ is an upper bound on the diameter of $\operatorname{dom}(g)$

## Generalized Conditional Gradient

- Generalized Conditional Gradeint (GCG) composite functions:
- GCG step

$$
\mathbf{y}^{k+1}=\mathbf{y}^{k}+t_{k}\left(\mathbf{p}\left(\mathbf{y}^{k}\right)-\mathbf{y}^{k}\right),
$$

where

$$
\mathbf{p}(\mathbf{y}) \in \arg \min \{\langle\nabla f(\mathbf{y}), \mathbf{p}\rangle+g(\mathbf{p})\}
$$

- Bound on the optimality gap:

$$
S(\mathbf{y})=\langle\nabla f(\mathbf{y}), \mathbf{y}-\mathbf{p}(\mathbf{y})\rangle+g(\mathbf{y})-g(\mathbf{p}(\mathbf{y})) \geq \varphi(\mathbf{y})-\varphi(\mathbf{p}(\mathbf{y})) \geq \varphi(\mathbf{y})-\varphi^{*}
$$

- For a proper choice of step-size, admits sufficient decrease

$$
\varphi\left(\mathbf{y}^{k}\right)-\varphi\left(\mathbf{y}^{k+1}\right) \geq \frac{1}{2} \min \left\{S\left(\mathbf{y}^{k}\right), \frac{\left(S\left(\mathbf{y}^{k}\right)\right)^{2}}{L_{f} D^{2}}\right\}
$$

where $D$ is an upper bound on the diameter of $\operatorname{dom}(g)$

- Leads to $O(1 / k)$ convergence.


## Generalized Conditional Gradient

- Generalized Conditional Gradeint (GCG) composite functions:
- GCG step

$$
\mathbf{y}^{k+1}=\mathbf{y}^{k}+t_{k}\left(\mathbf{p}\left(\mathbf{y}^{k}\right)-\mathbf{y}^{k}\right),
$$

where

$$
\mathbf{p}(\mathbf{y}) \in \arg \min \{\langle\nabla f(\mathbf{y}), \mathbf{p}\rangle+g(\mathbf{p})\}
$$

- Bound on the optimality gap:

$$
S(\mathbf{y})=\langle\nabla f(\mathbf{y}), \mathbf{y}-\mathbf{p}(\mathbf{y})\rangle+g(\mathbf{y})-g(\mathbf{p}(\mathbf{y})) \geq \varphi(\mathbf{y})-\varphi(\mathbf{p}(\mathbf{y})) \geq \varphi(\mathbf{y})-\varphi^{*}
$$

- For a proper choice of step-size, admits sufficient decrease

$$
\varphi\left(\mathbf{y}^{k}\right)-\varphi\left(\mathbf{y}^{k+1}\right) \geq \frac{1}{2} \min \left\{S\left(\mathbf{y}^{k}\right), \frac{\left(S\left(\mathbf{y}^{k}\right)\right)^{2}}{L_{f} D^{2}}\right\}
$$

where $D$ is an upper bound on the diameter of $\operatorname{dom}(g)$

- Leads to $O(1 / k)$ convergence.

Applying the algorithm to $\hat{\varphi}^{\alpha}$.

## Generalized Conditional Gradient

- Generalized Conditional Gradeint (GCG) composite functions:
- GCG step

$$
\mathbf{y}^{k+1}=\mathbf{y}^{k}+t_{k}\left(\mathbf{p}\left(\mathbf{y}^{k}\right)-\mathbf{y}^{k}\right),
$$

where

$$
\mathbf{p}(\mathbf{y}) \in \arg \min \left\{\langle\nabla \hat{f}(\mathbf{y}), \mathbf{p}\rangle+\hat{\mathrm{g}}^{\alpha}(\mathbf{p})\right\}
$$

- Bound on the optimality gap:

$$
S^{\alpha}(\mathbf{y})=\langle\nabla \hat{f}(\mathbf{y}), \mathbf{y}-\mathbf{p}(\mathbf{y})\rangle+\hat{g}^{\alpha}(\mathbf{y})-\hat{g}^{\alpha}(\mathbf{p}(\mathbf{y})) \geq \hat{\varphi}^{\alpha}(\mathbf{y})-\hat{\varphi}^{\alpha}(\mathbf{p}(\mathbf{y})) \geq \hat{\varphi}^{\alpha}(\mathbf{y})-h(\alpha)
$$

- For a proper choice of step-size, admits sufficient decrease

$$
\hat{\varphi}^{\alpha}\left(\mathbf{y}^{k}\right)-\hat{\varphi}^{\alpha}\left(\mathbf{y}^{k+1}\right) \geq \frac{1}{2} \min \left\{S^{\alpha}\left(\mathbf{y}^{k}\right), \frac{\left(S^{\alpha}\left(\mathbf{y}^{k}\right)\right)^{2}}{\left(L_{f}+2\right) L_{f} D_{\alpha}^{2}}\right\}
$$

where $D_{\alpha}$ is an upper bound on the diameter of $\operatorname{dom}(g) \times \operatorname{Lev}_{\omega}\left(\omega^{*}\right)$

- Leads to $O(1 / k)$ convergence.

Applying the algorithm to $\hat{\varphi}^{\alpha}$.

## Generalized Conditional Gradient

- Generalized Conditional Gradeint (GCG) composite functions:
- GCG step

$$
\mathbf{y}^{k+1}=\mathbf{y}^{k}+t_{k}\left(\mathbf{p}\left(\mathbf{y}^{k}\right)-\mathbf{y}^{k}\right),
$$

where

$$
\mathbf{p}(\mathbf{y})=\left(\mathbf{p}_{1}(\mathbf{y}), \mathbf{p}_{2}(\mathbf{y})\right)\left\{\begin{array}{l}
\mathbf{p}_{1}(\mathbf{y})=\underset{\mathbf{p}_{2}(\mathbf{y})=\underset{\mathbf{p}_{2} \in \operatorname{Lev} \omega(\alpha)}{\arg \min }\left\{\left\langle\nabla f\left(\mathbf{y}_{1}\right)+2\left(\mathbf{y}_{1}-\mathbf{y}_{2}\right), \mathbf{p}_{1}\right\rangle+g\left(\mathbf{p}_{1}\right)\right\}}{ }\left\{\left\langle 2\left(\mathbf{y}_{2}-\mathbf{y}_{1}\right), \mathbf{p}_{2}\right\rangle\right\}
\end{array}\right.
$$

- Bound on the optimality gap:

$$
S^{\alpha}(\mathbf{y})=\langle\nabla \hat{f}(\mathbf{y}), \mathbf{y}-\mathbf{p}(\mathbf{y})\rangle+\hat{g}^{\alpha}(\mathbf{y})-\hat{g}^{\alpha}(\mathbf{p}(\mathbf{y})) \geq \hat{\varphi}^{\alpha}(\mathbf{y})-\hat{\varphi}^{\alpha}(\mathbf{p}(\mathbf{y})) \geq \hat{\varphi}^{\alpha}(\mathbf{y})-h(\alpha)
$$

- For a proper choice of step-size, admits sufficient decrease

$$
\hat{\varphi}^{\alpha}\left(\mathbf{y}^{k}\right)-\hat{\varphi}^{\alpha}\left(\mathbf{y}^{k+1}\right) \geq \frac{1}{2} \min \left\{S^{\alpha}\left(\mathbf{y}^{k}\right), \frac{\left(S^{\alpha}\left(\mathbf{y}^{k}\right)\right)^{2}}{\left(L_{f}+2\right) L_{f} D_{\alpha}^{2}}\right\}
$$

where $D_{\alpha}$ is an upper bound on the diameter of $\operatorname{dom}(g) \times \operatorname{Lev}_{\omega}\left(\omega^{*}\right)$

- Leads to $O(1 / k)$ convergence. Is this convergence rate maintained?

Applying the algorithm to $\hat{\varphi}^{\alpha}$.

## GCG based Approximation Oracle

## Algorithm 3: A GCG based Approximation Algorithm

```
    Input: Initial point \(\mathbf{y}^{0} \equiv \mathbf{x} \in C \cap \operatorname{Lev}_{\omega}(\alpha), \alpha \leq \omega^{*}, \bar{\varphi} \geq \varphi^{*}, \varepsilon\),
    for \(j=0,1,2, \ldots\) do
    Apply one iteration of GCG at point \(\mathbf{y}^{j}\) to obtain \(\boldsymbol{y}^{j+1}\) and \(S^{\alpha}\left(\mathbf{y}^{j}\right)\).
    if \(\hat{\varphi}^{\alpha}\left(\boldsymbol{y}^{j}\right)-\bar{\varphi} \leq \varepsilon\) then
        Exit algorithm and return \((\rho, \mathbf{y})=\left(0, \mathbf{y}^{j}\right)\)
        end if
    if \(\hat{\varphi}^{\alpha}\left(\boldsymbol{y}^{j}\right)-\bar{\varphi}-S^{\alpha}\left(\mathbf{y}^{j}\right) \geq \frac{\varepsilon}{2}\) then
        Exit and return \((\rho, \mathbf{y})=\left(\hat{\varphi}^{\alpha}\left(\boldsymbol{y}^{j}\right)-\bar{\varphi}-S^{\alpha}\left(\mathbf{y}^{j}\right), \mathbf{y}^{j}\right)\)
        (Note that \(\left.\frac{\varepsilon}{2} \leq \rho=\hat{\varphi}^{\alpha}\left(y^{j}\right)-\bar{\varphi}-S^{\alpha}\left(y^{j}\right) \leq \hat{\varphi}^{\alpha}\left(y^{j}\right)-\bar{\varphi}-\hat{\varphi}^{\alpha}\left(y^{j}\right)+h(\alpha)=h(\alpha)-\bar{\varphi} \leq h(\alpha)-\varphi^{*}\right)\)
    end if
    end for
```


## GCG based Approximation Oracle

## Algorithm 4: A GCG based Approximation Algorithm

```
Input: Initial point \(\mathbf{y}^{0} \equiv \mathbf{x} \in C \cap \operatorname{Lev}_{\omega}(\alpha), \alpha \leq \omega^{*}, \bar{\varphi} \geq \varphi^{*}, \varepsilon\),
    for \(j=0,1,2, \ldots\) do
    Apply one iteration of GCG at point \(\mathbf{y}^{j}\) to obtain \(\mathbf{y}^{j+1}\) and \(S^{\alpha}\left(\mathbf{y}^{j}\right)\).
    if \(\hat{\varphi}^{\alpha}\left(\boldsymbol{y}^{j}\right)-\bar{\varphi} \leq \varepsilon\) then
        Exit algorithm and return \((\rho, \mathbf{y})=\left(0, \mathbf{y}^{j}\right)\)
    end if
    if \(\hat{\varphi}^{\alpha}\left(\boldsymbol{y}^{j}\right)-\bar{\varphi}-S^{\alpha}\left(\boldsymbol{y}^{j}\right) \geq \frac{\varepsilon}{2}\) then
        Exit and return \((\rho, \mathbf{y})=\left(\hat{\varphi}^{\alpha}\left(\mathbf{y}^{j}\right)-\bar{\varphi}-S^{\alpha}\left(\mathbf{y}^{j}\right), \mathbf{y}^{j}\right)\)
        (Note that \(\left.\frac{\varepsilon}{2} \leq \rho=\hat{\varphi}^{\alpha}\left(y^{j}\right)-\bar{\varphi}-S^{\alpha}\left(y^{j}\right) \leq \hat{\varphi}^{\alpha}\left(y^{j}\right)-\bar{\varphi}-\hat{\varphi}^{\alpha}\left(y^{j}\right)+h(\alpha)=h(\alpha)-\bar{\varphi} \leq h(\alpha)-\varphi^{*}\right)\)
    end if
    end for
```


## Theorem

During a run of ITALEX using the GCG based approximation oracle, the total number of GCG iterations (inner iterations) is at most $K+N$, where $K=O(1 / \varepsilon)$ and $N$ is the number of calls to the expansion oracle (outer iterations).

## Flexibility

- For the above oracle implementation the inner iteration complexity is $K+N=O(1 / \varepsilon)$.


## Flexibility

- For the above oracle implementation the inner iteration complexity is $K+N=O(1 / \varepsilon)$.
- $L_{f}$ can be approximated locally. [Pedregosa et al. 2020]


## Flexibility

- For the above oracle implementation the inner iteration complexity is $K+N=O(1 / \varepsilon)$.
- $L_{f}$ can be approximated locally. [Pedregosa et al. 2020]
- Our methodology is more general and other oracle implementations may be considered.


## Flexibility

- For the above oracle implementation the inner iteration complexity is $K+N=O(1 / \varepsilon)$.
- $L_{f}$ can be approximated locally. [Pedregosa et al. 2020]
- Our methodology is more general and other oracle implementations may be considered.
- Specifically, instead of GCG we can use the proximal gradient (PG) method and get similar guarantees.


## Flexibility

- For the above oracle implementation the inner iteration complexity is $K+N=O(1 / \varepsilon)$.
- $L_{f}$ can be approximated locally. [Pedregosa et al. 2020]
- Our methodology is more general and other oracle implementations may be considered.
- Specifically, instead of GCG we can use the proximal gradient (PG) method and get similar guarantees.
- On one hand, we note that $S^{\alpha}(\mathbf{y})$ is not computed during the run of PG.


## Flexibility

- For the above oracle implementation the inner iteration complexity is $K+N=O(1 / \varepsilon)$.
- $L_{f}$ can be approximated locally. [Pedregosa et al. 2020]
- Our methodology is more general and other oracle implementations may be considered.
- Specifically, instead of GCG we can use the proximal gradient (PG) method and get similar guarantees.
- On one hand, we note that $S^{\alpha}(\mathbf{y})$ is not computed during the run of PG.
- On the other hand, PG generates a decreasing sequence and does not require $\operatorname{dom}(g)$ to be compact.


## Numerical experiments

## Numerical experiments

- Given a sparse $\mathbf{x}^{\text {true }} \in \mathbb{R}^{1000}$ we create $\mathbf{b}=\mathbf{A} \mathbf{x}^{\text {true }}+\nu$.


## Numerical experiments

- Given a sparse $\mathbf{x}^{\text {true }} \in \mathbb{R}^{1000}$ we create $\mathbf{b}=\mathbf{A} \mathbf{x}^{\text {true }}+\nu$.
- $\varphi=\|\mathbf{A x}-\mathbf{b}\|^{2}, \omega(\mathbf{x})=\|\mathbf{x}\|_{1}+\rho\|\mathbf{x}\|_{2}^{2}$ with $\rho=0.5$.


## Numerical experiments

- Given a sparse $\mathbf{x}^{\text {true }} \in \mathbb{R}^{1000}$ we create $\mathbf{b}=\mathbf{A} \mathbf{x}^{\text {true }}+\nu$.
- $\varphi=\|\mathbf{A x}-\mathbf{b}\|^{2}, \omega(\mathbf{x})=\|\mathbf{x}\|_{1}+\rho\|\mathbf{x}\|_{2}^{2}$ with $\rho=0.5$.
- Averaged over 100 simulations of $\nu$.


Numerical experiments -

- $\omega(\mathbf{x})=\|\mathbf{x}\|_{1}$.
- PG faster than GCG


## Numerical experiments -

- $\omega(\mathbf{x})=\|\mathbf{x}\|_{1}$.
- PG faster than GCG
- Benchmark: iterative regularization where with regularization parameter $\frac{1}{2^{\ell}} \lambda_{\max }\left(\mathbf{A}^{\top} \mathbf{A}\right)$ for $\ell \in[15]$.


## Numerical experiments -

- $\omega(\mathbf{x})=\|\mathbf{x}\|_{1}$.
- PG faster than GCG
- Benchmark: iterative regularization where with regularization parameter $\frac{1}{2^{\ell}} \lambda_{\max }\left(\mathbf{A}^{\top} \mathbf{A}\right)$ for $\ell \in[15]$.





## Summary

- ITALEX has proven $O(1 / k)$ feasibility and $O(1 / \sqrt{k})$ optimality rate for (BLP) with norm-like $\omega$.


## Summary

- ITALEX has proven $O(1 / k)$ feasibility and $O(1 / \sqrt{k})$ optimality rate for (BLP) with norm-like $\omega$.
- More on ITALEX project:
- $\varepsilon$ does not need to be fixed in advance.
- Getting super-optimal solutions when $g=0$.
- Accelerated rates under additional conditions on $\varphi$ and $\omega$.
- Allowing outer function of the form $\omega(\mathbf{L x})$.


## Thank you for listening!

## Bibliography I

[AY19] M. Amini and F. Yousefian. "An Iterative Regularized Incremental Projected Subgradient Method for a Class of Bilevel Optimization Problems". In: 2019 American Control Conference (ACC). July 2019, pp. 4069-4074. DOI: https://doi.org/10.23919/ACC. 2019.8814637.
[BS14] Amir Beck and Shoham Sabach. "A first order method for finding minimal norm-like solutions of convex optimization problems". In: Math Program 147.1 (Oct. 2014), pp. 25-46. Doi: https://doi.org/10.1007/s10107-013-0708-2.
[DP20] Joydeep Dutta and Tanushree Pandit. "Algorithms for Simple Bilevel Programming". In: Bilevel Optimization: Advances and Next Challenges. Ed. by Stephan Dempe and Alain Zemkoho. Cham: Springer International Publishing, 2020, pp. 253-291. Doi: https://doi.org/10.1007/978-3-030-52119-6_9.
[LP98] Adrian S. Lewis and Jong-Shi Pang. "Error Bounds for Convex Inequality Systems". In: Generalized Convexity, Generalized Monotonicity. Ed. by Martinez-Legaz J. Crouziex J. and Volle M. Kluwer Academic Publishers, 1998. Chap. 3, pp. 75-110.
[Ped+20] Fabian Pedregosa et al. "Linearly convergent Frank-Wolfe with backtracking line-search". In: International Conference on Artificial Intelligence and Statistics. PMLR. 2020, pp. 1-10.
[Sol07] M. Solodov. "An Explicit Descent Method for Bilevel Convex Optimization". In: J Convex Anal 14 (Jan. 2007), pp. 227-237.

## Bibliography II

[SS17] Shoham Sabach and Shimrit Shtern. "A First Order Method for Solving Convex Bilevel Optimization Problems". In: SIAM J. Optim. 27.2 (2017), pp. 640-660. DOI: https://doi.org/10.1137/16M105592X.
[SVZ21] Yekini Shehu, Phan Tu Vuong, and Alain Zemkoho. "An inertial extrapolation method for convex simple bilevel optimization". In: Optim Methods Softw 36.1 (2021), pp. 1-19. DoI: https://doi.org/10.1080/10556788.2019.1619729.

## Proximal Gradient

## Proximal Gradient

- Proximal Gradient for composite functions:
- PG step $\mathbf{y}^{k+1}=T_{L_{f}}\left(\mathbf{y}^{k}\right)$ where

$$
T_{L_{f}}(\mathbf{y})=\underset{\mathbf{u}}{\arg \min }\left\{g(\mathbf{x})+\frac{L_{f}}{2}\left\|\mathbf{y}-\frac{1}{L_{f}} \nabla f(\mathbf{y})-\mathbf{u}\right\|^{2}\right\}
$$

## Proximal Gradient

- Proximal Gradient for composite functions:
- PG step $\mathbf{y}^{k+1}=T_{L_{f}}\left(\mathbf{y}^{k}\right)$ where

$$
T_{L_{f}}(\mathbf{y})=\underset{\mathbf{u}}{\arg \min }\left\{g(\mathbf{x})+\frac{L_{f}}{2}\left\|\mathbf{y}-\frac{1}{L_{f}} \nabla f(\mathbf{y})-\mathbf{u}\right\|^{2}\right\}
$$

- Assuming that $\operatorname{Lev}_{\varphi}(\varphi(\mathbf{y})) \leq D(\mathbf{y})$ :

$$
\tilde{S}(\mathbf{y})=2 \max \left\{\varphi(\mathbf{y})-\varphi\left(T_{L_{f}}(\mathbf{y})\right), \sqrt{\frac{L_{f}}{2} D(\mathbf{y})^{2}\left(\varphi(\mathbf{y})-\varphi\left(T_{L_{f}}(\mathbf{y})\right)\right)}\right\}
$$

## Proximal Gradient

- Proximal Gradient for composite functions:
- PG step $\mathbf{y}^{k+1}=T_{L_{f}}\left(\mathbf{y}^{k}\right)$ where

$$
T_{L_{f}}(\mathbf{y})=\underset{\mathbf{u}}{\arg \min }\left\{g(\mathbf{x})+\frac{L_{f}}{2}\left\|\mathbf{y}-\frac{1}{L_{f}} \nabla f(\mathbf{y})-\mathbf{u}\right\|^{2}\right\}
$$

- Assuming that $\operatorname{Lev}_{\varphi}(\varphi(\mathbf{y})) \leq D(\mathbf{y})$ :

$$
\begin{aligned}
\tilde{S}(\mathbf{y}) & =2 \max \left\{\varphi(\mathbf{y})-\varphi\left(T_{L_{f}}(\mathbf{y})\right), \sqrt{\frac{L_{f}}{2} D(\mathbf{y})^{2}\left(\varphi(\mathbf{y})-\varphi\left(T_{L_{f}}(\mathbf{y})\right)\right)}\right\} \\
& \geq S_{D(\mathbf{y})}(\mathbf{y})
\end{aligned}
$$

## Proximal Gradient

- Proximal Gradient for composite functions:
- PG step $\mathbf{y}^{k+1}=T_{L_{f}}\left(\mathbf{y}^{k}\right)$ where

$$
T_{L_{f}}(\mathbf{y})=\underset{\mathbf{u}}{\arg \min }\left\{g(\mathbf{x})+\frac{L_{f}}{2}\left\|\mathbf{y}-\frac{1}{L_{f}} \nabla f(\mathbf{y})-\mathbf{u}\right\|^{2}\right\}
$$

- Assuming that $\operatorname{Lev}_{\varphi}(\varphi(\mathbf{y})) \leq D(\mathbf{y})$ :

$$
\begin{aligned}
\tilde{S}(\mathbf{y}) & =2 \max \left\{\varphi(\mathbf{y})-\varphi\left(T_{L_{f}}(\mathbf{y})\right), \sqrt{\frac{L_{f}}{2} D(\mathbf{y})^{2}\left(\varphi(\mathbf{y})-\varphi\left(T_{L_{f}}(\mathbf{y})\right)\right)}\right\} \\
& \geq S_{D(\mathbf{y})}(\mathbf{y})
\end{aligned}
$$

## Lemma

$\tilde{S}(\mathbf{y})$ satisfies:

- $\tilde{S}(\mathbf{y}) \geq \varphi(\mathbf{y})-\varphi^{*}$
- $\varphi(\mathbf{y})-\varphi\left(T_{L_{f}}(\mathbf{y})\right) \geq \frac{1}{2} \min \left\{\tilde{S}(\mathbf{y}), \frac{2 \tilde{S}(\mathbf{y})^{2}}{L_{f} D(\mathbf{y})^{2}}\right\}$


## Proximal Gradient

- Proximal Gradient for composite functions:
- PG step $\mathbf{y}^{k+1}=T_{L_{f}+2}^{\alpha}\left(\mathbf{y}^{k}\right)$ where

$$
T_{L_{f}+2}^{\alpha}(\mathbf{y})=\underset{\mathbf{u}}{\arg \min }\left\{\hat{g}^{\alpha}(\mathbf{x})+\frac{L_{f}+2}{2}\left\|\mathbf{y}-\frac{1}{L_{f}+2} \nabla \hat{f}(\mathbf{y})-\mathbf{u}\right\|^{2}\right\}
$$

- Assuming that $\operatorname{Lev}_{\hat{\varphi}^{\alpha}}\left(\hat{\varphi}^{\alpha}(\mathbf{y})\right) \leq D_{\alpha}(\mathbf{y})$ :

$$
\begin{aligned}
\tilde{S}^{\alpha}(\mathbf{y}) & =2 \max \left\{\hat{\varphi}^{\alpha}(\mathbf{y})-\hat{\varphi}^{\alpha}\left(T_{L_{f}+2}^{\alpha}(\mathbf{y})\right), \sqrt{\frac{L_{f}+2}{2} D_{\alpha}(\mathbf{y})^{2}\left(\hat{\varphi}^{\alpha}(\mathbf{y})-\hat{\varphi}^{\alpha}\left(T_{L_{f}+2}^{\alpha}(\mathbf{y})\right)\right)}\right\} \\
& \geq S_{D(\mathbf{y})}^{\alpha}(\mathbf{y})
\end{aligned}
$$

## Lemma

$\tilde{S}^{\alpha}(\mathbf{y})$ satisfies:

- $\tilde{S}^{\alpha}(\mathbf{y}) \geq \hat{\varphi}^{\alpha}(\mathbf{y})-h(\alpha)$
- $\hat{\varphi}^{\alpha}(\mathbf{y})-\hat{\varphi}^{\alpha}\left(T_{L_{f}+2}^{\alpha}(\mathbf{y})\right) \geq \frac{1}{2} \min \left\{\tilde{S}^{\alpha}(\mathbf{y}), \frac{2 \tilde{S}(\mathbf{y})^{2}}{\left(L_{f}+2\right) D_{\alpha}(\mathbf{y})^{2}}\right\}$


## Proximal Gradient

- Proximal Gradient for composite functions:
- PG step $\mathbf{y}^{k+1}=T_{L_{f}+2}^{\alpha}\left(\mathbf{y}^{k}\right)$ where

$$
T_{L_{f}+2}^{\alpha}(\mathbf{y})=\left(T_{1}^{\alpha}(\mathbf{y}), T_{2}^{\alpha}(\mathbf{y})\right),\left\{\begin{array}{l}
T_{1}^{\alpha}(\mathbf{y})=\operatorname{prox}_{\frac{1}{L_{f}} 2}\left(\mathbf{y}_{1}-\frac{1}{L_{f}+2}\left(\nabla f\left(\mathbf{y}_{1}\right)+2\left(\mathbf{y}_{1}-\mathbf{y}_{2}\right)\right)\right) \\
T_{2}^{\alpha}(\mathbf{y})=\operatorname{Proj}_{\operatorname{Lev}_{\omega}(\alpha)}\left(\frac{L_{f y_{2}}+2 \mathbf{y}_{1}}{L_{f}+2}\right)
\end{array}\right.
$$

- Assuming that $\operatorname{Lev}_{\hat{\varphi}^{\alpha}}\left(\hat{\varphi}^{\alpha}(\mathbf{y})\right) \leq D_{\alpha}(\mathbf{y})$ :

$$
\begin{aligned}
\tilde{S}^{\alpha}(\mathbf{y}) & =2 \max \left\{\hat{\varphi}^{\alpha}(\mathbf{y})-\hat{\varphi}^{\alpha}\left(T_{L_{f}+2}^{\alpha}(\mathbf{y})\right), \sqrt{\frac{L_{f}+2}{2} D_{\alpha}(\mathbf{y})^{2}\left(\hat{\varphi}^{\alpha}(\mathbf{y})-\hat{\varphi}^{\alpha}\left(T_{L_{f}+2}^{\alpha}(\mathbf{y})\right)\right.}\right\} \\
& \geq S_{D(\mathbf{y})}^{\alpha}(\mathbf{y})
\end{aligned}
$$

## Lemma

$\tilde{S}^{\alpha}(\mathbf{y})$ satisfies:

- $\tilde{S}^{\alpha}(\mathbf{y}) \geq \hat{\varphi}^{\alpha}(\mathbf{y})-h(\alpha)$
- $\hat{\varphi}^{\alpha}(\mathbf{y})-\hat{\varphi}^{\alpha}\left(T_{L_{f}+2}^{\alpha}(\mathbf{y})\right) \geq \frac{1}{2} \min \left\{\tilde{S}^{\alpha}(\boldsymbol{y}), \frac{2 \tilde{S}(\mathbf{y})^{2}}{\left(L_{f}+2\right) D_{\alpha}(\mathbf{y})^{2}}\right\}$


## Proximal Gradient

- Proximal Gradient for composite functions:
- PG step $\mathbf{y}^{k+1}=T_{L_{f+2}}^{\alpha}\left(\mathbf{y}^{k}\right)$ where

$$
T_{L_{f}+2}^{\alpha}(\mathbf{y})=\left(T_{1}^{\alpha}(\mathbf{y}), T_{2}^{\alpha}(\mathbf{y})\right),\left\{\begin{array}{l}
T_{1}^{\alpha}(\mathbf{y})=\operatorname{prox}_{\frac{1}{L_{f}} 2}\left(\mathbf{y}_{1}-\frac{1}{L_{f}+2}\left(\nabla f\left(\mathbf{y}_{1}\right)+2\left(\mathbf{y}_{1}-\mathbf{y}_{2}\right)\right)\right) \\
T_{2}^{\alpha}(\mathbf{y})=\operatorname{Proj}_{\operatorname{Lev}_{\omega}(\alpha)}\left(\frac{L_{f y_{2}}+2 \mathbf{y}_{1}}{L_{f}+2}\right)
\end{array}\right.
$$

- Assuming that $\operatorname{Lev}_{\hat{\varphi}^{\alpha}}\left(\hat{\varphi}^{\alpha}(\mathbf{y})\right) \leq D_{\alpha}(\mathbf{y})$ :

$$
\begin{aligned}
\tilde{S}^{\alpha}(\mathbf{y}) & =2 \max \left\{\hat{\varphi}^{\alpha}(\mathbf{y})-\hat{\varphi}^{\alpha}\left(T_{L_{f}+2}^{\alpha}(\mathbf{y})\right), \sqrt{\frac{L_{f}+2}{2} D_{\alpha}(\mathbf{y})^{2}\left(\hat{\varphi}^{\alpha}(\mathbf{y})-\hat{\varphi}^{\alpha}\left(T_{L_{f}+2}^{\alpha}(\mathbf{y})\right)\right.}\right\} \\
& \geq S_{D(\mathbf{y})}^{\alpha}(\mathbf{y})
\end{aligned}
$$

## Lemma

$\tilde{S}^{\alpha}(\mathbf{y})$ satisfies:

- $\tilde{S}^{\alpha}(\mathbf{y}) \geq \hat{\varphi}^{\alpha}(\mathbf{y})-h(\alpha)$ - enables early stopping
- $\hat{\varphi}^{\alpha}(\mathbf{y})-\hat{\varphi}^{\alpha}\left(T_{L_{f}+2}^{\alpha}(\mathbf{y})\right) \geq \frac{1}{2} \min \left\{\tilde{S}^{\alpha}(\mathbf{y}), \frac{2 \tilde{S}^{\alpha}(\mathbf{y})^{2}}{\left(L_{f}+2\right) D_{\alpha}(\mathbf{y})^{2}}\right\}$
$O\left(\frac{1}{\epsilon}\right)$ convergence

