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Introduction and motivation
Consider the optimization problem

min
x∈H

f (x),

where
I f : H → R is convex and smooth, H is a real Hilbert space
I argmin f 6= ∅

Second order dynamics with vanishing damping: Su, Boyd and Candès
2014, Attouch, Chbani, Peypouquet, Redont 2016

(AVD)α ẍ(t) + α

t ẋ(t) +∇f (x(t)) = 0, t ≥ t0 > 0.

I fast convergence: f (x(t))−min f = o
( 1

t2

)
(in case α > 3)

I weak convergence of x(t) to an element in argmin f (α > 3)
I discretization leads to Nesterov type scheme (inertial){

y k = x k + k−1
k+α−1 (x k − x k−1)

x k+1 = y k − γ∇f (y k)
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yk = xk +
(
1− α

k
)

(xk − xk−1)•
xk•

xk−1•

xk+1 = yk − s∇f (yk)
argmin f

Figure: Nesterov accelerated gradient method

3 E.R. Csetnek Second Order Dynamics with Closed-Loop Damping



Dynamics with geometrical Hessian driven damping
(Attouch, Peypouquet, Redont 2016):

(DIN−AVD)α,β ẍ(t) + α
t ẋ(t) +β∇2f (x(t))ẋ(t) +∇f (x(t)) = 0

I natural relations to Newton and Levenberg-Marquardt
iterative methods

I may induce a stabilization of the trajectories
I d

dt∇f (x(t)) = ∇2f (x(t))ẋ(t), hence discretization leads to
inertia involving ∇f (xk)−∇f (xk−1), see also symplectic
discretizations, recently investigated by Shi, Du, Jordan, Su
2019, Attouch, Chbani, Fadili, Riahi 2019

I fast convergence rates for the functions values: o
(

1
t2

)
I fast decay of the gradient along the trajectories:∫∞

t0
t2‖∇f (x(t))‖2dt < +∞ for α ≥ 3 and β > 0

I weak convergence of the trajectories to a minimizer of f
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Figure: Evolution of the objective (left) and trajectories (right) for
(AVD)α (α = 3.1) and (DIN−AVD)α,β (α = 3.1, β = 1) on an
ill-conditioned quadratic problem in R2: f (x1, x2) = 1
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Link with the regularized Newton method
To overcome the ill-posed character of the continuous Newton
method, Attouch and Svaiter studied the first-order system{

v(t) ∈ A(x(t))

γ(t)ẋ(t) + βv̇(t) + v(t) = 0.

I continuous version of the Levenberg-Marquardt (acts as a
regularization of the Newton method)

I when A = ∇f we obtain(
γ(t) Id +β∇2f (x(t))

)
ẋ(t) +∇f (x(t)) = 0.

The dynamics

ẍ(t) + α
t ẋ(t) + β∇2f (x(t))ẋ(t) +∇f (x(t)) = 0

can be seen as an inertial (accelerated) version of the above
system.
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Attouch-Redont-Svaiter: closed-loop version of the above results v(t) ∈ A(x(t))

‖v(t)‖p ẋ(t) + v̇(t) + v(t) = 0

For optimization problems:

‖∇f (x(t))‖p ẋ(t) + β∇2f (x(t))ẋ(t) +∇f (x(t)) = 0.

This suggests to consider second order dynamics where the
damping coefficient γ(t) is a closed-loop control of ∇f :

ẍ(t) + γ(t)ẋ(t) + β(t)∇2f (x(t))ẋ(t) + b(t)∇f (x(t)) = 0,
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Lin-Jordan 2020: investigated

ẍ(t) + γ(t)ẋ(t) + β(t)∇2f (x(t))ẋ(t) + b(t)∇f (x(t)) = 0,

where γ, β and b are defined by the following formulas:.

|λ(t)|p‖∇f (x(t))‖p−1 = θ

a(t) = 1
4

(∫ t
0
√
λ(s)ds + c

)2

γ(t) = 2 ȧ(t)
a(t) −

ä(t)
ȧ(t)

β(t) =
(

ȧ(t)
a(t)

)2

b(t) = ȧ(t)(ȧ(t)+ä(t))
a(t)
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Open loop/closed loop (design of the damping)

I Open-loop damping, non autonomous dynamic: the damping
term involves coefficients which are given a priori as functions
of time, example

(AVD)α ẍ(t) + α

t ẋ(t) +∇f (x(t)) = 0.

I Closed-loop damping, adaptive methods, autonomous
dynamic: the damping is a feedback of the current state of
the system:

ẍ(t) + γ(t)ẋ(t) + β(t)∇2f (x(t))ẋ(t) + b(t)∇f (x(t)) = 0,

where γ(t) involves ∇f (x(t)), or even ẋ(t).

9 E.R. Csetnek Second Order Dynamics with Closed-Loop Damping



Our investigations

(ADIGE-V) 0 ∈ ẍ(t) + ∂φ(ẋ(t)) +∇f (x(t)),

I φ : H → R+ is a convex continuous function
I ∂φ : H → 2H is the convex subdifferential
I ADIGE-V: Autonomous Damped Inertial Gradient Equation,

V: the damping term is a closed-loop control of the velocity.

This model encompasses several classical situations:
I φ(u) = γ

2‖u‖
2 corresponds to the Heavy Ball with Friction

(HBF) ẍ(t) + γẋ(t) +∇f (x(t)) = 0
introduced by B. Polyak, studied by Attouch–Goudou–Redont
(exploration of local minima), Alvarez (convex case),
Haraux-Jendoubi (analytic case), Bégout–Bolte–Jendoubi
(convergence based on the Kurdyka-Lojasiewicz property)
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I The case φ(u) = r‖u‖ corresponds to the dry friction effect:

ẍ(t) + r ẋ(t)
‖ẋ(t)‖ +∇f (x(t)) = 0.

Finite time stabilization property of the trajectories, which is
satisfied generically with respect to the initial data:
Adly–Attouch–Cabot, Amann–Diaz, see Adly-Attouch for
recent developements.

I Take φ(u) = r
p‖u‖

p with p ≥ 1, r > 0 :

ẍ(t) + r‖ẋ(t)‖p−2ẋ(t) +∇f (x(t)) = 0.

We will pay particular attention to the role played by the
parameter p in the asymptotic convergence analysis.

We will see that the case p = 2 separates the weak damping
(p > 2) from the strong damping (p < 2).
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We investigate also the dynamical system

(ADIGE-VGH)ẍ(t) + ∂φ
(

ẋ(t) + β∇f (x(t)
)

+ β∇2f (x(t))ẋ(t) +∇f (x(t)) 3 0,

where the damping term ∂φ
(
ẋ(t) + β∇f (x(t)

)
involves both

ẋ(t) and ∇f (x(t)).

• When β = 0, we recover the closed loop controlled system

ẍ(t) + ∂φ
(
ẋ(t)

)
+∇f (x(t)) = 0

• When φ(u) = γ
2‖u‖

2, we obtain the system

ẍ(t) + γẋ(t) + β∇2f (x(t))ẋ(t) + (1 + γβ)∇f (x(t)) = 0,

introduced by Alvarez-Attouch-Bolte-Redont.

• Take φ(u) = r
p‖u‖

p with p ≥ 1, r > 0 :

ẍ(t)+r‖ẋ(t)+β∇f (x(t)‖p−2(ẋ(t)+β∇f (x(t))+β∇2f (x(t))ẋ(t)+∇f (x(t)) = 0.
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Precise setting and results
We consider the differential inclusion

(ADIGE-V) 0 ∈ ẍ(t) + ∂φ(ẋ(t)) +∇f (x(t)),

where φ is a convex damping potential:
I φ is a nonnegative convex continuous function;
I φ(0) = 0 = minH φ;
I the minimal section of ∂φ is bounded on the bounded sets,

that is, for any R > 0

sup
‖u‖≤R

‖(∂φ)0(u)‖ < +∞.

I (∂φ)0(u) is the element of minimal norm of the closed convex
non empty set ∂φ(u).

If H is finite dimensional, then property (iii) is automatically
satisfied. Indeed, in this case, ∂φ is bounded on the bounded sets.
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Existence and uniqueness of the trajectory

The trajectory x : [0,+∞[→ H is said to be a strong global
solution of (ADIGE-V) if it satisfies the following properties:
I x ∈ C1([0,+∞[;H),
I ẋ ∈ Lip(0,T ;H), ẍ ∈ L∞(0,T ;H) for all T > 0,
I for almost all t > 0, 0 ∈ ẍ(t) + ∂φ(ẋ(t)) +∇f (x(t)).

Theorem
I f : H → R is a differentiable function, ∇f is Lipschitz

continuous on the bounded subsets of H, infH f > −∞
I φ : H → R+ is a damping potential

Then, for any x0, x1 ∈ H, there exists a unique strong global
solution x : [0,+∞[→ H of (ADIGE-V), that is 0 ∈ ẍ(t) + ∂φ(ẋ(t)) +∇f (x(t))

x(0) = x0, ẋ(0) = x1.
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• Regularize the differential inclusion:
For each λ > 0, we consider the approximate evolution equation

ẍλ(t) +∇φλ(ẋλ(t)) +∇f (xλ(t)) = 0.
The Moreau envelope is the function φλ : H → R defined by:

φλ(u) = min
ξ∈H

{
φ(ξ) + 1

2λ‖u − ξ‖
2
}
.

The function φλ is convex, of class C1,1.
Set

Zλ(t) = (xλ(t), ẋλ(t)) ∈ H ×H.
The above system can be written equivalently as

Żλ(t) +∇Φλ(Zλ(t)) + G(Zλ(t)) = 0, Zλ(0) = (x0, x1).
where

Φ(x , u) = φ(u), Φλ(x , u) = φλ(u), G(x , u) =
(
− u, ∇f (x)

)
.

• use the theory of Brézis and Attouch (variational convergence): (xλ)
converges uniformly (as λ→ 0) over the bounded time intervals to a
solution of (ADIGE-V).
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Asymptotic analysis of
(ADIGE-V) 0 ∈ ẍ(t) + ∂φ(ẋ(t)) +∇f (x(t)),

Questions:
I convergence of trajectories towards critical points of f
I convergence rates for f (x(t))− infH f under convexity

assumptions
Without geometric assumptions on f (like convexity, Lojasiewicz
property, etc.), there is no hope.
Indeed, in case φ(u) = γ

2‖u‖
2 (γ > 0), (ADIGE-V) becomes

(HBF) ẍ(t) + γẋ(t) +∇f (x(t)) = 0
Attouch–Goudou–Redont (2000): example of a function
f : R2 → R which is C1, coercive, gradient is Lipschitz continuous
on the bounded sets, and such that the (HBF) system admits an
orbit t 7→ x(t) which does not converge as t → +∞.
Remark: we will see later that the above questions are difficult to
solve even in the convex case!
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Preliminary energy estimates (assume infH f > −∞):
I the global energy E(t) = f (x(t))− infH f + 1

2‖ẋ(t)‖2 is
non-increasing, and

sup
t≥0
‖ẋ(t)‖ < +∞,

∫ +∞

0
φ(ẋ(t))dt < +∞.

I supt≥0 ‖ẍ(t)‖ < +∞, if x is bounded (this is fulfilled if f is
coercive)

I limt→+∞ ‖ẋ(t)‖ = 0, if moreover there exists p ≥ 1, and
r > 0 such that, for all u ∈ H, φ(u) ≥ r‖u‖p.

I limt→+∞ ‖ẍ(t)‖ = 0 (under additional assumptions)
Idea: From 0 ∈ ẍ(t) + ∂φ(ẋ(t)) +∇f (x(t)) we get

0 = d
dt E(t) + 〈∂φ(ẋ(t)), ẋ(t)〉 ≥ d

dt E(t) + φ(ẋ(t)).

(convex subdifferential inequality and φ(0) = 0).
Integrate...
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Strongly convex case: exponential convergence rate

Assume that:
I f : H → R is µ−strongly convex (µ > 0) and argmin f = {x}
I φ : H → R+ is a damping potential which is differentiable,

and ∇φ is Lipschitz continuous on the bounded subsets of H
I (local) there exists α, ρ > 0

〈∇φ(u), u〉 ≥ α‖u‖2 whenever ‖u‖ ≤ ρ

I (global) there exist p ≥ 1, c > 0, s.t. φ(u) ≥ c‖u‖p for all u.

Then, for any solution trajectory x : [0,+∞[→ H of (ADIGE-V),
we have exponential convergence rate to zero as t → +∞ for
f (x(t))− f (x), ‖x(t)− x‖ and the velocity ‖ẋ(t)‖.
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Idea: use

f (x)− f (x(t)) ≥ 〈∇f (x(t)), x − x(t)〉+ µ

2 ‖x(t)− x‖2

f (x(t))− f (x) ≥ µ

2 ‖x(t)− x‖2.

to derive ḣε(t) + C2hε(t) ≤ 0, where

hε(t) := f (x(t))− f (x) + 1
2‖ẋ(t)‖2 + ε〈x(t)− x , ẋ(t)〉.

and ε,C2 > 0 are suitable chosen.

Apply Gronwall inequality

hε(t) ≤ hε(0)e−C2t .
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The case f is convex quadratic positive definite: f (x) = 1
2 〈Ax , x〉 ,

A : H → H is linear, continuous, positive definite and self-adjoint.

ẍ(t) + ∂φ(ẋ(t)) + A(x(t)) 3 0.

Then, we have the following ergodic convergence result

1
t

∫ t

0
x(τ)dτ ⇀ x∞,

where 0 ∈ ∂φ(0) + Ax∞.

When φ is differentiable at the origin, we have Ax∞ = 0, that is
x∞ = 0.

When φ(x) = r‖x‖, we have ‖Ax∞‖ ≤ r .

Remark: the difference with respect to the previous case is that
we do not ask for φ the local and global properties
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Proof:
0 ∈ ż(t) + (∂Φ + F )(z(t)),

where z(t) = (x(t), ẋ(t)) ∈ H ×H, and
I Φ : H×H → R, Φ(x , u) = φ(u) is convex continuous
I F : H×H → H×H is defined by F (x , u) = (−u,Ax).

Renorm the product space H×H as follows:

〈〈(x1u1), (x2, u2)〉〉 := 〈Ax1, x2〉+ 〈u1, u2〉

I F is linear, continuous, skew-symmetric in the renormed space
I ∂Φ + F is maximal monotone (Rockafellar’s Theorem)
I we can apply the theory concerning the semi groups generated

by general maximally monotone operators
z(t) converges weakly and in an ergodic way to a zero z∞ = (x∞, u∞) of
∂Φ + F . This means (0, ∂φ(u∞)) + (−u∞,Ax∞) = (0, 0). Equivalently
u∞ = 0 and ∂φ(0) + Ax∞ 3 0.
Haraux, Haraux-Jendoubi, Alabau Boussouira-Privat-Trélat
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Numerical example:

H = R, f (x) = 1
2 |x |

2, and φ(u) = 1
p |u|

p, p > 1. Then, (ADIGE-V)
writes

ẍ(t) + |ẋ(t)|p−2ẋ(t) + x(t) = 0.

I p = 2: x(t) = O (e−t), ẋ(t) = O (e−t)
I for p > 1, limt→+∞ x(t) = 0 and limt→+∞ ẋ(t) = 0

(additional analysis is needed to pass from ergodic to
nonergodic)
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Figure: The evolution of the trajectories x(t) (blue line) and ẋ(t) (red
line) for different values of p ≥ 2.
Case p > 2 (weak damping): the damping γ(t) := |ẋ(t)|p−2 → 0. As p
increases, the damping effect tends to decrease, the trajectory tends to
oscillate more and more, and the rate of convergence deteriorates.
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Figure: Evolution of x(t) (blue) and ẋ(t) (red) for different values of
1 < p < 2.

Case 1 < p < 2 (strong damping): the viscous damping

γ(t) := 1
|ẋ(t)|2−p → +∞ as t → +∞.

The trajectories exhibit small oscillations, and the velocity
converges fastly to zero. When p is close to 1, the convergence of
the trajectory to zero is poor, however, already a slight increase of
p concisely improves the convergence of the trajectory. Indeed,
when p becomes large the convergence of the trajectory improves.
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Convex case: numerical example

ẍ(t) + |ẋ(t)|p−2ẋ(t) +∇f (x(t)) = 0.

Based on Haraux and Jendoubi: take H = R, f : R→ R+ convex,
C1, argmin f = [a, b] and f is coercive, i.e. lim|x |→+∞ f (x) = +∞.

0 ba

f

R

R

• •
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Weak damping in the convex case: p ≥ 3, convergence fails
Strong damping: 2 < p < 3, convergence holds
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Figure: x(t) (blue) and ẋ(t) (red), f : R→ R, f (x) = 0 for |x | < 1,
f (x) = 1

2 (x + 1)2 for x ≤ −1, and f (x) = 1
2 (x − 1)2 for x ≥ 1.

26 E.R. Csetnek Second Order Dynamics with Closed-Loop Damping



Convergence under the Kurdyka-Lojasiewicz
property

A differentiable function G : RN → R has the KL property at
u ∈ RN if there exist r0 > 0, η > 0 and θ ∈ C([0, r0),R+) s.t.
I θ(0) = 0, θ ∈ C1((0, r0),R+) and θ′ > 0 on (0, r0)
I ‖u − u‖ < η implies: |G(u)− G(u)| < r0 and
‖∇(θ ◦ |G(·)− G(u|)(u)‖ ≥ 1 (for G(u) 6= G(u)).
θ is called desingularizing function of G at u on B(u, η)

I G is called KL if it has the Kl property at each of its points

Many examples: semi-algebraic, real-analytic, tame, o - minimal
structure, etc.
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Quasi-gradient systems: Bégout–Bolte–Jendoubi, Haraux,
Barta–Chill–Fašangová, Chergui, Huang

Let Γ be a nonempty closed subset of RN , and let F : RN → RN

be a locally Lipschitz continuous mapping. We say that the
first-order system

ż(t) + F (z(t)) = 0,

has a quasi-gradient structure for E on Γ, if there exist a
differentiable function E : RN → R and α > 0 such that the two
following conditions are satisfied:

(angle condition) 〈∇E (z),F (z)〉 ≥ α‖∇E (z)‖‖F (z)‖ for all z ∈ Γ;

(rest point equivalence) critE ∩ Γ = F−1(0) ∩ Γ.

Remark: Such systems have a behavior which is very similar to
those of gradient systems.
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Theorem (Bégout–Bolte–Jendoubi) Let F : RN → RN be a locally
Lipschitz continuous mapping. Let z : [0,+∞[→ RN be a bounded
solution trajectory of

ż(t) + F (z(t)) = 0,

Take R ≥ supt≥0 ‖z(t)‖. Assume that F defines a quasi-gradient
vector field for ER on B̄(0,R), where ER : RN → R is a
differentiable function. Assume further that the function ER is
(KL). Then, the following properties are satisfied:

(i) z(t)→ z∞ as t → +∞, where z∞ ∈ F−1(0);

(ii) ż ∈ L1(0,+∞;RN) , ż(t)→ 0 as t → +∞;

(iii) ‖z(t)− z∞‖ ≤ 1
αR
θ
(
ER(z(t)− E (z∞)

)
where θ is the desingularizing function for ER at z∞, and αR
enters the angle condition.
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ẍ(t) +∇φ(ẋ(t)) +∇f (x(t)) = 0,

Theorem: Let f : RN → R be C2, ∇f is Lipschitz continuous on
the bounded sets, infRN f > −∞. Let Eλ : RN × RN → R

Eλ(x , u) := 1
2‖u‖

2 + f (x) + λ 〈∇f (x), u〉 .

Assume: (i) Eλ satisfies the (KL) property
(ii) (local) there exists positive constants γ, δ, and ε > 0:

φ(u) ≥ γ‖u‖2 and ‖∇φ(u)‖ ≤ δ‖u‖ for ‖u‖ ≤ ε
(iii) (global) there exist p ≥ 1, c > 0: φ(u) ≥ c‖u‖p for all u.
I x(t)→ x∞ as t → +∞, where x∞ ∈ crit f
I ẋ ∈ L1(0,+∞;RN), ẋ(t)→ 0 as t → +∞
I ‖x(t)− x∞‖ ≤ 1

αθ
(
Eλ(x(t), u(t))− Eλ(x∞, 0)

)
where θ is the desingularizing function for Eλ at (x∞, 0), and α
enters the corresponding angle condition.
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Idea: obtain a first order system with a quasi-gradient structure.
The Hamiltonian formulation of

ẍ(t) +∇φ(ẋ(t)) +∇f (x(t)) = 0,

gives the first-order differential system

ż(t) + F (z(t)) = 0,

where z(t) = (x(t), ẋ(t)) ∈ RN × RN , and
F : RN × RN → RN × RN is defined by

F (x , u) = (−u,∇φ(u)) +∇f (x)).

Take Eλ : RN → R defined by

Eλ(x , u) := 1
2‖u‖

2 + f (x) + λ 〈∇f (x), u〉 .

I a desingularizing function of f is desingularizing of Eλ too
I it is possible to derive convergence rates for ‖x(t)− x∞‖ in

terms of the Lojasiewicz exponent
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Closed-loop velocity control with Hessian driven damping

0 ∈ ẍ(t) + ∂φ(ẋ(t)) + β∇2f (x(t))ẋ(t) +∇f (x(t)).

The case φ(u) = γ
2‖u‖

2 of a fixed viscous coefficient was first
considered by Alvarez–Attouch–Bolte–Redont

The case φ(u) = γ
2‖u‖

2 + r‖u‖ (viscous friction + dry friction)
and Hessian damping has been considered by Adly–Attouch

By taking φ(u) = r
p‖u‖

p, we get

ẍ(t) + r‖ẋ(t)‖p−2ẋ(t) + β∇2f (x(t))ẋ(t) +∇f (x(t)) = 0.

Existence and uniqueness

Convergence based on quasi-gradient systems and KL

Numerical illustrations
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Open problems
Develop closed-loop versions of the Nesterov accelerated gradient
method from a theoretical and numerical point of view.

(AVD)α ẍ(t) + α

t ẋ(t) +∇f (x(t)) = 0,

I fast convergence: f (x(t))−min f = o
( 1

t2

)
(in case α > 3)

I weak convergence of x(t) to an element in argmin f (α > 3)
Energy:

E (t) = t2(f (x(t))−min f ) + 1
2‖γ(x(t)− x∗) + tẋ(t)‖2 + ξ

2‖x(t)− x∗‖2

Closed loop:
ẍ(t) + γ‖ẋ(t)‖p−2ẋ(t) +∇f (x(t)) = 0.

The case p = 2 is the critical case separating the weak damping from the
strong damping. Taking p > 2, with p close to 2 provides a vanishing
viscosity damping coefficient, which is a specific property of the Nesterov
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I Tikhonov regularization in the closed loop setting

ẍ(t) + α
t ẋ(t) + β∇2g(x(t))ẋ(t) +∇g(x(t)) + ε(t)x(t) = 0

Attouch-Chbani-Riahi, Boţ, C., László

0 ∈ ẍ(t) + ∂φ(ẋ(t)) + β∇2f (x(t))ẋ(t) +∇f (x(t)) + ε(t)x(t).

I ε : [t0,+∞)→ [0,+∞) is nonincreasing, of class C1

I limt→+∞ ε(t) = 0

Why to use Tikhonov parametrization?
I induces strong convergence to the minimal norm solution

argmin{‖x‖ : x ∈ argmin f } (under more conditions on ε)
I fast convergence rates for objective and gradient values

I Rescaling, perturbations, errors
I Nosmooth optimization problems (and the case of maximal

monotone operators): Moreau envelope, Yosida regularization:
in the open loop setting Attouch, Cabot, Peypouquet, László
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Algorithmic consequences

Preliminary results in the paper for

1
h2 (xn+2 − 2xn+1 + xn) +∇φ

(1
h (xn+1 − xn)

)
+∇f (xn) = 0.

and

1
h2 (xn+2 − 2xn+1 + xn) +∇φ

(1
h (xn+2 − xn+1)

)
+∇f (xn+1) = 0.

with step size h > 0.

This gives the proximal-gradient algorithm

xn+2 = xn+1 + hproxhφ

(1
h (xn+1 − xn)− h∇f (xn+1)

)
.
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Thank you for your attention!
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