Nonlinear Forward-Backward Splitting with Projection or Momentum Correction

Pontus Giselsson

Joint work with Martin Morin and Sebastian Banert

Proximal point algorithm

• Consider the problem

find $x \in \mathcal{H}$ such that $0 \in Ax$

where $A: \mathcal{H} \to 2^{\mathcal{H}}$ is maximally monotone

• Proximal point algorithm (PPA) solves it by iterating resolvent

$$x_{k+1} = J_{\gamma_k A} x_k$$

where

- $J_{\gamma_k A} := (\mathrm{Id} + \gamma_k A)^{-1}$ is resolvent
- Uniformly upper bounded $\gamma_k \ge \epsilon > 0$ is a step-size parameter

Conceptual algorithm

- In general as expensive to take one step of PPA as solving problem
- Clever choice of space ${\mathcal H}$ and/or A gives important special cases
 - The Chambolle–Pock method
 - Douglas–Rachford splitting
 - ADMM (with dual step-size 1)

Unified convergence analysis

- PPA provides unified convergence analysis for all special cases
- PPA convergence analysis for maximally monotone \boldsymbol{A}
 - $J_{\gamma_k A}$ has full domain (Minty) \Rightarrow algorithm defined for all inputs
 - $J_{\gamma_k A}$ firmly nonexpansive \Rightarrow single-valuedness and convergence

which is often easier than directly proving special cases

Adding cocoercive operator

• We can add $\frac{1}{\beta}$ -cocoercive operator $C: \mathcal{H} \to \mathcal{H}$ to get problem

find $x \in \mathcal{H}$ such that $0 \in Ax + Cx$

• Can be solved using forward-backward splitting

$$x_{k+1} = J_{\gamma_k A} (\mathrm{Id} - \gamma_k C) x_k$$

which generalizes PPA

- Algorithm analysis similar (composition averaged if $\gamma_k \in [\epsilon, \frac{2-\epsilon}{\beta}]$)
- Special cases:
 - Proximal gradient method
 - Condat–Vũ

More operator splitting methods

- Many more methods exist that are not special cases of FB, e.g.,:
 - Tseng's forward-backward-forward splitting [1]
 - Forward-backward-half-forward splitting [2]
 - Solodov and Tseng [3]
 - (Synchronous) projective splitting [4]
 - Asymmetric forward-backward-adjoint splitting [5]
 - Briceño-Arias and Combettes (error-free version) [6]
 - Proximal alternating predictor corrector [7]
 - He and Yuan [8]
 - Malitsky-Tam [9]
 - Forward-reflected-Douglas-Rachford [10]
 - ...

• Is there a unifying framework for these and previous methods?

^[1] A Modified Forward-Backward Splitting Method for Maximal Monotone Mappings, P. Tseng

^[2] Forward-Backward-Half Forward Algorithm for Solving Monotone Inclusions, L. M. Briceño-Arias and D. Davis

^[3] Modified Projection-type Methods for Monotone Variational Inequalities, M. V. Solodov, and P. Tseng

^[4] Asynchronous Block-Iterative Primal-Dual Decomposition Methods for Monotone Inclusions, P. L. Combettes and J. Eckstein

^{5]} Asymmetric Forward-Backward-Adjoint Splitting for Solving Monotone Inclusions Involving Three Operators, P. Latafat and P. Patrinos

^[6] A Monotone + Skew Splitting Model for Composite Monotone Inclusions in Duality, L. M. Briceño-Arias and P. L. Combettes

^[7] A Simple Algorithm for a Class of Nonsmooth Convex-Concave Saddle-Point Problems, Y. Drori, S. Sabach, M. Teboulle

^[8] Convergence Analysis of Primal-Dual Algorithms for a Saddle-Point Problem: From Contraction Perspective, He and Yuan

^[9] Forward-Backward Splitting Method for Monotone Inclusions Without Cocoercivity, Y. Malitsky and M. K. Tam

^[10] Finding the Forward-Douglas-Rachford-Forward Method, E. K. Ryu and B. C. Vű

YES – Such a framework exists!

- Will present such an algorithmic framework based on
 - Nonlinear FB map (special case: nonlinear resolvent¹)
 - Projection or momentum correction
- Algorithm solves monotone inclusion $0 \in Ax + Cx$ where
 - $A: \mathcal{H} \to 2^{\mathcal{H}}$ is maximally monotone
 - $C: \mathcal{H} \to \mathcal{H}$ is cocoercive

¹ Also known as warped resolvent (Bùi, Combettes) or F-resolvent (Bauschke, Wang, Yao)

Nonlinear forward-backward map

- $\bullet \ \mbox{Let} \ M: \mathcal{H} \to \mathcal{H}$ be maximally monotone
- Nonlinear forward-backward map is

$$T_{\rm FB} := (M+A)^{-1} \circ (M-C)$$

and

- if C = 0 reduces to nonlinear resolvent $(M + A)^{-1} \circ M$
- M is called a kernel

Nonlinear forward-backward map

- Let $M: \mathcal{H} \to \mathcal{H}$ be maximally monotone
- Nonlinear forward-backward map is

$$T_{\rm FB} := (M+A)^{-1} \circ (M-C)$$

and

- if C = 0 reduces to nonlinear resolvent $(M + A)^{-1} \circ M$
- M is called a kernel
- Special cases with different kernels:
 - $M = \gamma^{-1}$ Id gives standard FB step:

 $(\gamma^{-1}\mathrm{Id} + A)^{-1} \circ (\gamma^{-1}\mathrm{Id} - C) = (\mathrm{Id} + \gamma A)^{-1} \circ (\mathrm{Id} - \gamma C)$

- $M = \gamma^{-1}P$ with $P \in \mathcal{P}(\mathcal{H})^1$ gives preconditioned FB
- $M = \nabla g$ with g convex gives Bregman FB step

 $^{^{1}\}mathcal{P}(\mathcal{H})$ set of bounded linear self-adjoint strongly positive operators on \mathcal{H}

Iterating FB map – Convergence?

• An algorithm candidate is to iterate the nonlinear FB-map

$$x_{k+1} = (M+A)^{-1} \circ (M-C)x_k$$

since fixed-point set equals solution set zer(A + C)

- However, may not converge under following assumptions on M:
 - Strongly monotone (if linear: strongly positive)
 - Lipschitz continuous (if linear: bounded)

but if M also linear self-adjoint, it converges (if M large enough)

Counter-example

• Problem: C = 0 and A skew-symmetric (and monotone):

$$A:\mathbb{R}^2\to\mathbb{R}^2:(x,y)\mapsto(-y,x)$$

which is a 90° rotation

- Kernel $M = \gamma^{-1} \mathrm{Id} A$ with $\gamma > 0$ is
 - bounded linear strongly positive
 - but not self-adjoint

and gives iteration

$$x_{k+1} = (M+A)^{-1}Mx_k = (\gamma^{-1}\mathrm{Id} - A + A)^{-1}(\gamma^{-1}\mathrm{Id} - A)x_k$$
$$= (\mathrm{Id} - \gamma A)x_k = \begin{bmatrix} 1 & \gamma \\ -\gamma & 1 \end{bmatrix} x_k$$

which diverges for all $\gamma \neq 0$ (rotation with gain $\sqrt{1+\gamma^2} > 1)$

Counter-example

• Problem: C = 0 and A skew-symmetric (and monotone):

$$A:\mathbb{R}^2\to\mathbb{R}^2:(x,y)\mapsto(-y,x)$$

which is a 90° rotation

- Kernel $M = \gamma^{-1} \mathrm{Id} A$ with $\gamma > 0$ is
 - bounded linear strongly positive
 - but not self-adjoint

and gives iteration

$$x_{k+1} = (M+A)^{-1}Mx_k = (\gamma^{-1}\mathrm{Id} - A + A)^{-1}(\gamma^{-1}\mathrm{Id} - A)x_k$$
$$= (\mathrm{Id} - \gamma A)x_k = \begin{bmatrix} 1 & \gamma \\ -\gamma & 1 \end{bmatrix} x_k$$

which diverges for all $\gamma \neq 0$ (rotation with gain $\sqrt{1+\gamma^2} > 1$)

• Need correction to use nonlinear FB map in algorithm

Nonlinear FB map creates separating hyperplane

• Assume

- $A: \mathcal{H} \to 2^{\mathcal{H}}$ maximally monotone
- $C: \mathcal{H} \to \mathcal{H}$ is $\frac{1}{\ell}$ -cocoercive with $\ell \in [0, 4)$ w.r.t. $P \in \mathcal{P}(\mathcal{H})^1$
- $M: \mathcal{H} \to \mathcal{H}$ is 1-strongly monotone w.r.t. $P \in \mathcal{P}(\mathcal{H})^2$
- Define the affine function ψ_x for each x with $\hat{x} = T_{FB}x$ as:

$$\psi_x(z) := \langle Mx - M\hat{x}, z - \hat{x} \rangle - \frac{\ell}{2} \|x - \hat{x}\|_F^2$$

Then

•
$$\psi_x(z) \le 0$$
 for all $z \in \operatorname{zer}(A+C)$

- $\psi_x(x) \ge (1 \frac{\ell}{4}) \|x T_{\text{FB}}x\|^2$ for all $x \in \mathcal{H}$
- $\psi_x(x) > 0$ for all points $x \notin \operatorname{zer}(A + C)$ (since $\ell \in [0, 4)$)

Nonlinear FB map creates separating hyperplane

Assume

- $A: \mathcal{H} \to 2^{\mathcal{H}}$ maximally monotone
- $C: \mathcal{H} \to \mathcal{H}$ is $\frac{1}{\ell}$ -cocoercive with $\ell \in [0, 4)$ w.r.t. $P \in \mathcal{P}(\mathcal{H})^1$
- $M: \mathcal{H} \to \mathcal{H}$ is 1-strongly monotone w.r.t. $P \in \mathcal{P}(\mathcal{H})^2$
- Define the affine function ψ_x for each x with $\hat{x} = T_{\rm FB} x$ as:

$$\psi_x(z) := \langle Mx - M\hat{x}, z - \hat{x} \rangle - \frac{\ell}{2} \|x - \hat{x}\|_F^2$$

Then

•
$$\psi_x(z) \leq 0$$
 for all $z \in \operatorname{zer}(A+C)$

- $\psi_x(x) \ge (1 \frac{\ell}{4}) \|x T_{\text{FB}}x\|^2$ for all $x \in \mathcal{H}$
- $\psi_x(x) > 0$ for all points $x \notin \operatorname{zer}(A + C)$ (since $\ell \in [0, 4)$)
- Nonlinear FB map output \hat{x} helps define halfspace

$$H := \{z : \psi_x(z) \le 0\}$$

that (strictly) separates $\operatorname{zer}(A+C)\subseteq H$ and $x\not\in H$

$$\begin{split} ^{1}C:\mathcal{H} &\rightarrow \mathcal{H} \text{ is } \ell^{-1}\text{-coccercive w.r.t. } P \text{ if } \forall x,y \in \mathcal{H} \text{ we have } \langle Cx-Cy,x-y\rangle \geq \ell^{-1} \|Cx-Cy\|_{P^{-1}}^{2}\\ ^{2}M:\mathcal{H} &\rightarrow \mathcal{H} \text{ is } 1\text{-strongly monotone w.r.t. } P \text{ if } \forall x,y \in \mathcal{H} \text{ we have } \langle Mx-My,x-y\rangle \geq \|x-y\|_{P}^{2} \end{split}$$

NOFOB with projection correction

• Nonlinear forward-backward splitting with projection correction

$$\hat{x}_k := (M_k + A)^{-1} (M_k - C) x_k$$
$$H_k := \{ z : \langle M_k x_k - M_k \hat{x}_k, z - \hat{x}_k \rangle \le \frac{\ell}{4} \| x_k - \hat{x}_k \|_P^2 \}$$
$$x_{k+1} := (1 - \theta_k) x_k + \theta_k \Pi_{H_k}^S (x_k)$$

which converges weakly to a solution if

- M_k is Lipschitz continuous and 1-strongly monotone w.r.t. P
- P, S are bounded linear self-adjoint strongly positive operators
- H_k is a halfspace that contains $\operatorname{zer}(A+C)$ but not x_k (strictly)
- $\Pi_{H_k}^S$ is projection onto H_k in metric $\|\cdot\|_S$
- $\theta_k \in [\epsilon, 2 \epsilon]$ is relaxation parameter

NOFOB with projection correction

• Nonlinear forward-backward splitting with projection correction

$$\hat{x}_k := (M_k + A)^{-1} (M_k - C) x_k$$
$$H_k := \{ z : \langle M_k x_k - M_k \hat{x}_k, z - \hat{x}_k \rangle \le \frac{\ell}{4} \| x_k - \hat{x}_k \|_P^2 \}$$
$$x_{k+1} := (1 - \theta_k) x_k + \theta_k \Pi_{H_k}^S (x_k)$$

which converges weakly to a solution if

- M_k is Lipschitz continuous and 1-strongly monotone w.r.t. P
- P,S are bounded linear self-adjoint strongly positive operators
- H_k is a halfspace that contains $\operatorname{zer}(A+C)$ but not x_k (strictly)
- $\Pi_{H_k}^S$ is projection onto H_k in metric $\|\cdot\|_S$
- $\theta_k \in [\epsilon, 2 \epsilon]$ is relaxation parameter
- Note: algorithm requires two forward evaluations of M_k :
 - $T_{\rm FB}$ evaluation (first step) requires $M_k x_k$
 - H_k creation requires $M_k x_k$ (already computed) and $M_k \hat{x}_k$

NOFOB with explicit projection

Stating projection explicitly gives equivalent more explicit method

$$\hat{x}_k := (M_k + A)^{-1} (M_k - C) x_k$$
$$\mu_k := \frac{\langle M_k x_k - M_k \hat{x}_k, x_k - \hat{x}_k \rangle - \frac{\ell}{4} \| x_k - \hat{x}_k \|_P^2}{\| M_k x_k - M_k \hat{x}_k \|_{S^{-1}}^2}$$
$$x_{k+1} := x_k - \theta_k \mu_k S^{-1} (M_k x_k - M_k \hat{x}_k)$$

where $\mu_k \ge \epsilon$ (unless $x \in \operatorname{zer}(A+C)$, in which case $\mu_k = \frac{0}{0} = 0$)

NOFOB with explicit projection

Stating projection explicitly gives equivalent more explicit method

$$\hat{x}_k := (M_k + A)^{-1} (M_k - C) x_k$$
$$\mu_k := \frac{\langle M_k x_k - M_k \hat{x}_k, x_k - \hat{x}_k \rangle - \frac{\ell}{4} \| x_k - \hat{x}_k \|_P^2}{\| M_k x_k - M_k \hat{x}_k \|_{S^{-1}}^2}$$
$$x_{k+1} := x_k - \theta_k \mu_k S^{-1} (M_k x_k - M_k \hat{x}_k)$$

where $\mu_k \ge \epsilon$ (unless $x \in \operatorname{zer}(A+C)$, in which case $\mu_k = \frac{0}{0} = 0$)

- Algorithm converges with μ_k replaced by any $\hat{\mu}_k \in [\epsilon, \mu_k]$
 - Equivalent to algorithm with smaller relaxation parameter $\theta_k \frac{\hat{\mu}_k}{\mu_k}$
 - Gives shorter step-lengths

Special case – Forward-backward splitting

• Suppose

- $M_k = \gamma_k^{-1} M$ with $M \in \mathcal{P}(\mathcal{H})$ and P = M
- projection metric S = M
- C is $\frac{1}{\beta}$ -cocoercive w.r.t. M (and P)

then $\mu_k = \gamma_k (1 - \frac{\gamma_k \beta}{4})$

• Let $\lambda_k = \theta_k (1 - \frac{\gamma_k \beta}{4})$ to get relaxed preconditioned FB splitting

$$\hat{x}_k := (M + \gamma_k A)^{-1} (M - \gamma_k C) x_k$$
$$x_{k+1} := x_k - \lambda_k (x_k - \hat{x}_k)$$

- Note that:
 - second evaluation of M not needed (since $S^{-1}M=\gamma_k^{-1}\mathrm{Id})$
 - · projection correction only kicks in if needed

Convergence and special cases

• Relaxed preconditioned FB splitting (with $\lambda_k = \theta_k(1 - \frac{\gamma_k \beta}{4})$)

$$\hat{x}_k := (M + \gamma_k A)^{-1} (M - \gamma_k C) x_k$$
$$x_{k+1} := x_k - \lambda_k (x_k - \hat{x}_k)$$

• Converges if $\gamma_k \in [\epsilon, \frac{4-\epsilon}{\beta}]$ (extended range) and $\theta_k \in [\epsilon, 2-\epsilon]$

•
$$\gamma_k \geq \frac{2}{\beta}$$
 possible $\Rightarrow \lambda_k < 1$ (under-relaxation)

- $\gamma_k \in [\epsilon, \frac{2-\epsilon}{\beta}]$: $\lambda_k = 1$ possible, but also $\lambda_k > 1$ (over-relaxation)
- Since FB is special case of NOFOB, it has special cases:
 - Chambolle–Pock
 - Vũ–Condat
 - Douglas-Rachford, ADMM (with dual step-size 1)
 - Proximal gradient method

Other special cases

- These are special cases of NOFOB with projection correction
 - Nonlinear resolvent step:
 - Tseng's forward-backward-forward splitting (*M* nonlinear)
 - Solodov and Tseng (*M* nonlinear)
 - (Synchronous) projective splitting (*M* not self-adjoint)
 - Briceño-Arias/Combettes (error-free version) (*M* not self-adjoint)
 - He and Yuan (*M* not self-adjoint)
 - Nonlinear FB step:
 - Forward-backward-half-forward splitting (*M* nonlinear)
 - AFBA (*M* not self-adjoint)
 - Proximal alternating predictor corrector (*M* not self-adjoint)
- Can add cocoercive term in methods based on resolvent

Drawback of projection correction

- In general, two evaluations of M_k is needed in every iteration
- Exception, e.g., standard FB splitting that has $S^{-1}M_k = \gamma_k^{-1} \mathrm{Id}$

NOFOB with momentum correction

• Consider the same problem problem

```
find x \in \mathcal{H} such that 0 \in Ax + Cx
```

where

- $A: \mathcal{H} \to 2^{\mathcal{H}}$ maximally monotone
- $C: \mathcal{H} \to \mathcal{H}$ is $\frac{1}{\ell}$ -cocoercive w.r.t. $S \in \mathcal{P}(\mathcal{H})$
- Nonlinear forward-backward splitting with momentum correction

$$x_{k+1} = (M_k + A)^{-1} (M_k x_k - C x_k + \gamma_k^{-1} u_k)$$

$$u_{k+1} = (\gamma_k M_k - S) x_{k+1} - (\gamma_k M_k - S) x_k$$

where $S \in \mathcal{P}(\mathcal{H})$ and M_k possibly nonlinear

• Momentum term is in the $\gamma_k M_k - S$ operator

M_k evaluations

• Nonlinear forward-backward splitting with momentum correction

$$x_{k+1} = (M_k + A)^{-1} (M_k x_k - C x_k + \gamma_k^{-1} u_k)$$

$$u_{k+1} = (\gamma_k M_k - S) x_{k+1} - (\gamma_k M_k - S) x_k$$

• Comparison to projection correction in terms of M_k evaluations

- Need to evaluate $M_{k-1}x_k$ and $M_kx_k \Rightarrow$ in general no savings
- If $M_k = \alpha_k M_{k-1}$ (with M_k still nonlinear) \Rightarrow we save one¹
- If $M_k = \alpha_k^{-1} \mathrm{Id} D$ (with D nonlinear) \Rightarrow we save one D-eval.

 $^{^1}$ Recall: To save one M_k evaluation with projection correction $M_k=M=\alpha_kS,$ which gives standard FB splitting.

Restrictions on M_k

• Nonlinear forward-backward splitting with momentum correction

$$x_{k+1} = (M_k + A)^{-1} (M_k x_k - C x_k + \gamma_k^{-1} u_k)$$

$$u_{k+1} = (\gamma_k M_k - S) x_{k+1} - (\gamma_k M_k - S) x_k$$

Letting M_k = γ_k⁻¹S ∈ P(H) gives standard FB splitting (u_k = 0)
M_k can deviate from γ_k⁻¹S, we assume

 $\gamma_k M_k - S$ is L_k -Lipschitz continuous w.r.t. S

and we have weak convergence if all $\gamma_k \geq \epsilon$ and

$$1 - L_{k-1} - L_k - \frac{\gamma_k \ell}{2} \ge \epsilon > 0$$

Convergence – Lyapunov analysis

• Let $z \in \operatorname{zer}(A + C)$ and define

$$\mathcal{V}_k = \|x_k + S^{-1}u_k - z\|_S^2 + (1 - L_{k-1})L_{k-1}\|x_k - x_{k-1}\|_S^2$$

• Assume that $L_k < 1$ (Lipschitz constant of $\gamma_k M_k - S$), then

$$\mathcal{V}_{k+1} \le \mathcal{V}_k - (1 - L_{k-1} - L_k - \frac{\gamma_k \ell}{2}) \|x_{k+1} - x_k\|_S^2$$

Convergence condition

$$1 - L_{k-1} - L_k - \frac{\gamma_k \ell}{2} \ge \epsilon > 0$$

comes from having residual coefficient strictly positive

Special cases

- These are special cases of NOFOB with momentum correction
 - Nonlinear resolvent
 - Malitsky–Tam (forward-reflected-backward) (M nonlinear)
 - Forward-reflected-Douglas-Rachford (*M* nonlinear)
 - Nonlinear forward-backward map
 - Malitsky–Tam ("three-operator splitting") (*M* nonlinear)
- Can add cocoercive term in methods based on resolvent

Momentum instead of projection correction

- Methods with projection correction
 - Tseng's forward-backward-forward splitting
 - Solodov and Tseng
 - (Synchronous) projective splitting
 - Briceno-Arias/Combettes (error-free version)
 - He and Yuan
 - Forward-backward-half-forward splitting
 - Asymmetric forward-backward-adjoint splitting
 - Proximal alternating predictor corrector
- Can derive methods based on momentum correction for the above
 - Comes at the cost or more restrictive parameter requirements
 - Gives Malitsky–Tam methods if done for FB(H)F

Polyak Momentum

• Equivalent formulation with Polyak momentum with $\theta < 1$

$$x_{k+1} = (M_k + A)^{-1} (M_k x_k - C x_k + \gamma_k^{-1} u_k + \gamma_k^{-1} \theta S(x_k - x_{k-1})),$$

$$u_{k+1} = (\gamma_k M_k - S) x_{k+1} - (\gamma_k M_k - S) x_k,$$

• Denote by $\hat{\gamma}_k$ and \hat{u}_k original algorithm parameters, and let

$$\gamma_k = (1-\theta)\hat{\gamma}_k$$
 $u_k = (1-\theta)\hat{u}_k - \theta S(x_k - x_{k-1})$

to get Polyak momentum method

• Translated requirements for convergence

$$1 - \theta - 2|\theta| - L_{k-1} - L_k - \gamma_k \frac{\ell}{2} \ge \varepsilon$$

• Can add Polyak momentum (interpretation) to all special cases

Polyak momentum in FB setting

• General requirements for Polyak momentum convergence

$$1 - \theta - 2|\theta| - L_{k-1} - L_k - \gamma_k \frac{\ell}{2} \ge \varepsilon$$

- Assume $M_k = \gamma_k^{-1} S$ ($L_k = 0$), $C \frac{1}{\beta}$ -cocoercive w.r.t. S ($\beta = \ell$)
- This gives standard forward-backward setting, if $\gamma_k = \gamma$, we allow

$$\theta \in (\tfrac{-2+\gamma\beta}{2}, \tfrac{2-\gamma\beta}{6})$$

which implies

• if
$$\gamma = \frac{1}{\beta}$$
: $\theta \in \left(-\frac{1}{2}, \frac{1}{6}\right)$

• if C = 0 ($\beta = 0$): $\theta \in (-1, \frac{1}{3})$

note that we allow for negative momentum (more than positive)

Summary

- Many methods are special cases of presented NOFOB framework
- Can select projection or momentum correction
- Can add cocoercive term to those that do not have
- Can avoid one M_k application by using momentum correction
- Can add Polyak momentum to many methods
- Easy to design and prove convergence of new methods

Special Cases and New Algorithms

Special cases and new algorithms – Outline

- FB(H)F and Malitsky-Tam
- Solodov and Tseng
- Novel four-operator splitting method
 - Special case: AFBA
 - Two novel four-operator splitting primal-dual methods
- Four-operator splitting primal-dual method with different kernel
- Extension to multi-operator setting
 - Synchronous projective splitting

FBF and Malitsky-Tam

• Consider monotone inclusion problem of the form

 $0\in Bx+Dx$

where B + D is maximally monotone and D is δ -Lipschitz

• Forward-backward-forward splitting

$$\hat{x}_k := (\mathrm{Id} + \gamma_k B)^{-1} (x_k - \gamma_k D x_k)$$
$$x_{k+1} := \hat{x}_k - \gamma_k (D \hat{x}_k - D x_k)$$

needs second application of D (at \hat{x}_k)

FBF and Malitsky–Tam

• Consider monotone inclusion problem of the form

 $0\in Bx+Dx$

where B + D is maximally monotone and D is δ -Lipschitz

• Forward-backward-forward splitting

$$\hat{x}_k := (\mathrm{Id} + \gamma_k B)^{-1} (x_k - \gamma_k D x_k)$$
$$x_{k+1} := \hat{x}_k - \gamma_k (D \hat{x}_k - D x_k)$$

needs second application of D (at \hat{x}_k)

• Malitsky-Tam

$$x_{k+1} := (\mathrm{Id} + \gamma_k B)^{-1} (x_k - \gamma_k D x_k + u_k)$$

$$u_{k+1} := \gamma_k (D x_k - D x_{k+1})$$

avoids second application of D (or rather, it can be reused)

Derivation from NOFOB

• Let A = B + D, C = 0, and $M_k = \gamma_k^{-1} \mathrm{Id} - D$, then

$$(M_k + A)^{-1} M_k x_k = (\gamma_k^{-1} \mathrm{Id} - D + B + D)^{-1} (\gamma_k^{-1} \mathrm{Id} - D)$$

= $(\gamma_k^{-1} \mathrm{Id} + B)^{-1} (\gamma_k^{-1} \mathrm{Id} - D)$
= $(\mathrm{Id} + \gamma_k B)^{-1} (\mathrm{Id} - \gamma_k D)$

resolvent of B + D in M_k evaluated as forward-backward step

Derivation from NOFOB

• Let A = B + D, C = 0, and $M_k = \gamma_k^{-1} \mathrm{Id} - D$, then

$$(M_k + A)^{-1} M_k x_k = (\gamma_k^{-1} \mathrm{Id} - D + B + D)^{-1} (\gamma_k^{-1} \mathrm{Id} - D)$$

= $(\gamma_k^{-1} \mathrm{Id} + B)^{-1} (\gamma_k^{-1} \mathrm{Id} - D)$
= $(\mathrm{Id} + \gamma_k B)^{-1} (\mathrm{Id} - \gamma_k D)$

resolvent of B + D in M_k evaluated as forward-backward step

- Projection correction with
 - Projection metric S = Id and step-size $\gamma_k \in [\epsilon, \frac{1}{\delta} \epsilon]$
 - Conservative $\hat{\mu}_k = \frac{1}{\gamma_k^{-1} + \delta}$ (since M_k is $\frac{1}{\gamma_k^{-1} + \delta}$ -cocoercive)
 - Relaxation $\theta_k = 1 + \delta \gamma_k \in [1 + \varepsilon, 2 \varepsilon]$

gives FBF (and convergence conditions agree)

Derivation from NOFOB

• Let A = B + D, C = 0, and $M_k = \gamma_k^{-1} \mathrm{Id} - D$, then

$$(M_k + A)^{-1} M_k x_k = (\gamma_k^{-1} \mathrm{Id} - D + B + D)^{-1} (\gamma_k^{-1} \mathrm{Id} - D)$$

= $(\gamma_k^{-1} \mathrm{Id} + B)^{-1} (\gamma_k^{-1} \mathrm{Id} - D)$
= $(\mathrm{Id} + \gamma_k B)^{-1} (\mathrm{Id} - \gamma_k D)$

resolvent of B + D in M_k evaluated as forward-backward step

- Projection correction with
 - Projection metric S = Id and step-size $\gamma_k \in [\epsilon, \frac{1}{\delta} \epsilon]$
 - Conservative $\hat{\mu}_k = \frac{1}{\gamma_k^{-1} + \delta}$ (since M_k is $\frac{1}{\gamma_k^{-1} + \delta}$ -cocoercive)
 - Relaxation $\theta_k = 1 + \delta \gamma_k \in [1 + \varepsilon, 2 \varepsilon]$

gives FBF (and convergence conditions agree)

- Momentum correction with S = Id gives Malitsky–Tam
 - Lipschitz constant for $\gamma_k M_k S = \gamma_k D$ is $L_k = \gamma_k \delta$
 - Convergence condition: $L_k + L_{k-1} \leq 1 \epsilon$
 - Satisfied if all $\gamma_k \in [\epsilon, \frac{1-\epsilon}{2\delta}]$ (which is condition in Malitsky–Tam)

Extensions

- Extensions with cocoercive term exist
 - Forward-backward-half-forward (projection correction)
 - Three-operator-splitting in Malitsky-Tam (momentum correction)
- Polyak momentum extension also in Malitsky-Tam paper

Solodov and Tseng

Solves

$$0 \in Dx + N_X x$$

where (in Theorem 3.1)

- D is maximally monotone and δ -Lipschitz continuous
- N_X is normal cone operator to nonempty closed convex set X

• Let $A = D + N_X$, C = 0, $M_k = \gamma_k^{-1} \mathrm{Id} - D$, projection correction

$$\hat{x}_{k} = (\mathrm{Id} + \gamma_{k} N_{X})^{-1} (x_{k} - \gamma_{k} D x_{k}) = \Pi_{X} (x_{k} - \gamma_{k} D x_{k})$$
$$\mu_{k} = \gamma_{k} \frac{\langle x_{k} - \hat{x}_{k} - \gamma_{k} D x_{k} + \gamma_{k} D \hat{x}_{k}, x_{k} - \hat{x}_{k} \rangle}{\|x_{k} - \hat{x}_{k} - \gamma_{k} D x_{k} + \gamma_{k} D \hat{x}_{k}\|_{S^{-1}}^{2}}$$
$$x_{k+1} = x_{k} - \frac{\theta_{k} \mu_{k}}{\gamma_{k}} S^{-1} (x_{k} - \gamma_{k} D x_{k} - (\hat{x}_{k} - \gamma_{k} D \hat{x}_{k}))$$

• Algorithm uses two evaluations of ${\cal D}$

Solodov and Tseng

• The NOFOB algorithm:

$$\hat{x}_k = (\mathrm{Id} + \gamma_k N_X)^{-1} (x_k - \gamma_k D x_k) = \Pi_X (x_k - \gamma_k D x_k)$$
$$\mu_k = \gamma_k \frac{\langle x_k - \hat{x}_k - \gamma_k D x_k + \gamma_k D \hat{x}_k, x_k - \hat{x}_k \rangle}{\|x_k - \hat{x}_k - \gamma_k D x_k + \gamma_k D \hat{x}_k\|_{S^{-1}}^2}$$
$$x_{k+1} = x_k - \frac{\theta_k \mu_k}{\gamma_k} S^{-1} (x_k - \gamma_k D x_k - (\hat{x}_k - \gamma_k D \hat{x}_k))$$

• Solodov and Tseng obtained by conservative $\hat{\mu}_k$:

$$\hat{\mu}_k := \gamma_k \frac{(1 - \gamma_k \delta) \|x_k - \hat{x}_k\|^2}{\|x_k - \hat{x}_k - \gamma_k D x_k + \gamma_k D \hat{x}_k\|_{P^{-1}}^2} \le \mu_k$$

by Cauchy–Scharz and $\delta\text{-Lipschitz}$ continuity of D in numerator

Solodov and Tseng

• The NOFOB algorithm:

$$\hat{x}_k = (\mathrm{Id} + \gamma_k N_X)^{-1} (x_k - \gamma_k D x_k) = \Pi_X (x_k - \gamma_k D x_k)$$
$$\mu_k = \gamma_k \frac{\langle x_k - \hat{x}_k - \gamma_k D x_k + \gamma_k D \hat{x}_k, x_k - \hat{x}_k \rangle}{\|x_k - \hat{x}_k - \gamma_k D x_k + \gamma_k D \hat{x}_k\|_{S^{-1}}^2}$$
$$x_{k+1} = x_k - \frac{\theta_k \mu_k}{\gamma_k} S^{-1} (x_k - \gamma_k D x_k - (\hat{x}_k - \gamma_k D \hat{x}_k))$$

• Solodov and Tseng obtained by conservative $\hat{\mu}_k$:

$$\hat{\mu}_k := \gamma_k \frac{(1 - \gamma_k \delta) \|x_k - \hat{x}_k\|^2}{\|x_k - \hat{x}_k - \gamma_k D x_k + \gamma_k D \hat{x}_k\|_{P^{-1}}^2} \le \mu_k$$

by Cauchy–Scharz and $\delta\text{-Lipschitz}$ continuity of D in numerator

- Extensions
 - use μ_k instead of $\hat{\mu}_k$
 - add a cocoercive term
 - ${\ensuremath{\,\bullet\,}}$ use momentum correction instead to avoid one D evaluation

Novel four operator splitting methods

• Solves monotone inclusions

$$0 \in Bx + Cx + Dx + Kx$$

where

- B + D maximally monotone and D is δ -Lipschitz continuous
- C is $\frac{1}{\ell}$ -cocoercive (w.r.t. P or S)
- K linear skew-adjoint

• Let A = B + D + K and $M_k = Q_k - D - K$ to get FB map

$$(M_k + A)^{-1}(M_k - C) = (Q_k + B)^{-1}(Q_k - D - K - C)$$

that is forward evaluation in D, K, and C, resolvent in B

• Use projection correction or momentum correction

Asymmetric forward-backward-adjoint splitting (AFBA)

- If D = 0, $Q_k = P$ and projection correction is used, we get AFBA
- Special cases, e.g.,:
 - Proximal alternating predictor corrector
 - Primal dual method of He and Yuan
 - Primal dual method of Briceño-Arias and Combettes

Primal-dual framework

Problem

$$0 \in B_1 y + (V^* \circ B_2 \circ V)y + Ey + Fy$$

•
$$B_1: \mathcal{H} \to 2^{\mathcal{H}}$$
 and $B_2: \mathcal{K} \to 2^{\mathcal{K}}$ are maximally monotone

- $E \colon \mathcal{H} \to \mathcal{H}$ is monotone and δ -Lipschitz continuous
- $F: \mathcal{H} \to \mathcal{H}$ is β^{-1} -cocoercive
- $V \colon \mathcal{H} \to \mathcal{K}$ is linear and bounded
- Four-operator splitting primal-dual formulation

$$0 \in Bx + Cx + Dx + Kx$$

with $x=(y,z)\in \mathcal{H}\times \mathcal{K}$ and

$$B = \begin{bmatrix} B_1 & 0\\ 0 & B_2^{-1} \end{bmatrix}, \quad D = \begin{bmatrix} E & 0\\ 0 & 0 \end{bmatrix}, \quad K = \begin{bmatrix} 0 & V^*\\ -V & 0 \end{bmatrix}, \quad C = \begin{bmatrix} F & 0\\ 0 & 0 \end{bmatrix}$$

which satisfies four-operator splitting assumptions

Primal-dual kernel

• We use the following kernel in NOFOB

$$M_k = \underbrace{\begin{bmatrix} \tau^{-1} \mathrm{Id} & 0\\ -\lambda_k V & \sigma^{-1} \mathrm{Id} \end{bmatrix}}_{Q_k} - \underbrace{\begin{bmatrix} E & 0\\ 0 & 0 \end{bmatrix}}_{D} - \underbrace{\begin{bmatrix} 0 & V^*\\ -V & 0 \end{bmatrix}}_{K}$$

• This gives nonlinear forward-backward step

$$\begin{aligned} x_{k+1} &= (M_k + A)^{-1} (M_k - C) x_k \\ &= (Q_k + B)^{-1} (Q_k - D - K - C) x_k \\ &= \begin{bmatrix} (\mathrm{Id} + \tau B_1)^{-1} (y_k - \tau E y_k - \tau V^* z_k - \tau F y_k) \\ (\mathrm{Id} + \sigma B_2^{-1})^{-1} (z_k + \sigma V (\lambda_k y_{k+1} - (\lambda_k - 1) y_k)) \end{bmatrix} \end{aligned}$$

• If $\lambda_k = 2$ and E = 0, we get Condat–Vũ and $M_k = M \in \mathcal{P}(\mathcal{H})$

• In general, $M_k \notin \mathcal{P}(\mathcal{H})$ and we need correction

A primal-dual method with projection correction

 $\bullet\,$ Use projection correction with metric operator S

$$S = \begin{bmatrix} \tau^{-1} \mathrm{Id} & 0 \\ 0 & \sigma^{-1} \mathrm{Id} \end{bmatrix}$$

comments

- S is diagonal for cheap evaluation of $S^{-1}D$ (in $S^{-1}M_k$)
- if D = 0: S that includes V, V^* possible

• Set $\lambda_k = \lambda \in \mathbb{R}$ in M_k and use projection correction

$$\hat{y}_{k} = (\mathrm{Id} + \tau B_{1})^{-1} (y_{k} - \tau E y_{k} - \tau V^{*} z_{k} - \tau F y_{k})$$

$$\hat{z}_{k} = (\mathrm{Id} + \sigma B_{2}^{-1})^{-1} (z_{k} + \sigma V (\lambda y_{k+1} - (\lambda - 1) y_{k}))$$

$$y_{k+1} = y_{k} - \theta_{k} \mu_{k} (y_{k} - \hat{y}_{k} - \tau V^{*} (z_{k} - \hat{z}_{k}) - \tau (E y_{k} - E \hat{y}_{k}))$$

$$z_{k+1} = z_{k} - \theta_{k} \mu_{k} (z_{k} - \hat{z}_{k} + (1 - \lambda) V (y_{k} - \hat{y}_{k}))$$

Comments

• The primal-dual algorithm

$$\hat{y}_{k} = (\mathrm{Id} + \tau B_{1})^{-1} (y_{k} - \tau E y_{k} - \tau V^{*} z_{k} - \tau F y_{k})$$
$$\hat{z}_{k} = (\mathrm{Id} + \sigma B_{2}^{-1})^{-1} (z_{k} + \sigma V (\lambda y_{k+1} - (\lambda - 1) y_{k}))$$
$$y_{k+1} = y_{k} - \theta_{k} \mu_{k} (y_{k} - \hat{y}_{k} - \tau V^{*} (z_{k} - \hat{z}_{k}) - \tau (E y_{k} - E \hat{y}_{k}))$$
$$z_{k+1} = z_{k} - \theta_{k} \mu_{k} (z_{k} - \hat{z}_{k} + (1 - \lambda) V (y_{k} - \hat{y}_{k}))$$

- Comments
 - Evaluations
 - Two for V, V^* (unless $\lambda = 1$) and E
 - One for remaining operators
 - If D = 0 and $\lambda_k = 2$, then $M_k \in \mathcal{P}(\mathcal{H})$
 - Choice of S gives $S^{-1}M_k \neq \alpha \mathrm{Id}$ for any $\alpha \in \mathbb{R}$
 - Algorithm does not give Condat-Vũ (but different S does)
 - Convergence with specific P (used to compute μ_k) if

$$1 - \frac{\tau \sigma \lambda^2}{4} \left\| V \right\|^2 - \tau \delta - \frac{\tau \beta}{4} > 0$$

Convergence proof

• Let
$$(\tau^{-1} - \delta - \frac{\sigma\lambda^2}{4} ||V||^2) > 0$$
 and set

$$P = \begin{bmatrix} \tau^{-1} \mathrm{Id} - \delta \mathrm{Id} & -\frac{\lambda}{2}L^* \\ -\frac{\lambda}{2}L & \sigma^{-1} \mathrm{Id} \end{bmatrix} \in \mathcal{P}(\mathcal{H})$$

• The kernel M_k is 1-strongly monotone w.r.t. P since

$$M_k = P + \begin{bmatrix} 0 & \frac{\lambda}{2}L^* \\ -\frac{\lambda}{2}L & 0 \end{bmatrix} + \begin{bmatrix} \delta \mathrm{Id} - E & 0 \\ 0 & 0 \end{bmatrix} - K$$

which implies

$$\langle M_k x - M_k x', x - x' \rangle = \|x - x'\|_P^2 + \langle \delta y - Ey - (\delta y' - Ey'), y - y' \rangle$$

$$\geq \|x - x'\|_P^2$$

•
$$C$$
 is $(\tau^{-1} - \delta - \frac{\sigma \lambda^2}{4} ||V||^2) / \beta$ -cocoercive w.r.t. P
 $||Cx - Cx'||_{P^{-1}} \le (\tau^{-1} - \delta - \frac{\sigma \lambda^2}{4} ||V||^2)^{-1} ||Fy - Fy'||^2$
 $\le (\tau^{-1} - \delta - \frac{\sigma \lambda^2}{4} ||V||^2)^{-1} \langle Fy - Fy', y - y' \rangle$
 $= \beta(\tau^{-1} - \delta - \frac{\sigma \lambda^2}{4} ||V||^2)^{-1} \langle Cx - Cx', x - x' \rangle$

i.e., $\beta/(\tau^{-1}-\delta-\frac{\sigma\lambda^2}{4}\|V\|^2)\in[0,4)$, upper bound gives condition

A primal-dual method with momentum correction

• Momentum correction and algorithm design parameters

$$S = \begin{bmatrix} \mathrm{Id} & -\tau V^* \\ -\tau V & \sigma^{-1}\tau \mathrm{Id} \end{bmatrix}, \quad M_k = \begin{bmatrix} \tau^{-1}\mathrm{Id} & 0 \\ -\lambda_k V & \sigma^{-1}\mathrm{Id} \end{bmatrix} - D - K, \quad \gamma_k = \tau$$

· Gives a lower block-triangular update and algorithm

$$y_{k+1} = (\mathrm{Id} + \tau B_1)^{-1} (y_k - \tau V^* z_k - \tau (2Ey_k - Ey_{k-1}) - \tau Fy_k),$$

$$v_{k+1} = \lambda_k (y_{k+1} - y_k) + (2 - \lambda_{k-1})(y_k - y_{k-1}),$$

$$z_{k+1} = (\mathrm{Id} + \sigma B_2^{-1})^{-1} (z_k + \sigma V(y_k + v_{k+1})),$$

- Comments
 - Each resolvent, forward step, and V and V^{\ast} evaluated once
 - if F = 0, $\lambda_k = 2$, $V = \text{Id} \Rightarrow$ forward-reflected-Douglas-Rachford
 - if E = 0, $\lambda_k = 2 \Rightarrow \text{Condat-V}\tilde{u}$ (by choice of S)
 - If $B_2 = 0$ (V = 0) we get Malitsky–Tam three-operator splitting

Convergence

Convergence condition

$$\tau \sigma \|V\|^2 + (|2 - \lambda_k| + |2 - \lambda_{k+1}|)\sqrt{\tau \sigma}\|V\| + \tau(2\delta + \frac{1}{2}\beta) < 1 - \epsilon$$

- Proof
 - C is $\frac{1}{\ell}$ -cocoercive w.r.t. S with $\ell = \frac{\beta}{1 \tau \sigma \|V\|^2}$
 - $\gamma_k M_k S$ is L_k -Lipschitz continuous w.r.t. S where

$$L_k = \frac{1}{1 - \tau \sigma \|V\|^2} (|2 - \lambda_k| \sqrt{\tau \sigma} \|V\| + \tau \delta)$$

• Insert into general convergence condition

$$1 - L_{k-1} - L_k - \frac{\tau\ell}{2} \ge \epsilon > 0$$

to get result

• Reduces to Malitsky–Tam condition if V = 0

A primal-dual method with resolvent in kernel

• Let T_a be translation by a and use

$$M_{k} = \begin{bmatrix} \tau^{-1}\mathrm{Id} - V^{*} \circ (\mathrm{Id} + \sigma B_{2}^{-1})^{-1} \circ T_{-z_{k}} \circ \sigma V & 0\\ 0 & \sigma^{-1}\mathrm{Id} \end{bmatrix} - D,$$
$$S = \begin{bmatrix} \mathrm{Id} & 0\\ 0 & \tau \sigma^{-1}\mathrm{Id} \end{bmatrix}, \quad \gamma_{k} = \tau$$

• With momentum correction and after some algebra, we get

$$\nu_{k+1} = (\mathrm{Id} + \sigma B_2^{-1})^{-1} (z_k + \sigma V y_k)$$

$$y_{k+1} = (\mathrm{Id} + \tau B_1)^{-1} (y_k - \tau V^* (z_k + \nu_{k+1} - \nu_k) - \tau (2Ey_k - Ey_{k-1}) - \tau F y_k)$$

$$z_{k+1} = (\mathrm{Id} + \sigma B_2^{-1})^{-1} (z_k + \sigma V y_{k+1})$$

- Comments
 - B_2^{-1} resolvent evaluated twice, remaining operators once
 - Not aware of other methods that require extra B_2^{-1} resolvent
 - If $B_2 = 0$ (V = 0) we get Malitsky–Tam three-operator splitting

Convergence

• Algorithm converges if

$$2\tau\sigma \|V\|^2 + \tau(2\delta + \frac{\beta}{2}) < 1,$$

- Proof
 - C is $\frac{1}{\ell}$ -cocoercive w.r.t. S with $\ell = \beta$
 - $\gamma_k M_k S$ is $L_k = (\tau \delta + \tau \sigma \|V\|^2)$ -Lipschitz continuous w.r.t. S
 - Insert into general convergence condition

$$1 - L_{k-1} - L_k - \frac{\tau\ell}{2} \ge \epsilon > 0$$

to get result

• Reduces to Malitsky–Tam condition if V = 0

Extension to multi-operator problems

• Consider monotone inclusion problems of the form

$$0 \in \sum_{i=1}^{n-1} L_i^* B_i(L_i x) + B_n x$$

• Primal dual formulation (monotone+skew)

$$0 \in \underbrace{\begin{bmatrix} B_1^{-1}(w_1) \\ \vdots \\ B_{n-1}^{-1}(w_{n-1}) \\ B_n(x) \end{bmatrix}}_{B} + \underbrace{\begin{bmatrix} & -L_1 \\ \vdots \\ L_1^* & \cdots & L_{n-1}^* \end{bmatrix}}_{K} \begin{bmatrix} w_1 \\ \vdots \\ w_{n-1} \\ x \end{bmatrix}$$

fits in four-operator splitting framework (with C = D = 0)

• Can be extended by Lipschitz and cocoercive operators in last row

Projective splitting – How it usually looks

Algorithm Synchronous Projective Splitting Combettes, Eckstein 2018 1: Input: $x_0 \in \mathcal{H}$ and $w_{i,0} \in \mathcal{G}_i$ for $i = 1, \ldots, n-1$ 2: for k = 0, 1, ... do $\hat{x}_k := J_{\tau_n,kB_n}(x_k - \tau_{n,k} \sum_{i=1}^{n-1} L_i^* w_{i,k})$ 3: $\hat{y}_k := (\tau_n^{-1} x_k - \sum_{i=1}^{n-1} L_i^* w_{i,k}) - \tau_n^{-1} \hat{x}_k$ 4: 5: for i = 1, ..., n - 1 do $\hat{v}_{i,k} := J_{\tau_{i,k}B_i}(L_i x_k + \tau_{i,k} w_{i,k})$ 6: $\hat{w}_{i,k} := w_{i,k} + \tau_{i,k}^{-1} L_i x_k - \tau_{i,k}^{-1} \hat{v}_{i,k}$ 7. 8. end for $t_{k}^{*} := \hat{y}_{k} + \sum_{i=1}^{n-1} L_{i}^{*} \hat{w}_{i,k}$ 9: $t_{i,k} := \hat{v}_{i,k} - L\hat{x}_k$ 10: $\mu_k := \frac{\left(\sum_{i=1}^{n-1} \langle t_{i,k}, w_{i,k} \rangle - \langle \hat{v}_{i,k}, \hat{w}_{i,k} \rangle\right) + \langle t^*, x_k \rangle - \langle \hat{y}_k, \hat{x}_k \rangle}{\sum_{i=1}^{n-1} \|t_{i,k}\|^2 + \|t_k^*\|^2}$ 11: for i = 1, ..., n - 1 do 12: $w_{i,k+1} = w_{i,k} - \theta_k \mu_k t_{i,k}$ 13: end for 14: 15: $x_{k+1} := x_k - \theta_k \mu_k t_k^*$ 16: end for

Projective splitting from NOFOB

• Let A = B + K, C = 0 and subtract skew linear K in M_k

• Projective splitting: backward-step on A = B + K (C = 0)

$$\hat{p}_k = (M_k + A)^{-1} M_k p_k$$

= $(P + K + B - K)^{-1} (P - K) p_k = (P + B)^{-1} (P - K) p_k$

with $p_k = (w_{1,k}, \ldots, w_{n-1,k}, x_k)$ and project $(M_k \text{ not symmetric})$

- σ_i and τ are individual resolvent parameters for B_i
- $P = \epsilon \text{Id}$: M_k is 1-strongly monotone w.r.t. P for all $\sigma_i, \tau > 0$ \Rightarrow no step-size restrictions but projection needed!

Summary

- We have presented NOFOB framework
- Can use projection or momentum correction
- Many existing operator splitting methods are special cases
- Easy to design and prove convergence of new methods

Thank you

Based on:

[1] P. Giselsson, *Nonlinear Forward-Backward Splitting with Projection Correction*, SIAM Journal on Optimization, 2021.

[2] M. Morin, S. Banert. P. Giselsson, *Nonlinear Forward-Backward Splitting with Momentum Correction*. Submitted (available: arXiv:2112.00481), 2021.