Nonlinear Forward-Backward Splitting with Projection or Momentum Correction

Pontus Giselsson

Joint work with Martin Morin and Sebastian Banert

Proximal point algorithm

- Consider the problem

$$
\text { find } x \in \mathcal{H} \text { such that } 0 \in A x
$$

where $A: \mathcal{H} \rightarrow 2^{\mathcal{H}}$ is maximally monotone

- Proximal point algorithm (PPA) solves it by iterating resolvent

$$
x_{k+1}=J_{\gamma_{k} A} x_{k}
$$

where

- $J_{\gamma_{k} A}:=\left(\operatorname{Id}+\gamma_{k} A\right)^{-1}$ is resolvent
- Uniformly upper bounded $\gamma_{k} \geq \epsilon>0$ is a step-size parameter

Conceptual algorithm

- In general as expensive to take one step of PPA as solving problem
- Clever choice of space \mathcal{H} and/or A gives important special cases
- The Chambolle-Pock method
- Douglas-Rachford splitting
- ADMM (with dual step-size 1)

Unified convergence analysis

- PPA provides unified convergence analysis for all special cases
- PPA convergence analysis for maximally monotone A
- $J_{\gamma_{k} A}$ has full domain (Minty) \Rightarrow algorithm defined for all inputs
- $J_{\gamma_{k} A}$ firmly nonexpansive \Rightarrow single-valuedness and convergence which is often easier than directly proving special cases

Adding cocoercive operator

- We can add $\frac{1}{\beta}$-cocoercive operator $C: \mathcal{H} \rightarrow \mathcal{H}$ to get problem

$$
\text { find } x \in \mathcal{H} \text { such that } 0 \in A x+C x
$$

- Can be solved using forward-backward splitting

$$
x_{k+1}=J_{\gamma_{k} A}\left(\operatorname{Id}-\gamma_{k} C\right) x_{k}
$$

which generalizes PPA

- Algorithm analysis similar (composition averaged if $\gamma_{k} \in\left[\epsilon, \frac{2-\epsilon}{\beta}\right]$)
- Special cases:
- Proximal gradient method
- Condat-Vũ

More operator splitting methods

- Many more methods exist that are not special cases of FB, e.g.,:
- Tseng's forward-backward-forward splitting [1]
- Forward-backward-half-forward splitting [2]
- Solodov and Tseng [3]
- (Synchronous) projective splitting [4]
- Asymmetric forward-backward-adjoint splitting [5]
- Briceño-Arias and Combettes (error-free version) [6]
- Proximal alternating predictor corrector [7]
- He and Yuan [8]
- Malitsky-Tam [9]
- Forward-reflected-Douglas-Rachford [10]
- Is there a unifying framework for these and previous methods?

[^0]
YES - Such a framework exists!

- Will present such an algorithmic framework based on
- Nonlinear FB map (special case: nonlinear resolvent ${ }^{1}$)
- Projection or momentum correction
- Algorithm solves monotone inclusion $0 \in A x+C x$ where
- $A: \mathcal{H} \rightarrow 2^{\mathcal{H}}$ is maximally monotone
- $C: \mathcal{H} \rightarrow \mathcal{H}$ is cocoercive

[^1]
Nonlinear forward-backward map

- Let $M: \mathcal{H} \rightarrow \mathcal{H}$ be maximally monotone
- Nonlinear forward-backward map is

$$
T_{\mathrm{FB}}:=(M+A)^{-1} \circ(M-C)
$$

and

- if $C=0$ reduces to nonlinear resolvent $(M+A)^{-1} \circ M$
- M is called a kernel

Nonlinear forward-backward map

- Let $M: \mathcal{H} \rightarrow \mathcal{H}$ be maximally monotone
- Nonlinear forward-backward map is

$$
T_{\mathrm{FB}}:=(M+A)^{-1} \circ(M-C)
$$

and

- if $C=0$ reduces to nonlinear resolvent $(M+A)^{-1} \circ M$
- M is called a kernel
- Special cases with different kernels:
- $M=\gamma^{-1}$ Id gives standard FB step:

$$
\left(\gamma^{-1} \operatorname{Id}+A\right)^{-1} \circ\left(\gamma^{-1} \mathrm{Id}-C\right)=(\operatorname{Id}+\gamma A)^{-1} \circ(\operatorname{Id}-\gamma C)
$$

- $M=\gamma^{-1} P$ with $P \in \mathcal{P}(\mathcal{H})^{1}$ gives preconditioned FB
- $M=\nabla g$ with g convex gives Bregman FB step

[^2]
Iterating FB map - Convergence?

- An algorithm candidate is to iterate the nonlinear FB-map

$$
x_{k+1}=(M+A)^{-1} \circ(M-C) x_{k}
$$

since fixed-point set equals solution set $\operatorname{zer}(A+C)$

- However, may not converge under following assumptions on M :
- Strongly monotone (if linear: strongly positive)
- Lipschitz continuous (if linear: bounded)
but if M also linear self-adjoint, it converges (if M large enough)

Counter-example

- Problem: $C=0$ and A skew-symmetric (and monotone):

$$
A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}:(x, y) \mapsto(-y, x)
$$

which is a 90° rotation

- Kernel $M=\gamma^{-1} \mathrm{Id}-A$ with $\gamma>0$ is
- bounded linear strongly positive
- but not self-adjoint
and gives iteration

$$
\begin{aligned}
x_{k+1} & =(M+A)^{-1} M x_{k}=\left(\gamma^{-1} \mathrm{Id}-A+A\right)^{-1}\left(\gamma^{-1} \mathrm{Id}-A\right) x_{k} \\
& =(\operatorname{Id}-\gamma A) x_{k}=\left[\begin{array}{cc}
1 & \gamma \\
-\gamma & 1
\end{array}\right] x_{k}
\end{aligned}
$$

which diverges for all $\gamma \neq 0$ (rotation with gain $\sqrt{1+\gamma^{2}}>1$)

Counter-example

- Problem: $C=0$ and A skew-symmetric (and monotone):

$$
A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}:(x, y) \mapsto(-y, x)
$$

which is a 90° rotation

- Kernel $M=\gamma^{-1} \mathrm{Id}-A$ with $\gamma>0$ is
- bounded linear strongly positive
- but not self-adjoint
and gives iteration

$$
\begin{aligned}
x_{k+1} & =(M+A)^{-1} M x_{k}=\left(\gamma^{-1} \mathrm{Id}-A+A\right)^{-1}\left(\gamma^{-1} \mathrm{Id}-A\right) x_{k} \\
& =(\operatorname{Id}-\gamma A) x_{k}=\left[\begin{array}{cc}
1 & \gamma \\
-\gamma & 1
\end{array}\right] x_{k}
\end{aligned}
$$

which diverges for all $\gamma \neq 0$ (rotation with gain $\sqrt{1+\gamma^{2}}>1$)

- Need correction to use nonlinear FB map in algorithm

Nonlinear FB map creates separating hyperplane

- Assume
- $A: \mathcal{H} \rightarrow 2^{\mathcal{H}}$ maximally monotone
- $C: \mathcal{H} \rightarrow \mathcal{H}$ is $\frac{1}{\ell}$-cocoercive with $\ell \in[0,4)$ w.r.t. $P \in \mathcal{P}(\mathcal{H})^{1}$
- $M: \mathcal{H} \rightarrow \mathcal{H}$ is 1 -strongly monotone w.r.t. $P \in \mathcal{P}(\mathcal{H})^{2}$
- Define the affine function ψ_{x} for each x with $\hat{x}=T_{\mathrm{FB}} x$ as:

$$
\psi_{x}(z):=\langle M x-M \hat{x}, z-\hat{x}\rangle-\frac{\ell}{2}\|x-\hat{x}\|_{P}^{2}
$$

Then

- $\psi_{x}(z) \leq 0$ for all $z \in \operatorname{zer}(A+C)$
- $\psi_{x}(x) \geq\left(1-\frac{\ell}{4}\right)\left\|x-T_{\mathrm{FB}} x\right\|^{2}$ for all $x \in \mathcal{H}$
- $\psi_{x}(x)>0$ for all points $x \notin \operatorname{zer}(A+C)$ (since $\ell \in[0,4)$)

Nonlinear FB map creates separating hyperplane

- Assume
- $A: \mathcal{H} \rightarrow 2^{\mathcal{H}}$ maximally monotone
- $C: \mathcal{H} \rightarrow \mathcal{H}$ is $\frac{1}{\ell}$-cocoercive with $\ell \in[0,4)$ w.r.t. $P \in \mathcal{P}(\mathcal{H})^{1}$
- $M: \mathcal{H} \rightarrow \mathcal{H}$ is 1 -strongly monotone w.r.t. $P \in \mathcal{P}(\mathcal{H})^{2}$
- Define the affine function ψ_{x} for each x with $\hat{x}=T_{\mathrm{FB}} x$ as:

$$
\psi_{x}(z):=\langle M x-M \hat{x}, z-\hat{x}\rangle-\frac{\ell}{2}\|x-\hat{x}\|_{P}^{2}
$$

Then

- $\psi_{x}(z) \leq 0$ for all $z \in \operatorname{zer}(A+C)$
- $\psi_{x}(x) \geq\left(1-\frac{\ell}{4}\right)\left\|x-T_{\mathrm{FB}} x\right\|^{2}$ for all $x \in \mathcal{H}$
- $\psi_{x}(x)>0$ for all points $x \notin \operatorname{zer}(A+C)$ (since $\ell \in[0,4)$)
- Nonlinear FB map output \hat{x} helps define halfspace

$$
H:=\left\{z: \psi_{x}(z) \leq 0\right\}
$$

that (strictly) separates $\operatorname{zer}(A+C) \subseteq H$ and $x \notin H$

[^3]
NOFOB with projection correction

- Nonlinear forward-backward splitting with projection correction

$$
\begin{aligned}
\hat{x}_{k} & :=\left(M_{k}+A\right)^{-1}\left(M_{k}-C\right) x_{k} \\
H_{k} & :=\left\{z:\left\langle M_{k} x_{k}-M_{k} \hat{x}_{k}, z-\hat{x}_{k}\right\rangle \leq \frac{\ell}{4}\left\|x_{k}-\hat{x}_{k}\right\|_{P}^{2}\right\} \\
x_{k+1} & :=\left(1-\theta_{k}\right) x_{k}+\theta_{k} \Pi_{H_{k}}^{S}\left(x_{k}\right)
\end{aligned}
$$

which converges weakly to a solution if

- M_{k} is Lipschitz continuous and 1 -strongly monotone w.r.t. P
- P, S are bounded linear self-adjoint strongly positive operators
- H_{k} is a halfspace that contains zer $(A+C)$ but not x_{k} (strictly)
- $\Pi_{H_{k}}^{S}$ is projection onto H_{k} in metric $\|\cdot\|_{S}$
- $\theta_{k} \in[\epsilon, 2-\epsilon]$ is relaxation parameter

NOFOB with projection correction

- Nonlinear forward-backward splitting with projection correction

$$
\begin{aligned}
\hat{x}_{k} & :=\left(M_{k}+A\right)^{-1}\left(M_{k}-C\right) x_{k} \\
H_{k} & :=\left\{z:\left\langle M_{k} x_{k}-M_{k} \hat{x}_{k}, z-\hat{x}_{k}\right\rangle \leq \frac{\ell}{4}\left\|x_{k}-\hat{x}_{k}\right\|_{P}^{2}\right\} \\
x_{k+1} & :=\left(1-\theta_{k}\right) x_{k}+\theta_{k} \Pi_{H_{k}}^{S}\left(x_{k}\right)
\end{aligned}
$$

which converges weakly to a solution if

- M_{k} is Lipschitz continuous and 1 -strongly monotone w.r.t. P
- P, S are bounded linear self-adjoint strongly positive operators
- H_{k} is a halfspace that contains zer $(A+C)$ but not x_{k} (strictly)
- $\Pi_{H_{k}}^{S}$ is projection onto H_{k} in metric $\|\cdot\|_{S}$
- $\theta_{k} \in[\epsilon, 2-\epsilon]$ is relaxation parameter
- Note: algorithm requires two forward evaluations of M_{k} :
- T_{FB} evaluation (first step) requires $M_{k} x_{k}$
- H_{k} creation requires $M_{k} x_{k}$ (already computed) and $M_{k} \hat{x}_{k}$

NOFOB with explicit projection

- Stating projection explicitly gives equivalent more explicit method

$$
\begin{aligned}
\hat{x}_{k} & :=\left(M_{k}+A\right)^{-1}\left(M_{k}-C\right) x_{k} \\
\mu_{k} & :=\frac{\left\langle M_{k} x_{k}-M_{k} \hat{x}_{k}, x_{k}-\hat{x}_{k}\right\rangle-\frac{\ell}{4}\left\|x_{k}-\hat{x}_{k}\right\|_{P}^{2}}{\left\|M_{k} x_{k}-M_{k} \hat{x}_{k}\right\|_{S^{-1}}^{2}} \\
x_{k+1} & :=x_{k}-\theta_{k} \mu_{k} S^{-1}\left(M_{k} x_{k}-M_{k} \hat{x}_{k}\right)
\end{aligned}
$$

where $\mu_{k} \geq \epsilon$ (unless $x \in \operatorname{zer}(A+C)$, in which case $\mu_{k}=\frac{0}{0}=0$)

NOFOB with explicit projection

- Stating projection explicitly gives equivalent more explicit method

$$
\begin{aligned}
\hat{x}_{k} & :=\left(M_{k}+A\right)^{-1}\left(M_{k}-C\right) x_{k} \\
\mu_{k} & :=\frac{\left\langle M_{k} x_{k}-M_{k} \hat{x}_{k}, x_{k}-\hat{x}_{k}\right\rangle-\frac{\ell}{4}\left\|x_{k}-\hat{x}_{k}\right\|_{P}^{2}}{\left\|M_{k} x_{k}-M_{k} \hat{x}_{k}\right\|_{S^{-1}}^{2}} \\
x_{k+1} & :=x_{k}-\theta_{k} \mu_{k} S^{-1}\left(M_{k} x_{k}-M_{k} \hat{x}_{k}\right)
\end{aligned}
$$

where $\mu_{k} \geq \epsilon$ (unless $x \in \operatorname{zer}(A+C)$, in which case $\mu_{k}=\frac{0}{0}=0$)

- Algorithm converges with μ_{k} replaced by any $\hat{\mu}_{k} \in\left[\epsilon, \mu_{k}\right]$
- Equivalent to algorithm with smaller relaxation parameter $\theta_{k} \frac{\hat{\mu}_{k}}{\mu_{k}}$
- Gives shorter step-lengths

Special case - Forward-backward splitting

- Suppose
- $M_{k}=\gamma_{k}^{-1} M$ with $M \in \mathcal{P}(\mathcal{H})$ and $P=M$
- projection metric $S=M$
- C is $\frac{1}{\beta}$-cocoercive w.r.t. M (and P)
then $\mu_{k}=\gamma_{k}\left(1-\frac{\gamma_{k} \beta}{4}\right)$
- Let $\lambda_{k}=\theta_{k}\left(1-\frac{\gamma_{k} \beta}{4}\right)$ to get relaxed preconditioned FB splitting

$$
\begin{aligned}
\hat{x}_{k} & :=\left(M+\gamma_{k} A\right)^{-1}\left(M-\gamma_{k} C\right) x_{k} \\
x_{k+1} & :=x_{k}-\lambda_{k}\left(x_{k}-\hat{x}_{k}\right)
\end{aligned}
$$

- Note that:
- second evaluation of M not needed (since $S^{-1} M=\gamma_{k}^{-1} \mathrm{Id}$)
- projection correction only kicks in if needed

Convergence and special cases

- Relaxed preconditioned FB splitting (with $\lambda_{k}=\theta_{k}\left(1-\frac{\gamma_{k} \beta}{4}\right)$)

$$
\begin{aligned}
\hat{x}_{k} & :=\left(M+\gamma_{k} A\right)^{-1}\left(M-\gamma_{k} C\right) x_{k} \\
x_{k+1} & :=x_{k}-\lambda_{k}\left(x_{k}-\hat{x}_{k}\right)
\end{aligned}
$$

- Converges if $\gamma_{k} \in\left[\epsilon, \frac{4-\epsilon}{\beta}\right]$ (extended range) and $\theta_{k} \in[\epsilon, 2-\epsilon]$
- $\gamma_{k} \geq \frac{2}{\beta}$ possible $\Rightarrow \lambda_{k}<1$ (under-relaxation)
- $\gamma_{k} \in\left[\epsilon, \frac{2-\epsilon}{\beta}\right]: \lambda_{k}=1$ possible, but also $\lambda_{k}>1$ (over-relaxation)
- Since FB is special case of NOFOB, it has special cases:
- Chambolle-Pock
- Vũ-Condat
- Douglas-Rachford, ADMM (with dual step-size 1)
- Proximal gradient method

Other special cases

- These are special cases of NOFOB with projection correction
- Nonlinear resolvent step:
- Tseng's forward-backward-forward splitting (M nonlinear)
- Solodov and Tseng (M nonlinear)
- (Synchronous) projective splitting (M not self-adjoint)
- Briceño-Arias/Combettes (error-free version) (M not self-adjoint)
- He and Yuan (M not self-adjoint)
- Nonlinear FB step:
- Forward-backward-half-forward splitting (M nonlinear)
- AFBA (M not self-adjoint)
- Proximal alternating predictor corrector (M not self-adjoint)
- Can add cocoercive term in methods based on resolvent

Drawback of projection correction

- In general, two evaluations of M_{k} is needed in every iteration
- Exception, e.g., standard FB splitting that has $S^{-1} M_{k}=\gamma_{k}^{-1} \mathrm{Id}$

NOFOB with momentum correction

- Consider the same problem problem

$$
\text { find } x \in \mathcal{H} \text { such that } 0 \in A x+C x
$$

where

- $A: \mathcal{H} \rightarrow 2^{\mathcal{H}}$ maximally monotone
- $C: \mathcal{H} \rightarrow \mathcal{H}$ is $\frac{1}{\ell}$-cocoercive w.r.t. $S \in \mathcal{P}(\mathcal{H})$
- Nonlinear forward-backward splitting with momentum correction

$$
\begin{aligned}
& x_{k+1}=\left(M_{k}+A\right)^{-1}\left(M_{k} x_{k}-C x_{k}+\gamma_{k}^{-1} u_{k}\right) \\
& u_{k+1}=\left(\gamma_{k} M_{k}-S\right) x_{k+1}-\left(\gamma_{k} M_{k}-S\right) x_{k}
\end{aligned}
$$

where $S \in \mathcal{P}(\mathcal{H})$ and M_{k} possibly nonlinear

- Momentum term is in the $\gamma_{k} M_{k}-S$ operator

M_{k} evaluations

- Nonlinear forward-backward splitting with momentum correction

$$
\begin{aligned}
& x_{k+1}=\left(M_{k}+A\right)^{-1}\left(M_{k} x_{k}-C x_{k}+\gamma_{k}^{-1} u_{k}\right) \\
& u_{k+1}=\left(\gamma_{k} M_{k}-S\right) x_{k+1}-\left(\gamma_{k} M_{k}-S\right) x_{k}
\end{aligned}
$$

- Comparison to projection correction in terms of M_{k} evaluations
- Need to evaluate $M_{k-1} x_{k}$ and $M_{k} x_{k} \Rightarrow$ in general no savings
- If $M_{k}=\alpha_{k} M_{k-1}$ (with M_{k} still nonlinear) \Rightarrow we save one ${ }^{1}$
- If $M_{k}=\alpha_{k}^{-1} \mathrm{Id}-D$ (with D nonlinear) \Rightarrow we save one D-eval.

[^4]
Restrictions on M_{k}

- Nonlinear forward-backward splitting with momentum correction

$$
\begin{aligned}
& x_{k+1}=\left(M_{k}+A\right)^{-1}\left(M_{k} x_{k}-C x_{k}+\gamma_{k}^{-1} u_{k}\right) \\
& u_{k+1}=\left(\gamma_{k} M_{k}-S\right) x_{k+1}-\left(\gamma_{k} M_{k}-S\right) x_{k}
\end{aligned}
$$

- Letting $M_{k}=\gamma_{k}^{-1} S \in \mathcal{P}(\mathcal{H})$ gives standard FB splitting ($u_{k}=0$)
- M_{k} can deviate from $\gamma_{k}^{-1} S$, we assume

$$
\gamma_{k} M_{k}-S \quad \text { is } L_{k} \text {-Lipschitz continuous w.r.t. } S
$$

and we have weak convergence if all $\gamma_{k} \geq \epsilon$ and

$$
1-L_{k-1}-L_{k}-\frac{\gamma_{k} \ell}{2} \geq \epsilon>0
$$

Convergence - Lyapunov analysis

- Let $z \in \operatorname{zer}(A+C)$ and define

$$
\mathcal{V}_{k}=\left\|x_{k}+S^{-1} u_{k}-z\right\|_{S}^{2}+\left(1-L_{k-1}\right) L_{k-1}\left\|x_{k}-x_{k-1}\right\|_{S}^{2}
$$

- Assume that $L_{k}<1$ (Lipschitz constant of $\gamma_{k} M_{k}-S$), then

$$
\mathcal{V}_{k+1} \leq \mathcal{V}_{k}-\left(1-L_{k-1}-L_{k}-\frac{\gamma_{k} \ell}{2}\right)\left\|x_{k+1}-x_{k}\right\|_{S}^{2}
$$

- Convergence condition

$$
1-L_{k-1}-L_{k}-\frac{\gamma_{k} \ell}{2} \geq \epsilon>0
$$

comes from having residual coefficient strictly positive

Special cases

- These are special cases of NOFOB with momentum correction
- Nonlinear resolvent
- Malitsky-Tam (forward-reflected-backward) (M nonlinear)
- Forward-reflected-Douglas-Rachford (M nonlinear)
- Nonlinear forward-backward map
- Malitsky-Tam ("three-operator splitting") (M nonlinear)
- Can add cocoercive term in methods based on resolvent

Momentum instead of projection correction

- Methods with projection correction
- Tseng's forward-backward-forward splitting
- Solodov and Tseng
- (Synchronous) projective splitting
- Briceno-Arias/Combettes (error-free version)
- He and Yuan
- Forward-backward-half-forward splitting
- Asymmetric forward-backward-adjoint splitting
- Proximal alternating predictor corrector
- Can derive methods based on momentum correction for the above
- Comes at the cost or more restrictive parameter requirements
- Gives Malitsky-Tam methods if done for FB(H)F

Polyak Momentum

- Equivalent formulation with Polyak momentum with $\theta<1$

$$
\begin{aligned}
& x_{k+1}=\left(M_{k}+A\right)^{-1}\left(M_{k} x_{k}-C x_{k}+\gamma_{k}^{-1} u_{k}+\gamma_{k}^{-1} \theta S\left(x_{k}-x_{k-1}\right)\right), \\
& u_{k+1}=\left(\gamma_{k} M_{k}-S\right) x_{k+1}-\left(\gamma_{k} M_{k}-S\right) x_{k},
\end{aligned}
$$

- Denote by $\hat{\gamma}_{k}$ and \hat{u}_{k} original algorithm parameters, and let

$$
\gamma_{k}=(1-\theta) \hat{\gamma}_{k} \quad u_{k}=(1-\theta) \hat{u}_{k}-\theta S\left(x_{k}-x_{k-1}\right)
$$

to get Polyak momentum method

- Translated requirements for convergence

$$
1-\theta-2|\theta|-L_{k-1}-L_{k}-\gamma_{k} \frac{\ell}{2} \geq \varepsilon
$$

- Can add Polyak momentum (interpretation) to all special cases

Polyak momentum in FB setting

- General requirements for Polyak momentum convergence

$$
1-\theta-2|\theta|-L_{k-1}-L_{k}-\gamma_{k} \frac{\ell}{2} \geq \varepsilon
$$

- Assume $M_{k}=\gamma_{k}^{-1} S\left(L_{k}=0\right), C \frac{1}{\beta}$-cocoercive w.r.t. $S(\beta=\ell)$
- This gives standard forward-backward setting, if $\gamma_{k}=\gamma$, we allow

$$
\theta \in\left(\frac{-2+\gamma \beta}{2}, \frac{2-\gamma \beta}{6}\right)
$$

which implies

- if $\gamma=\frac{1}{\beta}: \theta \in\left(-\frac{1}{2}, \frac{1}{6}\right)$
- if $C=0(\beta=0): \theta \in\left(-1, \frac{1}{3}\right)$
note that we allow for negative momentum (more than positive)

Summary

- Many methods are special cases of presented NOFOB framework
- Can select projection or momentum correction
- Can add cocoercive term to those that do not have
- Can avoid one M_{k} application by using momentum correction
- Can add Polyak momentum to many methods
- Easy to design and prove convergence of new methods

Special Cases and New Algorithms

Special cases and new algorithms - Outline

- $\mathrm{FB}(\mathrm{H}) \mathrm{F}$ and Malitsky-Tam
- Solodov and Tseng
- Novel four-operator splitting method
- Special case: AFBA
- Two novel four-operator splitting primal-dual methods
- Four-operator splitting primal-dual method with different kernel
- Extension to multi-operator setting
- Synchronous projective splitting

FBF and Malitsky-Tam

- Consider monotone inclusion problem of the form

$$
0 \in B x+D x
$$

where $B+D$ is maximally monotone and D is δ-Lipschitz

- Forward-backward-forward splitting

$$
\begin{aligned}
\hat{x}_{k} & :=\left(\operatorname{Id}+\gamma_{k} B\right)^{-1}\left(x_{k}-\gamma_{k} D x_{k}\right) \\
x_{k+1} & :=\hat{x}_{k}-\gamma_{k}\left(D \hat{x}_{k}-D x_{k}\right)
\end{aligned}
$$

needs second application of D (at \hat{x}_{k})

FBF and Malitsky-Tam

- Consider monotone inclusion problem of the form

$$
0 \in B x+D x
$$

where $B+D$ is maximally monotone and D is δ-Lipschitz

- Forward-backward-forward splitting

$$
\begin{aligned}
\hat{x}_{k} & :=\left(\operatorname{Id}+\gamma_{k} B\right)^{-1}\left(x_{k}-\gamma_{k} D x_{k}\right) \\
x_{k+1} & :=\hat{x}_{k}-\gamma_{k}\left(D \hat{x}_{k}-D x_{k}\right)
\end{aligned}
$$

needs second application of D (at \hat{x}_{k})

- Malitsky-Tam

$$
\begin{aligned}
& x_{k+1}:=\left(\operatorname{Id}+\gamma_{k} B\right)^{-1}\left(x_{k}-\gamma_{k} D x_{k}+u_{k}\right) \\
& u_{k+1}:=\gamma_{k}\left(D x_{k}-D x_{k+1}\right)
\end{aligned}
$$

avoids second application of D (or rather, it can be reused)

Derivation from NOFOB

- Let $A=B+D, C=0$, and $M_{k}=\gamma_{k}^{-1} \mathrm{Id}-D$, then

$$
\begin{aligned}
\left(M_{k}+A\right)^{-1} M_{k} x_{k} & =\left(\gamma_{k}^{-1} \mathrm{Id}-D+B+D\right)^{-1}\left(\gamma_{k}^{-1} \mathrm{Id}-D\right) \\
& =\left(\gamma_{k}^{-1} \mathrm{Id}+B\right)^{-1}\left(\gamma_{k}^{-1} \mathrm{Id}-D\right) \\
& =\left(\mathrm{Id}+\gamma_{k} B\right)^{-1}\left(\mathrm{Id}-\gamma_{k} D\right)
\end{aligned}
$$

resolvent of $B+D$ in M_{k} evaluated as forward-backward step

Derivation from NOFOB

- Let $A=B+D, C=0$, and $M_{k}=\gamma_{k}^{-1} \mathrm{Id}-D$, then

$$
\begin{aligned}
\left(M_{k}+A\right)^{-1} M_{k} x_{k} & =\left(\gamma_{k}^{-1} \operatorname{Id}-D+B+D\right)^{-1}\left(\gamma_{k}^{-1} \operatorname{Id}-D\right) \\
& =\left(\gamma_{k}^{-1} \operatorname{Id}+B\right)^{-1}\left(\gamma_{k}^{-1} \mathrm{Id}-D\right) \\
& =\left(\operatorname{Id}+\gamma_{k} B\right)^{-1}\left(\mathrm{Id}-\gamma_{k} D\right)
\end{aligned}
$$

resolvent of $B+D$ in M_{k} evaluated as forward-backward step

- Projection correction with
- Projection metric $S=\mathrm{Id}$ and step-size $\gamma_{k} \in\left[\epsilon, \frac{1}{\delta}-\epsilon\right]$
- Conservative $\hat{\mu}_{k}=\frac{1}{\gamma_{k}^{-1}+\delta}$ (since M_{k} is $\frac{1}{\gamma_{k}^{-1}+\delta}$-cocoercive)
- Relaxation $\theta_{k}=1+\delta \gamma_{k} \in[1+\varepsilon, 2-\varepsilon]$
gives FBF (and convergence conditions agree)

Derivation from NOFOB

- Let $A=B+D, C=0$, and $M_{k}=\gamma_{k}^{-1} \mathrm{Id}-D$, then

$$
\begin{aligned}
\left(M_{k}+A\right)^{-1} M_{k} x_{k} & =\left(\gamma_{k}^{-1} \operatorname{Id}-D+B+D\right)^{-1}\left(\gamma_{k}^{-1} \operatorname{Id}-D\right) \\
& =\left(\gamma_{k}^{-1} \operatorname{Id}+B\right)^{-1}\left(\gamma_{k}^{-1} \mathrm{Id}-D\right) \\
& =\left(\operatorname{Id}+\gamma_{k} B\right)^{-1}\left(\operatorname{Id}-\gamma_{k} D\right)
\end{aligned}
$$

resolvent of $B+D$ in M_{k} evaluated as forward-backward step

- Projection correction with
- Projection metric $S=$ Id and step-size $\gamma_{k} \in\left[\epsilon, \frac{1}{\delta}-\epsilon\right]$
- Conservative $\hat{\mu}_{k}=\frac{1}{\gamma_{k}^{-1}+\delta}$ (since M_{k} is $\frac{1}{\gamma_{k}^{-1}+\delta}$-cocoercive)
- Relaxation $\theta_{k}=1+\delta \gamma_{k} \in[1+\varepsilon, 2-\varepsilon]$
gives FBF (and convergence conditions agree)
- Momentum correction with $S=$ Id gives Malitsky-Tam
- Lipschitz constant for $\gamma_{k} M_{k}-S=\gamma_{k} D$ is $L_{k}=\gamma_{k} \delta$
- Convergence condition: $L_{k}+L_{k-1} \leq 1-\epsilon$
- Satisfied if all $\gamma_{k} \in\left[\epsilon, \frac{1-\epsilon}{2 \delta}\right]$ (which is condition in Malitsky-Tam)

Extensions

- Extensions with cocoercive term exist
- Forward-backward-half-forward (projection correction)
- Three-operator-splitting in Malitsky-Tam (momentum correction)
- Polyak momentum extension also in Malitsky-Tam paper

Solodov and Tseng

- Solves

$$
0 \in D x+N_{X} x
$$

where (in Theorem 3.1)

- D is maximally monotone and δ-Lipschitz continuous
- N_{X} is normal cone operator to nonempty closed convex set X
- Let $A=D+N_{X}, C=0, M_{k}=\gamma_{k}^{-1} \mathrm{Id}-D$, projection correction

$$
\begin{aligned}
\hat{x}_{k} & =\left(\operatorname{Id}+\gamma_{k} N_{X}\right)^{-1}\left(x_{k}-\gamma_{k} D x_{k}\right)=\Pi_{X}\left(x_{k}-\gamma_{k} D x_{k}\right) \\
\mu_{k} & =\gamma_{k} \frac{\left\langle x_{k}-\hat{x}_{k}-\gamma_{k} D x_{k}+\gamma_{k} D \hat{x}_{k}, x_{k}-\hat{x}_{k}\right\rangle}{\left\|x_{k}-\hat{x}_{k}-\gamma_{k} D x_{k}+\gamma_{k} D \hat{x}_{k}\right\|_{S^{-1}}^{2}} \\
x_{k+1} & =x_{k}-\frac{\theta_{k} \mu_{k}}{\gamma_{k}} S^{-1}\left(x_{k}-\gamma_{k} D x_{k}-\left(\hat{x}_{k}-\gamma_{k} D \hat{x}_{k}\right)\right)
\end{aligned}
$$

- Algorithm uses two evaluations of D

Solodov and Tseng

- The NOFOB algorithm:

$$
\begin{aligned}
\hat{x}_{k} & =\left(\operatorname{Id}+\gamma_{k} N_{X}\right)^{-1}\left(x_{k}-\gamma_{k} D x_{k}\right)=\Pi_{X}\left(x_{k}-\gamma_{k} D x_{k}\right) \\
\mu_{k} & =\gamma_{k} \frac{\left\langle x_{k}-\hat{x}_{k}-\gamma_{k} D x_{k}+\gamma_{k} D \hat{x}_{k}, x_{k}-\hat{x}_{k}\right\rangle}{\left\|x_{k}-\hat{x}_{k}-\gamma_{k} D x_{k}+\gamma_{k} D \hat{x}_{k}\right\|_{S^{-1}}^{2}} \\
x_{k+1} & =x_{k}-\frac{\theta_{k} \mu_{k}}{\gamma_{k}} S^{-1}\left(x_{k}-\gamma_{k} D x_{k}-\left(\hat{x}_{k}-\gamma_{k} D \hat{x}_{k}\right)\right)
\end{aligned}
$$

- Solodov and Tseng obtained by conservative $\hat{\mu}_{k}$:

$$
\hat{\mu}_{k}:=\gamma_{k} \frac{\left(1-\gamma_{k} \delta\right)\left\|x_{k}-\hat{x}_{k}\right\|^{2}}{\left\|x_{k}-\hat{x}_{k}-\gamma_{k} D x_{k}+\gamma_{k} D \hat{x}_{k}\right\|_{P^{-1}}^{2}} \leq \mu_{k}
$$

by Cauchy-Scharz and δ-Lipschitz continuity of D in numerator

Solodov and Tseng

- The NOFOB algorithm:

$$
\begin{aligned}
\hat{x}_{k} & =\left(\operatorname{Id}+\gamma_{k} N_{X}\right)^{-1}\left(x_{k}-\gamma_{k} D x_{k}\right)=\Pi_{X}\left(x_{k}-\gamma_{k} D x_{k}\right) \\
\mu_{k} & =\gamma_{k} \frac{\left\langle x_{k}-\hat{x}_{k}-\gamma_{k} D x_{k}+\gamma_{k} D \hat{x}_{k}, x_{k}-\hat{x}_{k}\right\rangle}{\left\|x_{k}-\hat{x}_{k}-\gamma_{k} D x_{k}+\gamma_{k} D \hat{x}_{k}\right\|_{S^{-1}}^{2}} \\
x_{k+1} & =x_{k}-\frac{\theta_{k} \mu_{k}}{\gamma_{k}} S^{-1}\left(x_{k}-\gamma_{k} D x_{k}-\left(\hat{x}_{k}-\gamma_{k} D \hat{x}_{k}\right)\right)
\end{aligned}
$$

- Solodov and Tseng obtained by conservative $\hat{\mu}_{k}$:

$$
\hat{\mu}_{k}:=\gamma_{k} \frac{\left(1-\gamma_{k} \delta\right)\left\|x_{k}-\hat{x}_{k}\right\|^{2}}{\left\|x_{k}-\hat{x}_{k}-\gamma_{k} D x_{k}+\gamma_{k} D \hat{x}_{k}\right\|_{P^{-1}}^{2}} \leq \mu_{k}
$$

by Cauchy-Scharz and δ-Lipschitz continuity of D in numerator

- Extensions
- use μ_{k} instead of $\hat{\mu}_{k}$
- add a cocoercive term
- use momentum correction instead to avoid one D evaluation

Novel four operator splitting methods

- Solves monotone inclusions

$$
0 \in B x+C x+D x+K x
$$

where

- $B+D$ maximally monotone and D is δ-Lipschitz continuous
- C is $\frac{1}{\ell}$-cocoercive (w.r.t. P or S)
- K linear skew-adjoint
- Let $A=B+D+K$ and $M_{k}=Q_{k}-D-K$ to get FB map

$$
\left(M_{k}+A\right)^{-1}\left(M_{k}-C\right)=\left(Q_{k}+B\right)^{-1}\left(Q_{k}-D-K-C\right)
$$

that is forward evaluation in D, K, and C, resolvent in B

- Use projection correction or momentum correction

Asymmetric forward-backward-adjoint splitting (AFBA)

- If $D=0, Q_{k}=P$ and projection correction is used, we get AFBA
- Special cases, e.g.,:
- Proximal alternating predictor corrector
- Primal dual method of He and Yuan
- Primal dual method of Briceño-Arias and Combettes

Primal-dual framework

- Problem

$$
0 \in B_{1} y+\left(V^{*} \circ B_{2} \circ V\right) y+E y+F y
$$

- $B_{1}: \mathcal{H} \rightarrow 2^{\mathcal{H}}$ and $B_{2}: \mathcal{K} \rightarrow 2^{\mathcal{K}}$ are maximally monotone
- $E: \mathcal{H} \rightarrow \mathcal{H}$ is monotone and δ-Lipschitz continuous
- $F: \mathcal{H} \rightarrow \mathcal{H}$ is β^{-1}-cocoercive
- $V: \mathcal{H} \rightarrow \mathcal{K}$ is linear and bounded
- Four-operator splitting primal-dual formulation

$$
0 \in B x+C x+D x+K x
$$

with $x=(y, z) \in \mathcal{H} \times \mathcal{K}$ and
$B=\left[\begin{array}{cc}B_{1} & 0 \\ 0 & B_{2}^{-1}\end{array}\right], \quad D=\left[\begin{array}{cc}E & 0 \\ 0 & 0\end{array}\right], \quad K=\left[\begin{array}{cc}0 & V^{*} \\ -V & 0\end{array}\right], \quad C=\left[\begin{array}{ll}F & 0 \\ 0 & 0\end{array}\right]$
which satisfies four-operator splitting assumptions

Primal-dual kernel

- We use the following kernel in NOFOB

$$
M_{k}=\underbrace{\left[\begin{array}{cc}
\tau^{-1} \mathrm{Id} & 0 \\
-\lambda_{k} V & \sigma^{-1} \mathrm{Id}
\end{array}\right]}_{Q_{k}}-\underbrace{\left[\begin{array}{cc}
E & 0 \\
0 & 0
\end{array}\right]}_{D}-\underbrace{\left[\begin{array}{cc}
0 & V^{*} \\
-V & 0
\end{array}\right]}_{K}
$$

- This gives nonlinear forward-backward step

$$
\begin{aligned}
x_{k+1} & =\left(M_{k}+A\right)^{-1}\left(M_{k}-C\right) x_{k} \\
& =\left(Q_{k}+B\right)^{-1}\left(Q_{k}-D-K-C\right) x_{k} \\
& =\left[\begin{array}{c}
\left(\operatorname{Id}+\tau B_{1}\right)^{-1}\left(y_{k}-\tau E y_{k}-\tau V^{*} z_{k}-\tau F y_{k}\right) \\
\left(\operatorname{Id}+\sigma B_{2}^{-1}\right)^{-1}\left(z_{k}+\sigma V\left(\lambda_{k} y_{k+1}-\left(\lambda_{k}-1\right) y_{k}\right)\right)
\end{array}\right]
\end{aligned}
$$

- If $\lambda_{k}=2$ and $E=0$, we get Condat-Vũ and $M_{k}=M \in \mathcal{P}(\mathcal{H})$
- In general, $M_{k} \notin \mathcal{P}(\mathcal{H})$ and we need correction

A primal-dual method with projection correction

- Use projection correction with metric operator S

$$
S=\left[\begin{array}{cc}
\tau^{-1} \mathrm{Id} & 0 \\
0 & \sigma^{-1} \mathrm{Id}
\end{array}\right]
$$

comments

- S is diagonal for cheap evaluation of $S^{-1} D$ (in $S^{-1} M_{k}$)
- if $D=0: S$ that includes V, V^{*} possible
- Set $\lambda_{k}=\lambda \in \mathbb{R}$ in M_{k} and use projection correction

$$
\begin{aligned}
\hat{y}_{k} & =\left(\operatorname{Id}+\tau B_{1}\right)^{-1}\left(y_{k}-\tau E y_{k}-\tau V^{*} z_{k}-\tau F y_{k}\right) \\
\hat{z}_{k} & =\left(\operatorname{Id}+\sigma B_{2}^{-1}\right)^{-1}\left(z_{k}+\sigma V\left(\lambda y_{k+1}-(\lambda-1) y_{k}\right)\right) \\
y_{k+1} & =y_{k}-\theta_{k} \mu_{k}\left(y_{k}-\hat{y}_{k}-\tau V^{*}\left(z_{k}-\hat{z}_{k}\right)-\tau\left(E y_{k}-E \hat{y}_{k}\right)\right) \\
z_{k+1} & =z_{k}-\theta_{k} \mu_{k}\left(z_{k}-\hat{z}_{k}+(1-\lambda) V\left(y_{k}-\hat{y}_{k}\right)\right)
\end{aligned}
$$

Comments

- The primal-dual algorithm

$$
\begin{aligned}
\hat{y}_{k} & =\left(\operatorname{Id}+\tau B_{1}\right)^{-1}\left(y_{k}-\tau E y_{k}-\tau V^{*} z_{k}-\tau F y_{k}\right) \\
\hat{z}_{k} & =\left(\operatorname{Id}+\sigma B_{2}^{-1}\right)^{-1}\left(z_{k}+\sigma V\left(\lambda y_{k+1}-(\lambda-1) y_{k}\right)\right) \\
y_{k+1} & =y_{k}-\theta_{k} \mu_{k}\left(y_{k}-\hat{y}_{k}-\tau V^{*}\left(z_{k}-\hat{z}_{k}\right)-\tau\left(E y_{k}-E \hat{y}_{k}\right)\right) \\
z_{k+1} & =z_{k}-\theta_{k} \mu_{k}\left(z_{k}-\hat{z}_{k}+(1-\lambda) V\left(y_{k}-\hat{y}_{k}\right)\right)
\end{aligned}
$$

- Comments
- Evaluations
- Two for V, V^{*} (unless $\lambda=1$) and E
- One for remaining operators
- If $D=0$ and $\lambda_{k}=2$, then $M_{k} \in \mathcal{P}(\mathcal{H})$
- Choice of S gives $S^{-1} M_{k} \neq \alpha$ Id for any $\alpha \in \mathbb{R}$
- Algorithm does not give Condat-Vũ (but different S does)
- Convergence with specific P (used to compute μ_{k}) if

$$
1-\frac{\tau \sigma \lambda^{2}}{4}\|V\|^{2}-\tau \delta-\frac{\tau \beta}{4}>0
$$

Convergence proof

- Let $\left(\tau^{-1}-\delta-\frac{\sigma \lambda^{2}}{4}\|V\|^{2}\right)>0$ and set

$$
P=\left[\begin{array}{cc}
\tau^{-1} \mathrm{Id}-\delta \mathrm{Id} & -\frac{\lambda}{2} L^{*} \\
-\frac{\lambda}{2} L & \sigma^{-1} \mathrm{Id}
\end{array}\right] \in \mathcal{P}(\mathcal{H})
$$

- The kernel M_{k} is 1 -strongly monotone w.r.t. P since

$$
M_{k}=P+\left[\begin{array}{cc}
0 & \frac{\lambda}{2} L^{*} \\
-\frac{\lambda}{2} L & 0
\end{array}\right]+\left[\begin{array}{cc}
\delta \operatorname{Id}-E & 0 \\
0 & 0
\end{array}\right]-K
$$

which implies

$$
\begin{aligned}
\left\langle M_{k} x-M_{k} x^{\prime}, x-x^{\prime}\right\rangle & =\left\|x-x^{\prime}\right\|_{P}^{2}+\left\langle\delta y-E y-\left(\delta y^{\prime}-E y^{\prime}\right), y-y^{\prime}\right\rangle \\
& \geq\left\|x-x^{\prime}\right\|_{P}^{2}
\end{aligned}
$$

- C is $\left(\tau^{-1}-\delta-\frac{\sigma \lambda^{2}}{4}\|V\|^{2}\right) / \beta$-cocoercive w.r.t. P

$$
\begin{aligned}
\left\|C x-C x^{\prime}\right\|_{P-1} & \leq\left(\tau^{-1}-\delta-\frac{\sigma \lambda^{2}}{4}\|V\|^{2}\right)^{-1}\left\|F y-F y^{\prime}\right\|^{2} \\
& \leq\left(\tau^{-1}-\delta-\frac{\sigma \lambda^{2}}{4}\|V\|^{2}\right)^{-1}\left\langle F y-F y^{\prime}, y-y^{\prime}\right\rangle \\
& =\beta\left(\tau^{-1}-\delta-\frac{\sigma \lambda^{2}}{4}\|V\|^{2}\right)^{-1}\left\langle C x-C x^{\prime}, x-x^{\prime}\right\rangle
\end{aligned}
$$

i.e., $\beta /\left(\tau^{-1}-\delta-\frac{\sigma \lambda^{2}}{4}\|V\|^{2}\right) \in[0,4)$, upper bound gives condition

A primal-dual method with momentum correction

- Momentum correction and algorithm design parameters

$$
S=\left[\begin{array}{cc}
\mathrm{Id} & -\tau V^{*} \\
-\tau V & \sigma^{-1} \tau \mathrm{Id}
\end{array}\right], \quad M_{k}=\left[\begin{array}{cc}
\tau^{-1} \mathrm{Id} & 0 \\
-\lambda_{k} V & \sigma^{-1} \mathrm{Id}
\end{array}\right]-D-K, \quad \gamma_{k}=\tau
$$

- Gives a lower block-triangular update and algorithm

$$
\begin{aligned}
y_{k+1} & =\left(\operatorname{Id}+\tau B_{1}\right)^{-1}\left(y_{k}-\tau V^{*} z_{k}-\tau\left(2 E y_{k}-E y_{k-1}\right)-\tau F y_{k}\right), \\
v_{k+1} & =\lambda_{k}\left(y_{k+1}-y_{k}\right)+\left(2-\lambda_{k-1}\right)\left(y_{k}-y_{k-1}\right), \\
z_{k+1} & =\left(\operatorname{Id}+\sigma B_{2}^{-1}\right)^{-1}\left(z_{k}+\sigma V\left(y_{k}+v_{k+1}\right)\right),
\end{aligned}
$$

- Comments
- Each resolvent, forward step, and V and V^{*} evaluated once
- if $F=0, \lambda_{k}=2, V=\mathrm{Id} \Rightarrow$ forward-reflected-Douglas-Rachford
- if $E=0, \lambda_{k}=2 \Rightarrow$ Condat-Vũ (by choice of S)
- If $B_{2}=0(V=0)$ we get Malitsky-Tam three-operator splitting

Convergence

- Convergence condition

$$
\tau \sigma\|V\|^{2}+\left(\left|2-\lambda_{k}\right|+\left|2-\lambda_{k+1}\right|\right) \sqrt{\tau \sigma}\|V\|+\tau\left(2 \delta+\frac{1}{2} \beta\right)<1-\epsilon
$$

- Proof
- C is $\frac{1}{\ell}$-cocoercive w.r.t. S with $\ell=\frac{\beta}{1-\tau \sigma\|V\|^{2}}$
- $\gamma_{k} M_{k}-S$ is L_{k}-Lipschitz continuous w.r.t. S where

$$
L_{k}=\frac{1}{1-\tau \sigma\|V\|^{2}}\left(\left|2-\lambda_{k}\right| \sqrt{\tau \sigma}\|V\|+\tau \delta\right)
$$

- Insert into general convergence condition

$$
1-L_{k-1}-L_{k}-\frac{\tau \ell}{2} \geq \epsilon>0
$$

to get result

- Reduces to Malitsky-Tam condition if $V=0$

A primal-dual method with resolvent in kernel

- Let T_{a} be translation by a and use

$$
\begin{gathered}
M_{k}=\left[\begin{array}{c}
\tau^{-1} \mathrm{Id}-V^{*} \circ\left(\mathrm{Id}+\sigma B_{2}^{-1}\right)^{-1} \circ T_{-z_{k}} \circ \sigma V \\
0 \\
0 \\
S=\left[\begin{array}{cc}
\mathrm{Id} & 0 \\
0 & \tau \sigma^{-1} \mathrm{Id}
\end{array}\right], \quad \gamma_{k}=\tau
\end{array}\right]-D,
\end{gathered}
$$

- With momentum correction and after some algebra, we get

$$
\begin{aligned}
& \nu_{k+1}=\left(\operatorname{Id}+\sigma B_{2}^{-1}\right)^{-1}\left(z_{k}+\sigma V y_{k}\right) \\
& y_{k+1}=\left(\operatorname{Id}+\tau B_{1}\right)^{-1}\left(y_{k}-\tau V^{*}\left(z_{k}+\nu_{k+1}-\nu_{k}\right)-\tau\left(2 E y_{k}-E y_{k-1}\right)-\tau F y_{k}\right) \\
& z_{k+1}=\left(\operatorname{Id}+\sigma B_{2}^{-1}\right)^{-1}\left(z_{k}+\sigma V y_{k+1}\right)
\end{aligned}
$$

- Comments
- B_{2}^{-1} resolvent evaluated twice, remaining operators once
- Not aware of other methods that require extra B_{2}^{-1} resolvent
- If $B_{2}=0(V=0)$ we get Malitsky-Tam three-operator splitting

Convergence

- Algorithm converges if

$$
2 \tau \sigma\|V\|^{2}+\tau\left(2 \delta+\frac{\beta}{2}\right)<1,
$$

- Proof
- C is $\frac{1}{\ell}$-cocoercive w.r.t. S with $\ell=\beta$
- $\gamma_{k} M_{k}-S$ is $L_{k}=\left(\tau \delta+\tau \sigma\|V\|^{2}\right)$-Lipschitz continuous w.r.t. S
- Insert into general convergence condition

$$
1-L_{k-1}-L_{k}-\frac{\tau \ell}{2} \geq \epsilon>0
$$

to get result

- Reduces to Malitsky-Tam condition if $V=0$

Extension to multi-operator problems

- Consider monotone inclusion problems of the form

$$
0 \in \sum_{i=1}^{n-1} L_{i}^{*} B_{i}\left(L_{i} x\right)+B_{n} x
$$

- Primal dual formulation (monotone+skew)

$$
0 \in \underbrace{\left[\begin{array}{c}
B_{1}^{-1}\left(w_{1}\right) \\
\vdots \\
B_{n-1}^{-1}\left(w_{n-1}\right) \\
B_{n}(x)
\end{array}\right]}_{B}+\underbrace{\left[\begin{array}{cccc}
& & & -L_{1} \\
& & & \vdots \\
& & & -L_{n-1} \\
L_{1}^{*} & \cdots & L_{n-1}^{*} &
\end{array}\right]}_{K}\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{n-1} \\
x
\end{array}\right]
$$

fits in four-operator splitting framework (with $C=D=0$)

- Can be extended by Lipschitz and cocoercive operators in last row

Projective splitting - How it usually looks

```
Algorithm Synchronous Projective Splitting combettes, Eckstein 2018
    1: Input: \(x_{0} \in \mathcal{H}\) and \(w_{i, 0} \in \mathcal{G}_{i}\) for \(i=1, \ldots, n-1\)
    2: for \(k=0,1, \ldots\) do
    3: \(\quad \hat{x}_{k}:=J_{\tau_{n, k} B_{n}}\left(x_{k}-\tau_{n, k} \sum_{i=1}^{n-1} L_{i}^{*} w_{i, k}\right)\)
    4: \(\quad \hat{y}_{k}:=\left(\tau_{n, k}^{-1} x_{k}-\sum_{i=1}^{n-1} L_{i}^{*} w_{i, k}\right)-\tau_{n, k}^{-1} \hat{x}_{k}\)
    5: for \(i=1, \ldots, n-1\) do
    6: \(\quad \hat{v}_{i, k}:=J_{\tau_{i, k} B_{i}}\left(L_{i} x_{k}+\tau_{i, k} w_{i, k}\right)\)
    7: \(\quad \hat{w}_{i, k}:=w_{i, k}+\tau_{i, k}^{-1} L_{i} x_{k}-\tau_{i, k}^{-1} \hat{v}_{i, k}\)
    8: end for
    9: \(\quad t_{k}^{*}:=\hat{y}_{k}+\sum_{i=1}^{n-1} L_{i}^{*} \hat{w}_{i, k}\)
10: \(\quad t_{i, k}:=\hat{v}_{i, k}-L \hat{x}_{k}\)
11: \(\quad \mu_{k}:=\frac{\left(\sum_{i=1}^{n-1}\left\langle t_{i, k}, w_{i, k}\right\rangle-\left\langle\hat{v}_{i, k}, \hat{w}_{i, k}\right\rangle\right)+\left\langle t^{*}, x_{k}\right\rangle-\left\langle\hat{y}_{k}, \hat{x}_{k}\right\rangle}{\sum_{i=1}^{n-1}\left\|t_{i, k}\right\|^{2}+\left\|t_{k}^{*}\right\|^{2}}\)
12: \(\quad\) for \(i=1, \ldots, n-1\) do
13: \(\quad w_{i, k+1}=w_{i, k}-\theta_{k} \mu_{k} t_{i, k}\)
14: end for
15: \(\quad x_{k+1}:=x_{k}-\theta_{k} \mu_{k} t_{k}^{*}\)
16: end for
```


Projective splitting from NOFOB

- Let $A=B+K, C=0$ and subtract skew linear K in M_{k}

$$
M_{k}=\underbrace{[\begin{array}{cccc}
\sigma_{1}^{-1} \mathrm{Id} & & & \\
& \ddots & & \\
& & & \sigma_{n-1}^{-1} \mathrm{Id} \\
& & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
L_{1}^{*} & \cdots & L_{n-1}^{*} & \\
& {\left[\begin{array}{ccc}
& & \\
& & \\
& &
\end{array}\right]}
\end{array} \underbrace{}_{K}}_{P}
$$

- Projective splitting: backward-step on $A=B+K(C=0)$

$$
\begin{aligned}
\hat{p}_{k} & =\left(M_{k}+A\right)^{-1} M_{k} p_{k} \\
& =(P+K+B-K)^{-1}(P-K) p_{k}=(P+B)^{-1}(P-K) p_{k}
\end{aligned}
$$

with $p_{k}=\left(w_{1, k}, \ldots, w_{n-1, k}, x_{k}\right)$ and project (M_{k} not symmetric)

- σ_{i} and τ are individual resolvent parameters for B_{i}
- $P=\epsilon \mathrm{Id}: M_{k}$ is 1 -strongly monotone w.r.t. P for all $\sigma_{i}, \tau>0$ \Rightarrow no step-size restrictions but projection needed!

Summary

- We have presented NOFOB framework
- Can use projection or momentum correction
- Many existing operator splitting methods are special cases
- Easy to design and prove convergence of new methods

Thank you

Based on:
[1] P. Giselsson, Nonlinear Forward-Backward Splitting with Projection Correction, SIAM Journal on Optimization, 2021.
[2] M. Morin, S. Banert. P. Giselsson, Nonlinear Forward-Backward Splitting with Momentum Correction. Submitted (available: arXiv:2112.00481), 2021.

[^0]: [1] A Modified Forward-Backward Splitting Method for Maximal Monotone Mappings, P. Tseng
 [2] Forward-Backward-Half Forward Algorithm for Solving Monotone Inclusions, L. M. Briceño-Arias and D. Davis
 [3] Modified Projection-type Methods for Monotone Variational Inequalities, M. V. Solodov, and P. Tseng
 [4] Asynchronous Block-Iterative Primal-Dual Decomposition Methods for Monotone Inclusions, P. L. Combettes and J. Eckstein
 [5] Asymmetric Forward-Backward-Adjoint Splitting for Solving Monotone Inclusions Involving Three Operators, P. Latafat and P. Patrinos
 [6] A Monotone + Skew Splitting Model for Composite Monotone Inclusions in Duality, L. M. Briceño-Arias and P. L. Combettes
 [7] A Simple Algorithm for a Class of Nonsmooth Convex-Concave Saddle-Point Problems, Y. Drori, S. Sabach, M. Teboulle
 [8] Convergence Analysis of Primal-Dual Algorithms for a Saddle-Point Problem: From Contraction Perspective, He and Yuan
 [9] Forward-Backward Splitting Method for Monotone Inclusions Without Cocoercivity, Y. Malitsky and M. K. Tam
 [10] Finding the Forward-Douglas-Rachford-Forward Method, E. K. Ryu and B. C. Vũ

[^1]: ${ }^{1}$ Also known as warped resolvent (Bùi, Combettes) or F-resolvent (Bauschke, Wang, Yao)

[^2]: ${ }^{1} \mathcal{P}(\mathcal{H})$ set of bounded linear self-adjoint strongly positive operators on \mathcal{H}

[^3]: ${ }^{1} C: \mathcal{H} \rightarrow \mathcal{H}$ is ℓ^{-1}-cocoercive w.r.t. P if $\forall x, y \in \mathcal{H}$ we have $\langle C x-C y, x-y\rangle \geq \ell^{-1}\|C x-C y\|^{2}{ }_{P}{ }^{2} 1$
 ${ }^{2} M: \mathcal{H} \rightarrow \mathcal{H}$ is 1 -strongly monotone w.r.t. P if $\forall x, y \in \mathcal{H}$ we have $\langle M x-M y, x-y\rangle \geq\|x-y\|_{P}^{2}$

[^4]: ${ }^{1}$ Recall: To save one M_{k} evaluation with projection correction $M_{k}=M=\alpha_{k} S$, which gives standard FB splitting.

