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Proximal point algorithm

• Consider the problem

find x ∈ H such that 0 ∈ Ax

where A : H → 2H is maximally monotone

• Proximal point algorithm (PPA) solves it by iterating resolvent

xk+1 = JγkAxk

where
• JγkA := (Id + γkA)

−1 is resolvent
• Uniformly upper bounded γk ≥ ϵ > 0 is a step-size parameter
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Conceptual algorithm

• In general as expensive to take one step of PPA as solving problem

• Clever choice of space H and/or A gives important special cases
• The Chambolle–Pock method
• Douglas–Rachford splitting
• ADMM (with dual step-size 1)
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Unified convergence analysis

• PPA provides unified convergence analysis for all special cases

• PPA convergence analysis for maximally monotone A
• JγkA has full domain (Minty) ⇒ algorithm defined for all inputs
• JγkA firmly nonexpansive ⇒ single-valuedness and convergence

which is often easier than directly proving special cases
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Adding cocoercive operator

• We can add 1
β -cocoercive operator C : H → H to get problem

find x ∈ H such that 0 ∈ Ax+ Cx

• Can be solved using forward-backward splitting

xk+1 = JγkA(Id− γkC)xk

which generalizes PPA

• Algorithm analysis similar (composition averaged if γk ∈ [ϵ, 2−ϵ
β ])

• Special cases:
• Proximal gradient method
• Condat–Vũ
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More operator splitting methods

• Many more methods exist that are not special cases of FB, e.g.,:
• Tseng’s forward-backward-forward splitting [1]
• Forward-backward-half-forward splitting [2]
• Solodov and Tseng [3]
• (Synchronous) projective splitting [4]
• Asymmetric forward-backward-adjoint splitting [5]
• Briceño-Arias and Combettes (error-free version) [6]
• Proximal alternating predictor corrector [7]
• He and Yuan [8]
• Malitsky–Tam [9]
• Forward-reflected-Douglas–Rachford [10]
• · · ·

• Is there a unifying framework for these and previous methods?
[1] A Modified Forward-Backward Splitting Method for Maximal Monotone Mappings, P. Tseng
[2] Forward-Backward-Half Forward Algorithm for Solving Monotone Inclusions, L. M. Briceño-Arias and D. Davis
[3] Modified Projection-type Methods for Monotone Variational Inequalities, M. V. Solodov, and P. Tseng
[4] Asynchronous Block-Iterative Primal-Dual Decomposition Methods for Monotone Inclusions, P. L. Combettes and J. Eckstein
[5] Asymmetric Forward-Backward-Adjoint Splitting for Solving Monotone Inclusions Involving Three Operators, P. Latafat and P.
Patrinos
[6] A Monotone + Skew Splitting Model for Composite Monotone Inclusions in Duality, L. M. Briceño-Arias and P. L. Combettes
[7] A Simple Algorithm for a Class of Nonsmooth Convex-Concave Saddle-Point Problems, Y. Drori, S. Sabach, M. Teboulle
[8] Convergence Analysis of Primal-Dual Algorithms for a Saddle-Point Problem: From Contraction Perspective, He and Yuan
[9] Forward-Backward Splitting Method for Monotone Inclusions Without Cocoercivity, Y. Malitsky and M. K. Tam
[10] Finding the Forward-Douglas-Rachford-Forward Method, E. K. Ryu and B. C. Vũ
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YES – Such a framework exists!

• Will present such an algorithmic framework based on
• Nonlinear FB map (special case: nonlinear resolvent1)
• Projection or momentum correction

• Algorithm solves monotone inclusion 0 ∈ Ax+ Cx where
• A : H → 2H is maximally monotone
• C : H → H is cocoercive

1 Also known as warped resolvent (Bùi, Combettes) or F-resolvent (Bauschke, Wang, Yao)
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Nonlinear forward-backward map

• Let M : H → H be maximally monotone

• Nonlinear forward-backward map is

TFB := (M +A)−1 ◦ (M − C)

and
• if C = 0 reduces to nonlinear resolvent (M +A)−1 ◦M
• M is called a kernel

• Special cases with different kernels:
• M = γ−1Id gives standard FB step:

(γ−1Id +A)−1 ◦ (γ−1Id− C) = (Id + γA)−1 ◦ (Id− γC)

• M = γ−1P with P ∈ P(H)1 gives preconditioned FB
• M = ∇g with g convex gives Bregman FB step

1P(H) set of bounded linear self-adjoint strongly positive operators on H
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Iterating FB map – Convergence?

• An algorithm candidate is to iterate the nonlinear FB-map

xk+1 = (M +A)−1 ◦ (M − C)xk

since fixed-point set equals solution set zer(A+ C)

• However, may not converge under following assumptions on M :
• Strongly monotone (if linear: strongly positive)
• Lipschitz continuous (if linear: bounded)

but if M also linear self-adjoint, it converges (if M large enough)
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Counter-example

• Problem: C = 0 and A skew-symmetric (and monotone):

A : R2 → R2 : (x, y) 7→ (−y, x)

which is a 90◦ rotation

• Kernel M = γ−1Id−A with γ > 0 is
• bounded linear strongly positive
• but not self-adjoint

and gives iteration

xk+1 = (M +A)−1Mxk = (γ−1Id−A+A)−1(γ−1Id−A)xk

= (Id− γA)xk =

[
1 γ
−γ 1

]
xk

which diverges for all γ ̸= 0 (rotation with gain
√

1 + γ2 > 1)

• Need correction to use nonlinear FB map in algorithm
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Nonlinear FB map creates separating hyperplane

• Assume
• A : H → 2H maximally monotone
• C : H → H is 1

ℓ
-cocoercive with ℓ ∈ [0, 4) w.r.t. P ∈ P(H)1

• M : H → H is 1-strongly monotone w.r.t. P ∈ P(H)2

• Define the affine function ψx for each x with x̂ = TFBx as:

ψx(z) := ⟨Mx−Mx̂, z − x̂⟩ − ℓ
2∥x− x̂∥2P

Then
• ψx(z) ≤ 0 for all z ∈ zer(A+ C)
• ψx(x) ≥ (1− ℓ

4
)∥x− TFBx∥2 for all x ∈ H

• ψx(x) > 0 for all points x ̸∈ zer(A+ C) (since ℓ ∈ [0, 4))

• Nonlinear FB map output x̂ helps define halfspace

H := {z : ψx(z) ≤ 0}

that (strictly) separates zer(A+ C) ⊆ H and x ̸∈ H
1C : H → H is ℓ−1-cocoercive w.r.t. P if ∀x, y ∈ H we have ⟨Cx − Cy, x − y⟩ ≥ ℓ−1∥Cx − Cy∥2

P−1
2M : H → H is 1-strongly monotone w.r.t. P if ∀x, y ∈ H we have ⟨Mx − My, x − y⟩ ≥ ∥x − y∥2P
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NOFOB with projection correction

• Nonlinear forward-backward splitting with projection correction

x̂k := (Mk +A)−1(Mk − C)xk

Hk := {z : ⟨Mkxk −Mkx̂k, z − x̂k⟩ ≤ ℓ
4∥xk − x̂k∥2P }

xk+1 := (1− θk)xk + θkΠ
S
Hk

(xk)

which converges weakly to a solution if
• Mk is Lipschitz continuous and 1-strongly monotone w.r.t. P
• P, S are bounded linear self-adjoint strongly positive operators
• Hk is a halfspace that contains zer(A+ C) but not xk (strictly)
• ΠS

Hk
is projection onto Hk in metric ∥ · ∥S

• θk ∈ [ϵ, 2− ϵ] is relaxation parameter

• Note: algorithm requires two forward evaluations of Mk:
• TFB evaluation (first step) requires Mkxk
• Hk creation requires Mkxk (already computed) and Mkx̂k
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NOFOB with explicit projection

• Stating projection explicitly gives equivalent more explicit method

x̂k := (Mk +A)−1(Mk − C)xk

µk :=
⟨Mkxk −Mkx̂k, xk − x̂k⟩ − ℓ

4∥xk − x̂k∥2P
∥Mkxk −Mkx̂k∥2S−1

xk+1 := xk − θkµkS
−1(Mkxk −Mkx̂k)

where µk ≥ ϵ (unless x ∈ zer(A+ C), in which case µk = 0
0 = 0)

• Algorithm converges with µk replaced by any µ̂k ∈ [ϵ, µk]
• Equivalent to algorithm with smaller relaxation parameter θk

µ̂k
µk• Gives shorter step-lengths
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Special case – Forward-backward splitting

• Suppose
• Mk = γ−1

k M with M ∈ P(H) and P =M
• projection metric S =M
• C is 1

β
-cocoercive w.r.t. M (and P )

then µk = γk(1− γkβ
4 )

• Let λk = θk(1− γkβ
4 ) to get relaxed preconditioned FB splitting

x̂k := (M + γkA)
−1(M − γkC)xk

xk+1 := xk − λk(xk − x̂k)

• Note that:
• second evaluation of M not needed (since S−1M = γ−1

k Id)
• projection correction only kicks in if needed
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Convergence and special cases

• Relaxed preconditioned FB splitting (with λk = θk(1− γkβ
4 ))

x̂k := (M + γkA)
−1(M − γkC)xk

xk+1 := xk − λk(xk − x̂k)

• Converges if γk ∈ [ϵ, 4−ϵ
β ] (extended range) and θk ∈ [ϵ, 2− ϵ]

• γk ≥ 2
β
possible ⇒ λk < 1 (under-relaxation)

• γk ∈ [ϵ, 2−ϵ
β

]: λk = 1 possible, but also λk > 1 (over-relaxation)

• Since FB is special case of NOFOB, it has special cases:
• Chambolle–Pock
• Vũ–Condat
• Douglas–Rachford, ADMM (with dual step-size 1)
• Proximal gradient method
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Other special cases

• These are special cases of NOFOB with projection correction
• Nonlinear resolvent step:

• Tseng’s forward-backward-forward splitting (M nonlinear)
• Solodov and Tseng (M nonlinear)
• (Synchronous) projective splitting (M not self-adjoint)
• Briceño-Arias/Combettes (error-free version) (M not self-adjoint)
• He and Yuan (M not self-adjoint)

• Nonlinear FB step:
• Forward-backward-half-forward splitting (M nonlinear)
• AFBA (M not self-adjoint)
• Proximal alternating predictor corrector (M not self-adjoint)

• Can add cocoercive term in methods based on resolvent
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Drawback of projection correction

• In general, two evaluations of Mk is needed in every iteration

• Exception, e.g., standard FB splitting that has S−1Mk = γ−1
k Id
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NOFOB with momentum correction

• Consider the same problem problem

find x ∈ H such that 0 ∈ Ax+ Cx

where
• A : H → 2H maximally monotone
• C : H → H is 1

ℓ
-cocoercive w.r.t. S ∈ P(H)

• Nonlinear forward-backward splitting with momentum correction

xk+1 = (Mk +A)−1(Mkxk − Cxk + γ−1
k uk)

uk+1 = (γkMk − S)xk+1 − (γkMk − S)xk

where S ∈ P(H) and Mk possibly nonlinear

• Momentum term is in the γkMk − S operator
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Mk evaluations

• Nonlinear forward-backward splitting with momentum correction

xk+1 = (Mk +A)−1(Mkxk − Cxk + γ−1
k uk)

uk+1 = (γkMk − S)xk+1 − (γkMk − S)xk

• Comparison to projection correction in terms of Mk evaluations
• Need to evaluate Mk−1xk and Mkxk ⇒ in general no savings
• If Mk = αkMk−1 (with Mk still nonlinear) ⇒ we save one1

• If Mk = α−1
k Id−D (with D nonlinear) ⇒ we save one D-eval.

1 Recall: To save one Mk evaluation with projection correction Mk = M = αkS, which gives standard FB splitting.
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Restrictions on Mk

• Nonlinear forward-backward splitting with momentum correction

xk+1 = (Mk +A)−1(Mkxk − Cxk + γ−1
k uk)

uk+1 = (γkMk − S)xk+1 − (γkMk − S)xk

• Letting Mk = γ−1
k S ∈ P(H) gives standard FB splitting (uk = 0)

• Mk can deviate from γ−1
k S, we assume

γkMk − S is Lk-Lipschitz continuous w.r.t. S

and we have weak convergence if all γk ≥ ϵ and

1− Lk−1 − Lk − γkℓ
2 ≥ ϵ > 0
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Convergence – Lyapunov analysis

• Let z ∈ zer(A+ C) and define

Vk = ∥xk + S−1uk − z∥2S + (1− Lk−1)Lk−1∥xk − xk−1∥2S

• Assume that Lk < 1 (Lipschitz constant of γkMk − S), then

Vk+1 ≤ Vk − (1− Lk−1 − Lk − γkℓ
2 )∥xk+1 − xk∥2S

• Convergence condition

1− Lk−1 − Lk − γkℓ
2 ≥ ϵ > 0

comes from having residual coefficient strictly positive
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Special cases

• These are special cases of NOFOB with momentum correction
• Nonlinear resolvent

• Malitsky–Tam (forward-reflected-backward) (M nonlinear)
• Forward-reflected-Douglas–Rachford (M nonlinear)

• Nonlinear forward–backward map
• Malitsky–Tam (“three-operator splitting”) (M nonlinear)

• Can add cocoercive term in methods based on resolvent
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Momentum instead of projection correction

• Methods with projection correction
• Tseng’s forward-backward-forward splitting
• Solodov and Tseng
• (Synchronous) projective splitting
• Briceno-Arias/Combettes (error-free version)
• He and Yuan
• Forward-backward-half-forward splitting
• Asymmetric forward-backward-adjoint splitting
• Proximal alternating predictor corrector

• Can derive methods based on momentum correction for the above
• Comes at the cost or more restrictive parameter requirements
• Gives Malitsky–Tam methods if done for FB(H)F
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Polyak Momentum

• Equivalent formulation with Polyak momentum with θ < 1

xk+1 = (Mk +A)−1(Mkxk − Cxk + γ−1
k uk + γ−1

k θS(xk − xk−1)),

uk+1 = (γkMk − S)xk+1 − (γkMk − S)xk,

• Denote by γ̂k and ûk original algorithm parameters, and let

γk = (1− θ)γ̂k uk = (1− θ)ûk − θS(xk − xk−1)

to get Polyak momentum method

• Translated requirements for convergence

1− θ − 2|θ| − Lk−1 − Lk − γk
ℓ
2 ≥ ε

• Can add Polyak momentum (interpretation) to all special cases

24



Polyak momentum in FB setting

• General requirements for Polyak momentum convergence

1− θ − 2|θ| − Lk−1 − Lk − γk
ℓ
2 ≥ ε

• Assume Mk = γ−1
k S (Lk = 0), C 1

β -cocoercive w.r.t. S (β = ℓ)

• This gives standard forward-backward setting, if γk = γ, we allow

θ ∈ (−2+γβ
2 , 2−γβ

6 )

which implies
• if γ = 1

β
: θ ∈ (− 1

2
, 1
6
)

• if C = 0 (β = 0): θ ∈ (−1, 1
3
)

note that we allow for negative momentum (more than positive)
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Summary

• Many methods are special cases of presented NOFOB framework

• Can select projection or momentum correction

• Can add cocoercive term to those that do not have

• Can avoid one Mk application by using momentum correction

• Can add Polyak momentum to many methods

• Easy to design and prove convergence of new methods
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Special Cases and

New Algorithms
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Special cases and new algorithms – Outline

• FB(H)F and Malitsky–Tam

• Solodov and Tseng

• Novel four-operator splitting method
• Special case: AFBA
• Two novel four-operator splitting primal-dual methods

• Four-operator splitting primal-dual method with different kernel

• Extension to multi-operator setting
• Synchronous projective splitting
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FBF and Malitsky–Tam

• Consider monotone inclusion problem of the form

0 ∈ Bx+Dx

where B +D is maximally monotone and D is δ-Lipschitz

• Forward-backward-forward splitting

x̂k := (Id + γkB)−1(xk − γkDxk)

xk+1 := x̂k − γk(Dx̂k −Dxk)

needs second application of D (at x̂k)

• Malitsky–Tam

xk+1 := (Id + γkB)−1(xk − γkDxk + uk)

uk+1 := γk(Dxk −Dxk+1)

avoids second application of D (or rather, it can be reused)
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Derivation from NOFOB

• Let A = B +D, C = 0, and Mk = γ−1
k Id−D, then

(Mk +A)−1Mkxk = (γ−1
k Id−D +B +D)−1(γ−1

k Id−D)

= (γ−1
k Id +B)−1(γ−1

k Id−D)

= (Id + γkB)−1(Id− γkD)

resolvent of B +D in Mk evaluated as forward-backward step

• Projection correction with
• Projection metric S = Id and step-size γk ∈ [ϵ, 1

δ
− ϵ]

• Conservative µ̂k = 1

γ−1
k

+δ
(since Mk is 1

γ−1
k

+δ
-cocoercive)

• Relaxation θk = 1 + δγk ∈ [1 + ε, 2− ε]

gives FBF (and convergence conditions agree)
• Momentum correction with S = Id gives Malitsky–Tam

• Lipschitz constant for γkMk − S = γkD is Lk = γkδ
• Convergence condition: Lk + Lk−1 ≤ 1− ϵ
• Satisfied if all γk ∈ [ϵ, 1−ϵ

2δ
] (which is condition in Malitsky–Tam)
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Extensions

• Extensions with cocoercive term exist
• Forward-backward-half-forward (projection correction)
• Three-operator-splitting in Malitsky–Tam (momentum correction)

• Polyak momentum extension also in Malitsky–Tam paper
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Solodov and Tseng

• Solves

0 ∈ Dx+NXx

where (in Theorem 3.1)
• D is maximally monotone and δ-Lipschitz continuous
• NX is normal cone operator to nonempty closed convex set X

• Let A = D+NX , C = 0, Mk = γ−1
k Id−D, projection correction

x̂k = (Id + γkNX)−1(xk − γkDxk) = ΠX(xk − γkDxk)

µk = γk
⟨xk − x̂k − γkDxk + γkDx̂k, xk − x̂k⟩

∥xk − x̂k − γkDxk + γkDx̂k∥2S−1

xk+1 = xk − θkµk

γk
S−1(xk − γkDxk − (x̂k − γkDx̂k))

• Algorithm uses two evaluations of D
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Solodov and Tseng

• The NOFOB algorithm:

x̂k = (Id + γkNX)−1(xk − γkDxk) = ΠX(xk − γkDxk)

µk = γk
⟨xk − x̂k − γkDxk + γkDx̂k, xk − x̂k⟩

∥xk − x̂k − γkDxk + γkDx̂k∥2S−1

xk+1 = xk − θkµk

γk
S−1(xk − γkDxk − (x̂k − γkDx̂k))

• Solodov and Tseng obtained by conservative µ̂k:

µ̂k := γk
(1− γkδ)∥xk − x̂k∥2

∥xk − x̂k − γkDxk + γkDx̂k∥2P−1

≤ µk

by Cauchy–Scharz and δ-Lipschitz continuity of D in numerator

• Extensions
• use µk instead of µ̂k

• add a cocoercive term
• use momentum correction instead to avoid one D evaluation

33



Solodov and Tseng

• The NOFOB algorithm:

x̂k = (Id + γkNX)−1(xk − γkDxk) = ΠX(xk − γkDxk)

µk = γk
⟨xk − x̂k − γkDxk + γkDx̂k, xk − x̂k⟩

∥xk − x̂k − γkDxk + γkDx̂k∥2S−1

xk+1 = xk − θkµk

γk
S−1(xk − γkDxk − (x̂k − γkDx̂k))

• Solodov and Tseng obtained by conservative µ̂k:

µ̂k := γk
(1− γkδ)∥xk − x̂k∥2

∥xk − x̂k − γkDxk + γkDx̂k∥2P−1

≤ µk

by Cauchy–Scharz and δ-Lipschitz continuity of D in numerator
• Extensions

• use µk instead of µ̂k

• add a cocoercive term
• use momentum correction instead to avoid one D evaluation

33



Novel four operator splitting methods

• Solves monotone inclusions

0 ∈ Bx+ Cx+Dx+Kx

where
• B +D maximally monotone and D is δ-Lipschitz continuous
• C is 1

ℓ
-cocoercive (w.r.t. P or S)

• K linear skew-adjoint

• Let A = B +D +K and Mk = Qk −D −K to get FB map

(Mk +A)−1(Mk − C) = (Qk +B)−1(Qk −D −K − C)

that is forward evaluation in D, K, and C, resolvent in B

• Use projection correction or momentum correction
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Asymmetric forward-backward-adjoint splitting

(AFBA)

• If D = 0, Qk = P and projection correction is used, we get AFBA

• Special cases, e.g.,:
• Proximal alternating predictor corrector
• Primal dual method of He and Yuan
• Primal dual method of Briceño-Arias and Combettes
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Primal-dual framework

• Problem

0 ∈ B1y + (V ∗ ◦B2 ◦ V )y + Ey + Fy

• B1 : H → 2H and B2 : K → 2K are maximally monotone
• E : H → H is monotone and δ-Lipschitz continuous
• F : H → H is β−1-cocoercive
• V : H → K is linear and bounded

• Four-operator splitting primal-dual formulation

0 ∈ Bx+ Cx+Dx+Kx

with x = (y, z) ∈ H ×K and

B =

[
B1 0
0 B−1

2

]
, D =

[
E 0
0 0

]
, K =

[
0 V ∗

−V 0

]
, C =

[
F 0
0 0

]
which satisfies four-operator splitting assumptions
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Primal-dual kernel

• We use the following kernel in NOFOB

Mk =

[
τ−1Id 0
−λkV σ−1Id

]
︸ ︷︷ ︸

Qk

−
[
E 0
0 0

]
︸ ︷︷ ︸

D

−
[

0 V ∗

−V 0

]
︸ ︷︷ ︸

K

• This gives nonlinear forward-backward step

xk+1 = (Mk +A)−1(Mk − C)xk

= (Qk +B)−1(Qk −D −K − C)xk

=

[
(Id + τB1)

−1(yk − τEyk − τV ∗zk − τFyk)
(Id + σB−1

2 )−1(zk + σV (λkyk+1 − (λk − 1)yk))

]
• If λk = 2 and E = 0, we get Condat–Vũ and Mk =M ∈ P(H)

• In general, Mk ̸∈ P(H) and we need correction
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A primal-dual method with projection correction

• Use projection correction with metric operator S

S =

[
τ−1Id 0

0 σ−1Id

]
comments

• S is diagonal for cheap evaluation of S−1D (in S−1Mk)
• if D = 0: S that includes V , V ∗ possible

• Set λk = λ ∈ R in Mk and use projection correction

ŷk = (Id + τB1)
−1(yk − τEyk − τV ∗zk − τFyk)

ẑk = (Id + σB−1
2 )−1(zk + σV (λyk+1 − (λ− 1)yk))

yk+1 = yk − θkµk(yk − ŷk − τV ∗(zk − ẑk)− τ(Eyk − Eŷk))

zk+1 = zk − θkµk(zk − ẑk + (1− λ)V (yk − ŷk))
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Comments

• The primal-dual algorithm

ŷk = (Id + τB1)
−1(yk − τEyk − τV ∗zk − τFyk)

ẑk = (Id + σB−1
2 )−1(zk + σV (λyk+1 − (λ− 1)yk))

yk+1 = yk − θkµk(yk − ŷk − τV ∗(zk − ẑk)− τ(Eyk − Eŷk))

zk+1 = zk − θkµk(zk − ẑk + (1− λ)V (yk − ŷk))

• Comments
• Evaluations

• Two for V , V ∗ (unless λ = 1) and E
• One for remaining operators

• If D = 0 and λk = 2, then Mk ∈ P(H)
• Choice of S gives S−1Mk ̸= αId for any α ∈ R
• Algorithm does not give Condat-Vũ (but different S does)

• Convergence with specific P (used to compute µk) if

1− τσλ2

4
∥V ∥2 − τδ − τβ

4
> 0
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Convergence proof

• Let (τ−1 − δ − σλ2

4 ∥V ∥2) > 0 and set

P =

[
τ−1Id− δId −λ

2
L∗

−λ
2
L σ−1Id

]
∈ P(H)

• The kernel Mk is 1-strongly monotone w.r.t. P since

Mk = P +

[
0 λ

2
L∗

−λ
2
L 0

]
+

[
δId− E 0

0 0

]
−K

which implies

⟨Mkx−Mkx
′, x− x′⟩ = ∥x− x′∥2P + ⟨δy − Ey − (δy′ − Ey′), y − y′⟩

≥ ∥x− x′∥2P

• C is (τ−1 − δ − σλ2

4 ∥V ∥2)/β-cocoercive w.r.t. P

∥Cx− Cx′∥P−1 ≤ (τ−1 − δ − σλ2

4
∥V ∥2)−1∥Fy − Fy′∥2

≤ (τ−1 − δ − σλ2

4
∥V ∥2)−1⟨Fy − Fy′, y − y′⟩

= β(τ−1 − δ − σλ2

4
∥V ∥2)−1⟨Cx− Cx′, x− x′⟩

i.e., β/(τ−1 − δ− σλ2

4 ∥V ∥2) ∈ [0, 4), upper bound gives condition
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A primal-dual method with momentum correction

• Momentum correction and algorithm design parameters

S =

[
Id −τV ∗

−τV σ−1τ Id

]
, Mk =

[
τ−1Id 0
−λkV σ−1Id

]
−D −K, γk = τ

• Gives a lower block-triangular update and algorithm

yk+1 = (Id + τB1)
−1(yk − τV ∗zk − τ(2Eyk − Eyk−1)− τFyk),

vk+1 = λk(yk+1 − yk) + (2− λk−1)(yk − yk−1),

zk+1 = (Id + σB−1
2 )−1(zk + σV (yk + vk+1)),

• Comments
• Each resolvent, forward step, and V and V ∗ evaluated once
• if F = 0, λk = 2, V = Id ⇒ forward-reflected-Douglas-Rachford
• if E = 0, λk = 2 ⇒ Condat–Vũ (by choice of S)
• If B2 = 0 (V = 0) we get Malitsky–Tam three-operator splitting
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Convergence

• Convergence condition

τσ∥V ∥2 + (|2− λk|+ |2− λk+1|)
√
τσ∥V ∥+ τ(2δ + 1

2β) < 1− ϵ

• Proof
• C is 1

ℓ
-cocoercive w.r.t. S with ℓ = β

1−τσ∥V ∥2
• γkMk − S is Lk-Lipschitz continuous w.r.t. S where

Lk = 1
1−τσ∥V ∥2 (|2− λk|

√
τσ∥V ∥+ τδ)

• Insert into general convergence condition

1− Lk−1 − Lk − τℓ
2

≥ ϵ > 0

to get result

• Reduces to Malitsky–Tam condition if V = 0
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A primal-dual method with resolvent in kernel

• Let Ta be translation by a and use

Mk =

[
τ−1Id− V ∗ ◦ (Id + σB−1

2 )−1 ◦ T−zk ◦ σV 0
0 σ−1Id

]
−D,

S =

[
Id 0
0 τσ−1Id

]
, γk = τ

• With momentum correction and after some algebra, we get

νk+1 = (Id + σB−1
2 )−1(zk + σV yk)

yk+1 = (Id + τB1)
−1(yk − τV ∗(zk + νk+1 − νk)− τ(2Eyk − Eyk−1)− τFyk)

zk+1 = (Id + σB−1
2 )−1(zk + σV yk+1)

• Comments
• B−1

2 resolvent evaluated twice, remaining operators once
• Not aware of other methods that require extra B−1

2 resolvent
• If B2 = 0 (V = 0) we get Malitsky–Tam three-operator splitting
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Convergence

• Algorithm converges if

2τσ∥V ∥2 + τ(2δ + β
2 ) < 1,

• Proof
• C is 1

ℓ
-cocoercive w.r.t. S with ℓ = β

• γkMk − S is Lk = (τδ + τσ∥V ∥2)-Lipschitz continuous w.r.t. S
• Insert into general convergence condition

1− Lk−1 − Lk − τℓ
2

≥ ϵ > 0

to get result

• Reduces to Malitsky–Tam condition if V = 0

44



Extension to multi-operator problems

• Consider monotone inclusion problems of the form

0 ∈
n−1∑
i=1

L∗
iBi(Lix) +Bnx

• Primal dual formulation (monotone+skew)

0 ∈


B−1

1 (w1)
...

B−1
n−1(wn−1)
Bn(x)


︸ ︷︷ ︸

B

+


−L1

...
−Ln−1

L∗
1 · · · L∗

n−1


︸ ︷︷ ︸

K


w1

...
wn−1

x



fits in four-operator splitting framework (with C = D = 0)

• Can be extended by Lipschitz and cocoercive operators in last row
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Projective splitting – How it usually looks

Algorithm Synchronous Projective Splitting Combettes, Eckstein 2018

1: Input: x0 ∈ H and wi,0 ∈ Gi for i = 1, . . . , n− 1
2: for k = 0, 1, . . . do
3: x̂k := Jτn,kBn

(xk − τn,k
∑n−1

i=1 L
∗
iwi,k)

4: ŷk := (τ−1
n,kxk −

∑n−1
i=1 L

∗
iwi,k)− τ−1

n,kx̂k
5: for i = 1, . . . , n− 1 do
6: v̂i,k := Jτi,kBi

(Lixk + τi,kwi,k)

7: ŵi,k := wi,k + τ−1
i,k Lixk − τ−1

i,k v̂i,k
8: end for
9: t∗k := ŷk +

∑n−1
i=1 L

∗
i ŵi,k

10: ti,k := v̂i,k − Lx̂k

11: µk :=
(
∑n−1

i=1 ⟨ti,k,wi,k⟩−⟨v̂i,k,ŵi,k⟩)+⟨t∗,xk⟩−⟨ŷk,x̂k⟩∑n−1
i=1 ∥ti,k∥2+∥t∗k∥2

12: for i = 1, . . . , n− 1 do
13: wi,k+1 = wi,k − θkµkti,k
14: end for
15: xk+1 := xk − θkµkt

∗
k

16: end for
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Projective splitting from NOFOB

• Let A = B +K, C = 0 and subtract skew linear K in Mk

Mk =


σ−1
1 Id

. . .

σ−1
n−1Id

τ Id


︸ ︷︷ ︸

P

−


−L1

...
−Ln−1

L∗
1 · · · L∗

n−1


︸ ︷︷ ︸

K

• Projective splitting: backward-step on A = B +K (C = 0)

p̂k = (Mk +A)−1Mkpk

= (P +K +B −K)−1(P −K)pk = (P +B)−1(P −K)pk

with pk = (w1,k, . . . , wn−1,k, xk) and project (Mk not symmetric)

• σi and τ are individual resolvent parameters for Bi

• P = ϵId: Mk is 1-strongly monotone w.r.t. P for all σi, τ > 0
⇒ no step-size restrictions but projection needed!
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Summary

• We have presented NOFOB framework

• Can use projection or momentum correction

• Many existing operator splitting methods are special cases

• Easy to design and prove convergence of new methods
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Thank you

Based on:
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Splitting with Momentum Correction. Submitted (available:
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