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Proximal point algorithm

® Consider the problem

find x € H such that 0 € Az

where A : H — 2™ is maximally monotone

® Proximal point algorithm (PPA) solves it by iterating resolvent

Tr1 = Jy ATk

where
® J,a:=(Id+~v,A)~ ! is resolvent
® Uniformly upper bounded 7, > € > 0 is a step-size parameter



Conceptual algorithm

® In general as expensive to take one step of PPA as solving problem
® Clever choice of space H and/or A gives important special cases

® The Chambolle—Pock method
® Douglas—Rachford splitting
®* ADMM (with dual step-size 1)



Unified convergence analysis

® PPA provides unified convergence analysis for all special cases
® PPA convergence analysis for maximally monotone A

® J,.a has full domain (Minty) = algorithm defined for all inputs
® J,, 4 firmly nonexpansive = single-valuedness and convergence

which is often easier than directly proving special cases



Adding cocoercive operator

We can add %—cocoercive operator C': H — H to get problem

find z € H such that 0 € Ax + Cx
Can be solved using forward-backward splitting
Th+1 = kaA(Id — ’ka)l’k

which generalizes PPA

2—e

Algorithm analysis similar (composition averaged if v € [e, 7

Special cases:

® Proximal gradient method
® Condat-Vii

)



More operator splitting methods

® Many more methods exist that are not special cases of FB, e.g.,:
® Tseng's forward-backward-forward splitting [1]

Forward-backward-half-forward splitting [2]

Solodov and Tseng [3]

(Synchronous) projective splitting [4]

Asymmetric forward-backward-adjoint splitting [5]

Bricefio-Arias and Combettes (error-free version) [6]

Proximal alternating predictor corrector [7]

He and Yuan [8]

Malitsky—Tam [9]

Forward-reflected-Douglas—Rachford [10]

® |s there a unifying framework for these and previous methods?

[1] A Modified Forward-Backward Splitting Method for Maximal Monotone Mappings, P. Tseng

[2] Forward-Backward-Half Forward Algorithm for Solving Monotone Inclusions, L. M. Bricefio-Arias and D. Davis

[3] Modified Projection-type Methods for Monotone Variational Inequalities, M. V. Solodov, and P. Tseng

[4] Asynchronous Block-Iterative Primal-Dual Decomposition Methods for Monotone Inclusions, P. L. Combettes and J. Eckstein
[5] Asymmetric Forward-Backward-Adjoint Splitting for Solving Monotone Inclusions Involving Three Operators, P. Latafat and P.
Patrinos

[6] A Monotone + Skew Splitting Model for Composite Monotone Inclusions in Duality, L. M. Bricefio-Arias and P. L. Combettes
[7] A Simple Algorithm for a Class of Nonsmooth Convex-Concave Saddle-Point Problems, Y. Drori, S. Sabach, M. Teboulle

[8] Convergence Analysis of Primal-Dual Algorithms for a Saddle-Point Problem: From Contraction Perspective, He and Yuan

[9] Forward-Backward Splitting Method for Monotone Inclusions Without Cocoercivity, Y. Malitsky and M. K. Tam

[10] Finding the Forward-Douglas-Rachford-Forward Method, E. K. Ryu and B. C. Vii



YES — Such a framework exists!

o Will present such an algorithmic framework based on

® Nonlinear FB map (special case: nonlinear resolvent")
® Projection or momentum correction

® Algorithm solves monotone inclusion 0 € Ax + Cx where

® A:H — 2" is maximally monotone
® C':H — H is cocoercive

1 Also known as warped resolvent (Biii, Combettes) or F-resolvent (Bauschke, Wang, Yao)



Nonlinear forward-backward map

® let M :H — H be maximally monotone
® Nonlinear forward-backward map is

TFB = (]\/I+A)_1 o (M — C)

and

® if C = 0 reduces to nonlinear resolvent (M + A)™' o M
® M is called a kernel



Nonlinear forward-backward map

® let M :H — H be maximally monotone
® Nonlinear forward-backward map is

Tep = (M-I-A)_l o (M — C)

and
® if C = 0 reduces to nonlinear resolvent (M + A)™' o M
® M is called a kernel

® Special cases with different kernels:
® M = ~'1d gives standard FB step:
(v Hd4+A) P o(y A - C) = (Id +~vA4) ' o (Id — ~O)

® M =~"'P with P € P(H)" gives preconditioned FB
® M = Vg with g convex gives Bregman FB step

1 P (H) set of bounded linear self-adjoint strongly positive operators on H



Iterating FB map — Convergence?

® An algorithm candidate is to iterate the nonlinear FB-map
Tpy1 = (M+A)71 o (M — C)J?k

since fixed-point set equals solution set zer(A + C)
® However, may not converge under following assumptions on M:

® Strongly monotone (if linear: strongly positive)
® Lipschitz continuous (if linear: bounded)

but if M also linear self-adjoint, it converges (if M large enough)



Counter-example

® Problem: C' =0 and A skew-symmetric (and monotone):
A:R? =5 R?: (z,y) = (—y,2)

which is a 90° rotation
® Kernel M =~ 'Id — A with v > 0 is
® bounded linear strongly positive
® but not self-adjoint

and gives iteration
1= (M+A) "Mz, = (v 'Td— A+ A) "Ly Hd — A)xy,

1
= (Id —yA)zy, = [_7 z] Th

which diverges for all v # 0 (rotation with gain /1 +~2 > 1)
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Counter-example

® Problem: C' =0 and A skew-symmetric (and monotone):
A:R? =5 R?: (z,y) = (—y,2)

which is a 90° rotation
® Kernel M =~ 'Id — A with v > 0 is
® bounded linear strongly positive
® but not self-adjoint

and gives iteration
1= (M+A) "Mz, = (v 'Td— A+ A) "Ly Hd — A)xy,
1
= (Id —yA)zp = [_7 Z] Ty

which diverges for all v # 0 (rotation with gain /1 +~2 > 1)
® Need correction to use nonlinear FB map in algorithm
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Nonlinear FB map creates separating hyperplane

® Assume

® A:H — 2" maximally monotone
® C:H — His $-cocoercive with £ € [0,4) w.rt. P € P(H)'
® M :H — H is 1-strongly monotone w.r.t. P € P(H)?

® Define the affine function ), for each x with & = Tggz as:
bu(2) = (Ma — M,z — &) — £l|e - all3

Then
® .(z) <O forall z €zer(A+C)
® Yu(x) > (1 — )|z — Trz|” for all 2 € H
® 3, (x) > 0 for all points z & zer(A + C) (since £ € [0,4))
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Nonlinear FB map creates separating hyperplane

® Assume

® A:H — 2" maximally monotone
® C:H — His $-cocoercive with £ € [0,4) w.rt. P € P(H)'
® M :H — H is 1-strongly monotone w.r.t. P € P(H)?

® Define the affine function ), for each x with & = Tggz as:

$o(2) = (Mx — Mi, z — &) — §||lz — 2|3

Then
® Y, (z) <0 forall z € zer(A+ C)
® Yu(x) > (1 — )|z — Trz|” for all 2 € H
® 3, (x) > 0 for all points z & zer(A + C) (since £ € [0,4))

® Nonlinear FB map output & helps define halfspace
H :={z:9,(z) <0}

that (strictly) separates zer(A+ C) C H and z ¢ H

1o 1 — His £~ Lcocoercive wrt. P if Vo, y € H we have (Czx — Cy, & — y) > £~ 1||Ca — Cy||%71
2M : H — H is 1-strongly monotone w.r.t. P if Va, y € H we have (Ma — My, z — y) > o — y[|%

11



NOFOB with projection correction

® Nonlinear forward-backward splitting with projection correction

By = (M + A) " (M), — C)ay,
Hy = {z : <Mk$k — My, 2z — i‘k> < ngk - jk”%’}
Tpr1 = (1 — Op)zr + akHIS;k (z)

which converges weakly to a solution if

® Mj is Lipschitz continuous and 1-strongly monotone w.r.t. P
® P S are bounded linear self-adjoint strongly positive operators

® Hj is a halfspace that contains zer(A + C) but not zy, (strictly)
. H%k is projection onto Hj, in metric || - ||s
[ ]

0k € [e,2 — €] is relaxation parameter
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NOFOB with projection correction

® Nonlinear forward-backward splitting with projection correction

By = (M + A) " (M), — C)ay,
Hy = {z : <Mk$k — My, 2z — i‘k> < ngk - jk”%’}
Tpr1 = (1 — Op)zr + akHIS;k (z)

which converges weakly to a solution if

® Mj is Lipschitz continuous and 1-strongly monotone w.r.t. P
® P S are bounded linear self-adjoint strongly positive operators

® Hj is a halfspace that contains zer(A + C) but not zy, (strictly)
. H%k is projection onto Hj, in metric || - ||s
[ ]

0k € [e,2 — €] is relaxation parameter
® Note: algorithm requires two forward evaluations of Mj:

® Twp evaluation (first step) requires Mz
® Hj creation requires Mz (already computed) and M@



NOFOB with explicit projection

® Stating projection explicitly gives equivalent more explicit method

Ty = (Z\l}C + A)_l(Mk — C)l‘k
(Myxy, — My@p, xp — ) — £\lan — 21|
| Myxy — Myig|%-.

Tpr1 = g — Opp S~ (Myay, — Mydy)

[ =

where i > € (unless z € zer(A + C), in which case = § = 0)
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NOFOB with explicit projection

® Stating projection explicitly gives equivalent more explicit method

Ty = (Z\l}C + A)_l(Mk — C)l‘k
(Myxy, — My@p, xp — ) — £\lan — 21|
| Myxy — Myig|%-.

Tpr1 = g — Opp S~ (Myay, — Mydy)

[k o=

where i > € (unless z € zer(A + C), in which case = § = 0)
® Algorithm converges with . replaced by any fiy € [e, u]

® Equivalent to algorithm with smaller relaxation parameter kaj—:
® Gives shorter step-lengths
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Special case — Forward-backward splitting

® Suppose
® My =~; "M with M € P(H) and P = M
® projection metric S = M
e Cis %—cocoercive w.r.t. M (and P)
then i = (1 — 28)

® let \p = 0i(1 — %) to get relaxed preconditioned FB splitting
g = (M 4y A)"HM = 3.C)y
Th+1 = Tk — )\k(l'k — i‘k)

® Note that:

® second evaluation of M not needed (since S™'M = ~; '1d)
® projection correction only kicks in if needed

14



Convergence and special cases

® Relaxed preconditioned FB splitting (with Ay, = 65 (1 — %))
B = (M + 9 A) (M = 7 C)ay,
Lht1 ‘= T — )\k((L'k — :%k)

e Converges if vy € e, 455] (extended range) and 0, € [e,2 — ¢

e > % possible = A\ < 1 (under-relaxation)
® v € [e, 22°]: A\x = 1 possible, but also A, > 1 (over-relaxation)

® Since FB is special case of NOFOB, it has special cases:
Chambolle-Pock

Vii—Condat

Douglas—Rachford, ADMM (with dual step-size 1)
Proximal gradient method

15



Other special cases

® These are special cases of NOFOB with projection correction
® Nonlinear resolvent step:
® Tseng's forward-backward-forward splitting (M nonlinear)
® Solodov and Tseng (M nonlinear)
® (Synchronous) projective splitting (M not self-adjoint)
® Bricefio-Arias/Combettes (error-free version) (M not self-adjoint)
® He and Yuan (M not self-adjoint)
® Nonlinear FB step:
® Forward-backward-half-forward splitting (M nonlinear)
® AFBA (M not self-adjoint)
® Proximal alternating predictor corrector (M not self-adjoint)

® Can add cocoercive term in methods based on resolvent

16



Drawback of projection correction

® |n general, two evaluations of M}, is needed in every iteration
® Exception, e.g., standard FB splitting that has S~'M;, = 'y,;lId

17



NOFOB with momentum correction

® Consider the same problem problem

find x € H such that 0 € Az + Cx

where

® A:H — 2" maximally monotone
® C:H — His }-cocoercive w.r.t. S € P(H)

® Nonlinear forward-backward splitting with momentum correction
Tyl = (Mk + A)il(Mk,Ik — Cuxp, + ’yk_luk)
up1 = (e My — S)zp+1 — (v My — S)xy,
where S € P(H) and M, possibly nonlinear

® Momentum term is in the ;M — S operator

18



M, evaluations

® Nonlinear forward-backward splitting with momentum correction

Tpr1 = (My + A)_l(ka;c — Cxyp + vgluk)
upr1 = (VeMy, — S)xpy1 — (VMg — S)g

® Comparison to projection correction in terms of M}, evaluations
® Need to evaluate My_1x, and Mgz = in general no savings
® If My, = a Mj—1 (with My still nonlinear) = we save one!
® If My = a; 'Td — D (with D nonlinear) = we save one D-eval.

L Recall: To save one M, evaluation with projection correction M}, = M = avy, S, which gives standard FB splitting.
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Restrictions on )/,

® Nonlinear forward-backward splitting with momentum correction

Tpy1 = (Mk + A)_l(Mkl'k — C‘fk + ’y]:l’u,k)
ug1 = (VMy, — S)wp1 — (e My, — )z

® Letting My =, 'S € P(H) gives standard FB splitting (uj, = 0)
® M. can deviate from fyk_lS, we assume

Mg — S is Lj-Lipschitz continuous w.r.t. S
and we have weak convergence if all v > € and

l—Lk_1—Lk—%’ZZ€>O

20



Convergence — Lyapunov analysis

® let z € zer(A + C) and define
Vi = [l + 87 ug — 2[1& + (1= L) L l|lzx — 21 %
® Assume that Ly < 1 (Lipschitz constant of v, M — S), then
Vi1 <V — (1= L1 — Ly, — 29 ||lwps1 — o3
® Convergence condition
1— Ly — Ly — 25 >e>0

comes from having residual coefficient strictly positive

21



Special cases

® These are special cases of NOFOB with momentum correction
® Nonlinear resolvent

® Malitsky—Tam (forward-reflected-backward) (M nonlinear)
® Forward-reflected-Douglas—Rachford (M nonlinear)

® Nonlinear forward—backward map
® Malitsky—Tam (“three-operator splitting”) (M nonlinear)

® Can add cocoercive term in methods based on resolvent

22



Momentum instead of projection correction

® Methods with projection correction

Tseng's forward-backward-forward splitting
Solodov and Tseng

(Synchronous) projective splitting
Briceno-Arias/Combettes (error-free version)
He and Yuan

Forward-backward-half-forward splitting
Asymmetric forward-backward-adjoint splitting
Proximal alternating predictor corrector

® Can derive methods based on momentum correction for the above

Comes at the cost or more restrictive parameter requirements
Gives Malitsky—Tam methods if done for FB(H)F

23



Polyak Momentum

Equivalent formulation with Polyak momentum with 6 < 1

Tht1 = (Mk + A)_I(kak — Cuxp + 'YIIIUIC + ’Y;;leS(fL'k - xkfl)%
U1 = (VM — S)xpy1 — (e My, — S)xk,

Denote by 4% and wy original algorithm parameters, and let
Y= (1 —0)% up = (1 —0)a, — 6S(xp — 1)

to get Polyak momentum method

Translated requirements for convergence
1—0—20| — Ly—1 — L, — w5 >¢

Can add Polyak momentum (interpretation) to all special cases

24



Polyak momentum in FB setting

® General requirements for Polyak momentum convergence
1—0—20| — Ly_1 — L, — % > ¢

® Assume My =7, 'S (Ly = 0), C §-cocoercive w.rt. S (8 =)

® This gives standard forward-backward setting, if vx = v, we allow

—24+78 278
0c (=% %)
which implies
d if’y:%: 0 € (—%,%)
*ifC=0(B=0)0¢c(-1,3)
note that we allow for negative momentum (more than positive)

25



Summary

Many methods are special cases of presented NOFOB framework
Can select projection or momentum correction

Can add cocoercive term to those that do not have

Can avoid one M}, application by using momentum correction
Can add Polyak momentum to many methods

Easy to design and prove convergence of new methods

26



Special Cases and
New Algorithms

27



Special cases and new algorithms — Outline

FB(H)F and Malitsky—Tam
Solodov and Tseng

Novel four-operator splitting method

® Special case: AFBA
® Two novel four-operator splitting primal-dual methods

Four-operator splitting primal-dual method with different kernel
Extension to multi-operator setting
® Synchronous projective splitting

28



FBF and Malitsky—Tam

® Consider monotone inclusion problem of the form
0 € Bx+ Dx

where B + D is maximally monotone and D is -Lipschitz

® Forward-backward-forward splitting

&k = (Id + % B) " (xr — WD)
Tpy1 = T — Y(DZp — Day,)

needs second application of D (at Zy)

29



FBF and Malitsky—Tam

® Consider monotone inclusion problem of the form
0 € Bx+ Dx

where B + D is maximally monotone and D is -Lipschitz

® Forward-backward-forward splitting

&k = (Id + % B) " (xr — WD)
Tpy1 = T — Y(DZp — Day,)

needs second application of D (at Zy)
® Malitsky—Tam

zhy1 = (d +wB) " (xr — WDk + )
U1 = 'yk(ka — D$k+1)

avoids second application of D (or rather, it can be reused)
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Derivation from NOFOB

® let A=B+ D, C =0, and My, =, 'Id — D, then

(Mg + A) " Myxy = (v '1d — D + B+ D)~} (y;'1d — D)
= (7 '1d+ B)"!(y,'1d - D)
= (Id +%B)~"(Id — D)

resolvent of B + D in M), evaluated as forward-backward step

30



Derivation from NOFOB

® let A=B+ D, C =0, and My, =, 'Id — D, then

(Mg + A) " Myxy = (v '1d — D + B+ D)~} (y;'1d — D)
= (7 '1d+ B)"!(y,'1d - D)
= (Id +%B)~"(Id — D)

resolvent of B + D in M), evaluated as forward-backward step

® Projection correction with
® Projection metric S = Id and step-size i € [¢, 1 — €]
° | - . 1 -
Conservative fi = T (since My, is =5 cocoercive)
® Relaxation 0, =1+ v, € [1 +¢,2 —¢]
gives FBF (and convergence conditions agree)
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Derivation from NOFOB

® let A=B+ D, C =0, and My, =, 'Id — D, then

(Mg + A) " Myxy = (v '1d — D + B+ D)~} (y;'1d — D)
= (7 '1d+ B)"!(7,'1d - D)
= (Id +%B)~"(Id — D)

resolvent of B + D in M), evaluated as forward-backward step
® Projection correction with
® Projection metric S = Id and step-size i € [¢, 1 — €]
. ive 1. — —+— (si g — L i
Conservative i T (since My, is =5 cocoercive)
® Relaxation 0, =1+ v, € [1 +¢,2 —¢]
gives FBF (and convergence conditions agree)
® Momentum correction with S = Id gives Malitsky—Tam
® Lipschitz constant for v My — S = v D is L = yd
® Convergence condition: Ly + L1 <1—¢
® Satisfied if all yx € [¢, 15¢] (which is condition in Malitsky—Tam)
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Extensions

® Extensions with cocoercive term exist

® Forward-backward-half-forward (projection correction)
® Three-operator-splitting in Malitsky—Tam (momentum correction)

® Polyak momentum extension also in Malitsky—Tam paper
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Solodov and Tseng

® Solves
0€ Dx+ Nxz

where (in Theorem 3.1)

® D is maximally monotone and J-Lipschitz continuous
® Nx is normal cone operator to nonempty closed convex set X

® let A=D+ Nx,C=0, M, = fyl;lld — D, projection correction

& = (Id + v Nx) " (zr — wDaxy) = Hx (z) — v Dxy)
(), — & — YDy + Vi DEg, o — T)
lzx — &x — Dy + YDk %,

Mk = Tk
Tl = T — %571(% — W Dxy — (Zx — i Dix))

® Algorithm uses two evaluations of D
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Solodov and Tseng

® The NOFOB algorithm:

& = (Id + % Nx) " (2x — wDay) = Hx (x), — veDwy)
(e — &1 — Dy + i DEg, o1 — T)
k— Tr — YeDxy + v DIy ||
[or — % — D + D

Hk =Tk
Tpyr = o — BLEST (@), — vy Dy — (& — e D))

® Solodov and Tseng obtained by conservative [i:

(1 — i) ||zx — 24
|z — & — WDy + e Dig |5,

ok i= Yk < g

by Cauchy-Scharz and §-Lipschitz continuity of D in numerator
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Solodov and Tseng

® The NOFOB algorithm:

& = (Id + % Nx) " (2x — wDay) = Hx (x), — veDwy)
(e — &1 — Dy + i DEg, o1 — T)
k— Tr — YeDxy + v DIy ||
[or — % — D + D

M = Vi

Thy1 = Tf — %5_1(331@ — yxDxp — (2 — Y D3x))

® Solodov and Tseng obtained by conservative [i:

(1 — )|z — x|
|2k — &k — YDy + Y DIx||5 -

i = Yk < pk
by Cauchy-Scharz and §-Lipschitz continuity of D in numerator
® Extensions

® use uy instead of fix
® add a cocoercive term
® use momentum correction instead to avoid one D evaluation
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Novel four operator splitting methods

® Solves monotone inclusions

0 Bx+Cx+ Dx+ Kx

where

® B+ D maximally monotone and D is §-Lipschitz continuous
® (C'is }-cocoercive (w.r.t. P or S)
® K linear skew-adjoint

¢ let A=B+ D+ K and My = Qi — D — K to get FB map
(My+A)" (M, —C) = (Qx+B) ' (Qr—D—-K—-0C)

that is forward evaluation in D, K, and C, resolvent in B

® Use projection correction or momentum correction
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Asymmetric forward-backward-adjoint splitting
(AFBA)

e If D=0, Qr = P and projection correction is used, we get AFBA
® Special cases, e.g.,:
® Proximal alternating predictor corrector

® Primal dual method of He and Yuan
® Primal dual method of Bricefio-Arias and Combettes
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Primal-dual framework

® Problem

0€ Biy+ (V*oByoV)y+ Ey+ Fy

Bi:H — 2" and By: K — 2K are maximally monotone
E: H — H is monotone and J-Lipschitz continuous
F:H — His f~-cocoercive

V:H — K is linear and bounded

® Four-operator splitting primal-dual formulation

0€e Bx+Cx+ Dx+ Kx

with z = (y,2) € H x K and

[Bi 0 _[E 0 [0 v [F o
e I B (R TR S Y B (]

which satisfies four-operator splitting assumptions
36



Primal-dual kernel

We use the following kernel in NOFOB

M_T*Id o] [E 0o [0 Vv
E=1-\V o td 0 0 -V 0
—_— —— —— —m——

Qr D K

This gives nonlinear forward-backward step

Tpr1 = (Mg + A)il(Mk — Q)
= (Qr+B) ' (Qr—D—K —C)ay,
(Id 4+ 7B1)" Yyr — TEyr, — TV* 21, — TFys)
(Id+oB5 ") (2k + oV (Akyrs1 — e — Dyi))

If \x =2 and E =0, we get Condat-Vii and M}, = M € P(H)
In general, My, & P(H) and we need correction
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A primal-dual method with projection correction

® Use projection correction with metric operator .S

7—11d 0
§= { 0 U_lld:|

comments

® S is diagonal for cheap evaluation of S™'D (in S™'Mj,)
® if D =0: S that includes V, V* possible

® Set A\, = A € R in M}, and use projection correction

g = (Id + TBl)fl(yk — 7By, — 7V*2 — TFyg)

2= (Id+ 0By ) (zk + oV (Ayksr — (A = Dy))
Yer1 = Yk — Oupir(yn — 9k — 7V (21 — 21) — 7(BEyx — Eir.))
Zip1 = 2k — O (2 — 26+ (1 = NV (ye — 9r))
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Comments

® The primal-dual algorithm

gk = (Id +7B1) Y(yp — TEyr — TV 21, — TFy.)

2= (Id+ 0By ") (zk + oV (Ayerr — (A — D))
Ykt = Uk — Oupie(yr — Ok — 7V (21 — 2x) — T(Eyx — EGr))
Zhp1 = 2k — O (2 — 26+ (1 = NV (ye — Or))

e Comments
® Evaluations

® Two for V, V* (unless A =1) and E
® One for remaining operators

® If D=0 and \; =2, then My € P(H)

® Choice of S gives S~ My, # ald for any a € R

® Algorithm does not give Condat-Vii (but different .S does)
® Convergence with specific P (used to compute py) if

12222 \VIP 75— 8 >0
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Convergence proof

o Let (r ' —6— 22| V|2 >0 and set
p_ [r7d—dld —3L
- -3L o 'Ild
® The kernel Mj, is 1-strongly monotone w.r.t. P since
0 gL*] {Md -E 0
A +
3L o 0 0

}G'P(H)
Mk:P+{ ]—K

which implies
(Myx — Myz',z — ') = ||z — &'|| + 6y — By — 6y’ — Ey),y —¢)
> |lz — ||
e Cis(r7!1-§- "T)‘ZHVHQ)/ﬁ—cocoercive w.rt. P
— 2 —
ICz = Ca'llp-1 < (77" =6 = 2| VIP) | Fy — Fy||?

S == VIR T Py~ Fyy — )
=B(r! = — A |VI*) T (Cx — O’z — o)

e, B/(t71 -6~ "T’\2||VH2) € [0,4), upper bound gives condition
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A primal-dual method with momentum correction

® Momentum correction and algorithm design parameters

1d —TV* 771d 0
§= [—TV O'lTId:| o My = {—)\kV alld] —D-K w=r

® Gives a lower block-triangular update and algorithm

Yrp1 = (Id +7B1) " H(yp — 7V*2 — T(2Ey — FByr_1) — TFys),
V1 = M (Uk1 — Yk) + (2 = Me—1) (U — Y1),
zip1 = (Id+ 0By ")z + oV (yk + ves1)),

® Comments

Each resolvent, forward step, and V' and V* evaluated once

if F =0, \x =2, V =1d = forward-reflected-Douglas-Rachford
if E =0, Ay =2 = Condat-Vii (by choice of S)

If B, =0 (V = 0) we get Malitsky—Tam three-operator splitting
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Convergence

® Convergence condition
Tol|[V|I2 + (12 = M| +12 = Mg )VTa | V]| + 7(26 + iB)<1l—e

® Proof

® (C'is j-cocoercive w.r.t. S with £ = %

® i My — S is Li-Lipschitz continuous w.r.t. S where
L = =2z (12— MelVra|[V]] + 75)
® Insert into general convergence condition
1—Li1—Ly—ZF >e>0

to get result

® Reduces to Malitsky—Tam condition if V' =0
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A primal-dual method with resolvent in kernel

® | et T, be translation by a and use

7 d - V*o(Id+oBy ") toT ,, ooV 0
0 o~ '1d

Id 0
S{O TO'_lld:|7 V=T

¢ With momentum correction and after some algebra, we get

Mk—[ - D,

Vi1 = (Id4+ 0By ") (ze + o V)
i1 = (Id+7B1) " (e — 7V (20 + w1 — vi) — T2y, — Ey—1) — TFyy)
21 = (Id+ 0By ) (zk + 0 Viyria)

® Comments

° B;l resolvent evaluated twice, remaining operators once
® Not aware of other methods that require extra By ' resolvent
® If B, =0 (V =0) we get Malitsky—Tam three-operator splitting
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Convergence

® Algorithm converges if
270 ||V||? + 7(26 + g) <1,

® Proof

® Cis $-cocoercive w.r.t. S with £ = f3
® M — Sis Ly = (16 + 70||V||?)-Lipschitz continuous w.r.t. S
® Insert into general convergence condition

l_Lk—l—Lk—%Z2€>0

to get result

® Reduces to Malitsky—Tam condition if V =0
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Extension to multi-operator problems

® Consider monotone inclusion problems of the form

n—1

OEZL* (L;x) + Bpa

® Primal dual formulation (monotone+skew)

Bfl(wl) —Ll w1
oe| - + : :
Bii (wn ) o Wn—1
By (z) Ly Ly o z
B K

fits in four-operator splitting framework (with C = D = 0)
® Can be extended by Lipschitz and cocoercive operators in last row

45



Projective splitting — How it usually looks

Algorithm Synchronous Projective Splitting combettes, Eckstein 2018

1: Input: zp € Hand w;p€ G, fori=1,...,n—1
2. for k=0,1,... do

N n—1
3 B = Jr B, (T — Tk Doy Liwik)
~ -1 n—1 —1 -
4 Yk = (Tn,k‘rk - Zi:l L:(wlyk) - Tn,kmk
5: fori=1,...,n—1do
6: Vig i= Jr, B, (LiTk + T pWi k)
N
7 wzk—wszerka ik Vi k
8 end for
N n—1 N
0: =0k + Y iy Liwig
10: tig = Uy — L&y
11: W 1= (5 (i kows, xcz (03, W?J;U) <t2* k) — (G, Ek)
_ S s k24l
12: fori=1,...,n—1do
13: Wi k1 = Wik — Oppirtik
14: end for
15: Thy1 = T — Op ity
16: end for
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Projective splitting from NOFOB

Let A= B+ K, C =0 and subtract skew linear K in M

o '1d —I
M= T e - L
n—1 n—1
r1d Ly - LY,
P K

Projective splitting: backward-step on A= B+ K (C = 0)

P = (Mg + A)~ " Mpy,
=(P+K+B-K)'(P-K)p,=(P+B)""(P—-K)p

with py = (w1 k, ..., Wn—1%, k) and project (M}, not symmetric)
o; and 7 are individual resolvent parameters for B;

P = eld: My, is 1-strongly monotone w.r.t. P for all ;,7 > 0
= no step-size restrictions but projection needed!
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Summary

We have presented NOFOB framework
Can use projection or momentum correction
Many existing operator splitting methods are special cases

Easy to design and prove convergence of new methods
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Thank you

Based on:

[1] P. Giselsson, Nonlinear Forward-Backward Splitting with Projection
Correction, SIAM Journal on Optimization, 2021.

[2] M. Morin, S. Banert. P. Giselsson, Nonlinear Forward-Backward
Splitting with Momentum Correction. Submitted (available:
arXiv:2112.00481), 2021.
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