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Problem setting

We consider the mathematical program

f(x) → min

G(x) ∈ K

x ∈ C

(MPGC)

for continuously di�erentiable data functions f : X→ R and G : X→ Y
where X and Y are Euclidean spaces, K ⊂ Y is convex and closed, while
C ⊂ X is closed and, potentially, of challenging geometric structure.

We call (MPGC) a mathematical program with geometric constraints. The
feasible set of (MPGC) will be denoted by F .
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Conic optimization

The set C is a closed, convex cone.

Some examples:

• semide�nite programming, i.e.,
X := Rn×nsym and
C := {X ∈ Rn×nsym |X � 0}: eigenvalue
optimization, matrix inequality
constraints (communication theory,
experimental design)

• second-order cone programming, i.e.,
X := Rn × R and
C := {(x, t) ∈ Rn × R | ‖x‖ ≤ t}:
reformulations of probabilistic or
robusti�ed constraints

A second-order cone in R2 × R.
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Disjunctive programs

The set C is the union of �nitely many poyhedral sets (so-called disjunctive).

Some examples:

• mathematical programs with complementarity constraints (MPCCs)

0 ≤ Gj(x) ⊥ Hj(x) ≥ 0 j = 1, . . . , q

• mathematical programs with vanishing constraints (MPVCs)

Hj(x) ≥ 0 Gj(x)Hj(x) ≤ 0 j = 1, . . . , q,

• mathematical programs with or-constraints (MPOCs)

Gj(x) ≤ 0 ∨ Hj(x) ≤ 0 j = 1, . . . , q.

Gj(x)

Hj(x)

0
Gj(x)

Hj(x)

0
Gj(x)

Hj(x)

0
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Cardinality-constrained programming

For X := Rn and a natural number κ ∈ {1, . . . , n− 1}, set
C := {x ∈ Rn | ‖x‖0 ≤ κ} where ‖·‖0 : Rn → R counts the non-zero entries
of a vector. Then (MPGC) amounts to a so-called cardinality-constrained

optimization problem.

• The search for sparse solutions of
optimization problems is of essential
importance in practical scenarios (data
compression, portfolio optimization,. . .).

• The sparsity set C can be represented as
the union of

(
n
κ

)
κ-dimensional subspaces

of Rn and, thus, is of challenging
combinatorial structure.

A sparsity set in R3.
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Rank-constrained optimization

For X := Rm×n and a natural number κ ∈ {1, . . . ,min(m,n)− 1}, set
C := {X ∈ Rm×n | rankX ≤ κ}. Then (MPGC) amounts to a so-called
rank-constrained optimization problem.

Important applications for low-rank optimization can be found in machine
learning, model order reduction, or matrix completion (�Net�ix-Problem�).

Reformulations of some problems from graph theory amount to
rank-constrained matrix optimization problems. Exemplary, MAXCUT can be
reformulated in Rn×nsym and then involves the constraint rankX ≤ 1.
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Fundamentals of variational analysis

For a set-valued mapping Γ: X ⇒ Y and x̄ ∈ X, we de�ne

lim sup
x→x̄

Γ(x) := {y ∈ Y | ∃{(xk, yk)}k∈N ⊂ gph Γ, xk → x̄, yk → y} ,

the upper (or outer) limit of Γ at x̄.

For a closed set A ⊂ X and x̄ ∈ A, we de�ne

NA(x̄) := lim sup
x→x̄

cone(x−ΠA(x)),

the limiting normal cone to A at x̄. Here, ΠA : X ⇒ X is the (possibly
set-valued) projection onto A. For x̃ /∈ A, we set NA(x̃) := ∅.
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Stationarity conditions for (MPGC)

A feasible point x̄ ∈ F of (MPGC) is called M-stationary, whenever

−∇f(x̄) ∈ G′(x̄)∗NK(G(x̄)) +NC(x̄)

holds. For NLPs, this corresponds to the standard KKT-conditions.

A local minimizer x̄ ∈ F of (MPGC) is an M-stationary point only in the
presence of suitable constraint quali�cations like GMFCQ:

−G′(x̄)∗λ ∈ NC(x̄), λ ∈ NK(G(x̄)) =⇒ λ = 0.

The latter corresponds to MFCQ for NLPs.

Is there a more general stationarity concept for (MPGC) which provides a
necessary optimality condition in the absence of CQs and corresponds to the
output of solution algorithms associated with (MPGC)? What do we need
then in order to come up with M-stationarity?
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Stationarity conditions for (MPGC)

We consider the following concept of approximate stationarity.

De�nition

A feasible point x̄ ∈ F of (MPGC) is called asymptotically stationary

whenever we �nd sequences {xk}k∈N, {εk}k∈N ⊂ X, {yk}k∈N ⊂ Y, and
{λk}k∈N ⊂ Y satisfying xk → x̄, εk → 0, yk → 0, and

∀k ∈ N : εk −∇f(xk)−G′(xk)∗λk ∈ NC(xk), λk ∈ NK(G(xk)− yk).

• Each M-stationary point is asymptotically stationary.

• If {λk}k∈N is bounded, taking the limit yields M-stationarity.

• If {λk}k∈N is not bounded, taking the limit yields Fritz�John-type
M-stationarity with leading multiplier 0.
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Stationarity conditions for (MPGC)

Theorem

Let x̄ ∈ F be a local minimizer of (MPGC). Then x̄ is asymptotically

stationary.

For the proof, we investigate the penalized problem

f(x) + k
2

(
dist(G(x)− y,K) + ‖y‖2

)
+ 1

2‖x− x̄‖
2 → min

x,y

x ∈ C ∩ Bδ(x̄),

y ∈ Bδ(0)

for each k ∈ N and su�ciently small δ > 0. The associated sequence of
global solutions can be used to construct the sequences appearing in the
de�nition of asymptotic stationarity.
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Asymptotic regularity

Let us de�ne a set-valued mappingM : X× Y ⇒ X by

∀x ∈ X ∀y ∈ Y : M(x, y) := G′(x)∗NK(G(x)− y) +NC(x).

For a feasible point x̄ ∈ F of (MPGC), we �nd

x̄ M-stationary ⇐⇒ −∇f(x̄) ∈M(x̄, 0),

x̄ asymptotically stationary ⇐⇒ −∇f(x̄) ∈ lim sup
x→x̄, y→0

M(x, y).

De�nition

Let x̄ ∈ X be feasible to (MPGC). Then x̄ is said to be asymptotically
regular whenever the subsequently stated condition holds:

lim sup
x→x̄, y→0

M(x, y) ⊂M(x̄, 0).
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Asymptotic regularity

Theorem

Let x̄ ∈ F be an asymptotically regular local minimizer of (MPGC). Then x̄
is M-stationary.

• Asymptotic regularity is much weaker than GMFCQ (i.e., metric
regularity of feasibility map) or problem-tailored versions of RCPLD (in
case K := Rm− × {0}p).
• Asymptotic regularity is independent of MSCQ (i.e., metric subregularity
of feasibility map), ACQ, and GCQ.

• Asymptotic regularity is inherent whenever G is a�ne, K is polyhedral,
and C is disjunctive.

Patrick Mehlitz Optimization under Geometric Constraints 11 / 24



Asymptotic regularity

Theorem

Let x̄ ∈ F be an asymptotically regular local minimizer of (MPGC). Then x̄
is M-stationary.

• Asymptotic regularity is much weaker than GMFCQ (i.e., metric
regularity of feasibility map) or problem-tailored versions of RCPLD (in
case K := Rm− × {0}p).
• Asymptotic regularity is independent of MSCQ (i.e., metric subregularity
of feasibility map), ACQ, and GCQ.

• Asymptotic regularity is inherent whenever G is a�ne, K is polyhedral,
and C is disjunctive.

Patrick Mehlitz Optimization under Geometric Constraints 11 / 24



Outline

1. Introduction

2. Asymptotic stationarity and regularity

3. A safeguarded augmented Lagrangian method

4. Numerical results

5. Related work

Patrick Mehlitz Optimization under Geometric Constraints 12 / 24



Statement of the algorithm

For some penalty parameter ρ > 0, let Lρ : X× Y→ R denote the (partial)
augmented Lagrangian function

∀x ∈ X ∀λ ∈ Y : Lρ(x, λ) := f(x) + ρ
2 dist2

(
G(x) + λ/ρ,K

)
.

By convexity of K, Lρ is a smooth function.

Furthermore, we exploit the (partial) feasibility/complementarity measure
Vρ : X× Y→ R given by

∀x ∈ X ∀λ ∈ Y : Vρ(x, λ) :=
∥∥G(x)−ΠK

(
G(x) + λ/ρ

)∥∥ .
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Statement of the algorithm

Algorithm 1 ALM for (MPGC)

1: procedure Safeguarded augmented Lagrangian method for (MPGC)
Input: Choose ρ0 > 0, γ > 1, η ∈ (0, 1), some nonempty, bounded set
B ⊂ Y, x0 ∈ X. Set k := 0.

2: (S1) STOP whenever xk satis�es a suitable termination criterion.
3: (S2) Choose uk ∈ B and solve min{Lρk(x, uk) |x ∈ C} up to εk+1-

M-stationarity, for small enough εk+1 ∈ X, i.e., �nd xk+1 such that

εk+1 ∈ ∇xLρk(xk+1, uk) +NC(xk+1).

4: (S3) Set λk+1 := ρk
(
G(xk+1) + uk/ρk −ΠK

(
G(xk+1) + uk/ρk

))
.

5: (S4) If k = 0 or Vρk(xk+1, uk) ≤ η Vρk−1
(xk, uk−1), then ρk+1 := ρk.

Else, set ρk+1 := γ ρk.
6: (S5) Set k := k + 1 and go to (S1).
7: end procedure
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Statement of the algorithm

Update of the multiplier (estimate):

• Replacing uk by λk everywhere recovers the classical ALM.

• Safeguarding via the bounded set B enhances global convergence
properties.

• In case where Y is equipped with a partial order relation, B is typically
chosen as a (very large) box.

• One typically uses the multiplier estimate uk ∈ ΠB(λk).

Algorithm 1 is, at its core, a penalty method, so one can, generally, not force
that accumulation points of the computed sequence are feasible to (MPGC).
We use (approximate) feasibility w.r.t. the constraints G(x) ∈ K as a
termination criterion.
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Convergence results

Theorem

Assume that the sequence {εk}k∈N satis�es εk → 0. Let x̄ ∈ X be an

accumulation point of the sequence {xk}k∈N generated by Algorithm 1.

Then the following assertions hold.

(i) The point x̄ is M-stationary for min{dist2(G(x),K) |x ∈ C}.
(ii) If x̄ is feasible to (MPGC), then it is asymptotically stationary.

(iii) If x̄ is an asymptotically regular feasible point of (MPGC), then it is

M-stationary.

For the solution of the ALM subproblems, we use a projected gradient
method equipped with a Barzilai�Borwein-type nonmonotone line search.

• Projections onto C are often easy to compute (but not unique).

• This algorithm indeed computes approximate M-stationary of the
subproblems.
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Portfolio optimization

We consider a class of portfolio optimization problems given by

min{1
2x
>Σx |µ>x ≥ ρ, e>x = 1, 0 ≤ x ≤ u, ‖x‖0 ≤ κ}

(covariance matrix Σ ∈ Rn×nsym , expected return µ ∈ Rn, minimum return ρ).
A test collection of problem instances based on random data has been set up
by Frangioni/Gentile. We tackled all 30 test instances of dimension 200 with
the three di�erent values κ ∈ {5, 10, 20} for each problem.

For a numerical comparison, we compared Algorithm 1 (initialized at x := 0)
with the performance of CPLEX and a boosted version of Algorithm 1 which
�nds a reasonable starting points via simple quadratic programming and
exploits iterative reduction of κ, afterwards. For the implementation of
Algorithm 1, we exploited projections onto

C := {x ∈ [0, u] | ‖x‖0 ≤ κ}.
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Portfolio optimization
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MAXCUT

We �x an undirected, complete, weighted graph G = (V,E) with vertex set
V := {1, . . . , n} and (symmetric) weight matrix W ∈ Rn×n.

Setting L := diag(We)−W , MAXCUT is equivalent to

max{trace(LX) | diagX = e, X � 0, rankX ≤ 1}

in X := Rn×nsym . For the implementation of Algorithm 1, we used projections
onto

C := {X ∈ Rn×nsym |X � 0, rankX ≤ 1}.

We applied Algorithm 1 to the collections rudy (130 problems,
60 ≤ n ≤ 100) and ising (48 problems, 100 ≤ n ≤ 400) by Angelika
Wiegele.
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MAXCUT
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Direct extensions of asymptotic concepts

Bilevel optimization:

• algorithmic applications based on value function reformulation

• weak constraint quali�cations

Optimization in in�nite-dimensional Banach spaces:

• asymptotic stationarity under mild assumptions when C is convex as well

• constraint quali�cations weaker than Robinson's CQ

• applies to safeguarded ALMs in Hilbert spaces

Nonsmooth optimization/variational calculus:

• generalization to nonsmooth (Lipschitzian) objective functions and
generalized equation constraints possible

• asymptotic regularity serves as a quali�cation condition for the limiting
variational calculus which is independent of metric subregularity, yields
intersection rule for limiting normals and a chain rule for the coderivative
calculus
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Directional asymptotic concepts

Observations:

• local minimizers are either M-stationary or there is a critical direction u
and an unbounded sequence of multipliers such that an asymptotic
stationarity-type condition holds w.r.t. u and these multipliers

• asymptotic regularity is only necessary in critical directions

Consequences:

• allows for the formulation of even weaker constraint quali�cations and
re�ned su�cient conditions in terms of problem data:

∗ directional metric regularity
∗ directional quasi-/pseudo-normality
∗ directional polyhedrality
∗ horizon coderivative criteria (handle unbounded multipliers), calculus

challenging, results under metric pseudo (sub-)regularity of order 2

• quali�cation condition for directional limiting variational calculus
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Asymptotic theory beyond Lipschitzness

Asymptotic stationarity conditions in terms of Fréchet normals for problems
of type

min{ϕ(x) | 0 ∈ Φ(x)}

where ϕ : X → R is lower semicontinuous and Φ: X ⇒ Y is a closed-graph
set-valued map between Asplund spaces; we need some additional lower
semicontinuity w.r.t. the data

Applications:

• generalization of extremal principle (generalized set separation)

• quali�cation conditions for problems with non-Lipschitz objective
functions (sparse portfolio selection, low rank matrix completion,
edge-preserving image restoration)

• convergence analysis for multiplier-penalty-method for such problems

• optimality conditions for optimal control problems with
sparsity-promoting term u 7→

∫
Ω |u(ω)|p dω for p ∈ (0, 1) on L2(Ω)
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Thank you for your attention!
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