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We consider the mathematical program
f(z) — min
G(z) e K (MPGC)
x e’

for continuously differentiable data functions f: X - Rand G: X — Y
where X and Y are Euclidean spaces, K C Y is convex and closed, while
C C X is closed and, potentially, of challenging geometric structure.
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We consider the mathematical program
f(z) — min
G(z) e K (MPGC)
x e’

for continuously differentiable data functions f: X - Rand G: X — Y
where X and Y are Euclidean spaces, K C Y is convex and closed, while
C C X is closed and, potentially, of challenging geometric structure.

We call (MPGC) a mathematical program with geometric constraints. The
feasible set of (MPGC) will be denoted by F.
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The set C is a closed, convex cone.
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The set C is a closed, convex cone.

Some examples:

e semidefinite programming, i.e.,

X :=Rg and
C:={X e Ry [ X = 0}: eigenvalue

optimization, matrix inequality
constraints (communication theory,
experimental design)

e second-order cone programming, i.e.,
X:=R" x R and
C:={(z,t) e R" x R|||z|| < t}:
reformulations of probabilistic or
robustified constraints

A second-order cone in R2 x R.

Patrick Mehlitz Optimization under Geometric Constraints 2/ 24



. . - Brandenburgische
D |SJ unctive progra ms btu Technische Universitat

Cottbus - Senftenberg

The set C' is the union of finitely many poyhedral sets (so-called disjunctive).

Patrick Mehlitz Optimization under Geometric Constraints 3/24



. . - Brandenburgische
D |SJ unctive progra ms btu Technische Universitat

Cottbus - Senftenberg

The set C' is the union of finitely many poyhedral sets (so-called disjunctive).
Some examples:
e mathematical programs with complementarity constraints (MPCCs)
0<Gj(z) L Hi(x) >0 j=1,...,q
e mathematical programs with vanishing constraints (MPVCs)
Hi(@) 20 Gy@)H(@)<0 j=1,...q
e mathematical programs with or-constraints (MPOCs)

Gi@) <0 Vv Hi@)<0 j=1...q

Hi(z) H, () H,(x)

Gj(x) G(x)
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For X:=R™ and a natural number k € {1,...,n — 1}, set

C:={x € R"||z|]lo < k} where ||-][o: R™ — R counts the non-zero entries
of a vector. Then (MPGC) amounts to a so-called cardinality-constrained
optimization problem.
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For X:=R™ and a natural number k € {1,...,n — 1}, set

C:={x € R"||z|]lo < k} where ||-][o: R™ — R counts the non-zero entries
of a vector. Then (MPGC) amounts to a so-called cardinality-constrained
optimization problem.

e The search for sparse solutions of
optimization problems is of essential
importance in practical scenarios (data
compression, portfolio optimization,. . .).

e The sparsity set C' can be represented as
the union of (") k-dimensional subspaces
of R™ and, thus, is of challenging
combinatorial structure.

A sparsity set in R3.
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For X := R™*™ and a natural number x € {1,... ,min(m,n) — 1}, set
C:={X e R™*"| rank X < k}. Then (MPGC) amounts to a so-called
rank-constrained optimization problem.
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For X := R™*™ and a natural number x € {1,... ,min(m,n) — 1}, set
C:={X e R™*"| rank X < k}. Then (MPGC) amounts to a so-called

rank-constrained optimization problem.

Important applications for low-rank optimization can be found in machine
learning, model order reduction, or matrix completion (“Netflix-Problem™).
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For X := R™*™ and a natural number x € {1,... ,min(m,n) — 1}, set
C:={X e R™*"| rank X < k}. Then (MPGC) amounts to a so-called
rank-constrained optimization problem.

Important applications for low-rank optimization can be found in machine
learning, model order reduction, or matrix completion (“Netflix-Problem™).

Reformulations of some problems from graph theory amount to
rank-constrained matrix optimization problems. Exemplary, MAXCUT can be

reformulated in RE " and then involves the constraint rank X < 1.
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For a set-valued mapping I': X = Y and = € X, we define

limsup'(z) := {y € Y| 3{(zx, yr) }ren C gph ', 21 = T, Y — ¥},

AB=78

the upper (or outer) limit of I at Z.
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For a set-valued mapping I': X = Y and = € X, we define

limsup'(z) := {y € Y| 3{(zx, yr) }ren C gph ', 21 = T, Y — ¥},

AB=78

the upper (or outer) limit of I at Z.
For a closed set A C X and Z € A, we define

Na(z) := limsup cone(z — I 4(x)),

the limiting normal cone to A at z. Here, I14: X = X is the (possibly
set-valued) projection onto A. For & ¢ A, we set Ny (Z) := @.
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A feasible point 7 € F of (MPGC) is called M-stationary, whenever
—Vf(z) € G'(z)"Nk (G(2)) + Ne(z)

holds. For NLPs, this corresponds to the standard KKT-conditions.
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A feasible point 7 € F of (MPGC) is called M-stationary, whenever
—Vf(z) € G'(z)"Nk (G(2)) + Ne(z)

holds. For NLPs, this corresponds to the standard KKT-conditions.

A local minimizer z € F of (MPGC) is an M-stationary point only in the
presence of suitable constraint qualifications like GMFCQ:

—G(3)*N € Np(T), A € Ne(G(T)) = A=0.

The latter corresponds to MFCQ for NLPs.
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A feasible point 7 € F of (MPGC) is called M-stationary, whenever
—Vf(z) € G'(z)"Nk (G(2)) + Ne(z)

holds. For NLPs, this corresponds to the standard KKT-conditions.

A local minimizer z € F of (MPGC) is an M-stationary point only in the
presence of suitable constraint qualifications like GMFCQ:

~G'(@)*N e Ng(Z), A\ e Nk(G(Z)) = X=0.
The latter corresponds to MFCQ for NLPs.

Is there a more general stationarity concept for (MPGC) which provides a
necessary optimality condition in the absence of CQs and corresponds to the
output of solution algorithms associated with (MPGC)? What do we need
then in order to come up with M-stationarity?
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We consider the following concept of approximate stationarity.
Definition
A feasible point z € F of (MPGC) is called asymptotically stationary

whenever we find sequences {zy }ren, {ex treny C X, {yrtreny C Y, and
{ Ak }ken C Y satisfying z, — T, e — 0, yx — 0, and

Vk eN: ey — Vf(zr) — G'(zp)* M € No(zr), M € Ni(G(zk) — k).
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We consider the following concept of approximate stationarity.
Definition
A feasible point z € F of (MPGC) is called asymptotically stationary

whenever we find sequences {zy }ren, {ex treny C X, {yrtreny C Y, and
{ Ak tken C Y satisfying z, — Z, e, — 0, yr — 0, and

Vk eN: ey — Vf(zr) — G'(zp)* M € No(zr), M € Ni(G(zk) — k).

® Each M-stationary point is asymptotically stationary.
o If {\;}ren is bounded, taking the limit yields M-stationarity.

o If {\;}ren is not bounded, taking the limit yields Fritz—John-type
M-stationarity with leading multiplier 0.
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Theorem

Let & € F be a local minimizer of (MPGC). Then & is asymptotically
Stationary.
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Theorem
Let & € F be a local minimizer of (MPGC). Then & is asymptotically
Stationary.

For the proof, we investigate the penalized problem

fla) + 5 (dist(G(z) — y, K) + lyl*) + 3llz — z[* — min

T € CO]B(;({E),
y € B;(0)

for each k € N and sufficiently small § > 0. The associated sequence of
global solutions can be used to construct the sequences appearing in the
definition of asymptotic stationarity.
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Let us define a set-valued mapping M: X x Y = X by
VeeXVyeVY: M,y =G (x)Nk(G(z) —y) + No().
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Let us define a set-valued mapping M: X x Y = X by
VeeXVyeVY: M,y =G (x)Nk(G(z) —y) + No().

For a feasible point & € F of (MPGC), we find

T M-stationary — —Vf(z)e M(z,0),
T asymptotically stationary <= — Vf(Z) € limsup M(z,y).
z—z,y—0
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Let us define a set-valued mapping M: X x Y = X by
VeeXVyeVY: M,y =G (x)Nk(G(z) —y) + No().

For a feasible point & € F of (MPGC), we find

T M-stationary — —Vf(z)e M(z,0),
T asymptotically stationary <= — Vf(Z) € limsup M(z,y).
z—Z,y—0
Definition

Let Z € X be feasible to (MPGC). Then Z is said to be asymptotically
regular whenever the subsequently stated condition holds:

limsup M(z,y) C M(z,0).

z—Z,y—0
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Theorem

Let & € F be an asymptotically regular local minimizer of (MPGC). Then z
is M-stationary.
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Theorem

Let & € F be an asymptotically regular local minimizer of (MPGC). Then z
is M-stationary.

e Asymptotic regularity is much weaker than GMFCQ (i.e., metric
regularity of feasibility map) or problem-tailored versions of RCPLD (in
case K :=R™ x {0}P).

® Asymptotic regularity is independent of MSCQ (i.e., metric subregularity
of feasibility map), ACQ, and GCQ.

e Asymptotic regularity is inherent whenever G is affine, K is polyhedral,
and C' is disjunctive.
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For some penalty parameter p > 0, let £,: X x Y — R denote the (partial)
augmented Lagrangian function

Ve e XVA€Y:  Ly(z,)) == f(z) + & dist?(G(x) + \/p, K).
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For some penalty parameter p > 0, let £,: X x Y — R denote the (partial)
augmented Lagrangian function

Ve e XVA€Y:  Ly(z,)) == f(z) + & dist?(G(x) + \/p, K).

By convexity of K, £, is a smooth function.

Furthermore, we exploit the (partial) feasibility/complementarity measure
V,: X x Y — R given by

Ve € XVAEY: V,(z,A) = ||G(z) - g (G(z) + N p)|.
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Algorithm 1 ALM for (MPGC)

1. procedure Safeguarded augmented Lagrangian method for (MPGC)
Input: Choose pg > 0, v > 1, n € (0,1), some nonempty, bounded set
BCY, zgeX. Set k:=0.

(S1) STOP whenever z;, satisfies a suitable termination criterion.
(S2) Choose uy, € B and solve min{L,, (z,u)|x € C} up to ej41-
M-stationarity, for small enough ¢x.1 € X i.e., find x5 1 such that

ekt1 € VLl (Tps1,ug) + No(Tpgr).

4 (S3) Set M\pp1 == pr (G(wrg1) + ur/pk — Ui (G(wpg1) + ur/pr)) -
5: (S8) fkE=00rV, (zry1,ur) <nVp, (@, up—1), then ppy1 == py.

Else, set px11 := v pi.-
(S5) Set k:=k+ 1 and go to (S1).
7: end procedure

Patrick Mehlitz Optimization under Geometric Constraints 13 /24
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Update of the multiplier (estimate):
e Replacing uy by A\i everywhere recovers the classical ALM.

e Safeguarding via the bounded set B enhances global convergence
properties.

e In case where Y is equipped with a partial order relation, B is typically
chosen as a (very large) box.

e One typically uses the multiplier estimate uy € IIg(\g).
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Update of the multiplier (estimate):
e Replacing uy by A\i everywhere recovers the classical ALM.

e Safeguarding via the bounded set B enhances global convergence
properties.

e In case where Y is equipped with a partial order relation, B is typically
chosen as a (very large) box.

e One typically uses the multiplier estimate uy € IIg(\g).

Algorithm 1 is, at its core, a penalty method, so one can, generally, not force
that accumulation points of the computed sequence are feasible to (MPGC).
We use (approximate) feasibility w.r.t. the constraints G(z) € K as a
termination criterion.
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Theorem

Assume that the sequence {ey }ren satisfies e, — 0. Let & € X be an
accumulation point of the sequence {xy }rcn generated by Algorithm 1.
Then the following assertions hold.

(i) The point Z is M-stationary for min{dist*(G(z), K) |z € C}.
(i) If z is feasible to (MPGC), then it is asymptotically stationary.

(i) If T is an asymptotically regular feasible point of (MPGC), then it is
M-stationary.
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Theorem

Assume that the sequence {ey }ren satisfies e, — 0. Let & € X be an
accumulation point of the sequence {xy }rcn generated by Algorithm 1.
Then the following assertions hold.

(i) The point Z is M-stationary for min{dist*(G(z), K) |z € C}.
(i) If z is feasible to (MPGC), then it is asymptotically stationary.

(i) If T is an asymptotically regular feasible point of (MPGC), then it is
M-stationary.

For the solution of the ALM subproblems, we use a projected gradient
method equipped with a Barzilai-Borwein-type nonmonotone line search.

® Projections onto C are often easy to compute (but not unique).

® This algorithm indeed computes approximate M-stationary of the
subproblems.
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We consider a class of portfolio optimization problems given by
min{%xTEx lp'z>pee=10<z<u,|z|o <k}

(covariance matrix % € RE (", expected return € R", minimum return p).
A test collection of problem instances based on random data has been set up
by Frangioni/Gentile. We tackled all 30 test instances of dimension 200 with
the three different values x € {5, 10,20} for each problem.
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We consider a class of portfolio optimization problems given by
min{%xTE:p lpte>p ele=1,0<z<u, |z <~r}

(covariance matrix % € RE (", expected return € R", minimum return p).
A test collection of problem instances based on random data has been set up
by Frangioni/Gentile. We tackled all 30 test instances of dimension 200 with

the three different values x € {5, 10,20} for each problem.

For a numerical comparison, we compared Algorithm 1 (initialized at x := 0)
with the performance of CPLEX and a boosted version of Algorithm 1 which
finds a reasonable starting points via simple quadratic programming and
exploits iterative reduction of k, afterwards. For the implementation of
Algorithm 1, we exploited projections onto

C = { € [0,u]lle]o < r}.

Patrick Mehlitz Optimization under Geometric Constraints 16 / 24



. . - . Brandenburgische
Portfolio optimization b.tu Technische Universitat

Cottbus - Senftenberg

o) !
=]
= i
g 60 - : s
=] 1 L | E
5)
.S
R
=
2 40 +
)
4
N
=
(&}
2
S)
N Ho””%‘"\‘x‘
(, Q < Q>
‘0”‘9”‘0’ ‘0’3%% /w%<< GRS AN
SN G SRS Q,@Q@ ‘”i‘”“ GOSN
R s
0@@0@@@0@\$m©00§&\:&@\%@@ QvavQ&Q@vQ@Q@Q@QvQW

Optimal function values obtained by Algorithm 1 (red), boosted Algorithm 1
(yellow), and CPLEX (blue) with cardinality ~ := 20.
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Optimal function values obtained by Algorithm 1 (red), boosted Algorithm 1
(yellow), and CPLEX (blue) with cardinality « := 5.
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We fix an undirected, complete, weighted graph G = (V, E) with vertex set
V:={1,...,n} and (symmetric) weight matrix W € R"*".
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We fix an undirected, complete, weighted graph G = (V, E) with vertex set
V:={1,...,n} and (symmetric) weight matrix W € R"*".
Setting L := diag(We) — W, MAXCUT is equivalent to

max{trace(LX) | diag X =e, X = 0, rank X <1}

in X := Rg". For the implementation of Algorithm 1, we used projections
onto

C:={X e Ry [ X = 0, rank X < 1}.
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We fix an undirected, complete, weighted graph G = (V, E) with vertex set
V:={1,...,n} and (symmetric) weight matrix W € R"*".

Setting L := diag(We) — W, MAXCUT is equivalent to
max{trace(LX) | diag X =e, X = 0, rank X <1}

in X := Rg". For the implementation of Algorithm 1, we used projections
onto

C:={X e Ry [ X = 0, rank X < 1}.
We applied Algorithm 1 to the collections rudy (130 problems,
60 < n < 100) and ising (48 problems, 100 < n < 400) by Angelika
Wiegele.
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Percentage of optimal function value

Results for the rudy collection.
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Results for the ising collection.
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Bilevel optimization:
e algorithmic applications based on value function reformulation
e weak constraint qualifications
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Bilevel optimization:
e algorithmic applications based on value function reformulation
e weak constraint qualifications

Optimization in infinite-dimensional Banach spaces:
e asymptotic stationarity under mild assumptions when C'is convex as well
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Bilevel optimization:
e algorithmic applications based on value function reformulation
e weak constraint qualifications

Optimization in infinite-dimensional Banach spaces:
e asymptotic stationarity under mild assumptions when C'is convex as well
e constraint qualifications weaker than Robinson’'s CQ
e applies to safeguarded ALMs in Hilbert spaces

Nonsmooth optimization/variational calculus:
e generalization to nonsmooth (Lipschitzian) objective functions and
generalized equation constraints possible
e asymptotic regularity serves as a qualification condition for the limiting
variational calculus which is independent of metric subregularity, yields
intersection rule for limiting normals and a chain rule for the coderivative
calculus
Patrick Mehlitz Optimization under Geometric Constraints 22 /24
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Observations:
e local minimizers are either M-stationary or there is a critical direction u
and an unbounded sequence of multipliers such that an asymptotic
stationarity-type condition holds w.r.t. u and these multipliers

e asymptotic regularity is only necessary in critical directions
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Observations:
e local minimizers are either M-stationary or there is a critical direction u
and an unbounded sequence of multipliers such that an asymptotic
stationarity-type condition holds w.r.t. u and these multipliers

e asymptotic regularity is only necessary in critical directions

Consequences:
e allows for the formulation of even weaker constraint qualifications and
refined sufficient conditions in terms of problem data:
x directional metric regularity
* directional quasi-/pseudo-normality
x directional polyhedrality
* horizon coderivative criteria (handle unbounded multipliers), calculus
challenging, results under metric pseudo (sub-)regularity of order 2

e qualification condition for directional limiting variational calculus
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Asymptotic stationarity conditions in terms of Fréchet normals for problems
of type

min{p(z) [0 € ®(x)}

where : X — R is lower semicontinuous and ®: X = Y is a closed-graph
set-valued map between Asplund spaces; we need some additional lower
semicontinuity w.r.t. the data
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Asymptotic stationarity conditions in terms of Fréchet normals for problems
of type
min{p(x) |0 € B(2)}

where : X — R is lower semicontinuous and ®: X = Y is a closed-graph
set-valued map between Asplund spaces; we need some additional lower
semicontinuity w.r.t. the data

Applications:
e generalization of extremal principle (generalized set separation)

e qualification conditions for problems with non-Lipschitz objective
functions (sparse portfolio selection, low rank matrix completion,
edge-preserving image restoration)

e convergence analysis for multiplier-penalty-method for such problems
e optimality conditions for optimal control problems with
sparsity-promoting term u — [, [u(w)[? dw for p € (0,1) on L*()
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Thank you for your attention!
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