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Monotone operator splitting in Hilbert spaces

Basic problem: Given a maximally monotone operator M : X →
2X , find x ∈ X such that 0 ∈ Mx .
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Monotone operator splitting in Hilbert spaces

Basic problem: Given a maximally monotone operator M : X →
2X , find x ∈ X such that 0 ∈ Mx .

Considerable range of applications: optimization,

Subdifferential: M = ∂f (Fermat’s rule)

Kuhn-Tucker operator: M =

[
∂f L∗

−L ∂g∗

]
.

[Rockafellar 1967]
etc. [Eckstein 1994, PLC 2018, Bùi/PLC 2020].
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Monotone operator splitting in Hilbert spaces

Basic problem: Given a maximally monotone operator M : X →
2X , find x ∈ X such that 0 ∈ Mx .

Considerable range of applications: optimization, variational in-
equalities, statistics, mechanics, neural networks, finance, partial
differential equations, optimal transportation, signal and image
processing, control, game theory, machine learning, economics,
mean fields games, etc.
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Monotone operator splitting in Hilbert spaces

Basic problem: Given a maximally monotone operator M : X →
2X , find x ∈ X such that 0 ∈ Mx .

The proximal point algorithm [Bellman 1966, Martinet 1970, Rock-
afellar 1976]:

xn+1 = JMxn, where JM = (Id + M)−1 is the resolvent of M.
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Monotone operator splitting in Hilbert spaces

Basic problem: Given a maximally monotone operator M : X →
2X , find x ∈ X such that 0 ∈ Mx . The proximal point algorithm
[Bellman 1966, Martinet 1970, Rockafellar 1976]:

xn+1 = JMxn, where JM = (Id + M)−1 is the resolvent of M.

Acknowledging the fact that JM may be hard to implement, split-

ting methods have been developed: the goal is to express M as
a combination of operators, and devise an algorithm that uses
these operators individually.
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Monotone operator splitting in Hilbert spaces

Basic problem: Given a maximally monotone operator M : X →
2X , find x ∈ X such that 0 ∈ Mx . The proximal point algorithm
[Bellman 1966, Martinet 1970, Rockafellar 1976]:

xn+1 = JMxn, where JM = (Id + M)−1 is the resolvent of M.

Splitting methods: express M as a combination of operators, and
devise an algorithm that uses these operators individually.

The following structures have been considered:

M = A + B

[Mercier 1979, Lions/Mercier 1979, Tseng 2000]
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Monotone operator splitting in Hilbert spaces

Basic problem: Given a maximally monotone operator M : X →
2X , find x ∈ X such that 0 ∈ Mx . The proximal point algorithm
[Bellman 1966, Martinet 1970, Rockafellar 1976]:

xn+1 = JMxn, where JM = (Id + M)−1 is the resolvent of M.

Splitting methods: express M as a combination of operators, and
devise an algorithm that uses these operators individually.

The following structures have been considered:

M =

p∑

k=1

Ak

[Spingarn 1983, Gol’stein 1985, Eckstein/Svaiter 2009, PLC 2009]
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Monotone operator splitting in Hilbert spaces

Basic problem: Given a maximally monotone operator M : X →
2X , find x ∈ X such that 0 ∈ Mx . The proximal point algorithm
[Bellman 1966, Martinet 1970, Rockafellar 1976]:

xn+1 = JMxn, where JM = (Id + M)−1 is the resolvent of M.

Splitting methods: express M as a combination of operators, and
devise an algorithm that uses these operators individually.

The following structures have been considered:

M =

p∑

k=1

L∗k ◦ Bk ◦ Lk

[Briceño-Arias/PLC 2011]
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Monotone operator splitting in Hilbert spaces

Basic problem: Given a maximally monotone operator M : X →
2X , find x ∈ X such that 0 ∈ Mx . The proximal point algorithm
[Bellman 1966, Martinet 1970, Rockafellar 1976]:

xn+1 = JMxn, where JM = (Id + M)−1 is the resolvent of M.

Splitting methods: express M as a combination of operators, and
devise an algorithm that uses these operators individually.

The following structures have been considered:

M = A +

p∑

k=1

L∗k ◦ (Bk �Dk) ◦ Lk + C

[PLC/Pesquet 2012, Vũ 2013, Condat 2013, Boţ/Hendrich 2013]
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Monotone operator splitting in Hilbert spaces

Basic problem: Given a maximally monotone operator M : X →
2X , find x ∈ X such that 0 ∈ Mx . The proximal point algorithm
[Bellman 1966, Martinet 1970, Rockafellar 1976]:

xn+1 = JMxn, where JM = (Id + M)−1 is the resolvent of M.

Splitting methods: express M as a combination of operators, and
devise an algorithm that uses these operators individually.

The following structures have been considered:

M = A +

p∑

k=1

Bk + C

[Raguet/Fadili/Peyré 2013, Briceño-Arias 2015, Davis/Yin 2017,
Raguet 2019]
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Monotone operator splitting in Hilbert spaces

Basic problem: Given a maximally monotone operator M : X →
2X , find x ∈ X such that 0 ∈ Mx . The proximal point algorithm
[Bellman 1966, Martinet 1970, Rockafellar 1976]:

xn+1 = JMxn, where JM = (Id + M)−1 is the resolvent of M.

Splitting methods: express M as a combination of operators, and
devise an algorithm that uses these operators individually.

The following structures have been considered:

M : (x1, . . . , xm) 7→

m

×
i=1

(
Aixi + Cixi + Qixi+

p∑

k=1

L∗ki

(((
Bm

k + Bc
k + Bl

k

)
�
(
Dm

k + Dc
k + Dl

k

))( m∑

j=1

Lkjxj

)))

[Bùi/PLC 2020]
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Monotone operator splitting in Hilbert spaces

Basic problem: Given a maximally monotone operator M : X →
2X , find x ∈ X such that 0 ∈ Mx . The proximal point algorithm
[Bellman 1966, Martinet 1970, Rockafellar 1976]:

xn+1 = JMxn, where JM = (Id + M)−1 is the resolvent of M.

Splitting methods: express M as a combination of operators, and
devise an algorithm that uses these operators individually.

... which models in particular

minimize
x1∈X1,...,xm∈Xm

m∑

i=1

(
fi(xi) + ϕi(xi)

)
+

p∑

k=1

(
(gk + ψk )� hk

)
(
∑

j∈I

Lkjxj

)
.

[Bùi/PLC 2020]
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Monotone operator splitting

The field has evolved in many exciting directions and various al-
gorithms are now available for complex structured problems, to-
gether with block-coordinate, block-iterative, and asynchronous
implementations.

A common feature of these developments is to move away from
single-resolvent iterations such as the proximal point algorithm.

We introduce an extended notion of a resolvent, called warped
resolvent, and show that considering the warped resolvent itera-
tions of a single operator provides a surprisingly broad platform to
not only recover existing schemes in a synthetic framework, but
also design new ones.
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Set-valued operators

X and U nonempty sets, 2U the power set of U .

U

X
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Set-valued operators

X and U nonempty sets, 2U the power set of U .

M : X → 2U : x 7→ Mx ⊂ U a set-valued operator.

U

X

graph of M: gra M =
{
(x ,u) ∈ X × U | u ∈ Mx

}
.
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Set-valued operators

X and U nonempty sets, 2U the power set of U .

M : X → 2U : x 7→ Mx ⊂ U a set-valued operator.

U

X

domain of M: dom M =
{

x ∈ X | Mx 6= Ø
}

.
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Set-valued operators

X and U nonempty sets, 2U the power set of U .

M : X → 2U : x 7→ Mx ⊂ U a set-valued operator.

U

X

range of M: ran M =
⋃

x∈dom M Mx .
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Set-valued operators

X and U nonempty sets, 2U the power set of U .

M : X → 2U : x 7→ Mx ⊂ U a set-valued operator.

U

X

X

U

inverse of M: gra M−1 =
{
(u, x) ∈ U ×X | u ∈ Mx

}
.
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Set-valued operators

X and U nonempty sets, 2U the power set of U .

M : X → 2U a set-valued operator.

U

X

M is injective if : (∀x ∈ X )(∀y ∈ X ) Mx ∩ My 6= Ø ⇒ x = y .

Patrick L. Combettes — 2020-05-25 Back to Single-Resolvent Iterations 7/28



b wr i b r L

Set-valued operators

X and U nonempty sets, 2U the power set of U .

M : X → 2U a set-valued operator.

U

X

X

U

M is injective if : (∀x ∈ X )(∀y ∈ X ) Mx ∩ My 6= Ø ⇒ x = y .
This implies that M−1 is at most single-valued.

Patrick L. Combettes — 2020-05-25 Back to Single-Resolvent Iterations 7/28



b wr i b r L

Problem model: Solving set-valued inclusions

X a set, (U ,⊞) a group with identity e, M : X → 2U .

U

X

e−
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Problem model: Solving set-valued inclusions

X a set, (U ,⊞) a group with identity e, M : X → 2U .

Objective: Find a point in Z =
{

x ∈ X | e ∈ Mx
}

.

U

X

e−

bb

x1 x2
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Problem model: Solving set-valued inclusions

X a set, (U ,⊞) a group with identity e, M : X → 2U .

Objective: Find a point in Z =
{

x ∈ X | e ∈ Mx
}

.

Take K : X→U such that K ⊞ M : x 7→
{

Kx ⊞ u | u ∈ Mx
}

is injective.

U

X

e−

bb

x1 x2
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Problem model: Solving set-valued inclusions

X a set, (U ,⊞) a group with identity e, M : X → 2U .

Objective: Find a point in Z =
{

x ∈ X | e ∈ Mx
}

.

Take K : X→U such that K ⊞ M : x 7→
{

Kx ⊞ u | u ∈ Mx
}

is injective.

Clearly,

x ∈ Z ⇔ e ∈ Mx

⇔ Kx ∈ Kx ⊞ Mx

⇔ x = (K ⊞ M)−1(Kx).

U

X

e−

bb

x1 x2
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Problem model: Solving set-valued inclusions

X a set, (U ,⊞) a group with identity e, M : X → 2U .

Objective: Find a point in Z =
{

x ∈ X | e ∈ Mx
}

.

Take K : X→U such that K ⊞ M : x 7→
{

Kx ⊞ u | u ∈ Mx
}

is injective.

Clearly,

x ∈ Z ⇔ e ∈ Mx

⇔ Kx ∈ Kx ⊞ Mx

⇔ x = (K ⊞ M)−1(Kx).

Thus Z = Fix JK
M , where

JK
M = (K ⊞ M)−1 ◦ K

is the warped resolvent of M with
kernel K .

X

X
bb

x1

x2
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Problem model: Solving set-valued inclusions

X a set, (U ,⊞) a group with identity e, M : X → 2U .

Objective: Find a point in Z =
{

x ∈ X | e ∈ Mx
}

.

Take K : X→U such that K ⊞ M : x 7→
{

Kx ⊞ u | u ∈ Mx
}

is injective.

Clearly,

x ∈ Z ⇔ e ∈ Mx

⇔ Kx ∈ Kx ⊞ Mx

⇔ x = (K ⊞ M)−1(Kx).

Thus Z = Fix JK
M , where

JK
M = (K ⊞ M)−1 ◦ K

is the warped resolvent of M with
kernel K .

p = JK
Mx ⇔ (p,Kx ⊟ Kp) ∈ gra M.

X

X
bb

x1

x2
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The warped resolvent

PART 2:

The warped resolvent
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The warped resolvent: Definition

X is a reflexive real Banach space with topological dual X ∗.

An operator M : X → 2X
∗

is monotone if

(
∀(x1, x

∗
1 ) ∈ gra M

)(
∀(x2, x

∗
2 ) ∈ gra M

)
〈x1 − x2, x

∗
1 − x∗

2 〉 > 0,

and maximally monotone if, furthermore, no point can be added
to gra M without compromising monotonicity.

Definition

Let Ø 6= D ⊂ X , let K : D → X ∗, and let M : X → 2X
∗

be such that
ran K ⊂ ran (K + M) and K + M is injective. The warped resolvent of M

with kernel K is JK
M = (K + M)−1 ◦ K .
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The warped resolvent: Properties

Sufficient conditions for ran K ⊂ ran (K + M) and K + M is injective
are given in [Bùi/PLC, 2019].

JK
M : D → D.

Fix JK
M = D ∩ zer M.

p = JK
Mx ⇔ (p, Kx − Kp) ∈ gra M.

Suppose that M is monotone. Let x ∈ D, and set y = JK
Mx and

y∗ = Kx − Ky . Then

zer M ⊂
{

z ∈ X | 〈z − y, y∗〉 6 0
}
.

Suppose that M is monotone. Set p = JK
Mx and q = JK

My . Then

〈p − q,Kx − Ky〉 > 〈p − q,Kp − Kq〉.
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The warped resolvent: Examples

M : X → 2X
∗

is maximally monotone.

If X is Hilbertian and K = Id , JK
M is the classical resolvent.
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M : X → 2X
∗

is maximally monotone.

If X is Hilbertian and K = Id , JK
M is the classical resolvent.

If X is strictly convex with normalized duality mapping K , then JK
M is

the extended resolvent of [Kassay, 1985].
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The warped resolvent: Examples

M : X → 2X
∗

is maximally monotone.

If X is Hilbertian and K = Id , JK
M is the classical resolvent.

If X is strictly convex with normalized duality mapping K , then JK
M is

the extended resolvent of [Kassay, 1985].

Let f : X → ]−∞,+∞] be a Legendre function such that dom M ⊂
int dom f , and set K = ∇f . Then JK

M is the D-resolvent of
[Bauschke/Borwein/PLC, 2003].
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The warped resolvent: Examples

M : X → 2X
∗

is maximally monotone.

If X is Hilbertian and K = Id , JK
M is the classical resolvent.

If X is strictly convex with normalized duality mapping K , then JK
M is

the extended resolvent of [Kassay, 1985].

Let f : X → ]−∞,+∞] be a Legendre function such that dom M ⊂
int dom f , and set K = ∇f . Then JK

M is the D-resolvent of
[Bauschke/Borwein/PLC, 2003].

A : X → 2X
∗

and B : X → 2X
∗

are maximally monotone, and
f : X → ]−∞,+∞] is a suitable convex function. Set

M = A + B and K : int dom f → X ∗ : x 7→ ∇f (x)− Bx .

Then JK
M = (∇f +A)−1 ◦ (∇f − B) is the Bregman forward-backward

operator to be investigated in Part 4.
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The warped resolvent: Examples

Let K : X → X ∗ be strictly monotone, 3∗ monotone, and surjective.
Then JK

M is the K -resolvent of [Bauschke/Wang/Yao, 2010].
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The warped resolvent: Examples

Let K : X → X ∗ be strictly monotone, 3∗ monotone, and surjective.
Then JK

M is the K -resolvent of [Bauschke/Wang/Yao, 2010].

Let Ø 6= C ⊂ X be closed and convex, with normal cone operator
NC . The warped projection operator is projKC = JK

NC
= (K +NC)

−1◦K .

p1

p2 p3

•

••

Left: Warped projections onto B(0; 1). Sets of

points projecting onto p1, p2, and p3 for K1 = Id

and

K2 : (ξ1, ξ2) 7→

(
ξ3

1

2
+
ξ1

5
− ξ2, ξ1 + ξ2

)

Note that K2 is not a gradient.
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Warped proximal iterations in Hilbert space

PART 3:

Warped proximal iterations in

Hilbert spaces
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Finding zeros of monotone operators: Geometry

M maximally monotone with Z = zer M 6= Ø.

xn

xn+1

Hn =
{

x ∈ X | 〈x − yn | y∗

n
〉 6 0

} •

Z
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Finding zeros of monotone operators: Geometry

M maximally monotone with Z = zer M 6= Ø.

Iterate 

(yn, y
∗
n ) ∈ gra M

λn ∈ [ε, 2 − ε]
if 〈yn − xn | y∗

n 〉 < 0⌊
xn+1 = xn + λn〈yn − xn | y∗

n 〉y
∗
n /‖y∗

n ‖
2

else⌊
xn+1 = xn.

xn

xn+1

Hn =
{

x ∈ X | 〈x − yn | y∗

n
〉 6 0

} •

Z
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Finding zeros of monotone operators: Geometry

M maximally monotone with Z = zer M 6= Ø.

Iterate 

(yn, y
∗
n ) ∈ gra M

λn ∈ [ε, 2 − ε]
if 〈yn − xn | y∗

n 〉 < 0⌊
xn+1 = xn + λn〈yn − xn | y∗

n 〉y
∗
n /‖y∗

n ‖
2

else⌊
xn+1 = xn.

xn

xn+1

Hn =
{

x ∈ X | 〈x − yn | y∗

n
〉 6 0

} •

Z

Weak convergence to a point in Z if
weak cluster points are in Z .

The weak–to–strong convergence
principle [Bauschke/PLC, 2001]
gives strong convergence of a 2
half-spaces variant.

How to choose (yn, y
∗
n ) ∈ gra M?
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Finding zeros of monotone operators: Geometry

M maximally monotone with Z = zer M 6= Ø.

Iterate 

yn = JKn
γnM x̃n

y∗
n = γ−1

n (Knx̃n − Knyn)
λn ∈ [ε, 2 − ε]
if 〈yn − xn | y∗

n 〉 < 0⌊
xn+1 = xn + λn〈yn − xn | y∗

n 〉y
∗
n /‖y∗

n ‖
2

else⌊
xn+1 = xn.

xn

xn+1

Hn =
{

x ∈ X | 〈x − yn | y∗

n
〉 6 0

} •

Z
Key: Move beyond Minty’s
parametrization of gra M and
use a warped resolvent to pick
(yn, y

∗
n ) ∈ gra M.

Simply evaluate a warped resolvent
at some point x̃n.
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Convergence

Notation: (y∗)♯ = y∗/‖y∗‖ if y∗ 6= 0; = 0 otherwise.

Theorem

Let (γn)n∈N be a sequence in [ε,+∞[. For every n ∈ N, let x̃n ∈ X and let

Kn : X → X be a monotone operator such that ran Kn ⊂ ran (Kn + γnM)
and Kn + γnM is injective. Suppose that:

x̃n − xn → 0.

〈
x̃n − yn | (Knx̃n − Knyn)

♯〉
→ 0 ⇒

{
x̃n − yn ⇀ 0

Knx̃n − Knyn → 0.

Then (xn)n∈N converges weakly to a point in Z .
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Convergence

Notation: (y∗)♯ = y∗/‖y∗‖ if y∗ 6= 0; = 0 otherwise.

Theorem

Let (γn)n∈N be a sequence in [ε,+∞[. For every n ∈ N, let x̃n ∈ X and let

Kn : X → X be a monotone operator such that ran Kn ⊂ ran (Kn + γnM)
and Kn + γnM is injective. Suppose that:

x̃n − xn → 0.

〈
x̃n − yn | (Knx̃n − Knyn)

♯〉
→ 0 ⇒

{
x̃n − yn ⇀ 0

Knx̃n − Knyn → 0.

Then (xn)n∈N converges weakly to a point in Z .

We also have a strongly convergent version.
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Choosing the evaluation points (x̃n)n∈N

The auxiliary sequence (x̃n)n∈N can serve several purposes:

x̃n can model an additive perturbation of xn, say x̃n = xn + en,
where we require only ‖en‖ → 0.
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The auxiliary sequence (x̃n)n∈N can serve several purposes:

x̃n can model an additive perturbation of xn, say x̃n = xn + en,
where we require only ‖en‖ → 0.

Modeling inertia: let (αn)n∈N be any bounded sequence in R and
set x̃n = xn + αn(xn − xn−1).
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Choosing the evaluation points (x̃n)n∈N

The auxiliary sequence (x̃n)n∈N can serve several purposes:

x̃n can model an additive perturbation of xn, say x̃n = xn + en,
where we require only ‖en‖ → 0.

Modeling inertia: let (αn)n∈N be any bounded sequence in R and
set x̃n = xn + αn(xn − xn−1).

More generally,

(∀n ∈ N) x̃n =
n∑

j=0

µn,jxj .

with
∑n

j=0 µn,j = 1 and (1 − µn,n)xn −
∑n−1

j=0 µn,jxj → 0.
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Choosing the evaluation points (x̃n)n∈N

The auxiliary sequence (x̃n)n∈N can serve several purposes:

x̃n can model an additive perturbation of xn, say x̃n = xn + en,
where we require only ‖en‖ → 0.

Modeling inertia: let (αn)n∈N be any bounded sequence in R and
set x̃n = xn + αn(xn − xn−1).

More generally,

(∀n ∈ N) x̃n =
n∑

j=0

µn,jxj .

with
∑n

j=0 µn,j = 1 and (1 − µn,n)xn −
∑n−1

j=0 µn,jxj → 0.

Nonlinear perturbations can also be considered. For instance, at
iteration n, x̃n = projCn

xn is an approximation to xn from some suit-
able closed convex set Cn ⊂ X .
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Corollary 1

Corollary

Let A : X → 2X be maximally monotone, and let B : X → X be monotone and
β-Lipschitzian, with zer (A+B) 6= Ø. Let Wn : X → X be α-strongly monotone and
χ-Lipschitzian, and let γn ∈ [ε, (α − ε)/β], let λn ∈ [ε, 2 − ε], and let X ∋ en → 0.
Furthermore, let m > 0 and let (µn,j )n∈N,06j6n be bounded and satisfy

For every n > m and every integer j ∈ [0,n − m − 1], µn,j = 0.

For every n ∈ N,
∑n

j=0 µn,j = 1.

Iterate 

x̃n = en +
∑n

j=0 µn,j xj

v∗
n = Wnx̃n − γnBx̃n

yn = (Wn + γnA)−1v∗
n

y∗
n = γ−1

n (v∗
n − Wnyn) + Byn

if 〈yn − xn | y∗
n 〉 < 0⌊

xn+1 = xn +
λn〈yn − xn | y∗

n 〉

‖y∗
n ‖

2
y∗

n

else xn+1 = xn.

Then (xn)n∈N converges weakly to a point in zer (A + B).

Proof: M = A + B and Kn = Wn − γnB. Special case: Tseng’s algorithm.
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Corollary 2: Multivariate inclusions

Problem: find (xi)i∈I ∈×i∈I
Xi such that

(∀i ∈ I) 0 ∈ Aixi +
∑

j∈J

L∗ji

(
(Bj + Dj)

(∑

k∈I

Ljkxk

))
+ Cixi

Warping: Apply Theorem 2 to

M :
(
(xi)i∈I , (yj)j∈J , (v

∗
j )j∈J

)
7→

(
×

i∈I

(
Aixi + Cixi +

∑

j∈J

L∗ji v
∗
j

)
,

×
j∈J

(
Bjyj + Djyj − v∗

j

)
,×

j∈J

{
yj −

∑

i∈I

Ljixi

} )

and Kn : (x ,y , v
∗) 7→

((
γ−1

i,n Fi,nxi − Cixi −
∑

j∈J

L∗ji v
∗
j

)

i∈I

,
(
τ−1

j,n Wj,nyj − Djyj + v∗
j

)
j∈J
,

(
−yj + v∗

j +
∑

i∈I

Ljixi

)

j∈J

)
,

where Fi,n and Wj,n are strongly monotone and Lipschitzian.

Patrick L. Combettes — 2020-05-25 Back to Single-Resolvent Iterations 19/28



b wr i b r L

Corollary 2: Multivariate inclusions

for n = 0, 1, . . .

for every i ∈ I
l∗i,n = Fi,nx̃i,n − γi,nCi x̃i,n − γi,n

∑
j∈J L∗ji ṽ

∗
j,n

ai,n =
(
Fi,n + γi,nAi

)−1
(l∗i,n + γi,ns∗i )

o∗
i,n = γ−1

i,n (l
∗
i,n − Fi,nai,n) + Ciai,n

for every j ∈ J

t∗j,n = Wj,nỹj,n − τj,nDj ỹj,n + τj,nṽ∗
j,n

bj,n =
(
Wj,n + τj,nBj

)−1
t∗j,n

f ∗j,n = τ−1
j,n (t∗j,n − Wj,nbj,n) + Djbj,n

cj,n =
∑

i∈I Lji x̃i,n − ỹj,n + ṽ∗
j,n − rj

for every i ∈ I⌊
a∗

i,n = o∗
i,n +

∑
j∈J L∗ji cj,n

for every j ∈ J⌊
b∗

j,n = f ∗j,n − cj,n

c∗
j,n = rj + bj,n −

∑
i∈I Ljiai,n

σn =
∑

i∈I ‖a∗
i,n‖

2 +
∑

j∈J

(
‖b∗

j,n‖
2 + ‖c∗

j,n‖
2
)

θn =
∑

i∈I 〈ai,n − xi,n | a∗
i,n〉+

∑
j∈J

(
〈bj,n − yj,n | b∗

j,n〉+ 〈cj,n − v∗
j,n | c∗

j,n〉
)

if θn < 0⌊
ρn = λnθn/σn

else⌊
ρn = 0

for every i ∈ I⌊
xi,n+1 = xi,n + ρna∗

i,n

for every j ∈ J⌊
yj,n+1 = yj,n + ρnb∗

j,n

v∗
j,n+1 = v∗

j,n + ρnc∗
j,n.
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Further connections

Primal-dual splitting.

Consider the inclusion 0 ∈ Ax + L∗(B(Lx)) and the associated
Kuhn–Tucker operator

M : X × Y → 2X×Y : (x , y∗) 7→ (Ax + L∗y∗)× (−Lx + B−1y∗).

The cutting plane method of [Alotaibi/PLC/Shahzad, 2014]
and [PLC/Eckstein, 2018] generate points (an,a

∗
n) ∈ gra A

and (bn,b
∗
n) ∈ gra B. This implicitly provides

(yn, y
∗
n ) =

(
(an,b

∗
n), (a

∗
n + L∗b∗

n ,−Lan + bn)
)
∈ gra M

to construct Hn ⊃ zer M.
The primal-dual framework of [Alotaibi/PLC/Shahzad, 2014] is
therefore an instance of Theorem 2 with

Kn : (x , y
∗) 7→

(
γ−1

n x − L∗y∗, Lx + µny∗
)
.
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Consider the inclusion 0 ∈ Ax + L∗(B(Lx)) and the associated
Kuhn–Tucker operator

M : X × Y → 2X×Y : (x , y∗) 7→ (Ax + L∗y∗)× (−Lx + B−1y∗).

The cutting plane method of [Alotaibi/PLC/Shahzad, 2014]
and [PLC/Eckstein, 2018] generate points (an,a

∗
n) ∈ gra A

and (bn,b
∗
n) ∈ gra B. This implicitly provides

(yn, y
∗
n ) =

(
(an,b

∗
n), (a

∗
n + L∗b∗

n ,−Lan + bn)
)
∈ gra M

to construct Hn ⊃ zer M.
The primal-dual framework of [Alotaibi/PLC/Shahzad, 2014] is
therefore an instance of Theorem 2 with

Kn : (x , y
∗) 7→

(
γ−1

n x − L∗y∗, Lx + µny∗
)
.

An alternate cutting plane strategy was independently investi-
gated in [Giselsson, arXiv 2019], where an instance of a warped
resolvent (in our sense) was used.
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Warped proximal iterations with Bregman kernels

PART 4:

Warped proximal iterations with

Bregman kernels
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Bregman forward-backward splitting

X a reflexive real Banach space, A : X → 2X
∗

and B : X → 2X
∗

maximally monotone, and f ∈ Γ0(X ) essentially smooth.

C = (int dom f ) ∩ dom A ⊂ int dom B and B is single-valued on
int dom B.

(∀x ∈ C)(∀y ∈ C)(∀z ∈ S )(∀y∗ ∈ Ay)(∀z∗ ∈ Az)
〈
y − x,By − Bz

〉
6 κDf (x , y) +

〈
y − z, δ1(y

∗ − z∗) + δ2

(
By − Bz

)〉
.

The objective is to

find x ∈ S = (int dom f ) ∩ zer (A + B) 6= Ø.
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Bregman forward-backward splitting

X a reflexive real Banach space, A : X → 2X
∗

and B : X → 2X
∗

maximally monotone, and f ∈ Γ0(X ) essentially smooth.

C = (int dom f ) ∩ dom A ⊂ int dom B and B is single-valued on
int dom B.

(∀x ∈ C)(∀y ∈ C)(∀z ∈ S )(∀y∗ ∈ Ay)(∀z∗ ∈ Az)
〈
y − x,By − Bz

〉
6 κDf (x , y) +

〈
y − z, δ1(y

∗ − z∗) + δ2

(
By − Bz

)〉
.

The objective is to

find x ∈ S = (int dom f ) ∩ zer (A + B) 6= Ø.

Apply the warped proximal point algorithm

xn+1 = JKn
M xn

to M = A + B with kernel Kn = γ−1
n ∇fn − B for a suitable essentially

smooth function fn.
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Bregman forward-backward splitting

X a reflexive real Banach space, A : X → 2X
∗

and B : X → 2X
∗

maximally monotone, and f ∈ Γ0(X ) essentially smooth.

C = (int dom f ) ∩ dom A ⊂ int dom B and B is single-valued on
int dom B.

(∀x ∈ C)(∀y ∈ C)(∀z ∈ S )(∀y∗ ∈ Ay)(∀z∗ ∈ Az)
〈
y − x,By − Bz

〉
6 κDf (x , y) +

〈
y − z, δ1(y

∗ − z∗) + δ2

(
By − Bz

)〉
.

The objective is to

find x ∈ S = (int dom f ) ∩ zer (A + B) 6= Ø.

Apply the warped proximal point algorithm

xn+1 = JKn
M xn

to M = A + B with kernel Kn = γ−1
n ∇fn − B for a suitable essentially

smooth function fn.

We obtain the Bregman forward-backward splitting algorithm

xn+1 =
(
∇fn + γnA

)−1(
∇fn(xn)− γnBxn

)
.
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Convergence

Theorem

“Under suitable assumptions,”

xn+1 =
(
∇fn + γnA

)−1(
∇fn(xn)− γnBxn

)
⇀ x ∈ S .

This result provides, for instance, the convergence of the basic
Bregman forward-backward splitting method

(
∇f + γA

)−1(
∇f (xn)− γBxn

)
,

which is new even in Euclidean spaces.

It also allows us to recover and extend 4, so far unrelated, splitting
frameworks.
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xn+1 = (∇fn + γnA)−1(∇fn(xn)− γnBxn): Instantiations

The iteration xn+1 =
(
∇f + γnA

)−1(
∇f (xn)

)
for finding a zero of A in

a reflexive Banach space [Bauschke/Borwein/PLC, 2003].

The iteration xn+1 =
(
Un + γnA

)−1(
Unxn − γnBxn

)
for finding a zero of

A + B in a Hilbert space, where Un is a strongly positive Hermitian
bounded linear operator [PLC/Vũ, 2014].

The iteration

xn+1 =
(
∇f + γA

)−1(
∇f (xn)− γBxn

)

for finding a zero of A + B in a Hilbert space, where f is real-valued
and strongly convex [Renaud/Cohen, 1997].

The iteration

xn+1 =
(
∇fn + γn∂ϕ

)−1(
∇fn(xn)− γn∇ψ(xn)

)

for minimizing ϕ + ψ in a reflexive Banach space [Nguyen, 2017;
see also Bauschke/Bolte/Teboulle, 2017].
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Illustration: The minimization setting

Let ϕ ∈ Γ0(X ), ψ ∈ Γ0(X ), and f ∈ Γ0(X ) be essentially smooth. Set
C = (int dom f )∩dom ∂ϕ and S = (int dom f )∩Argmin(ϕ+ψ). Suppose
that C 6= Ø, ϕ + ψ is coercive, C ⊂ int domψ, S 6= Ø, ψ is Gâteaux
differentiable on int domψ, and Df > βDψ.

Corollary

Take x0 ∈ C and set

(∀n ∈ N) xn+1 = (∇fn + γn∂ϕ)
−1(∇fn(xn)− γn∇ψ(xn)).

Then:

(xn)n∈N converges weakly to a point in S .

(ϕ+ ψ)(xn)−min(ϕ+ ψ)(X ) = o(1/n).∑
n∈N

n(Dfn(xn+1, xn) + Dfn(xn, xn+1)) < +∞.

Weak convergence was obtained in [Nguyen, 2017] under more
restrictive assumptions.

The rates are new, even in Euclidean spaces.
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Bùi/PLC, Bregman forward-backward operator splitting, arXiv,
2019.
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Bregman distance

f ∈ Γ0(X ) is a Legendre function if it is both [Bauschke/Borwein/PLC,

2001]:

Essentially smooth: ∂f is both locally bounded and single-
valued on its domain.
Essentially strictly convex: ∂f ∗ is locally bounded on its do-
main and f is strictly convex on every convex subset of
dom ∂f .

Take f ∈ Γ0(X ), Gâteaux differentiable on int dom f 6= Ø. The asso-
ciated Bregman distance is

Df : X × X → [0,+∞]

(x , y) 7→

{
f (x)− f (y)− 〈x − y ,∇f (y)〉, if y ∈ int dom f ;

+∞, otherwise.
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