Back to Single-Resolvent Iterations, with Warping

Patrick L. Combettes

- joint work with Minh N. Bùi -

Department of Mathematics
North Carolina State University
Raleigh, NC 27695, USA
One World Optimization Seminar, May 25, 2020

Outline

■ Part 1: Background

- Part 2: The warped resolvent

■ Part 3: Warped proximal iterations in Hilbert spaces
■ Part 4: Warped proximal iterations with Bregman kernels

Background

PART 1:

Background

Monotone operator splitting in Hillbert spaces

- Basic problem: Given a maximally monotone operator M : $\mathcal{X} \rightarrow$ $2^{\mathcal{X}}$, find $x \in \mathcal{X}$ such that $0 \in M x$.

Monotone operator splitting in Hillbert spaces

■ Basic problem: Given a maximally monotone operator M : $\mathcal{X} \rightarrow$ $2^{\mathcal{X}}$, find $x \in \mathcal{X}$ such that $0 \in M x$.

- Considerable range of applications: optimization,

■ Subdifferential: $M=\partial f$ (Fermat's rule)
■ Kunn-Tucker operator: $M=\left[\begin{array}{cc}\partial f & L^{*} \\ -L & \partial g^{*}\end{array}\right]$. (Rockafellar 1967)
■ etc. (Eckstein 1994, PLC 2018, Bũi/PLC 2020).

Monotone operator splitting in Hillbert spaces

- Basic problem: Given a maximally monotone operator M : $\mathcal{X} \rightarrow$ $2^{\mathcal{X}}$, find $x \in \mathcal{X}$ such that $0 \in M x$.
- Considerable range of applications: optimization, variational inequalities, statistics, mechanics, neural networks, finance, partial differential equations, optimal transportation, signal and image processing, control, game theory, machine learning, economics, mean fields games, etc.

Monotone operator splitting in Hillbert spaces

■ Basic problem: Given a maximally monotone operator $M: \mathcal{X} \rightarrow$ $2^{\mathcal{X}}$, find $x \in \mathcal{X}$ such that $0 \in M x$.
■ The proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar 1976):

$$
x_{n+1}=J_{M} x_{n}, \text { where } J_{M}=(\mathrm{ld}+M)^{-1} \text { is the resolvent of } M
$$

Monotone operator splitting in Hillbert spaces

- Basic problem: Given a maximally monotone operator M : $\mathcal{X} \rightarrow$ $2^{\mathcal{X}}$, find $x \in \mathcal{X}$ such that $0 \in M x$. The proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar 1976):

$$
x_{n+1}=J_{M} x_{n} \text {, where } J_{M}=(1 d+M)^{-1} \text { is the resolvent of } M \text {. }
$$

- Acknowledging the fact that J_{M} may be hard to implement, splitting methods have been developed: the goal is to express M as a combination of operators, and devise an algorithm that uses these operators individually.

Monotone operator splitting in Hillbert spaces

■ Basic problem: Given a maximally monotone operator $\mathrm{M}: \mathcal{X} \rightarrow$ $2^{\mathcal{X}}$, find $x \in \mathcal{X}$ such that $0 \in M x$. The proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar 1976):

$$
x_{n+1}=J_{M} x_{n}, \text { where } J_{M}=(1 d+M)^{-1} \text { is the resolvent of } M \text {. }
$$

- Splitting methods: express M as a combination of operators, and devise an algorithm that uses these operators individually.
- The following structures have been considered:

$$
M=A+B
$$

(Mercier 1979, Lions/Mercier 1979, Tseng 2000)

Monotone operator splitting in Hillbert spaces

- Basic problem: Given a maximally monotone operator M : $\mathcal{X} \rightarrow$ $2^{\mathcal{X}}$, find $x \in \mathcal{X}$ such that $0 \in M x$. The proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar 1976):

$$
x_{n+1}=J_{M} x_{n}, \text { where } J_{M}=(1 d+M)^{-1} \text { is the resolvent of } M .
$$

- Splitting methods: express M as a combination of operators, and devise an algorithm that uses these operators individually.
- The following structures have been considered:

$$
M=\sum_{k=1}^{p} A_{k}
$$

(Spingarn 1983, Gol'stein 1985, Eckstein/Svaiter 2009, PLC 2009)

Monotone operator splitting in Hillbert spaces

- Basic problem: Given a maximally monotone operator M : $\mathcal{X} \rightarrow$ $2^{\mathcal{X}}$, find $x \in \mathcal{X}$ such that $0 \in M x$. The proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar 1976):

$$
x_{n+1}=J_{M} x_{n} \text {, where } J_{M}=(\mathrm{ld}+M)^{-1} \text { is the resolvent of } M \text {. }
$$

- Splitting methods: express M as a combination of operators, and devise an algorithm that uses these operators individually.
- The following structures have been considered:

$$
M=\sum_{k=1}^{p} L_{k}^{*} \circ B_{k} \circ L_{k}
$$

(Briceño-Arias/PLC 2011)

Monotone operator splitting in Hillbert spaces

- Basic problem: Given a maximally monotone operator M : $\mathcal{X} \rightarrow$ $2^{\mathcal{X}}$, find $x \in \mathcal{X}$ such that $0 \in M x$. The proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar 1976):

$$
x_{n+1}=J_{M} x_{n}, \text { where } J_{M}=(1 d+M)^{-1} \text { is the resolvent of } M .
$$

- Splitting methods: express M as a combination of operators, and devise an algorithm that uses these operators individually.
- The following structures have been considered:

$$
M=A+\sum_{k=1}^{p} L_{k}^{*} \circ\left(B_{k} \square D_{k}\right) \circ L_{k}+C
$$

(PLC/Pesquet 2012, Vũ 2013, Condat 2013, Boţ/Hendrich 2013)

Monotone operator splitting in Hillbert spaces

- Basic problem: Given a maximally monotone operator $\mathrm{M}: \mathcal{X} \rightarrow$ $2^{\mathcal{X}}$, find $x \in \mathcal{X}$ such that $0 \in M x$. The proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar 1976):

$$
x_{n+1}=J_{M} x_{n}, \text { where } J_{M}=(l d+M)^{-1} \text { is the resolvent of } M .
$$

- Splitting methods: express M as a combination of operators, and devise an algorithm that uses these operators individually.
- The following structures have been considered:

$$
M=A+\sum_{k=1}^{p} B_{k}+C
$$

(Raguet/Fadili/Peyré 2013, Briceño-Arias 2015, Davis/Yin 2017, Raguet 2019)

Monotone operator splitting in Hillbert spaces

- Basic problem: Given a maximally monotone operator M : $\mathcal{X} \rightarrow$ $2^{\mathcal{X}}$, find $x \in \mathcal{X}$ such that $0 \in M x$. The proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar 1976):

$$
x_{n+1}=J_{M} x_{n} \text {, where } J_{M}=(l d+M)^{-1} \text { is the resolvent of } M \text {. }
$$

- Splitting methods: express M as a combination of operators, and devise an algorithm that uses these operators individually.
- The following structures have been considered:

$$
\begin{aligned}
& M:\left(x_{1}, \ldots, x_{m}\right) \mapsto \underset{i=1}{\infty}\left(A_{i} x_{i}+C_{i} x_{i}+Q_{i} x_{i}+\right. \\
& \left.\quad \sum_{k=1}^{p} L_{k i}^{*}\left(\left(\left(B_{k}^{m}+B_{k}^{c}+B_{k}^{\prime}\right) \square\left(D_{k}^{m}+D_{k}^{c}+D_{k}^{\prime}\right)\right)\left(\sum_{j=1}^{m} L_{k j} x_{j}\right)\right)\right)
\end{aligned}
$$

(Büi/PLC 2020)

Monotone operator splitting in Hillbert spaces

- Basic problem: Given a maximally monotone operator M : $\mathcal{X} \rightarrow$ $2^{\mathcal{X}}$, find $x \in \mathcal{X}$ such that $0 \in M x$. The proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar 1976):

$$
x_{n+1}=J_{M} x_{n} \text {, where } J_{M}=(1 d+M)^{-1} \text { is the resolvent of } M \text {. }
$$

- Splitting methods: express M as a combination of operators, and devise an algorithm that uses these operators individually.
- ... which models in particular

$$
\underset{x_{1} \in \mathcal{X}_{1}, \ldots, \ldots, x_{m} \in \mathcal{X}_{m}}{\operatorname{minimize}} \sum_{i=1}^{m}\left(f_{i}\left(x_{i}\right)+\varphi_{i}\left(x_{i}\right)\right)+\sum_{k=1}^{p}\left(\left(g_{k}+\psi_{k}\right) \square h_{k}\right)\left(\sum_{j \in I} L_{k} x_{j}\right) .
$$

(Büi/PLC 2020)

Monotone operator splitting

- The field has evolved in many exciting directions and various algorithms are now available for complex structured problems, together with block-coordinate, block-iterative, and asynchronous implementations.
- A common feature of these developments is to move away from single-resolvent iterations such as the proximal point algorithm.
■ We introduce an extended notion of a resolvent, called warped resolvent, and show that considering the warped resolvent iterations of a single operator provides a surprisingly broad platform to not only recover existing schemes in a synthetic framework, but also design new ones.

Set-valued operators

- \mathcal{X} and \mathcal{U} nonempty sets, $2^{\mathcal{U}}$ the power set of \mathcal{U}.

Set-valued operators

- \mathcal{X} and \mathcal{U} nonempty sets, $2^{\mathcal{U}}$ the power set of \mathcal{U}.

■ $M: \mathcal{X} \rightarrow 2^{\mathcal{U}}: x \mapsto M x \subset \mathcal{U}$ a set-valued operator.

graph of M : gra $M=\{(x, u) \in \mathcal{X} \times \mathcal{U} \mid u \in M x\}$.

Set-valued operators

- \mathcal{X} and \mathcal{U} nonempty sets, $2^{\mathcal{U}}$ the power set of \mathcal{U}.

■ $M: \mathcal{X} \rightarrow 2^{\mathcal{U}}: x \mapsto M x \subset \mathcal{U}$ a set-valued operator.

domain of M : $\operatorname{dom} M=\{x \in \mathcal{X} \mid M x \neq \emptyset\}$.

Set-valued operators

- \mathcal{X} and \mathcal{U} nonempty sets, $2^{\mathcal{U}}$ the power set of \mathcal{U}.

■ $M: \mathcal{X} \rightarrow 2^{\mathcal{U}}: x \mapsto M x \subset \mathcal{U}$ a set-valued operator.

range of M : $\operatorname{ran} M=\bigcup_{x \in \operatorname{dom} M} M x$.

Set-valued operators

- \mathcal{X} and \mathcal{U} nonempty sets, $2^{\mathcal{U}}$ the power set of \mathcal{U}.

■ $M: \mathcal{X} \rightarrow 2^{\mathcal{U}}: x \mapsto M x \subset \mathcal{U}$ a set-valued operator.

inverse of M : $\operatorname{gra} M^{-1}=\{(u, x) \in \mathcal{U} \times \mathcal{X} \mid u \in M x\}$.

Set-valued operators

- \mathcal{X} and \mathcal{U} nonempty sets, $2^{\mathcal{U}}$ the power set of \mathcal{U}.
- $M: \mathcal{X} \rightarrow 2^{u}$ a set-valued operator.

M is injective if : $(\forall x \in \mathcal{X})(\forall y \in \mathcal{X}) M x \cap M y \neq \emptyset \Rightarrow x=y$.

Set-valued operators

- \mathcal{X} and \mathcal{U} nonempty sets, $2^{\mathcal{U}}$ the power set of \mathcal{U}.
- $M: \mathcal{X} \rightarrow 2^{u}$ a set-valued operator.

M is injective if : $(\forall x \in \mathcal{X})(\forall y \in \mathcal{X}) M x \cap M y \neq \emptyset \Rightarrow x=y$. This implies that M^{-1} is at most single-valued.

Problem model: Solving set-valued inclusions

■ \mathcal{X} a set, (\mathcal{U}, \boxplus) a group with identity $e, M: \mathcal{X} \rightarrow 2^{\mathcal{U}}$.

Problem model: Solving set-valued inclusions

■ \mathcal{X} a set, (\mathcal{U}, \boxplus) a group with identity $e, M: \mathcal{X} \rightarrow 2^{\mathcal{U}}$.

- Objective: Find a point in $Z=\{x \in \mathcal{X} \mid e \in M x\}$.

Problem model: Solving set-valued inclusions

■ \mathcal{X} a set, (\mathcal{U}, \boxplus) a group with identity $e, M: \mathcal{X} \rightarrow 2^{\mathcal{U}}$.
■ Objective: Find a point in $Z=\{x \in \mathcal{X} \mid e \in M x\}$.
■ Take $K: \mathcal{X} \rightarrow \mathcal{U}$ such that $K \boxplus M: x \mapsto\{K x \boxplus u \mid u \in M x\}$ is injective.

Problem model: Solving set-valued inclusions

■ \mathcal{X} a set, (\mathcal{U}, \boxplus) a group with identity $e, M: \mathcal{X} \rightarrow 2^{\mathcal{U}}$.
■ Objective: Find a point in $Z=\{x \in \mathcal{X} \mid e \in M x\}$.
■ Take K : $\mathcal{X} \rightarrow \mathcal{U}$ such that $K \boxplus M: x \mapsto\{K x \boxplus u \mid u \in M x\}$ is injective.

- Clearly,

$$
\begin{aligned}
x \in Z & \Leftrightarrow e \in M x \\
& \Leftrightarrow K x \in K x \boxplus M x \\
& \Leftrightarrow x=(K \boxplus M)^{-1}(K x)
\end{aligned}
$$

Problem model: Solving set-valued inclusions

■ \mathcal{X} a set, (\mathcal{U}, \boxplus) a group with identity $e, M: \mathcal{X} \rightarrow 2^{\mathcal{U}}$.
■ Objective: Find a point in $Z=\{x \in \mathcal{X} \mid e \in M x\}$.

- Take $K: \mathcal{X} \rightarrow \mathcal{U}$ such that $K \boxplus M: x \mapsto\{K x \boxplus u \mid u \in M x\}$ is injective.
- Clearly,

$$
\begin{aligned}
x \in Z & \Leftrightarrow e \in M x \\
& \Leftrightarrow K x \in K x \boxplus M x \\
& \Leftrightarrow x=(K \boxplus M)^{-1}(K x)
\end{aligned}
$$

■ Thus $Z=\operatorname{Fix} J_{M}^{K}$, where

$$
J_{M}^{K}=(K \boxplus M)^{-1} \circ K
$$

is the warped resolvent of M with kernel K.

Problem model: Solving set-valued inclusions

■ \mathcal{X} a set, (\mathcal{U}, \boxplus) a group with identity $e, M: \mathcal{X} \rightarrow 2^{\mathcal{U}}$.
■ Objective: Find a point in $Z=\{x \in \mathcal{X} \mid e \in M x\}$.

- Take $K: \mathcal{X} \rightarrow \mathcal{U}$ such that $K \boxplus M: x \mapsto\{K x \boxplus u \mid u \in M x\}$ is injective.
- Clearly,

$$
\begin{aligned}
x \in Z & \Leftrightarrow e \in M x \\
& \Leftrightarrow K x \in K x \boxplus M x \\
& \Leftrightarrow x=(K \boxplus M)^{-1}(K x)
\end{aligned}
$$

■ Thus $Z=$ Fix J_{M}^{K}, where

$$
J_{M}^{K}=(K \boxplus M)^{-1} \circ K
$$

is the warped resolvent of M with kernel K.
■ $p=J_{M}^{K} x \Leftrightarrow(p, K x \boxminus K p) \in \operatorname{gra} M$.

The warped resolvent

PART 2:

The warped resolvent

The warped resolvent: Definition

■ \mathcal{X} is a reflexive real Banach space with topological dual \mathcal{X}^{*}.

- An operator $M: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$ is monotone if

$$
\left(\forall\left(x_{1}, x_{1}^{*}\right) \in \operatorname{gra} M\right)\left(\forall\left(x_{2}, x_{2}^{*}\right) \in \operatorname{gra} M\right) \quad\left\langle x_{1}-x_{2}, x_{1}^{*}-x_{2}^{*}\right\rangle \geqslant 0,
$$

and maximally monotone if, furthermore, no point can be added to gra M without compromising monotonicity.

Definition

Let $\emptyset \neq D \subset \mathcal{X}$, let $K: D \rightarrow \mathcal{X}^{*}$, and let $M: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$ be such that ran $K \subset \operatorname{ran}(K+M)$ and $K+M$ is injective. The warped resolvent of M with kernel K is $J_{M}^{K}=(K+M)^{-1} \circ K$.

The warped resolvent: Properties

- Sufficient conditions for ran $K \subset$ ran $(K+M)$ and $K+M$ is injective are given in (Būi/PLC, 2019).
■ $J_{M}^{K}: D \rightarrow D$.
■ $\operatorname{Fix} J_{M}^{K}=D \cap \operatorname{zer} M$.
■ $p=J_{M}^{K} x \Leftrightarrow(p, K x-K p) \in \operatorname{gra} M$.
- Suppose that M is monotone. Let $x \in D$, and set $y=J_{M}^{K} x$ and $y^{*}=K x-K y$. Then

$$
\text { zer } M \subset\left\{z \in \mathcal{X} \mid\left\langle z-y, y^{*}\right\rangle \leqslant 0\right\}
$$

- Suppose that M is monotone. Set $p=J_{M}^{K} x$ and $q=J_{M}^{K} y$. Then

$$
\langle p-q, K x-K y\rangle \geqslant\langle p-q, K p-K q\rangle
$$

The warped resolvent: Examples

$M: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$ is maximally monotone.
■ If \mathcal{X} is Hilbertian and $K=\mathrm{ld}, J_{M}^{K}$ is the classical resolvent.

The warped resolvent: Examples

$M: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$ is maximally monotone.

- If \mathcal{X} is Hillbertian and $K=\mathrm{ld}, J_{M}^{K}$ is the classical resolvent.
- If \mathcal{X} is strictly convex with normalized duality mapping K, then J_{M}^{K} is the extended resolvent of (Kassay, 1985).

The warped resolvent: Examples

$M: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$ is maximally monotone.
■ If \mathcal{X} is Hilbertian and $K=\mathrm{ld}, J_{M}^{K}$ is the classical resolvent.

- If \mathcal{X} is strictly convex with normalized duality mapping K, then J_{M}^{K} is the extended resolvent of (Kassay, 1985).
- Let $f: \mathcal{X} \rightarrow$] $-\infty,+\infty$] be a Legendre function such that $\operatorname{dom} M \subset$ int dom f, and set $K=\nabla f$. Then J_{M}^{K} is the D-resolvent of (Bauschke/Borwein/PLC, 2003).

The warped resolvent: Examples

$M: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$ is maximally monotone.
■ If \mathcal{X} is Hilbertian and $K=\mathrm{ld}, J_{M}^{K}$ is the classical resolvent.

- If \mathcal{X} is strictly convex with normalized duality mapping K, then J_{M}^{K} is the extended resolvent of (Kassay, 1985).
■ Let $f: \mathcal{X} \rightarrow$] $-\infty,+\infty$] be a Legendre function such that $\operatorname{dom} M \subset$ int dom f, and set $K=\nabla f$. Then J_{M}^{K} is the D-resolvent of (Bauschke/Borwein/PLC, 2003).
- A: $\mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$ and $B: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$ are maximally monotone, and $f: \mathcal{X} \rightarrow]-\infty,+\infty]$ is a suitable convex function. Set

$$
M=A+B \quad \text { and } \quad K: \operatorname{intdom} f \rightarrow \mathcal{X}^{*}: x \mapsto \nabla f(x)-B x .
$$

Then $J_{M}^{K}=(\nabla f+A)^{-1} \circ(\nabla f-B)$ is the Bregman forward-backward operator to be investigated in Part 4.

The warped resolvent: Examples

- Let $K: \mathcal{X} \rightarrow \mathcal{X}^{*}$ be strictly monotone, 3^{*} monotone, and surjective. Then J_{M}^{K} is the K-resolvent of (Bauschke/Wang/Yao, 2010).

The warped resolvent: Examples

- Let $K: \mathcal{X} \rightarrow \mathcal{X}^{*}$ be strictly monotone, 3^{*} monotone, and surjective. Then J_{M}^{K} is the K-resolvent of (Bauschke/Wang/Yao, 2010).
- Let $\varnothing \neq C \subset \mathcal{X}$ be closed and convex, with normal cone operator N_{C}. The warped projection operator is proj$j_{C}^{K}=J_{N_{C}}^{K}=\left(K+N_{C}\right)^{-1} \circ K$.

Left: Warped projections onto $B(0 ; 1)$. Sets of points projecting onto p_{1}, p_{2}, and p_{3} for $K_{1}=l d$ and

$$
K_{2}:\left(\xi_{1}, \xi_{2}\right) \mapsto\left(\frac{\xi_{1}^{3}}{2}+\frac{\xi_{1}}{5}-\xi_{2}, \xi_{1}+\xi_{2}\right)
$$

Note that K_{2} is not a gradient.

Warped proximal iterations in Hillbert space

PART 3:

Warped proximal iterations in Hilbert spaces

Finding zeros of monotone operators: Geometry

■ M maximally monotone with $Z=\operatorname{zer} M \neq \emptyset$.

Finding zeros of monotone operators: Geometry

■ M maximally monotone with $Z=\operatorname{zer} M \neq \emptyset$.

- Iterate

$$
\begin{aligned}
& \left(y_{n}, y_{n}^{*}\right) \in \operatorname{gra} M \\
& \lambda_{n} \in[\varepsilon, 2-\varepsilon] \\
& \text { if }\left\langle y_{n}-x_{n} \mid y_{n}^{*}\right\rangle<0 \\
& \left\lfloor x_{n+1}=x_{n}+\lambda_{n}\left\langle y_{n}-x_{n} \mid y_{n}^{*}\right\rangle y_{n}^{*} /\left\|y_{n}^{*}\right\|^{2}\right. \\
& \text { else } \\
& \left\lfloor x_{n+1}=x_{n} .\right.
\end{aligned}
$$

Finding zeros of monotone operators: Geometry

- M maximally monotone with $Z=\operatorname{zer} M \neq \emptyset$.
- Iterate

$$
\begin{aligned}
& \left(y_{n}, y_{n}^{*}\right) \in \operatorname{gra} M \\
& \lambda_{n} \in[\varepsilon, 2-\varepsilon] \\
& \text { if }\left\langle y_{n}-x_{n} \mid y_{n}^{*}\right\rangle<0 \\
& \left\lfloor x_{n+1}=x_{n}+\lambda_{n}\left\langle y_{n}-x_{n} \mid y_{n}^{*}\right\rangle y_{n}^{*} /\left\|y_{n}^{*}\right\|^{2}\right. \\
& \text { else } \\
& \left\lfloor x_{n+1}=x_{n} .\right.
\end{aligned}
$$

- Weak convergence to a point in Z if weak cluster points are in Z.
- The weak-to-strong convergence principle (Bauschke/PLC, 2001) gives strong convergence of a 2 half-spaces variant.
■ How to choose $\left(y_{n}, y_{n}^{*}\right) \in$ gra M ?

Finding zeros of monotone operators: Geometry

■ M maximally monotone with $Z=\operatorname{zer} M \neq \varnothing$.
■ Iterate

$$
\begin{aligned}
& y_{n}=J_{\gamma_{n} M}^{K_{n}} \widetilde{x}_{n} \\
& y_{n}^{*}=\gamma_{n}^{-1}\left(K_{n} \widetilde{x}_{n}-K_{n} y_{n}\right) \\
& \lambda_{n} \in[\varepsilon, 2-\varepsilon] \\
& \text { if }\left\langle y_{n}-x_{n} \mid y_{n}^{*}\right\rangle<0 \\
& \left\lfloor x_{n+1}=x_{n}+\lambda_{n}\left\langle y_{n}-x_{n} \mid y_{n}^{*}\right\rangle y_{n}^{*} /\left\|y_{n}^{*}\right\|^{2}\right. \\
& \text { else } \\
& \left\lfloor x_{n+1}=x_{n} .\right.
\end{aligned}
$$

- Key: Move beyond Minty's parametrization of gra M and use a warped resolvent to pick $\left(y_{n}, y_{n}^{*}\right) \in$ gra M.
- Simply evaluate a warped resolvent at some point \tilde{x}_{n}.

Convergence

Notation: $\left(y^{*}\right)^{\sharp}=y^{*} /\left\|y^{*}\right\|$ if $y^{*} \neq 0 ;=0$ otherwise.

Theorem

Let $\left(\gamma_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $\left[\varepsilon,+\infty\left[\right.\right.$. For every $n \in \mathbb{N}$, let $\widetilde{x}_{n} \in \mathcal{X}$ and let $K_{n}: \mathcal{X} \rightarrow \mathcal{X}$ be a monotone operator such that ran $K_{n} \subset \operatorname{ran}\left(K_{n}+\gamma_{n} M\right)$ and $K_{n}+\gamma_{n} M$ is injective. Suppose that:

$$
\text { ■ } \tilde{x}_{n}-x_{n} \rightarrow 0 .
$$

- $\left\langle\widetilde{x}_{n}-y_{n} \mid\left(K_{n} \widetilde{x}_{n}-K_{n} y_{n}\right)^{\sharp}\right\rangle \rightarrow 0 \Rightarrow\left\{\begin{array}{l}\tilde{x}_{n}-y_{n} \rightharpoonup 0 \\ K_{n} \widetilde{x}_{n}-K_{n} y_{n} \rightarrow 0 .\end{array}\right.$

Then $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges weakly to a point in Z.

Convergence

Notation: $\left(y^{*}\right)^{\sharp}=y^{*} /\left\|y^{*}\right\|$ if $y^{*} \neq 0 ;=0$ otherwise.

Theorem

Let $\left(\gamma_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $\left[\varepsilon,+\infty\left[\right.\right.$. For every $n \in \mathbb{N}$, let $\widetilde{x}_{n} \in \mathcal{X}$ and let $K_{n}: \mathcal{X} \rightarrow \mathcal{X}$ be a monotone operator such that ran $K_{n} \subset \operatorname{ran}\left(K_{n}+\gamma_{n} M\right)$ and $K_{n}+\gamma_{n} M$ is injective. Suppose that:

- $\tilde{x}_{n}-x_{n} \rightarrow 0$.
- $\left\langle\widetilde{x}_{n}-y_{n} \mid\left(K_{n} \widetilde{x}_{n}-K_{n} y_{n}\right)^{\sharp}\right\rangle \rightarrow 0 \Rightarrow\left\{\begin{array}{l}\tilde{x}_{n}-y_{n} \rightharpoonup 0 \\ K_{n} \widetilde{x}_{n}-K_{n} y_{n} \rightarrow 0 .\end{array}\right.$

Then $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges weakly to a point in Z.

- We also have a strongly convergent version.

Choosing the evaluation points $\left(\widetilde{x}_{n}\right)_{n \in \mathbb{N}}$

The auxiliary sequence $\left(\widetilde{x}_{n}\right)_{n \in \mathbb{N}}$ can serve several purposes:

- \widetilde{x}_{n} can model an additive perturbation of x_{n}, say $\widetilde{x}_{n}=x_{n}+e_{n}$, where we require only $\left\|e_{n}\right\| \rightarrow 0$.

Choosing the evaluation points $\left(\widetilde{x}_{n}\right)_{n \in \mathbb{N}}$

The auxiliary sequence $\left(\widetilde{x}_{n}\right)_{n \in \mathbb{N}}$ can serve several purposes:

- \widetilde{x}_{n} can model an additive perturbation of x_{n}, say $\widetilde{x}_{n}=x_{n}+e_{n}$, where we require only $\left\|e_{n}\right\| \rightarrow 0$.
- Modeling inertia: let $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ be any bounded sequence in \mathbb{R} and set $\widetilde{x}_{n}=x_{n}+\alpha_{n}\left(x_{n}-x_{n-1}\right)$.

Choosing the evaluation points $\left(\widetilde{x}_{n}\right)_{n \in \mathbb{N}}$

The auxiliary sequence $\left(\widetilde{x}_{n}\right)_{n \in \mathbb{N}}$ can serve several purposes:

- \widetilde{x}_{n} can model an additive perturbation of x_{n}, say $\widetilde{x}_{n}=x_{n}+e_{n}$, where we require only $\left\|e_{n}\right\| \rightarrow 0$.
- Modeling inertia: let $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ be any bounded sequence in \mathbb{R} and set $\widetilde{x}_{n}=x_{n}+\alpha_{n}\left(x_{n}-x_{n-1}\right)$.
- More generally,

$$
(\forall n \in \mathbb{N}) \quad \widetilde{x}_{n}=\sum_{j=0}^{n} \mu_{n, j} x_{j} .
$$

with $\sum_{j=0}^{n} \mu_{n, j}=1$ and $\left(1-\mu_{n, n}\right) x_{n}-\sum_{j=0}^{n-1} \mu_{n, j} x_{j} \rightarrow 0$.

Choosing the evaluation points $\left(\widetilde{x}_{n}\right)_{n \in \mathbb{N}}$

The auxiliary sequence $\left(\widetilde{x}_{n}\right)_{n \in \mathbb{N}}$ can serve several purposes:

- \widetilde{x}_{n} can model an additive perturbation of x_{n}, say $\widetilde{x}_{n}=x_{n}+e_{n}$, where we require only $\left\|e_{n}\right\| \rightarrow 0$.
■ Modeling inertia: let $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ be any bounded sequence in \mathbb{R} and set $\widetilde{x}_{n}=x_{n}+\alpha_{n}\left(x_{n}-x_{n-1}\right)$.
■ More generally,

$$
(\forall n \in \mathbb{N}) \quad \widetilde{x}_{n}=\sum_{j=0}^{n} \mu_{n, j} x_{j} .
$$

with $\sum_{j=0}^{n} \mu_{n, j}=1$ and $\left(1-\mu_{n, n}\right) x_{n}-\sum_{j=0}^{n-1} \mu_{n, j} x_{j} \rightarrow 0$.

- Nonlinear perturbations can also be considered. For instance, at iteration $n, \widetilde{x}_{n}=\operatorname{proj}_{c_{n}} x_{n}$ is an approximation to x_{n} from some suitable closed convex set $C_{n} \subset \mathcal{X}$.

Corollary 1

Corollary

Let $A: \mathcal{X} \rightarrow 2^{\mathcal{X}}$ be maximally monotone, and let $B: \mathcal{X} \rightarrow \mathcal{X}$ be monotone and β-Lipschitzian, with zer $(A+B) \neq \varnothing$. Let $W_{n}: \mathcal{X} \rightarrow \mathcal{X}$ be α-strongly monotone and χ-Lipschitzian, and let $\gamma_{n} \in[\varepsilon,(\alpha-\varepsilon) / \beta]$, let $\lambda_{n} \in[\varepsilon, 2-\varepsilon]$, and let $\mathcal{X} \ni e_{n} \rightarrow 0$. Furthermore, let $m>0$ and let $\left(\mu_{n, j}\right)_{n \in \mathbb{N}, 0 \leqslant j \leqslant n}$ be bounded and satisfy

- For every $n>m$ and every integer $j \in[0, n-m-1], \mu_{n, j}=0$.
- For every $n \in \mathbb{N}, \sum_{j=0}^{n} \mu_{n, j}=1$.

Iterate

$$
\begin{aligned}
& \widetilde{x}_{n}=e_{n}+\sum_{j=0}^{n} \mu_{n, j} x_{j} \\
& v_{n}^{*}=W_{n} \widetilde{x}_{n}-\gamma_{n} B \widetilde{x}_{n} \\
& y_{n}=\left(W_{n}+\gamma_{n} A\right)^{-1} v_{n}^{*} \\
& y_{n}^{*}=\gamma_{n}^{-1}\left(v_{n}^{*}-W_{n} y_{n}\right)+B y_{n} \\
& \text { if }\left\langle y_{n}-x_{n} \mid y_{n}^{*}\right\rangle<0 \\
& x_{n+1}=x_{n}+\frac{\lambda_{n}\left\langle y_{n}-x_{n} \mid y_{n}^{*}\right\rangle}{\left\|y_{n}^{*}\right\|^{2}} y_{n}^{*} \\
& \text { else } x_{n+1}=x_{n} \text {. }
\end{aligned}
$$

Then $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges weakly to a point in zer $(A+B)$.
Proof: $M=A+B$ and $K_{n}=W_{n}-\gamma_{n} B$.
Special case: Tseng's algorithm.

Corollary 2: Multivariate inclusions

- Problem: find $\left(x_{i}\right)_{i \in l} \in X_{i \in 1} \mathcal{X}_{i}$ such that

$$
(\forall i \in I) \quad 0 \in A_{i} x_{i}+\sum_{j \in J} L_{j i}^{*}\left(\left(B_{j}+D_{j}\right)\left(\sum_{k \in I} L_{j k} x_{k}\right)\right)+C_{i} x_{i}
$$

■ Warping: Apply Theorem 2 to

$$
\begin{array}{r}
M: \quad\left(\left(x_{i}\right)_{i \in I},\left(y_{j}\right)_{j \in J},\left(v_{j}^{*}\right)_{j \in J}\right) \mapsto\left(\underset{i \in I}{X}\left(A_{i} x_{i}+C_{i} x_{i}+\sum_{j \in J} L_{j i}^{*} v_{j}^{*}\right),\right. \\
\left.X\left(B_{j} y_{j}+D_{j} y_{j}-v_{j}^{*}\right), \underset{j \in J}{X}\left\{y_{j}-\sum_{i \in I} L_{j i} x_{i}\right\}\right)
\end{array}
$$

and $K_{n}:\left(x, y, v^{*}\right) \mapsto$

$$
\begin{array}{r}
\left(\left(\gamma_{i, n}^{-1} F_{i, n} x_{i}-C_{i} x_{i}-\sum_{j \in J} L_{j i}^{*} v_{j}^{*}\right)_{i \in l},\left(\tau_{j, n}^{-1} W_{j, n} y_{j}-D_{j} y_{j}+v_{j}^{*}\right)_{j \in J},\right. \\
\left.\left(-y_{j}+v_{j}^{*}+\sum_{i \in l} L_{j i} x_{i}\right)_{j \in J}\right),
\end{array}
$$

where $F_{i, n}$ and $W_{j, n}$ are strongly monotone and Lipschitzian.

Corollary 2: Multivariate inclusions

```
for \(n=0,1, \ldots\)
    for every \(i \in 1\)
        \(l_{i, n}^{*}=F_{i, n} \widetilde{x}_{i, n}-\gamma_{i, n} C_{i} \widetilde{x}_{i, n}-\gamma_{i, n} \sum_{j \in J} L_{j i}^{*} \widetilde{v}_{j, n}^{*}\)
        \(a_{i, n}=\left(F_{i, n}+\gamma_{i, n} A_{i}\right)^{-1}\left(l_{i, n}^{*}+\gamma_{i, n} n_{i}^{*}\right)\)
        \(o_{i, n}^{*}=\gamma_{i, n}^{-1}\left(l_{i, n}^{*}-F_{i, n} a_{i, n}\right)+C_{i} a_{i, n}\)
    for every \(j \in J\)
        \(t_{j, n}^{*}=W_{j, n} \widetilde{Y}_{j, n}-\tau_{j, n} D_{j} \widetilde{y}_{j, n}+\tau_{j, n} \widetilde{V}_{j, n}^{*}\)
        \(b_{j, n}=\left(W_{j, n}+\tau_{j, n} B_{j}\right)^{-1} t_{j, n}^{*}\)
        \(f_{j, n}^{*}=\tau_{j, n}^{-1}\left(t_{j, n}^{*}-W_{j, n} b_{j, n}\right)+D_{j} b_{j, n}\)
        \(c_{j, n}=\sum_{i \in l} L_{j i} \widetilde{X}_{i, n}-\widetilde{y}_{j, n}+\widetilde{v}_{j, n}^{*}-r_{j}\)
    for every \(i \in I\)
        \(a_{i, n}^{*}=o_{i, n}^{*}+\sum_{j \in J} L_{j i}^{*} c_{j, n}\)
    for every \(j \in J\)
        \(b_{j, n}^{*}=f_{j, n}^{*}-c_{j, n}\)
        \(c_{j, n}^{*}=r_{j}+b_{j, n}-\sum_{i \in L} L_{j i} a_{i, n}\)
    \(\sigma_{n}=\sum_{i \in 1}\left\|a_{i, n}^{*}\right\|^{2}+\sum_{j \in J}\left(\left\|b_{j, n}^{*}\right\|^{2}+\left\|c_{j, n}^{*}\right\|^{2}\right)\)
    \(\theta_{n}=\sum_{i \in 1}\left\langle a_{i, n}-x_{i, n} \mid a_{i, n}^{*}\right\rangle+\sum_{j \in J}\left(\left\langle b_{j, n}-y_{j, n} \mid b_{j, n}^{*}\right\rangle+\left\langle c_{j, n}-v_{j, n}^{*} \mid c_{j, n}^{*}\right\rangle\right)\)
    if \(\theta_{n}<0\)
    \(\left\lfloor\rho_{n}=\lambda_{n} \theta_{n} / \sigma_{n}\right.\)
    else
        \(\rho_{n}=0\)
    for every \(i \in I\)
        \(x_{i, n+1}=x_{i, n}+\rho_{n} a_{i, n}^{*}\)
    for every \(j \in J\)
            \(y_{j, n+1}=y_{j, n}+\rho_{n} b_{j, n}^{*}\)
            \(v_{j, n+1}^{*}=v_{j, n}^{*}+\rho_{n} C_{j, n}^{*}\).
```


Further connections

■ Primal-dual splitting.

- Consider the inclusion $0 \in A x+L^{*}(B(L x))$ and the associated Kuhn-Tucker operator

$$
M: \mathcal{X} \times \mathcal{Y} \rightarrow 2^{\mathcal{X} \times \mathcal{Y}}:\left(x, y^{*}\right) \mapsto\left(A x+L^{*} y^{*}\right) \times\left(-L x+B^{-1} y^{*}\right)
$$

- The cutting plane method of (Alotaibi/PLC/Shahzad, 2014) and (PLC/Eckstein, 2018) generate points $\left(a_{n}, a_{n}^{*}\right) \in \operatorname{graA}$ and $\left(b_{n}, b_{n}^{*}\right) \in \operatorname{gra} B$. This implicitly provides

$$
\left(y_{n}, y_{n}^{*}\right)=\left(\left(a_{n}, b_{n}^{*}\right),\left(a_{n}^{*}+L^{*} b_{n}^{*},-L a_{n}+b_{n}\right)\right) \in \operatorname{gra} M
$$

to construct $H_{n} \supset$ zer M.

- The primal-dual framework of (Alotaibi/PLC/Shahzad, 2014) is therefore an instance of Theorem 2 with

$$
K_{n}:\left(x, y^{*}\right) \mapsto\left(\gamma_{n}^{-1} x-L^{*} y^{*}, L x+\mu_{n} y^{*}\right)
$$

Further connections

■ Primal-dual splitting.

- Consider the inclusion $0 \in A x+L^{*}(B(L x))$ and the associated Kuhn-Tucker operator

$$
M: \mathcal{X} \times \mathcal{Y} \rightarrow 2^{\mathcal{X} \times \mathcal{Y}}:\left(x, y^{*}\right) \mapsto\left(A x+L^{*} y^{*}\right) \times\left(-L x+B^{-1} y^{*}\right)
$$

- The cutting plane method of (Alotaibi/PLC/Shahzad, 2014) and (PLC/Eckstein, 2018) generate points $\left(a_{n}, a_{n}^{*}\right) \in \operatorname{gra} A$ and $\left(b_{n}, b_{n}^{*}\right) \in \operatorname{gra} B$. This implicitly provides

$$
\left(y_{n}, y_{n}^{*}\right)=\left(\left(a_{n}, b_{n}^{*}\right),\left(a_{n}^{*}+L^{*} b_{n}^{*},-L a_{n}+b_{n}\right)\right) \in \operatorname{gra} M
$$

to construct $H_{n} \supset$ zer M.

- The primal-dual framework of (Alotaibi/PLC/Shahzad, 2014) is therefore an instance of Theorem 2 with

$$
K_{n}:\left(x, y^{*}\right) \mapsto\left(\gamma_{n}^{-1} x-L^{*} y^{*}, L x+\mu_{n} y^{*}\right)
$$

■ An alternate cutting plane strategy was independently investigated in (Giselsson, arXiv 2019), where an instance of a warped resolvent (in our sense) was used.

Warped proximal iterations with Bregman kernels

PART 4:

Warped proximal iterations with Bregman kernels

Bregman forward-backward splitting

- \mathcal{X} a reflexive real Banach space, $A: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$ and $B: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$ maximally monotone, and $f \in \Gamma_{0}(\mathcal{X})$ essentially smooth.
■ $C=(\operatorname{int} \operatorname{dom} f) \cap \operatorname{dom} A \subset \operatorname{intdom} B$ and B is single-valued on int dom B.
■ $(\forall x \in C)(\forall y \in C)(\forall z \in \mathscr{S})\left(\forall y^{*} \in A y\right)\left(\forall z^{*} \in A z\right)$

$$
\langle y-x, B y-B z\rangle \leqslant \kappa D_{f}(x, y)+\left\langle y-z, \delta_{1}\left(y^{*}-z^{*}\right)+\delta_{2}(B y-B z)\right\rangle .
$$

- The objective is to

$$
\text { find } x \in \mathscr{S}=(\text { int dom } f) \cap \operatorname{zer}(A+B) \neq \emptyset \text {. }
$$

Bregman forward-backward splitting

- \mathcal{X} a reflexive real Banach space, $A: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$ and $B: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$ maximally monotone, and $f \in \Gamma_{0}(\mathcal{X})$ essentially smooth.
- $C=(\operatorname{int} \operatorname{dom} f) \cap \operatorname{dom} A \subset \operatorname{intdom} B$ and B is single-valued on int dom B.
■ $(\forall x \in C)(\forall y \in C)(\forall z \in \mathscr{S})\left(\forall y^{*} \in A y\right)\left(\forall z^{*} \in A z\right)$

$$
\langle y-x, B y-B z\rangle \leqslant \kappa D_{f}(x, y)+\left\langle y-z, \delta_{1}\left(y^{*}-z^{*}\right)+\delta_{2}(B y-B z)\right\rangle .
$$

- The objective is to

$$
\text { find } x \in \mathscr{S}=(\operatorname{int} \operatorname{dom} f) \cap \operatorname{zer}(A+B) \neq \emptyset .
$$

- Apply the warped proximal point algorithm

$$
x_{n+1}=J_{M}^{k_{n}} x_{n}
$$

to $M=A+B$ with kernel $K_{n}=\gamma_{n}^{-1} \nabla f_{n}-B$ for a suitable essentially smooth function f_{n}.

Bregman forward-backward splitting

- \mathcal{X} a reflexive real Banach space, $A: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$ and $B: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$ maximally monotone, and $f \in \Gamma_{0}(\mathcal{X})$ essentially smooth.
- $C=(\operatorname{int} \operatorname{dom} f) \cap \operatorname{dom} A \subset \operatorname{intdom} B$ and B is single-valued on int dom B.
■ $(\forall x \in C)(\forall y \in C)(\forall z \in \mathscr{S})\left(\forall y^{*} \in A y\right)\left(\forall z^{*} \in A z\right)$

$$
\langle y-x, B y-B z\rangle \leqslant \kappa D_{f}(x, y)+\left\langle y-z, \delta_{1}\left(y^{*}-z^{*}\right)+\delta_{2}(B y-B z)\right\rangle .
$$

- The objective is to

$$
\text { find } x \in \mathscr{S}=(\operatorname{int} \operatorname{dom} f) \cap \operatorname{zer}(A+B) \neq \emptyset
$$

- Apply the warped proximal point algorithm

$$
x_{n+1}=J_{M}^{k_{n}} x_{n}
$$

to $M=A+B$ with kernel $K_{n}=\gamma_{n}^{-1} \nabla f_{n}-B$ for a suitable essentially smooth function f_{n}.

- We obtain the Bregman forward-backward splitting algorithm

$$
x_{n+1}=\left(\nabla f_{n}+\gamma_{n} A\right)^{-1}\left(\nabla f_{n}\left(x_{n}\right)-\gamma_{n} B x_{n}\right) .
$$

Convergence

Theorem

"Under suitable assumptions,"

$$
x_{n+1}=\left(\nabla f_{n}+\gamma_{n} A\right)^{-1}\left(\nabla f_{n}\left(x_{n}\right)-\gamma_{n} B x_{n}\right) \rightharpoonup x \in \mathscr{S} .
$$

- This result provides, for instance, the convergence of the basic Bregman forward-backward splitting method

$$
(\nabla f+\gamma A)^{-1}\left(\nabla f\left(x_{n}\right)-\gamma B x_{n}\right)
$$

which is new even in Euclidean spaces.

- It also allows us to recover and extend 4, so far unrelated, splitting frameworks.

$x_{n+1}=\left(\nabla f_{n}+\gamma_{n} A\right)^{-1}\left(\nabla f_{n}\left(x_{n}\right)-\gamma_{n} B x_{n}\right)$: Instantiations

- The iteration $x_{n+1}=\left(\nabla f+\gamma_{n} A\right)^{-1}\left(\nabla f\left(x_{n}\right)\right)$ for finding a zero of A in a reflexive Banach space (Bauschke/Borwein/PLC, 2003).
- The iteration $x_{n+1}=\left(U_{n}+\gamma_{n} A\right)^{-1}\left(U_{n} x_{n}-\gamma_{n} B x_{n}\right)$ for finding a zero of $A+B$ in a Hilbert space, where U_{n} is a strongly positive Hermitian bounded linear operator (PLC/Vũ, 2014).
- The iteration

$$
x_{n+1}=(\nabla f+\gamma A)^{-1}\left(\nabla f\left(x_{n}\right)-\gamma B x_{n}\right)
$$

for finding a zero of $A+B$ in a Hillbert space, where f is real-valued and strongly convex (Renaud/Cohen, 1997).

- The iteration

$$
x_{n+1}=\left(\nabla f_{n}+\gamma_{n} \partial \varphi\right)^{-1}\left(\nabla f_{n}\left(x_{n}\right)-\gamma_{n} \nabla \psi\left(x_{n}\right)\right)
$$

for minimizing $\varphi+\psi$ in a reflexive Banach space (Nguyen, 2017; see also Bauschke/Bolte/Teboulle, 2017).

Illustration: The minimization setting

Let $\varphi \in \Gamma_{0}(\mathcal{X}), \psi \in \Gamma_{0}(\mathcal{X})$, and $f \in \Gamma_{0}(\mathcal{X})$ be essentially smooth. Set $C=(\operatorname{int} \operatorname{dom} f) \cap \operatorname{dom} \partial \varphi$ and $\mathscr{S}=(\operatorname{intdom} f) \cap \operatorname{Argmin}(\varphi+\psi)$. Suppose that $C \neq \varnothing, \varphi+\psi$ is coercive, $C \subset \operatorname{int} \operatorname{dom} \psi, \mathscr{S} \neq \varnothing, \psi$ is Gâteaux differentiable on $\operatorname{int} \operatorname{dom} \psi$, and $D_{f} \geqslant \beta D_{\psi}$.

Corollary

Take $x_{0} \in C$ and set

$$
(\forall n \in \mathbb{N}) \quad x_{n+1}=\left(\nabla f_{n}+\gamma_{n} \partial \varphi\right)^{-1}\left(\nabla f_{n}\left(x_{n}\right)-\gamma_{n} \nabla \psi\left(x_{n}\right)\right)
$$

Then:
■ $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges weakly to a point in \mathscr{S}.
■ $(\varphi+\psi)\left(x_{n}\right)-\min (\varphi+\psi)(\mathcal{X})=O(1 / n)$.
■ $\sum_{n \in \mathbb{N}} n\left(D_{f_{n}}\left(x_{n+1}, x_{n}\right)+D_{f_{n}}\left(x_{n}, x_{n+1}\right)\right)<+\infty$.

■ Weak convergence was obtained in (Nguyen, 2017) under more restrictive assumptions.

- The rates are new, even in Euclidean spaces.

References

■ Bùi/PLC, Warped proximal iterations for monotone inclusions, arXiv, 2019.

■ Bùi/PLC, Bregman forward-backward operator splitting, arXiv, 2019.

■ Bùi/PLC, Multivariate monotone inclusions in saddle form, arXiv, 2020.

■ PLC, Monotone operator theory in convex optimization, Math. Programming, 2018.
■ Bauschke/PLC, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd ed. corrected printing, Springer, 2019.

Bregman distance

■ $f \in \Gamma_{0}(\mathcal{X})$ is a Legendre function if it is both (Bauschke/Borwein/PLC, 2001):

■ Essentially smooth: ∂f is both locally bounded and singlevalued on its domain.

- Essentially strictly convex: ∂f^{*} is locally bounded on its domain and f is strictly convex on every convex subset of dom ∂f.
■ Take $f \in \Gamma_{0}(\mathcal{X})$, Gâteaux differentiable on int $\operatorname{dom} f \neq \emptyset$. The associated Bregman distance is

$$
\begin{aligned}
D_{f}: \mathcal{X} \times \mathcal{X} & \rightarrow[0,+\infty] \\
(x, y) & \mapsto \begin{cases}f(x)-f(y)-\langle x-y, \nabla f(y)\rangle, & \text { if } y \in \operatorname{int} \operatorname{dom} f ; \\
+\infty, & \text { otherwise. }\end{cases}
\end{aligned}
$$

