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Background

The use of dynamical systems in optimization & game theory

Dynamics and optimization
▸ Gradient flows [Too many to list]
▸ Non-Euclidean flows [Alvarez, Bolte, Bomze, Jordan, Teboulle, Wibisono,…]
▸ Heavy ball methods [Alvarez, Attouch, Bolte, Cominetti, Goudou, Redont,…]
▸ Accelerated methods [Attouch, Boyd, Candès, Peypouquet, Su,…]
▸ ⋯

Dynamics and games
▸ Population dynamics [Sandholm,…]
▸ Randommatching [Hofbauer, Sigmund, Weibull,…]
▸ Learning in games [Benaïm, Hart, Hofbauer, Mas-Colell, Sorin,…]
▸ ⋯
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Basic problem

minimizex∈Rd f (x)

▸ f non-convex [technical assumptions later]

▸ f unknown/difficult to manipulate in closed form [low precision methods]

▸ Single-player game: calculate best responses [more in second part]

P. Mertikopoulos Games, Dynamics & Optimization
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Gradient flows

The gradient flow of a function f ∶Rd → R

ẋ(t) = −∇ f (x(t)) (GF)

Main property: f is a (strict) Lyapunov function for (GF)

d f /dt = −∥∇ f (x(t))∥ ≤  w/ equality iff∇ f (x) = 

P. Mertikopoulos Games, Dynamics & Optimization
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Convergence of gradient flows

Blanket assumptions
▸ Lipschitz smoothness:

∥∇ f (x′) −∇ f (x)∥ ≤ L∥x′ − x∥ for all x , x′ ∈ Rd (LS)

▸ Bounded sublevels:

Lc ≡ {x ∈ Rd ∶ f (x) ≤ c} is bounded for all c < sup f (Bsub)

Theorem
▸ Assume: (LS), (Bsub)
▸ Then: x(t) converges to crit( f ) ≡ {x∗ ∈ Rd ∶ ∇ f (x∗) = }

P. Mertikopoulos Games, Dynamics & Optimization
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From flows to algorithms: gradient descent

Forward Euler (explicit) Ô⇒ gradient descent (GD) [Cauchy, 1847]

Xn+ = Xn − γn∇ f (Xn) (GD)

x

x+

−γ∇ f (x)
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From flows to algorithms: proximal gradient

Backward Euler (implicit) Ô⇒ proximal gradient (PG) [Martinet, 1970]

Xn+ = Xn − γn∇ f (Xn+) (PG)

x

x+
−γ∇ f (x+)
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From flows to algorithms: extra-gradient

Midpoint Runge-Kutta (explicit) Ô⇒ extra-gradient (EG) [Korpelevich, 1976]

Xn+/ = Xn − γn∇ f (Xn) Xn+ = Xn − γn∇ f (Xn+/) (EG)

x

xlead

−γ∇ f (x)

−γ∇ f (xlead)

x+
−γ∇ f (xlead)
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Stochastic gradient feedback

In many applications, perfect gradient information is unavailable / too costly:

▸ Machine learning:
f (x) = ∑N

i= f i(x) and only a batch of∇ f i(x) is computable per iteration

▸ Control / Engineering:
f (x) = E[F(x;ω)] and only∇F(x;ω) can be observed for a random ω

▸ Game Theory / Bandit Learning:
Only f (x) is observable

Stochastic first-order oracle (SFO) feedback:

Xn ↦ Vn
¯

feedback

= ∇ f (Xn)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
gradient

+ Zn

n̄oise

+ bn
®
bias

(SFO)

where Zn is “zero-mean” and bn is “small” (more later)
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Stochastic gradient descent

Noisy Euler (explicit) Ô⇒ stochastic gradient descent (SGD)

Xn+ = Xn − γn[∇ f (Xn) + Wn
°
noise

] (SGD)

x

x+

−γ[∇ f (x) +w]
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Example: zeroth-order feedback

Given f ∶R→ R, estimate f ′(x) at target point x ∈ R

f ′(x) ≈ f (x + δ) − f (x − δ)
δ

Pick u = ± with probability /. Then:

E[ f (x + δu)u] = 

f (x + δ) − 


f (x − δ)

Ô⇒ Estimate f ′(x) with a single query of f at x̂ = x + δu

Algorithm 1 Simultaneous perturbation stochastic approximation [Spall, 1992]

1: Draw u uniformly from Sd

2: Query x̂ = x + δu
3: Get f̂ = f (x̂)
4: Set V = (d/δ) f̂ u

P. Mertikopoulos Games, Dynamics & Optimization
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The Robbins-Monro template

Special cases of the generalized Robbins-Monro scheme

Xn+ = Xn − γn[∇ f (Xn) + Zn + bn] (RM)

with∑n γn =∞, γn → , and E[Zn ∣ Xn , . . . , X] = 

Examples
▸ Gradient descent (det.): Zn = , bn = 
▸ Proximal gradient (det.): Zn = , bn = ∇ f (Xn+) −∇ f (Xn)

▸ Extra-gradient (det.): Zn = , bn = ∇ f (Xn+/) −∇ f (Xn)

▸ Stochastic gradient descent (stoch.): Zn = zero-mean, bn = 

▸ SPSA (stoch.): Zn = (d/δ) f (X̂n)Un −∇ fδ(Xn), bn = ∇ fδ(Xn) −∇ f (Xn) where

fδ(x) =


vol(Bδ) ∫Bδ
f (x + δu) du

▸ ⋯

P. Mertikopoulos Games, Dynamics & Optimization
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From algorithms to flows

Basic idea: if γn is “small”, the noise washes out and “ limt→∞ (RM) = limt→∞ (GF) ”

Ô⇒ ODE method of stochastic approximation
[Ljung, 1977; Benveniste et al, 1990; Duflo, 1996; Kushner & Yin, 1997; Benaïm, 1999; …]

▸ Time interpolation: τn = ∑n
k= γk

▸ Trajectory interpolation: X(t) = Xn +
t − τn

τn+ − τn
(Xn+ − Xn)

▸ Xn is an asymptotic pseudotrajectory (APT) of (GF) if, for all T > :
lim
t→∞

sup
≤h≤T

∥X(t + h) −Φh(X(t))∥ = 

where Φs(x) denotes the position at time s of an orbit of (GF) starting at x
▸ Long run: X(t) tracks (GF) with arbitrary accuracy over windows of arbitrary length

[Benaïm & Hirsch, 1995, 1996; Benaïm, 1999; Benaïm, Hofbauer & Sorin, 2005, 2006;…]
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Stochastic approximation criteria

When is a sequence generated by (RM) an APT?

(A) ▸ Xn is bounded
▸ f is Lipschitz continuous and smooth:

∣ f (x′) − f (x)∣ ≤ G∥x′ − x∥ (LC)
∥∇ f (x′) −∇ f (x)∥ ≤ L∥x′ − x∥ (LS)

(B) ▸ E[∑n γn∥Zn∥] <∞

▸ supn E[∥Zn∥q] <∞ and∑n γ
+q/
n <∞

▸ Zn sub-Gaussian and γn = o(/ log n)

(C) ▸ ∑n γnbn =  with probability 

Proposition (Duflo 1996; Benaïm 1999; Hsieh, M & Cevher, 2020)
▸ Assume: any of (A); any of (B); (C)
▸ Then: Xn is an APT of (GF) with probability 

P. Mertikopoulos Games, Dynamics & Optimization
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Convergence of APTs

Theorem (Benaïm & Hirsch, 1995, 1996)
▸ Assume: Xn is a bounded APT of (GF)
▸ Then: Xn converges to crit( f ) with probability 

Theorem (Ljung 1977, Benaïm 1999)
▸ Assume: (LC), (LS), (Bsub); supn∥Xn∥ <∞
▸ Then: Xn converges (a.s.) to a component of crit( f ) where f is constant

Boundedness: implicit, algorithm-dependent assumption; not easy to verify

P. Mertikopoulos Games, Dynamics & Optimization
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Can boundedness be dropped?

Key obstacle: infinite plains of vanishing gradients [think f (x) = − exp(−x)]

Countered if gradient sublevel sets do not extend to infinity

Mε ≡ {x ∈ Rd ∶ ∥∇ f (x)∥ ≤ ε} is bounded for some ε >  (Gsub)

[Ô⇒ crit( f ) compact]

Proposition (M, Hallak, Kavis & Cevher, 2020)
▸ Assume: (LC), (LS), (Bsub), (Gsub)
▸ Then: for all ε > , there exists some τ = τ(ε) such that, for all t ≥ τ:

(a) f (x(t)) ≤ f (x()) − ε; or
(b) x(t) is within ε-distance of crit( f )

In words: (GF) either descends f by a uniform amount, or it is already near-critical

P. Mertikopoulos Games, Dynamics & Optimization
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Can boundedness be dropped?

Proposition
▸ Assume: (LC), (LS), (Bsub), (Gsub); any of (B); (C)
▸ Then: with probability , there exists a (random) subsequence Xnk of Xn

converging to a critical point of f

Theorem (M, Hallak, Kavis & Cevher, 2020)
▸ Assume: (LC), (LS), (Bsub), (Gsub); any of (B); (C)
▸ Then: with probability , Xn converges to a (possibly random) component of

crit( f ) over which f is constant
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Are all critical points desirable?

Figure: A hyperbolic ridge manifold, typical of ResNet loss landscapes [Li et al., 2018]
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Are traps avoided?

Hyperbolic saddle (isolated non-minimizing critical point)

λmin(Hess( f (x∗))) < , det(Hess( f (x∗))) ≠ 

Ô⇒ (GF) is linearly unstable near x∗

Ô⇒ convergence to x∗ unlikely

Theorem (Pemantle, 1990)
▸ Assume:

▸ x∗ is a hyperbolic saddle point
▸ Zn is finite (a.s.) and uniformly exciting

E[⟨Z , u⟩+] ≥ c for all unit vectors u ∈ Sd− , x ∈ Rd

▸ γn ∝ /n

▸ Then: P(limn→∞ Xn = x∗) = 

P. Mertikopoulos Games, Dynamics & Optimization
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Are non-hyperbolic traps avoided?

Strict saddle
λmin(Hess( f (x∗))) < 

Theorem (Ge, Huang, Jin & Yuan, 2015)
▸ Given: confidence level ζ > 
▸ Assume:

▸ f is bounded and satisfies (LS)
▸ Hess( f (x)) is Lipschitz continuous
▸ for all x ∈ Rd : (a) ∥∇ f (x)∥ ≥ ε; or (b) λmin(Hess( f (x))) ≤ −β; or (c) x is δ-close

to a local minimum x∗ of f around which f is α-strongly convex
▸ Zn is finite (a.s.) and contains a component uniformly sampled from the unit

sphere; also, bn = 
▸ γn ≡ γ with γ = O(/ log(/ζ))

▸ Then: with probability at least  − ζ, the algorithm produces after
O(γ− log(/(γζ))) iterations a point which isO(√γ log(/(γζ)))-close to x∗

(and hence away from any strict saddle)

P. Mertikopoulos Games, Dynamics & Optimization
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Are non-hyperbolic traps avoided always?

Theorem (M, Hallak, Kavis & Cevher, 2020)
▸ Assume:

▸ f satisfies (LC) and (LS)
▸ Zn is finite (a.s.) and uniformly exciting

E[⟨Z , u⟩+] ≥ c for all unit vectors u ∈ Sd− , x ∈ Rd

▸ γn ∝ /np for some p ∈ (, ]

▸ Then: P(Xn converges to a set of strict saddle points) = 

Proof.
Use Pemantle (1990) + differential geometric arguments of Benaïm and Hirsch (1995).

P. Mertikopoulos Games, Dynamics & Optimization
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Single- vs. multi-agent setting

In single-agent optimization, first-order iterative schemes
▸ Converge to the problem’s set of critical points
▸ Avoid spurious, non-minimizing critical manifolds

Does this intuition carry over to games?

Domulti-agent learning algorithms
▸ Converge to unilaterally stable/stationary points?
▸ Avoid spurious, non-equilibrium points?

P. Mertikopoulos Games, Dynamics & Optimization
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Online decision processes

Agents called to take repeated decisions withminimal information:

for n ≥  do
Choose action Xn [focal agent choice]

Incur loss fn(Xn) [depends on all agents]

end for

Driving question: How to choose “good” actions?
▸ Unknown world: no beliefs, knowledge of the game, etc.
▸ Minimal information: feedback often limited to incurred losses

P. Mertikopoulos Games, Dynamics & Optimization
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N-player games

The game
▸ Finite set of players i ∈ N = {, . . . ,N}
▸ Each player selects an action from a closed convex set Xi ⊆ Rd i

▸ Loss of player i given by cost function f i ∶X ≡∏i Xi → R

Examples
▸ Finite games (mixed extensions)
▸ Divisible good auctions (Kelly)
▸ Traffic routing
▸ Power control/allocation problems
▸ Cournot oligopolies
▸ ⋯

P. Mertikopoulos Games, Dynamics & Optimization
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Nash equilibrium

Nash equilibrium
Action profile x∗ = (x∗ , . . . , x∗n ) ∈ X that is unilaterally stable

f i(x∗i ; x∗−i) ≤ f i(x i ; x∗−i) for every player i ∈ N and every deviation x i ∈ Xi

▸ Local version: local Nash equilibrium [stable under local deviations]
▸ Unilateral stationarity: critical points of the game [x∗i is stationary for f i(⋅, x∗−i)]

Individual loss gradients
Vi(x) = ∇x i f i(x i ; x−i)

Ô⇒ direction of individually steepest descent

Variational characterization
If x∗ is a (local) Nash equilibrium, then

⟨Vi(x∗), x i − x∗i ⟩ ≥  for all i ∈ N , x i ∈ Xi

Intuition: f i(x i ; x∗−i) weakly increasing along all rays emanating from x∗i
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Geometric interpretation

X

TC(x∗)

NC(x∗)

.x
∗

−V(x∗)

At Nash equilibrium, individual descent directions are outward-pointing
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First-order algorithms in games

Individual gradient field V(x) = (V(x), . . . ,VN(x)), x = (x , . . . , xN)

▸ Individual gradient descent:

Xn+ = Xn − γnV(Xn)

▸ Extra-gradient:

Xn+/ = Xn − γn∇ f (Xn) Xn+ = Xn − γn∇ f (Xn+/)

▸ ⋯

Mean dynamics:
ẋ(t) = −V(x(t)) (MD)

Ô⇒ no longer a gradient system
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The dynamics of min-max games

Bilinear min-max games (saddle-point problems)

min
x∈X

max
x∈X

L(x , x) = (x − b)⊺A(x − b) (SP)

[no constraints: X = Rd ,X = Rd ]

Mean dynamics:

ẋ = −A(x − b) ẋ = A⊺(x − b)

Energy function:
E(x) = 


∥x − b∥ +



∥x − b∥

Lyapunov property:
dE
dt
≤  w/ equality if A = A⊺

Ô⇒ distance to solutions (weakly) decreasing along (MD)
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Cycles

Roadblock: the energy might be a constant of motion [Hofbauer et al, 2009]
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Figure: Hamiltonian flow of L(x , x) = xx
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Poincaré recurrence

Definition (Poincaré, 1890’s)
A dynamical system is Poincaré recurrent if almost all solution trajectories return
arbitrarily close to their starting point infinitely many times

Theorem (M, Papadimitriou, Piliouras, 2018; unconstrained version)
(MD) is Poincaré recurrent in all bilinear min-max games that admit an equilibrium
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Learning in min-max games: gradient descent

Individual gradient descent:

Xn+ = Xn − γnV(Xn)
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Learning in min-max games: gradient descent

Individual gradient descent:

Xn+ = Xn − γnV(Xn)

Energy no longer a constant:


∥Xn+ − x∗∥ =



∥Xn − x∗∥ + γn

hhhhhhh⟨V(Xn), Xn − x∗⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

from (MD)

+ 

γn∥V(Xn)∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
discretization error

…even worse
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Learning in min-max games: gradient descent

Individual gradient descent:

Xn+ = Xn − γnV(Xn)

-��� -��� ��� ��� ���

-���

-���

���

���

���

��

� �

P. Mertikopoulos Games, Dynamics & Optimization



Overview From flows to algorithms From algorithms to flows Flows in games Monotone games Spurious limits

Learning in min-max games: extra-gradient

Extra-gradient:

Xn+/ = Xn − γn∇ f (Xn) Xn+ = Xn − γn∇ f (Xn+/)
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Learning in min-max games

Long-run behavior of min-max learning algorithms:

▸ Mean dynamics: Poincaré recurrent (periodic orbits)
▸ Individual gradient descent: divergence (outward spirals)
▸ Extra-gradient: convergence (inward spirals)

Different outcomes despite same underlying dynamics!
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Monotonicity and strict monotonicity

Bilinear games are special cases ofmonotone games:

⟨V(x′) − V(x), x′ − x⟩ ≥  for all x , x′ ∈ X (MC)

[Ô⇒ strictly monotone if (MC) is strict for x ≠ x′]

Equivalently: H(x) ≽  where H is the game’s Hessian matrix:

H i j(x) =


∇x j∇x j f i(x) +



(∇x i∇x j f j(x))

⊺

Examples: bilinear games (not strict), Kelly auctions, Cournot markets, routing, …

Nomenclature:
▸ Diagonal strict convexity [Rosen, 1965]
▸ Stable games [Hofbauer & Sandholm, 2009]
▸ Contractive games [Sandholm, 2015]
▸ Dissipative games [Sorin & Wan, 2016]
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Convergence to equilibrium

Different behavior under strictmonotonicity:


∥Xn+ − x∗∥ =



∥Xn − x∗∥ − γn ⟨V(Xn), Xn − x∗⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>  if Xn not Nash

+ 

γn∥V(Xn)∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
discretization error

Can the drift overcome the discretization error?

Theorem (M & Zhou, 2019)
▸ Assume: strict monotonicity; any of (A); any of (B); (C)
▸ Then: any generalized Robbins-Monro learning algorithm converges to the

game’s (unique) Nash equilibrium with probability 

In strictly monotone games, gradient methods↝ Nash equilibrium
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Almost bilinear games

Consider the “almost bilinear” game

min
x∈X

max
x∈X

L(x , x) = xx + εϕ(x)

where ε >  and ϕ(x) = (/)x − (/)x

Properties:
▸ Unique critical point at the origin
▸ Not Nash; unstable under (MD)
▸ (MD) attracted to unique, stable limit cycle from almost all initial conditions

[Hsieh, M & Cevher, 2020]
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Spurious limits in almost bilinear games

Trajectories of (RM) converge to a spurious cycle that contains no critical points
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Figure: Left: (MD); center: SGD; right: stochastic extra-gradient (SEG)
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Forsaken solutions

Another almost bilinear game

min
x∈X

max
x∈X

L(x , x) = xx + ε[ϕ(x) − ϕ(x)]

where ε >  and ϕ(x) = (/)x − (/)x + (/)x

Properties:
▸ Unique critical point at the origin
▸ Local Nash equilibrium; stable under (MD)
▸ Two isolated periodic orbits:

▸ One unstable, shielding equilibrium, but small
▸ One stable, attracts all trajectories of (MD) outside small basin

[Hsieh, M & Cevher, 2020]
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Forsaken solutions in almost bilinear games

With high probability, (RM) forsakes the game’s unique (local) equilibrium
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Figure: Left: (MD); center: SGD; right: SEG
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The limits of gradient-based learning in games

Limit cycles Ô⇒ internally chain transitive (ICT) = invariant, no proper attractors

Examples of ICT sets
▸ V = ∇ f Ô⇒ components of critical points
▸ L(x , x) = xx Ô⇒ any annular region centered on (, )
▸ Almost bilinear Ô⇒ isolated periodic orbits + unique stationary point

Theorem (Hsieh, M & Cevher, 2020)
▸ Assume: any of (A); any of (B); (C)
▸ Then:
▸ Xn converges to an ICT of (MD) with probability 
▸ (RM) converges to attractors of (MD) with arbitrarily high probability
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Conclusions

In contrast to single-agent problems (optimization), game-theoretic learning
▸ May have limit points that are neither stable nor stationary
▸ Cannot avoid spurious, non-equilibrium points with positive probability
▸ Requires drastically different approach (mixed-strategy learning,…)

P. Mertikopoulos Games, Dynamics & Optimization



Overview From flows to algorithms From algorithms to flows Flows in games Monotone games Spurious limits

In memoriam

Bill Sandholm, 1970–2020
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