ew From flows to algorithms 0000000000	From algorithms to flows	Flows in games	Monotone games	
GAM	ES, DYNAMICS &		ION	
	Panayotis Merti	ikopoulos		
Frer	nch National Center for Sci	entific Research (CN	IRS)	
	Laboratoire d'Informatique			
	Criteo Al L			
One World On	timization / Game Tł	and Sominar	July 13, 2020	
		leory Seminar -	- July 13, 2020	

Overv 000	iew From flows to algorithms 0000000000	From algorithms to flows	Flows in games 0000000	Monotone games	Spurious limits 00000000
	Outline				
	Overview				
	From flows to algorithms				
	From algorithms to flows				
	Monotone games				

Overview O●O	From flows to algorithms 00000000000	From algorithms to flows 0000000000	Flows in games 0000000	Monotone games	

About

A. Kavis

Y. -P. Hsieh

C. Papadimitriou

N. Hallak

V. Cevher

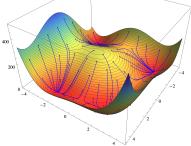
G. Piliouras

Z. Zhou

- M, Papadimitriou & Piliouras, Cycles in adversarial regularized learning, SODA 2018
- M & Zhou, Learning in games with continuous action sets and unknown payoff functions, Mathematical Programming, vol. 173, pp. 465-507, Jan. 2019
- M, Hallak, Kavis & Cevher, On the almost sure convergence of stochastic gradient descent in non-convex problems, https://arxiv.org/abs/2006.11144
- Hsieh, M & Cevher, The limits of min-max optimization algorithms: convergence to spurious non-critical sets, https://arxiv.org/abs/2006.09065

Overv 000	iew From flows to algorithms •0000000000	From algorithms to flows	Flows in games 0000000	Monotone games	Spurious limits 00000000
	Outline				
	Overview				
	From flows to algorithms	5			
	From algorithms to flows				
	Monotone games				

Overvi 000	ew From flows to algorithms	From algorithms to flows	Flows in games	Monotone games	Spurious limits 00000000		
	Gradient flows						
	The gradient flow of a	function $f: \mathbb{R}^d \to \mathbb{R}$					
	$\dot{x}(t) = -\nabla f(x(t))$						
	Main property: <i>f</i> is a (strict) <i>Lyapunov function</i> for (GF)						
	df/dt = -	$\left\ \nabla f(x(t))\right\ ^2 \le 0$	w/ equality iff v	$\nabla f(x) = 0$			
				1			



From flows to algorithms		
0000000000		

Convergence of gradient flows

Blanket assumptions

Lipschitz smoothness:

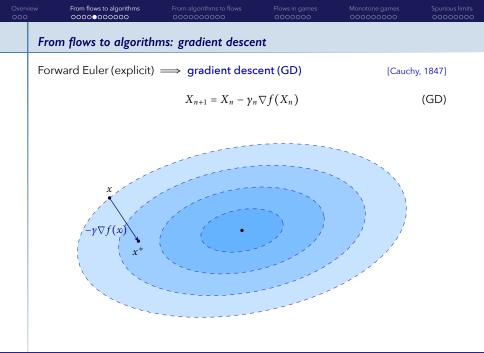
$$\|\nabla f(x') - \nabla f(x)\| \le L \|x' - x\| \quad \text{for all } x, x' \in \mathbb{R}^d$$
 (LS)

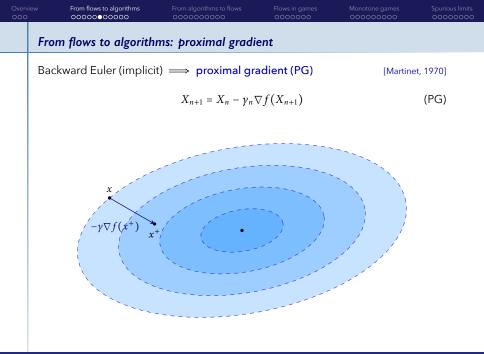
Bounded sublevels:

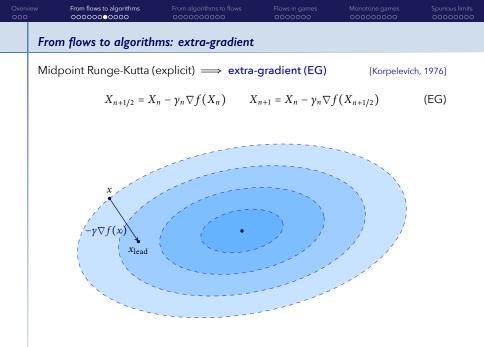
$$L_c \equiv \{x \in \mathbb{R}^d : f(x) \le c\}$$
 is bounded for all $c < \sup f$ (Bsub)

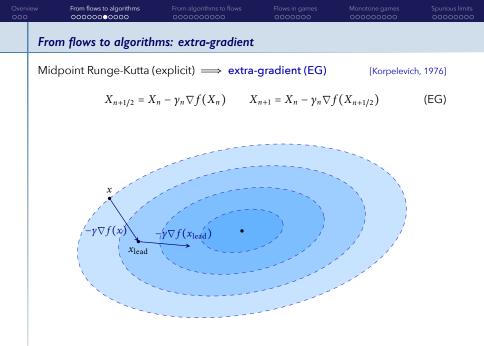
Theorem

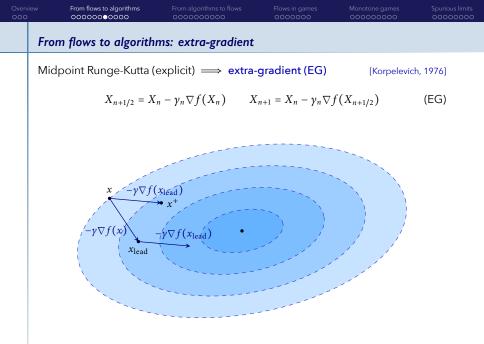
- Assume: (LS), (Bsub)
- Then: x(t) converges to $\operatorname{crit}(f) \equiv \{x^* \in \mathbb{R}^d : \nabla f(x^*) = 0\}$











From flows to algorithms		
00000000000		

Stochastic gradient feedback

In many applications, perfect gradient information is unavailable / too costly:

Machine learning:

 $f(x) = \sum_{i=1}^{N} f_i(x)$ and only a batch of $\nabla f_i(x)$ is computable per iteration

Control / Engineering:

 $f(x) = \mathbb{E}[F(x; \omega)]$ and only $\nabla F(x; \omega)$ can be observed for a random ω

Game Theory / Bandit Learning:

Only f(x) is observable

From flows to algorithms		
00000000000		

Stochastic gradient feedback

In many applications, perfect gradient information is unavailable / too costly:

Machine learning:

 $f(x) = \sum_{i=1}^{N} f_i(x)$ and only a batch of $\nabla f_i(x)$ is computable per iteration

Control / Engineering:

 $f(x) = \mathbb{E}[F(x; \omega)]$ and only $\nabla F(x; \omega)$ can be observed for a random ω

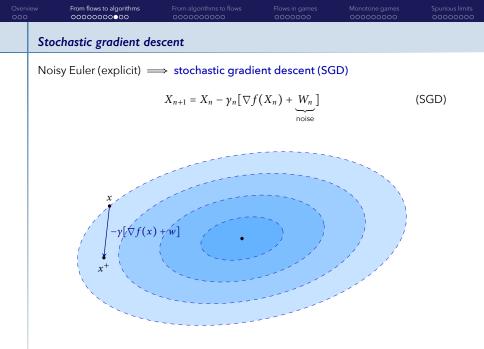
Game Theory / Bandit Learning:

Only f(x) is observable

Stochastic first-order oracle (SFO) feedback:

$$X_n \mapsto \underbrace{V_n}_{\text{feedback}} = \underbrace{\nabla f(X_n)}_{\text{gradient}} + \underbrace{Z_n}_{\text{noise}} + \underbrace{b_n}_{\text{bias}}$$
(SFO)

where Z_n is "zero-mean" and b_n is "small" (more later)



iew From flows to algorithms		
0000000000		

Example: zeroth-order feedback

Given $f: \mathbb{R} \to \mathbb{R}$, estimate f'(x) at target point $x \in \mathbb{R}$

$$f'(x) \approx \frac{f(x+\delta) - f(x-\delta)}{2\delta}$$

Pick $u = \pm 1$ with probability 1/2. Then:

$$\mathbb{E}[f(x+\delta u)u] = \frac{1}{2}f(x+\delta) - \frac{1}{2}f(x-\delta)$$

 \implies Estimate f'(x) with a single query of f at $\hat{x} = x + \delta u$

From flows to algorithms		
0000000000		

Example: zeroth-order feedback

Given $f: \mathbb{R} \to \mathbb{R}$, estimate f'(x) at target point $x \in \mathbb{R}$

$$f'(x) \approx \frac{f(x+\delta) - f(x-\delta)}{2\delta}$$

Pick $u = \pm 1$ with probability 1/2. Then:

$$\mathbb{E}[f(x+\delta u)u] = \frac{1}{2}f(x+\delta) - \frac{1}{2}f(x-\delta)$$

 \implies Estimate f'(x) with a single query of f at $\hat{x} = x + \delta u$

Algorithm 1 Simultaneous perturbation stochastic approximation [Spall, 1992]

1: Draw u uniformly from \mathbb{S}^d 2: Query $\hat{x} = x + \delta u$ 3: Get $\hat{f} = f(\hat{x})$ 4: Set $V = (d/\delta)\hat{f}u$

From flows to algorithms		
0000000000		

The Robbins-Monro template

Special cases of the generalized Robbins-Monro scheme

$$X_{n+1} = X_n - \gamma_n [\nabla f(X_n) + Z_n + b_n]$$
(RM)

with $\sum_{n} \gamma_n = \infty$, $\gamma_n \to 0$, and $\mathbb{E}[Z_n | X_n, \dots, X_1] = 0$

Examples

...

- Gradient descent (det.): $Z_n = 0, b_n = 0$
- Proximal gradient (det.): $Z_n = 0$, $b_n = \nabla f(X_{n+1}) \nabla f(X_n)$
- Extra-gradient (det.): $Z_n = 0$, $b_n = \nabla f(X_{n+1/2}) \nabla f(X_n)$
- Stochastic gradient descent (stoch.): Z_n = zero-mean, $b_n = 0$
- SPSA (stoch.): $Z_n = (d/\delta)f(\hat{X}_n)U_n \nabla f_\delta(X_n), \ b_n = \nabla f_\delta(X_n) \nabla f(X_n)$ where

$$f_{\delta}(x) = \frac{1}{\operatorname{vol}(\mathbb{B}_{\delta})} \int_{\mathbb{B}_{\delta}} f(x + \delta u) \, du$$

P. Mertikopoulos

Overvi 000	iew From flows to algorithms 0000000000	From algorithms to flows ●000000000	Flows in games 0000000	Monotone games	Spurious limits 00000000
	Outline				
	Overview				
	From flows to algorithms				
	From algorithms to flows				
	Monotone games				

From algorithms to flows

Basic idea: *if* y_n *is "small", the noise washes out and "* $\lim_{t\to\infty}$ (RM) = $\lim_{t\to\infty}$ (GF)"

ew From flows to algorithms 0000000000	From algorithms to flows ○●○○○○○○○○	Flows in games 0000000	Monotone games 000000000	

From algorithms to flows

Basic idea: if γ_n is "small", the noise washes out and " $\lim_{t\to\infty}$ (RM) = $\lim_{t\to\infty}$ (GF)"

\implies ODE method of stochastic approximation

[Ljung, 1977; Benveniste et al, 1990; Duflo, 1996; Kushner & Yin, 1997; Benaïm, 1999; ...]

• Time interpolation:
$$\tau_n = \sum_{k=1}^n \gamma_k$$

Trajectory interpolation:
$$X(t) = X_n + \frac{t - \tau_n}{\tau_{n+1} - \tau_n} (X_{n+1} - X_n)$$

• X_n is an asymptotic pseudotrajectory (APT) of (GF) if, for all T > 0:

 $\lim_{t\to\infty}\sup_{0\le h\le T}\|X(t+h)-\Phi_h(X(t))\|=0$

where $\Phi_s(x)$ denotes the position at time *s* of an orbit of (GF) starting at *x*

• Long run: X(t) tracks (GF) with arbitrary accuracy over windows of arbitrary length

[Benaïm & Hirsch, 1995, 1996; Benaïm, 1999; Benaïm, Hofbauer & Sorin, 2005, 2006;...]

	From algorithms to flows		
	000000000		

Stochastic approximation criteria

When is a sequence generated by (RM) an APT?

- (A) $\blacktriangleright X_n$ is bounded
 - f is Lipschitz continuous and smooth:

$$|f(x') - f(x)| \le G ||x' - x||$$
 (LC)

$$\|\nabla f(x') - \nabla f(x)\| \le L \|x' - x\| \tag{LS}$$

(B)
$$\mathbb{E}\left[\sum_{n} \gamma_{n}^{2} \|Z_{n}\|^{2}\right] < \infty$$

- $\sup_n \mathbb{E}[||Z_n||^q] < \infty$ and $\sum_n \gamma_n^{1+q/2} < \infty$
- Z_n sub-Gaussian and $\gamma_n = o(1/\log n)$
- (C) $\sum_{n} \gamma_{n} b_{n} = 0$ with probability 1

Proposition (Duflo 1996; Benaïm 1999; Hsieh, M & Cevher, 2020)

- Assume: any of (A); any of (B); (C)
- Then: X_n is an APT of (GF) with probability 1

From flows to algorithms 00000000000	From algorithms to flows 000●000000	Flows in games 0000000	Monotone games	

Convergence of APTs

Theorem (Benaïm & Hirsch, 1995, 1996)

- Assume: X_n is a bounded APT of (GF)
- Then: X_n converges to crit(f) with probability 1

	From flows to algorithms 00000000000	From algorithms to flows 000●000000	Flows in games	Monotone games	
C	onvergence of APTs				

Theorem (Benaïm & Hirsch, 1995, 1996)

- Assume: X_n is a bounded APT of (GF)
- Then: X_n converges to crit(f) with probability 1

Theorem (Ljung 1977, Benaïm 1999)

- Assume: (LC), (LS), (Bsub); $\sup_n ||X_n|| < \infty$
- Then: X_n converges (a.s.) to a component of crit(f) where f is constant

Boundedness: implicit, algorithm-dependent assumption; not easy to verify

	From flows to algorithms 00000000000	From algorithms to flows 0000●00000	Flows in games 0000000	Monotone games	

Can boundedness be dropped?

Key obstacle: infinite plains of vanishing gradients

 $[\text{think } f(x) = -\exp(-x^2)]$

	From algorithms to flows	Flows in games	Monotone games		
Can boundedness be dropped?					
Key obstacle: infinite	$[\text{think } f(x) = -\exp(-\frac{1}{2})$	$p(-x^2)$]			

Countered if gradient sublevel sets do not extend to infinity

 $M_{\varepsilon} \equiv \{x \in \mathbb{R}^{d} : \|\nabla f(x)\| \le \varepsilon\} \text{ is bounded for some } \varepsilon > 0 \tag{Gsub}$

 $[\implies \operatorname{crit}(f) \operatorname{compact}]$

Overvi 000		om algorithms to flows	Flows in games 0000000	Monotone games 000000000	Spurious limits 00000000		
	Can boundedness be dropp	ped?					
	Key obstacle: infinite plains	of vanishing	gradients	$[thinkf(x)=-\mathrm{ex}$	$p(-x^2)$]		
	Countered if gradient sublevel sets do not extend to infinity						
	$M_{\varepsilon} \equiv \{x \in \mathbb{R}^d : \ \nabla f(z) \ \leq \varepsilon \}$	$(x) \ \le \varepsilon \}$ is	bounded for some	$e \varepsilon > 0$ (Gsub)		
				$[\implies \operatorname{crit}(f) \circ$	ompact]		
	Proposition (M, Hallak, Kavi	is & Cevher, 2	2020)				

Assume: (LC), (LS), (Bsub), (Gsub)

Then: for all ε > 0, there exists some τ = τ(ε) such that, for all t ≥ τ:
 (a) f(x(t)) ≤ f(x(0)) - ε; or

(b) x(t) is within ε -distance of crit(f)

In words: (GF) either descends f by a uniform amount, or it is already near-critical

	rom flows to algorithms 0000000000	From algorithms to flows 00000●0000	Flows in games 0000000	

Can boundedness be dropped?

Proposition

- Assume: (LC), (LS), (Bsub), (Gsub); any of (B); (C)
- ▶ Then: with probability 1, there exists a (random) subsequence X_{nk} of X_n converging to a critical point of f

	From flows to algorithms 00000000000	From algorithms to flows 00000●0000	Flows in games 0000000	Monotone games	

Can boundedness be dropped?

Proposition

- Assume: (LC), (LS), (Bsub), (Gsub); any of (B); (C)
- Then: with probability 1, there exists a (random) subsequence X_{nk} of X_n converging to a critical point of f

Theorem (M, Hallak, Kavis & Cevher, 2020)

- Assume: (LC), (LS), (Bsub), (Gsub); any of (B); (C)
- Then: with probability 1, X_n converges to a (possibly random) component of crit(f) over which f is constant

	From algorithms to flows		
	000000000		

Are all critical points desirable?

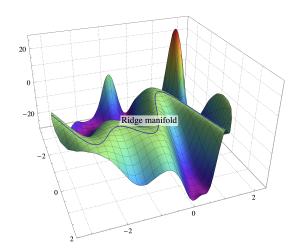


Figure: A hyperbolic ridge manifold, typical of ResNet loss landscapes [Li et al., 2018]

Overv 000		From algorithms to flows 0000000●00	Flows in games 0000000	Monotone games	Spurious limits 00000000		
	Are traps avoided?						
	Hyperbolic saddle (isolated non-minimizing critical point)						
	$\lambda_{\min}(\mathbf{H})$	$\operatorname{Hess}(f(x^*))) < 0, d$	$\det(\operatorname{Hess}(f(x^*)))$)) ≠ 0			

- \implies (GF) is linearly unstable near x^*
- \implies convergence to x^* unlikely

Overv 000	ew From flows to algorithms 00000000000	From algorithms to flows 000000000000	Flows in games	Monotone games	Spurious limits 00000000	
	Are traps avoided?					
	Hyperbolic saddle (isolated non-minimizing critical point)					
	λ_{\min} ($\operatorname{Hess}(f(x^*))) < 0,$	$\det(\operatorname{Hess}(f(x^*)$)) ≠ 0		
	→ (GF) is linearly u	Instable near x*				

 \implies convergence to x^* unlikely

Theorem (Pemantle, 1990)

- Assume:
 - x* is a hyperbolic saddle point
 - Z_n is finite (a.s.) and uniformly exciting

 $\mathbb{E}[\langle Z, u \rangle^+] \ge c \quad \text{for all unit vectors } u \in \mathbb{S}^{d-1}, x \in \mathbb{R}^d$

•
$$\gamma_n \propto 1/n$$

• Then:
$$\mathbb{P}(\lim_{n\to\infty} X_n = x^*) = 0$$

iew From flows to algorithms 00000000000	From algorithms to flows 00000000●0	Flows in games 0000000	Monotone games	

Are non-hyperbolic traps avoided?

Strict saddle

 $\lambda_{\min}(\operatorname{Hess}(f(x^*))) < 0$

Overv 000		From algorithms to flows 0000000000	Flows in games 0000000	Monotone games	Spurious limits 00000000		
	Are non-hyperbolic traps	avoided?					
	Strict saddle	$\lambda_{\min}(\operatorname{Hess}(f(x)))$	⁺)))) < 0				
	Theorem (Ge, Huang, Jin & Yuan, 2015) • Given: confidence level $\zeta > 0$						
	 Assume: f is bounded and satisfies (LS) Hess(f(x)) is Lipschitz continuous for all x ∈ ℝ^d: (a) ∇f(x) ≥ ε; or (b) λ_{min}(Hess(f(x))) ≤ -β; or (c) x is δ-close to a local minimum x* of f around which f is α-strongly convex Z_n is finite (a.s.) and contains a component uniformly sampled from the unit sphere; also, b_n = 0 γ_n ≡ y with y = O(1/log(1/ζ)) 						
	• Then: with probability at least $1 - \zeta$, the algorithm produces after $\mathcal{O}(\gamma^{-2}\log(1/(\gamma\zeta)))$ iterations a point which is $\mathcal{O}(\sqrt{\gamma}\log(1/(\gamma\zeta)))$ -close to x^* (and hence away from any strict saddle)						

Are non-hyperbolic traps avoided always?

Theorem (M, Hallak, Kavis & Cevher, 2020)

- Assume:
 - f satisfies (LC) and (LS)
 - Z_n is finite (a.s.) and uniformly exciting

 $\mathbb{E}[\langle Z, u \rangle^+] \ge c$ for all unit vectors $u \in \mathbb{S}^{d-1}$, $x \in \mathbb{R}^d$

- $\gamma_n \propto 1/n^p$ for some $p \in (0,1]$
- Then: $\mathbb{P}(X_n \text{ converges to a set of strict saddle points}) = 0$

Proof.

Use Pemantle (1990) + differential geometric arguments of Benaïm and Hirsch (1995).

Overv 000	iew From flows to algorithms 00000000000	From algorithms to flows	Flows in games ●000000	Monotone games	Spurious limits 00000000
	Outline				
	Overview				
	From flows to algorithms				
	From algorithms to flows				
	Flows in games				
	Monotone games				

From flows to algorithms	From algorithms to flows	Flows in games O●OOOOO	Monotone games 000000000	

Single- vs. multi-agent setting

In single-agent optimization, first-order iterative schemes

- Converge to the problem's set of critical points
- Avoid spurious, non-minimizing critical manifolds

Overv 000	iew From flows to algorith 0000000000	ms From algorithms to flows 0000000000	Flows in games O●OOOOO	Monotone games	Spurious limits 00000000
	Single- vs. multi-a	gent setting			
	In single-agent op	timization, first-order ite	rative schemes		
	 Converge to t 	he problem's set of critic	cal points		
	Avoid spuriou	s, non-minimizing critica	al manifolds		
		Does this intuition car	ry over to games	?	

Do multi-agent learning algorithms

- Converge to unilaterally stable/stationary points?
- Avoid spurious, non-equilibrium points?

verview 00	From flows to algorithms	From algorithms to flows	Flows in games 00●0000	Monotone games	Spurious lim					
c	Online decision proces	sses								
А	Agents called to take repeated decisions with minimal information:									
=										
	for $n \ge 0$ do									
	for $n \ge 0$ do Choose action X_n	ı		[focal agent	choice]					
		ı		[focal agent [depends on all	-					

Driving question: How to choose "good" actions?

- Unknown world: no beliefs, knowledge of the game, etc.
- Minimal information: feedback often limited to incurred losses

	From flows to algorithms	From algorithms to flows	Flows in games	Monotone games	
N-	player games				

The game

- Finite set of players $i \in \mathcal{N} = \{1, \dots, N\}$
- Each player selects an **action** from a closed convex set $\mathcal{X}_i \subseteq \mathbb{R}^{d_i}$
- ▶ Loss of player *i* given by cost function $f_i: \mathcal{X} \equiv \prod_i \mathcal{X}_i \rightarrow \mathbb{R}$

Examples

- Finite games (mixed extensions)
- Divisible good auctions (Kelly)
- Traffic routing
- Power control/allocation problems
- Cournot oligopolies

<u>ه</u> ...

From flows to algorithms 00000000000	From algorithms to flows 0000000000	Flows in games 0000●00	Monotone games	

Nash equilibrium

Nash equilibrium

Action profile $x^* = (x_1^*, ..., x_n^*) \in \mathcal{X}$ that is **unilaterally stable**

 $f_i(x_i^*; x_{-i}^*) \leq f_i(x_i; x_{-i}^*)$ for every player $i \in \mathcal{N}$ and every deviation $x_i \in \mathcal{X}_i$

- Local version: local Nash equilibrium
- Unilateral stationarity: critical points of the game

[stable under local deviations] [x_i^* is stationary for $f_i(\cdot, x_{-i}^*)$]

iew From flows to alg 00000000	lows Flows in games 0000●00	Monotone games 000000000	

Nash equilibrium

Nash equilibrium

Action profile $x^* = (x_1^*, ..., x_n^*) \in \mathcal{X}$ that is **unilaterally stable**

 $f_i(x_i^*; x_{-i}^*) \leq f_i(x_i; x_{-i}^*)$ for every player $i \in \mathcal{N}$ and every deviation $x_i \in \mathcal{X}_i$

- Local version: local Nash equilibrium
- Unilateral stationarity: critical points of the game

[stable under local deviations] [x_i^* is stationary for $f_i(\cdot, x_{-i}^*)$]

Individual loss gradients

$$V_i(x) = \nabla_{x_i} f_i(x_i; x_{-i})$$

 \implies direction of individually steepest descent

ew From flows to algorithms 00000000000	From algorithms to flows	Flows in games 0000●00	Monotone games	

Nash equilibrium

Nash equilibrium

Action profile $x^* = (x_1^*, ..., x_n^*) \in \mathcal{X}$ that is **unilaterally stable**

 $f_i(x_i^*; x_{-i}^*) \leq f_i(x_i; x_{-i}^*)$ for every player $i \in \mathcal{N}$ and every deviation $x_i \in \mathcal{X}_i$

- Local version: local Nash equilibrium
- Unilateral stationarity: critical points of the game

Individual loss gradients

$$V_i(x) = \nabla_{x_i} f_i(x_i; x_{-i})$$

 \implies direction of individually steepest descent

Variational characterization

If x^* is a (local) Nash equilibrium, then

$$\langle V_i(x^*), x_i - x_i^* \rangle \ge 0$$
 for all $i \in \mathcal{N}, x_i \in \mathcal{X}_i$

Intuition: $f_i(x_i; x_{-i}^*)$ weakly increasing along all rays emanating from x_i^*

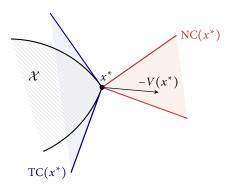
P. Mertikopoulos

[stable under local deviations]

 $[x_i^* \text{ is stationary for } f_i(\cdot, x_{-i}^*)]$

Overview 000	From flows to algorithms	From algorithms to flows	Flows in games	Monotone games	Spurious limits
000	00000000000	0000000000	0000000	000000000	00000000

Geometric interpretation



At Nash equilibrium, individual descent directions are outward-pointing

iew From flows to algorithms 00000000000	From algorithms to flows	Flows in games 000000●	Monotone games	

First-order algorithms in games

Individual gradient field $V(x) = (V_1(x), \dots, V_N(x)), x = (x_1, \dots, x_N)$

Individual gradient descent:

$$X_{n+1} = X_n - \gamma_n V(X_n)$$

Extra-gradient:

$$X_{n+1/2} = X_n - \gamma_n \nabla f(X_n) \qquad X_{n+1} = X_n - \gamma_n \nabla f(X_{n+1/2})$$

Mean dynamics:

...

$$\dot{x}(t) = -V(x(t)) \tag{MD}$$

 \implies no longer a gradient system

	From algorithms to flows 0000000000	Flows in games 0000000	Monotone games ●000000000	
Outline				
Overview				
From flows to algorithms				
From algorithms to flows				
Monotone games				

Overvi 000		From algorithms to flows	Flows in games	Monotone games	Spurious limits 00000000
000	0000000000	000000000	0000000	00000000	00000000

The dynamics of min-max games

Bilinear min-max games (saddle-point problems)

$$\min_{x_1 \in \mathcal{X}_1} \max_{x_2 \in \mathcal{X}_2} \quad L(x_1, x_2) = (x_1 - b_1)^{\mathsf{T}} A(x_2 - b_2) \tag{SP}$$

[no constraints: $\mathcal{X}_1 = \mathbb{R}^{d_1}$, $\mathcal{X}_2 = \mathbb{R}^{d_2}$]

Mean dynamics:

$$\dot{x}_1 = -A(x_2 - b_2)$$
 $\dot{x}_2 = A^{\mathsf{T}}(x_1 - b_1)$

 From flows to algorithms 00000000000 	From algorithms to flows	Flows in games 0000000	Monotone games ○●○○○○○○○	

The dynamics of min-max games

Bilinear min-max games (saddle-point problems)

$$\min_{x_1 \in \mathcal{X}_1} \max_{x_2 \in \mathcal{X}_2} \quad L(x_1, x_2) = (x_1 - b_1)^{\mathsf{T}} A(x_2 - b_2) \tag{SP}$$

[no constraints: $\mathcal{X}_1 = \mathbb{R}^{d_1}$, $\mathcal{X}_2 = \mathbb{R}^{d_2}$]

Mean dynamics:

$$\dot{x}_1 = -A(x_2 - b_2)$$
 $\dot{x}_2 = A^{\mathsf{T}}(x_1 - b_1)$

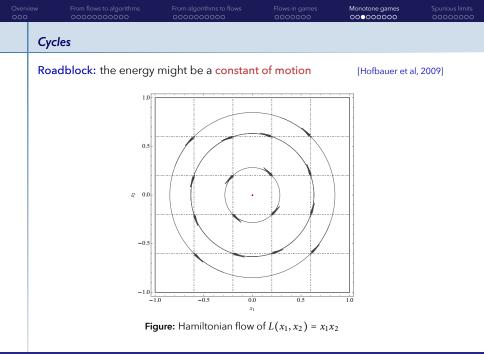
Energy function:

$$E(x) = \frac{1}{2} ||x_1 - b_1||^2 + \frac{1}{2} ||x_2 - b_2||^2$$

Lyapunov property:

$$\frac{dE}{dt} \le 0 \quad \text{w/ equality if } A = A^{\mathsf{T}}$$

→ distance to solutions (weakly) decreasing along (MD)

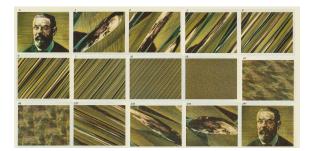


	ws to algorithms DOOOOOO		

Poincaré recurrence

Definition (Poincaré, 1890's)

A dynamical system is **Poincaré recurrent** if almost all solution trajectories return *arbitrarily close* to their starting point *infinitely many times*

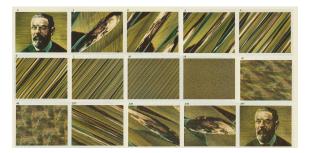


v From flows to algorithms 00000000000	From algorithms to flows	Flows in games	Monotone games 000●00000	

Poincaré recurrence

Definition (Poincaré, 1890's)

A dynamical system is **Poincaré recurrent** if almost all solution trajectories return *arbitrarily close* to their starting point *infinitely many times*



Theorem (M, Papadimitriou, Piliouras, 2018; unconstrained version) (MD) is Poincaré recurrent in all bilinear min-max games that admit an equilibrium

iew From flows to algorithms 0000000000	From algorithms to flows 0000000000	Flows in games 0000000	Monotone games 0000●0000	

Learning in min-max games: gradient descent

Individual gradient descent:

$$X_{n+1} = X_n - \gamma_n V(X_n)$$

view From flows to algorithms	From algorithms to flows	Flows in games	Monotone games 0000€0000	

Learning in min-max games: gradient descent

Individual gradient descent:

$$X_{n+1} = X_n - \gamma_n V(X_n)$$

Energy no longer a constant:

$$\frac{1}{2} \|X_{n+1} - x^*\|^2 = \frac{1}{2} \|X_n - x^*\|^2 + \gamma_n \underbrace{(V(X_n), X_n - x^*)}_{\text{from (MD)}} + \frac{1}{2} \underbrace{\gamma_n^2 \|V(X_n)\|^2}_{\text{discretization error}}$$

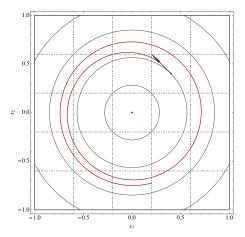
...even worse

iew From flows to algorithms 00000000000	From algorithms to flows	Flows in games	Monotone games 000000000	

Learning in min-max games: gradient descent

Individual gradient descent:

$$X_{n+1} = X_n - \gamma_n V(X_n)$$

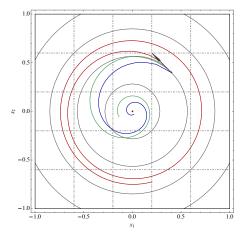


		Monotone games	
		000000000	

Learning in min-max games: extra-gradient

Extra-gradient:

$$X_{n+1/2} = X_n - \gamma_n \nabla f(X_n) \qquad X_{n+1} = X_n - \gamma_n \nabla f(X_{n+1/2})$$



	From flows to algorithms 00000000000	From algorithms to flows 0000000000	Flows in games 0000000	Monotone games 000000000	

Learning in min-max games

Long-run behavior of min-max learning algorithms:

- Mean dynamics: Poincaré recurrent (periodic orbits)
- Individual gradient descent: divergence (outward spirals)
- Extra-gradient: convergence (inward spirals)

	From flows to algorithms 00000000000	From algorithms to flows 0000000000	Flows in games 0000000	Monotone games 000000000	

Learning in min-max games

Long-run behavior of min-max learning algorithms:

- Mean dynamics: Poincaré recurrent (periodic orbits)
- Individual gradient descent: divergence (outward spirals)
- Extra-gradient: convergence (inward spirals)

Different outcomes despite same underlying dynamics!

		Monotone games	
		000000000	

Monotonicity and strict monotonicity

Bilinear games are special cases of monotone games:

$$\langle V(x') - V(x), x' - x \rangle \ge 0$$
 for all $x, x' \in \mathcal{X}$ (MC)

[\implies strictly monotone if (MC) is strict for $x \neq x'$]

From flows to algorithms 00000000000	From algorithms to flows 0000000000	Flows in games 0000000	Monotone games 0000000000	

Monotonicity and strict monotonicity

Bilinear games are special cases of monotone games:

$$\langle V(x') - V(x), x' - x \rangle \ge 0$$
 for all $x, x' \in \mathcal{X}$ (MC)

[\implies strictly monotone if (MC) is strict for $x \neq x'$]

Equivalently: $H(x) \ge 0$ where H is the game's Hessian matrix:

$$H_{ij}(x) = \frac{1}{2} \nabla_{x_j} \nabla_{x_j} f_i(x) + \frac{1}{2} (\nabla_{x_i} \nabla_{x_j} f_j(x))^{\mathsf{T}}$$

		Monotone games	
		000000000	

Monotonicity and strict monotonicity

Bilinear games are special cases of monotone games:

$$\langle V(x') - V(x), x' - x \rangle \ge 0$$
 for all $x, x' \in \mathcal{X}$ (MC)

[\implies strictly monotone if (MC) is strict for $x \neq x'$]

Equivalently: $H(x) \ge 0$ where H is the game's Hessian matrix:

$$H_{ij}(x) = \frac{1}{2} \nabla_{x_j} \nabla_{x_j} f_i(x) + \frac{1}{2} (\nabla_{x_i} \nabla_{x_j} f_j(x))^{\mathsf{T}}$$

Examples: bilinear games (not strict), Kelly auctions, Cournot markets, routing, ...

Nomenclature:

Diagonal strict convexity	[Rosen, 1965]
 Stable games 	[Hofbauer & Sandholm, 2009]
 Contractive games 	[Sandholm, 2015]
 Dissipative games 	[Sorin & Wan, 2016]

From flows to algorithms 00000000000	From algorithms to flows	Flows in games 0000000	Monotone games 00000000●	

Convergence to equilibrium

Different behavior under strict monotonicity:

$$\frac{1}{2} \|X_{n+1} - x^*\|^2 = \frac{1}{2} \|X_n - x^*\|^2 - \gamma_n \underbrace{\langle V(X_n), X_n - x^* \rangle}_{> 0 \text{ if } X_n \text{ not Nash}} + \frac{1}{2} \underbrace{\gamma_n^2 \|V(X_n)\|^2}_{\text{discretization error}}$$

Can the drift overcome the discretization error?

From flows to algorithms	From algorithms to flows	Flows in games 0000000	Monotone games 00000000●	

Convergence to equilibrium

Different behavior under strict monotonicity:

$$\frac{1}{2} \|X_{n+1} - x^*\|^2 = \frac{1}{2} \|X_n - x^*\|^2 - \gamma_n \underbrace{\langle V(X_n), X_n - x^* \rangle}_{> 0 \text{ if } X_n \text{ not Nash}} + \frac{1}{2} \underbrace{\gamma_n^2 \|V(X_n)\|^2}_{\text{discretization error}}$$

Can the drift overcome the discretization error?

Theorem (M & Zhou, 2019)

- Assume: strict monotonicity; any of (A); any of (B); (C)
- Then: any generalized Robbins-Monro learning algorithm converges to the game's (unique) Nash equilibrium with probability 1

In strictly monotone games, gradient methods ~ Nash equilibrium

iew From flows to algorithms 00000000000	From algorithms to flows	Flows in games	Monotone games	Spurious limits ●0000000
Outline				
Overview				
From flows to algorithms				
From algorithms to flows				
Monotone games				
Spurious limits				

iew From flows to algorithms 0000000000	From algorithms to flows 0000000000	Flows in games 0000000	Monotone games	Spurious limits 0●0000000

Almost bilinear games

Consider the "almost bilinear" game

 $\min_{x_1\in\mathcal{X}_1}\max_{x_2\in\mathcal{X}_2} \quad L(x_1,x_2)=x_1x_2+\varepsilon\phi(x_2)$

where $\varepsilon > 0$ and $\phi(x) = (1/2)x^2 - (1/4)x^4$

Properties:

- Unique critical point at the origin
- Not Nash; unstable under (MD)
- (MD) attracted to unique, stable limit cycle from almost all initial conditions

[Hsieh, M & Cevher, 2020]

Spurious limits in almost bilinear games

Trajectories of (RM) converge to a spurious cycle that contains no critical points

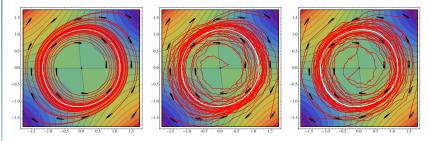


Figure: Left: (MD); center: SGD; right: stochastic extra-gradient (SEG)

	From flows to algorithms	From algorithms to flows	Flows in games 0000000	Monotone games	Spurious limits 00000000
For	rsaken solutions				

Another almost bilinear game

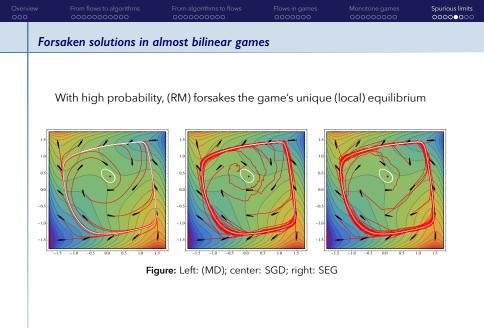
 $\min_{x_1\in\mathcal{X}_1}\max_{x_2\in\mathcal{X}_2} \quad L(x_1,x_2)=x_1x_2+\varepsilon[\phi(x_1)-\phi(x_2)]$

where $\varepsilon > 0$ and $\phi(x) = (1/4)x^2 - (1/2)x^4 + (1/6)x^6$

Properties:

- Unique critical point at the origin
- Local Nash equilibrium; stable under (MD)
- Two isolated periodic orbits:
 - One unstable, shielding equilibrium, but small
 - One stable, attracts all trajectories of (MD) outside small basin

[Hsieh, M & Cevher, 2020]



iew From flows to algorithms 0000000000	From algorithms to flows 0000000000	Flows in games 0000000	Monotone games	Spurious limits 00000000

The limits of gradient-based learning in games

Limit cycles \implies internally chain transitive (ICT) = invariant, no proper attractors

Examples of ICT sets

- $V = \nabla f \implies$ components of critical points
- $L(x_1, x_2) = x_1 x_2 \implies$ any annular region centered on (0, 0)

		Spurious limits
		00000000

The limits of gradient-based learning in games

Limit cycles \implies internally chain transitive (ICT) = invariant, no proper attractors

Examples of ICT sets

- $V = \nabla f \implies$ components of critical points
- $L(x_1, x_2) = x_1 x_2 \implies$ any annular region centered on (0, 0)

Theorem (Hsieh, M & Cevher, 2020)

- Assume: any of (A); any of (B); (C)
- Then:
 - X_n converges to an ICT of (MD) with probability 1
 - (RM) converges to attractors of (MD) with arbitrarily high probability

From flows to algorithms	From algorithms to flows	Flows in games 0000000	Monotone games	Spurious limits 000000●0

Conclusions

In contrast to single-agent problems (optimization), game-theoretic learning

- May have limit points that are neither stable nor stationary
- Cannot avoid spurious, non-equilibrium points with positive probability
- Requires drastically different approach (mixed-strategy learning,...)

	From algorithms to flows 0000000000	Flows in games 0000000	Monotone games	Spurious limits
In memoriam				

Bill Sandholm, 1970-2020