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Minimize a polynomial f over a compact (semialgebraic) set K

fmin = minXEK f(X)
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Minimize a polynomial f over a compact (semialgebraic) set K

fmin = minXEK f(X)

NP-hard problem: it captures hard combinatorial problems
(like computing «(G): the maximum size of a stable set in a graph G)
when K is a hypercube or a simplex and deg(f) = 2,
or K is a sphere and deg(f) =3
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Minimize a polynomial f over a compact (semialgebraic) set K

fmin = minXEK f(X)

2V/2 1
—— /[l - —— = max 2 X,X i
ij

[Motzkin-Straus'65, Nesterov'03]



Two hierarchies of lower/upper bounds for polynomial optimization:

foin = mi
min Lne'ﬂf(x)

o Lasserre/Parrilo sums-of-squares based lower bounds:

f(r) < fmin

e Lasserre measure-based upper bounds:

fmin S f(r)

Common feature:

» For fixed r the bounds can be computed via semidefinite
programming (SDP) with matrix size O(n")

(since sum-of-squares polynomials can be modelled with SDP)

» the bounds converge asymptotically to fyi,

This lecture: Main focus on the error analysis for the upper bounds



LASSERRE/PARRILO
SUMS-OF-SQUARES BASED
LOWER BOUNDS



‘Sums-of-squares’ (SoS) lower bounds

fmin = minf(x) = sup A s.t. f(x)—A>0 on K
(P) min f(x) = sup (x)
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‘Sums-of-squares’ (SoS) lower bounds

foin =minf(x) = sup A sit. f(x)—=A>0 on K

xeK AER

When

K={xeR": gi(x) >0,...,8m(x) >0}

one can replace the hard condition:

by the easier condition:

with g; € R[x]

“f(x) = A >0on K"

“f(x) — X is a ‘weighted sum’ of sum-of-squares polynomials”
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‘Sums-of-squares’ (SoS) lower bounds

foin =minf(x) = sup A sit. f(x)—A >0 on K

xeK AER

When

K={xeR": gi(x)>0,...

,8m(x) > 0}

one can replace the hard condition:

by the easier condition:

with g; € R[x]

“f(x) — A >0on K"

“f(x) — X is a ‘weighted sum’ of sum-of-squares polynomials”

~~ Get the SoS bounds:

deg<2r
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deg<2r
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‘Sums-of-squares’ (SoS) lower bounds

frin = minf(x) = sup A s.t. f(x)—A>0 on K
(P) xeK ) )\GF)R (x)

When| K={xeR": gi(x) >0,...,8m(x) >0} with g; € R[x]

one can replace the hard condition: “f(x) — A >0 on K"
by the easier condition:
“f(x) — A is a ‘weighted sum’ of sum-of-squares polynomials”

~~ Get the SoS bounds:

f(r)ZSUP)\ st. f—A= so + 5180 +...4 Sn8m, 5; S0S
~~ ~— ——

deg<2r  deg<2r deg<2r

> fir) < fir+1) < fminx fir) /‘ fmin as r — o0

» Can compute f(,) with semidefinite programming
[Lasserre 2001]



Error analysis in terms of the relaxation order r

e [Nie-Schweighofer 2007] Let K semi-algebraic compact (+ technical
condition). There exists a constant ¢ = ck such that for any degree
d polynomial f:

fnin — fry < 6329 L —2 for all r > c- e



Error analysis in terms of the relaxation order r

e [Nie-Schweighofer 2007] Let K semi-algebraic compact (+ technical
condition). There exists a constant ¢ = ck such that for any degree
d polynomial f:

fnin — fry < 6329 L —2 for all r > c- e

e [Fang-Fawzi 2020] Better error analysis in O(1/r?) for the unit
sphere K = S"1, for f homogeneous with degree 24:

C2 2
fmin - f(r) S (fmax - fmin)d72n for r 2 Cd - n
r

This improves the earlier O(1/r) result of [Doherty-Wehner 2012]



LLASSERRE MEASURE-BASED
UPPER BOUNDS



Basic observation: identify points x € K with Dirac measures on K

fonin = Lmn f(x) = min /Kf(x)dl/(x)

eK v probability measure on K
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Theorem (Lasserre 2011)
For K compact, one may restrict to dv(x) = h(x)du(x), where

1 is a fixed measure with support K and h is a sum-of-squares density:

fmin = infp, [, F(X)h(x) dp s.t. h SoS, [ h(x) dp=1
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fonin = min f(x) = ~ min /Kf(x)dz/(x)

xeK v probability measure on K

Theorem (Lasserre 2011)
For K compact, one may restrict to dv(x) = h(x)du(x), where

1 is a fixed measure with support K and h is a sum-of-squares density:
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to compute [, f(x)dp = [, (3, fax®)dp =", fama



Basic observation: identify points x € K with Dirac measures on K

fonin = min f(x) = ~ min /Kf(x)dz/(x)

xeK v probability measure on K

Theorem (Lasserre 2011)
For K compact, one may restrict to dv(x) = h(x)du(x), where

1 is a fixed measure with support K and h is a sum-of-squares density:

fmin = infy [, F(x)h(x) dp s.t. h SoS, [, h(x) dp=1

Bound degree: deg(h) < 2r ~» upper bounds (") converging to fuin:

f0 =infy [l F(x)h(x) dp st hSoS, [ h(x) du=1, deg(h) < 2r

b fonin < FUFD < £ £ N fin, F7) can be computed via SDP
> but one needs to know the moments of i m, = [, x*dp(x)

» m, known if ;1 Lebesgue on cube, ball, simplex; Haar on sphere,...



Example: Motzkin polynomial on K = [-2, 2]

4.2, 2.4 2.2
f(x1,x2) = X7 x5 + x7x5 —3x;x5 +1

Four global minimizers: (—-1,-1), (-1,1), (1,-1), (1,1)
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Example: Motzkin polynomial on [-2,2]? (ctd.)

Optimal SoS density h of degree 12

0.8




Example: Motzkin polynomial on [-2,2]? (ctd.)

Optimal SoS density h of degree 16

0.8
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Example: Motzkin polynomial on [-2,2]? (ctd.)

Optimal SoS density h of degree 20
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Example: Motzkin polynomial on [-2,2]? (ctd.)

Optimal SoS density h of degree 24
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Goal: Analyze rate of convergence of error range:
EO(F) = EX)(F) = ) — fo

3



Goal: Analyze rate of convergence of error range:
EO(F) = EN(F) = £ — fui

s

compact K EU(f) 1
Hypercube
f linear o(1/r?) (1—x2) A > 1 de Klerk-L 2020
any f o(1/r?) Chebyshev: A\ = —1/2 "o
any f 0(1/r?) A>—1/2 Slot-L 2020
Sphere
f homogeneous O(1/r) Haar Doherty-Wehner'12
any f 0o(1/r?) Haar de Klerk-L 2020
Ball
any f 0(1/r?) (1— x> A >0 Slot-L 2020
Simplex, ‘round’ Oo(1/r?) Lebesgue Slot-L 2020
convex body
Convex body, O((log r)?/r?) Lebesgue Slot-L 2020

fat semialgebraic




Key proof strategies

(1) Reformulate (") as an eigenvalue problem and
relate (") to extremal roots of orthogonal polynomials
~ O(1/r?) rate for the Chebyshev measure on [—1,1],

and other measures (with Jacobi weight) for linear polynomials
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relate (") to extremal roots of orthogonal polynomials

~~ O(1/r?) rate for the Chebyshev measure on [—1,1],

and other measures (with Jacobi weight) for linear polynomials

() Use tricks (Taylor approx., integration, 'local similarity’) to
transport the O(1/r?) rate for [~1,1] to more sets (and measures):

hypercube, simplex, ball, sphere, ‘round’ convex bodies



Key proof strategies

(1) Reformulate (") as an eigenvalue problem and
relate (") to extremal roots of orthogonal polynomials

~~ O(1/r?) rate for the Chebyshev measure on [—1,1],

and other measures (with Jacobi weight) for linear polynomials

() Use tricks (Taylor approx., integration, 'local similarity’) to
transport the O(1/r?) rate for [~1,1] to more sets (and measures):

hypercube, simplex, ball, sphere, ‘round’ convex bodies

(2) Design ‘nice’ SoS polynomial densities
‘that look like the Dirac delta at a global minimizer’
and use push-up measures to reduce to the univariate case
in order to get the O((log r)?/r?) rate for general K



FIRST BASIC TRICK:
REDUCTION TO THE ANALYSIS OF
QUADRATIC POLYNOMIALS



Analyze simpler upper estimators

Lemma
Let a € K be a global minimizer of f in K.

Set v = maxyek || V2F(x)]|.

By Taylor's theorem, f has a quadratic, separable upper estimator:
f(x) < f(a) + (VF(a),x — a) +lIx — a||* = g(x),

where f(a) = g(a) ~ fmin = Gmin-

Hence, for all r € N,
EN(F) < EN(g).



Analyze simpler upper estimators

Lemma
Let a € K be a global minimizer of f in K.

Set v = maxyek || V2F(x)]|.

By Taylor's theorem, f has a quadratic, separable upper estimator:
f(x) < f(a) + (VF(a),x — a) +lIx — a||* = g(x),

where f(a) = g(a) ~ frnin = 8Bmin-

Hence, for all r € N,
EN(F) < EN(g).

~ |t suffices to analyze quadratic (separable) polynomials

and sometimes we may even obtain a linear upper estimator!
(e.g. for the sphere)



EIGENVALUE REFORMULATION
&
APPLICATION TO THE
UNIVARIATE CASE: K = [—1,1]



/4 given measure with support K

F) =min [ fhdp st. hSoS, [ hdu=1, deg(h) <2r




/4 given measure with support K

F) =min [ fhdp st. hSoS, [ hdu=1, deg(h) <2r

Choose an orthonormal basis {p,, : |a| < 2r} of R[x]z, w.r.t. 1 and set
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~ fK fhdp = (M.(f),X), th dp = Tr(X)

A0 = min { (M(F),X) st Te(X) =1, X =0} = Auin(M (1))




/4 given measure with support K

F) =min [ fhdp st. hSoS, [ hdu=1, deg(h) <2r

Choose an orthonormal basis {p,, : |a| < 2r} of R[x]z, w.r.t. 1 and set

M, (f) := ([, f Papp dﬂ')lal,lﬁlﬁr (moment) Hankel-type matrix

Note: hSoS <= h=((pPa)a<r)" X(Pa)jaj<, for some (X, 3) = 0

o [ fhdp = (M), X), [ hdp=Tr(X)

A0 = min { (M(F),X) st Te(X) =1, X =0} = Auin(M (1))

For K = [~1,1], can analyze () for Chebyshev measure dj = (1 — x?)~/2dXx,
and for any Jacobi measure dyi = (1 — x*)*dx (A > —1) when f is linear

Recall it is enough to deal with f quadratic: f(x) = x, f(x) = x* + kx




K =[—1,1], linear case: f(x) = x



K =[—1,1], linear case: f(x) = x

Theorem (classical theory of orthogonal polynomials)
Let {po, p1,p2,...} be a (graded) orthonormal basis of R[x] w.r.t. s.
Then the polynomials py satisfy a 3-term recurrence:

Xpk = akpr+1 + bkpk +ak—1pxk—1  for k >0, po constant

r
~ the (Jacobi) matrix M,(x) = (Ll1 Xpipj d/1,> o is tri-diagonal and

its eigenvalues are the roots of p, 1



K =[—1,1], linear case: f(x) = x

Theorem (classical theory of orthogonal polynomials)
Let {po, p1,p2,...} be a (graded) orthonormal basis of R[x] w.r.t. s.
Then the polynomials py satisfy a 3-term recurrence:

Xpk = akpr+1 + bkpk +ak—1pxk—1  for k >0, po constant

.
~ the (Jacobi) matrix M,(x) = (Ll1 Xpipj d/1,> o is tri-diagonal and

its eigenvalues are the roots of p, 1

bo a0
do b1 al
ai b2 an
M, (x) = a b3 a3




K =[—1,1], linear case: f(x) = x

Theorem (classical theory of orthogonal polynomials)
Let {po, p1,p2,...} be a (graded) orthonormal basis of R[x] w.r.t. s.
Then the polynomials py satisfy a 3-term recurrence:
Xpk = akpr+1 + bkpk +ak—1pxk—1  for k >0, po constant
r
~ the (Jacobi) matrix M,(x) = (fil Xpipj d/l,)ij:

its eigenvalues are the roots of p, 1

is tri-diagonal and

Theorem (de Klerk-L 2019)
For the Jacobi measure dy = (1 — x?)*dx with A\ > —1, and f(x) = x:

F) = Amin(M,(x)) = smallest root of p,y1 = —1 + O(1/r?) = foin + O(1/r?)




Chebyshev measure on K = [—1,1], f(x) = x* + kx



Chebyshev measure on K = [—1,1], f(x) = x* + kx

(1) Minimizer on boundary (i.e., k ¢ [—2,2]): Then f has a linear upper
estimator:  f(x) < g(x):=kx+1 ~ EO(F)<ED(g)=0(1/r?)
NB: This holds for any Jacobi measure (1 — x?)*dx, A\ > —1
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(1) Minimizer on boundary (i.e., k ¢ [—2,2]): Then f has a linear upper
estimator:  f(x) < g(x):=kx+1 ~ EO(F)<ED(g)=0(1/r?)
NB: This holds for any Jacobi measure (1 — x?)*dx, A\ > —1

(2) Minimizer in interior: Then, (") = \i,(M,(f))  where



Chebyshev measure on K = [—1,1], f(x) = x* + kx

(1) Minimizer on boundary (i.e., k ¢ [—2,2]): Then f has a linear upper
estimator:  f(x) < g(x):=kx+1 ~ EO(F)<ED(g)=0(1/r?)
NB: This holds for any Jacobi measure (1 — x?)*dx, A\ > —1

(2) Minimizer in interior: Then, (") = \i,(M,(f))  where

M, (f) = (f_ll(x2 + kx)p,-pjdu) ~is b-diagonal ‘almost’ Toeplitz:

K 2
P N
IV AN B S
% £ | a b c
1 | b a b c
Mr(f) = I e b a=3 b=k c=1

o

)




Write M,(f)=|* * ---|, with B 5-diagonal Toeplitz of size r — 1
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Write M,(f)=|* * ---|, with B 5-diagonal Toeplitz of size r — 1
. . B

Embed B in a symmetric circulant matrix C of size r + 1

By interlacing of eigenvalues:

Amin(B) < X3(C) = —k—2+0(1/r2): ain + O(1/17)

)‘min(Mr(f)) - 4

IA



Write M,(f)=|* * ---|, with B 5-diagonal Toeplitz of size r — 1
. . B

Embed B in a symmetric circulant matrix C of size r + 1

By interlacing of eigenvalues:

)\min(Mr(f)) S )\min(B) S )\3(C) = _kIZJf_O(l/rQ): min+0(1/r2)

Theorem (de Klerk-L 2019)
For the Chebyshev measure on [—1,1]" and any polynomial f:

£ — frin = O(1/r?)



0, }2 CONVERGENCE RATE
FOR THE SPHERE



Key steps

(1) Reduce to the case when f is linear:
By Taylor, f has a quadratic upper estimator:
f(x) < f(a) + VF(a)"(x — a) +7llx — al]?
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Up to rotation and translation, we may assume f(x) = x;



Key steps

(1) Reduce to the case when f is linear:
By Taylor, f has a linear upper estimator:
f(x) < f(a)+Vf(a)T(x—a)+v (2—2x"a)
Up to rotation and translation, we may assume f(x) = x;

(2) Reduce to the analysis for the interval [—1,1]:
Key fact: Let h(x;) be a degree 2r univariate optimal SoS density

for the univariate problem n[nq | xp (with dp = (1 — x?)("=3)/2dx))
x1€e[—1,
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Key steps

Reduce to the case when f is linear:

By Taylor, f has a linear upper estimator:

f(x) < f(a)+Vf(a)T(x—a)+v (2—2x"a)

Up to rotation and translation, we may assume f(x) = x;
Reduce to the analysis for the interval [—1,1]:

Key fact: Let h(x;) be a degree 2r univariate optimal SoS density
for the univariate problem  min o (with dp = (1 —x2)("=3)/2dx)

Xle[fl,l
Then h(x;) (rescaled) gives a (good) SoS density for the
multivariate problem: min x (with 1« Haar measure)
xesn—

This is based on the integration trick:

1
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Key steps

Reduce to the case when f is linear:

By Taylor, f has a linear upper estimator:

f(x) < f(a)+Vf(a)T(x—a)+v (2—2x"a)

Up to rotation and translation, we may assume f(x) = x;
Reduce to the analysis for the interval [—1,1]:

Key fact: Let h(x;) be a degree 2r univariate optimal SoS density
for the univariate problem  min o (with dp = (1 —x2)("=3)/2dx)

Xle[fl,l
Then h(x;) (rescaled) gives a (good) SoS density for the
multivariate problem: min x (with 1« Haar measure)
xesn—

This is based on the integration trick:

1
1= / h(x)(1 — Xf)%sdxl =C h(x)dp
1 sn—1

1

1 n—3
-1+ O<ﬁ) = / xth(x))(1 —x?) 2 dxg = C x1h(xy)du
—1 Sn—1

[de Klerk-L 2020]



The bound 1/r? is tight

Theorem (de Klerk-L 2020)
For any polynomial f(x) = (—1)?(c"x)9, the analysis is tight:

EW(f) = Q(i)

2
This relies on the following link to cubature rules:

Fact (Martinez et al. 2019)
Let {(x\), w;) : i € [N]} be a positive cubature rule on K that is

exact for integrating polynomials of degree d + 2r. If f has degree d

v o
£(r) :/ fhdp = Z wif (x)h(xD) > min £(x Z wih(xDy > £,
K i=1

i€[N]

For K = S"~1, use cubature rule from the roots of Gegenbauer polys.



‘LOCAL SIMILARITY  TRICK
&
APPLICATION TO BOX, BALL,
SIMPLEX, ROUND CONVEX BODY



‘Local similarity’: lift results from (K, W) to (K, w)

Lemma (Slot-L 2020)

Let a € K be a global minimizer of f in K. Assume:

K C K , w a weight function on K, w weight function on K satisfy:
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‘Local similarity’: lift results from (K, W) to (K, w)

Lemma (Slot-L 2020)

Let a € K be a global minimizer of f in K. Assume:

K C K , w a weight function on K, w weight function on K satisfy:
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‘Local similarity’: lift results from (K, W) to (K, w)

Lemma (Slot-L 2020)

Let a € K be a global minimizer of f in K. Assume:

K C K , w a weight function on K, w weight function on K satisfy:
(1) K, K are ‘locally similar’ at a:
KN B.(a) = Kn B.(a) for some e > 0.
(2) w,w are ‘locally similar’ at a:
m-w(x) <w(x) on int(K)N Bc(a) for somee, m>0.
(3) w(x) < w(x) for all x € int(K).
Then, f has an upper estimator g on R exact at a, satisfying

EC,(F) < EY) ().

Note: (1),(2) clearly hold if a € int(K)



Lift known O(1/r?) rate for K= [-1,1], )\ = _%

(1) to K = [~1,1], with w(x) = (1 — x®)*, A > —1/2, any f
[using Chebyshev weight w(x) = (1 — x?)"*/?], to K = [-1,1]"

(2) to any K, with w = 1, when minimizer a lies in the interior of K

[using K C K = [~1,1]" with w = 1]

(3) to K simplex, with w = 1, when minimizer lies on the boundary

[after applying affine mapping and using K= [0,1]" with w = 1]




Lift known O(1/r?) rate for K= [-1,1], )\ = _%

(1) to K = [~1,1], with w(x) = (1 — x®)*, A > —1/2, any f
[using Chebyshev weight w(x) = (1 — x?)"*/?], to K = [-1,1]"

(2) to any K, with w = 1, when minimizer a lies in the interior of K

[using K C K = [~1,1]" with w = 1]

(3) to K simplex, with w = 1, when minimizer lies on the boundary

[after applying affine mapping and using K= [0,1]" with w = 1]

(4) to K ball, with w(x) = (1 — [|x[|))*, A >0

[using a linear upper estimator and an integration trick, when the
minimizer lies on the boundary]

(5) to K ‘round’ convex body, with w =1 (i.e., K has inscribed and
circumscribed tangent balls at any boundary point)

[using the result for the ball K with W = 1]



SOS APPROXIMATIONS OF
DIRAC MEASURES
&
APPLICATION TO
CONVEX BODIES AND TO FAT
COMPACT SEMIALGEBRAIC SETS
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Cheaper bounds using the ‘push-forward measure’

e 1, measure supported by K (e.g., Lebesgue measure)

~ s push-forward of 1 by f, supported by (K) = [fmin, fmax] C R:

| e0du(0)= [ o(f()dutx) for iR R
£(K) K

e This motivates defining the weaker ‘univariate’ upper bounds:

fion = min [, F()s(F())dpu(x) st [fie s(F(x))dp(x) =1, deg(s) < 2r
s unlvarlate sum-of-squares
= min ff(K) s(t)dps(t) ff t)dus(t) =1, deg(s) < 2r
s unlvarlate sum-of-squares
fouin < £ < £ if d = deg(f); )\ Fonin [Lasserre 2019]

Error rate: £17) — fuin = O( %) [Slot-L 2020]



Cheaper bounds using the ‘push-forward measure’

e 1, measure supported by K (e.g., Lebesgue measure)

~ s push-forward of 1 by f, supported by (K) = [fmin, fmax] C R:

| e0du(0)= [ o(f()dutx) for iR R
£(K) K

e This motivates defining the weaker ‘univariate’ upper bounds:

fion = min [, F()s(F())dpu(x) st [fie s(F(x))dp(x) =1, deg(s) < 2r
5 unlvarlate sum-of-squares

= min ff(K) tos(t)due(t) st [re s(t)dur(t) =1, deg(s) < 2r
s unlvarlate sum-of-squares

fp(fr,i = smallest root of orthogonal polynomial p,;1 w.r.t. measure s,
but this is not known in general! ~+ need another approach



e May assume f(K) =[0,1] (up to affine transformation)

e Use the (half-)needle polynomials s”(t) of [Kroé-Swetits 1992]
(h >0, r € N, defined as squares of Chebyshev polynomials)
with degree 4r and satisfying
=1 att =20
()¢ <1 at t €[0,1]
<4e VP at te[h 1]

as univariate SoS density (with h = (log r)?/r?)



e May assume f(K) =[0,1] (up to affine transformation)

e Use the (half-)needle polynomials s/(t) of [Kroé-Swetits 1992]
(h >0, r € N, defined as squares of Chebyshev polynomials)
with degree 4r and satisfying
=1 att =20
sh()d <1 at t €[0,1]
<4e VP atte[h1]

as univariate SoS density (with h = (log r)?/r?)

| TIVAV/AVAY BIAVAVAVAV/Y.S

In green, the half-needle polynomial with h =1/5



Theorem (Slot-L 2020)

Assume K is a convex body, or K is compact, fat (with dense interior)
and semialgebraic. Then

(r) _ (|0gr)2

> The analysis is almost tight and there can be a separation between
the multivariate and univariate bounds:

For f(x) = x2f and K = [-1,1]:

o = 0 < 720 — o( (18"

» Open question: Can one get rid of the factor (log r)??
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Concluding remarks (1)

» Can compute (") as smallest eigenvalue of a matrix with size O(n"),
and the bounds fp(,fn)7 as smallest eigenvalue of a matrix of size r 4 1

... but computing its entries is more expensive
since one needs to integrate powers of f

» There is a link to simulated annealing: [de Klerk-L 2018]

Instead of sampling w.r.t. Boltzman distribution e=")/7 with
temperature T > 0, use the Taylor expansion of t — e~ /T
truncated at degree r ~ 1/ T as univariate SoS density

to analyze ") and thus ("
pfm

But, while the measure-based upper bound has error O(('szr)z), it is
known that the simulated annealing bound has error O(1/r) for
convex f [Kalai-Vempala 2006], which is tight for linear f

> The error analysis for f(") extends to rational functions f [dK-L'19]
and can be adapted to the general problem of moments
[de Klerk-Postek-Kuhn'19]



Concluding remarks (2)

» Comparison to grid-point search: When optimizing over all grid
points in K = [0,1]" with denominator r one gets an upper bound
with error in O(1/r?)

... but this requires r"” function evaluations, compared to solving an
SDP with matrix size O(n") for the bounds (")



Concluding remarks (2)

» Comparison to grid-point search: When optimizing over all grid
points in K = [0,1]" with denominator r one gets an upper bound
with error in O(1/r?)

... but this requires r"” function evaluations, compared to solving an
SDP with matrix size O(n") for the bounds (")

» How to get an improved analysis for the lower bounds f(,)?

> An analysis in O(%) is shown by [Fang-Fawzi 2020] for the unit
sphere, which interestingly uses the analysis for the upper bounds
(for a related univariate problem, obtained by symmetry reduction),
and the polynomial kernel method

> Extension to the case of the binary hypercube K = {0,1}"
[Slot-L 2021]

» Open question: Extension to more general sets K?
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