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Minimize a polynomial f over a compact (semialgebraic) set K

fmin = minx∈K f (x)

NP-hard problem: it captures hard combinatorial problems

(like computing α(G ): the maximum size of a stable set in a graph G )

when K is a hypercube or a simplex and deg(f ) = 2,

or K is a sphere and deg(f ) = 3

α(G ) = max
x∈[0,1]n

n∑
i=1

xi −
∑
ij∈E

xixj
1

α(G )
= min

x∈∆n

n∑
i=1

x2
i + 2

∑
ij∈E

xixj

2
√

2

3
√

3

√
1− 1

α(G )
= max

(x,y)∈Sn+|E|−1

2
∑
ij∈E

xixjyij

[Motzkin-Straus’65, Nesterov’03]
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Two hierarchies of lower/upper bounds for polynomial optimization:

fmin = min
x∈K

f (x)

• Lasserre/Parrilo sums-of-squares based lower bounds:

f(r) ≤ fmin

• Lasserre measure-based upper bounds:

fmin ≤ f (r)

Common feature:

I For fixed r the bounds can be computed via semidefinite
programming (SDP) with matrix size O(nr )

(since sum-of-squares polynomials can be modelled with SDP)

I the bounds converge asymptotically to fmin

This lecture: Main focus on the error analysis for the upper bounds



Lasserre/Parrilo
sums-of-squares based

lower bounds



‘Sums-of-squares’ (SoS) lower bounds

(P) fmin = min
x∈K

f (x) = sup
λ∈R

λ s.t. f (x)− λ ≥ 0 on K

When K = {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0} with gj ∈ R[x ]

one can replace the hard condition: “f (x)− λ ≥ 0 on K”

by the easier condition:

“f (x)− λ is a ‘weighted sum’ of sum-of-squares polynomials”

 Get the SoS bounds:

f(r) = sup λ s.t. f − λ = s0︸︷︷︸
deg≤2r

+ s1g1︸︷︷︸
deg≤2r

+ . . .+ smgm︸ ︷︷ ︸
deg≤2r

, sj SoS

I f(r) ≤ f(r+1) ≤ fmin, f(r) ↗ fmin as r →∞
I Can compute f(r) with semidefinite programming

[Lasserre 2001]
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Error analysis in terms of the relaxation order r

• [Nie-Schweighofer 2007] Let K semi-algebraic compact (+ technical
condition). There exists a constant c = cK such that for any degree
d polynomial f :

fmin − f(r) ≤ 6d3n2dLf
1

c
√

log r
c

for all r ≥ c · e(2d2nd )c

• [Fang-Fawzi 2020] Better error analysis in O(1/r2) for the unit
sphere K = Sn−1, for f homogeneous with degree 2d :

fmin − f(r) ≤ (fmax − fmin)
C 2
d n

2

r2
for r ≥ Cd · n

This improves the earlier O(1/r) result of [Doherty-Wehner 2012]
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Lasserre measure-based
upper bounds



Basic observation: identify points x ∈ K with Dirac measures on K

fmin = min
x∈K

f (x) = min
ν probability measure on K

∫
K

f (x)dν(x)

Theorem (Lasserre 2011)
For K compact, one may restrict to dν(x) = h(x)dµ(x), where

µ is a fixed measure with support K and h is a sum-of-squares density:

fmin = infh
∫
K
f (x)h(x) dµ s.t. h SoS,

∫
K
h(x) dµ = 1

Bound degree: deg(h) ≤ 2r  upper bounds f (r) converging to fmin:

f (r) = infh
∫
K
f (x)h(x) dµ s.t. h SoS,

∫
K
h(x) dµ = 1, deg(h) ≤ 2r

I fmin ≤ f (r+1) ≤ f (r), f (r) ↘ fmin, f (r) can be computed via SDP

I but one needs to know the moments of µ: mα =
∫
K
xαdµ(x)

to compute
∫
K
f (x)dµ =

∫
K

(
∑
α fαx

α)dµ =
∑
α fαmαI mα known if µ Lebesgue on cube, ball, simplex; Haar on sphere,. . .
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Example: Motzkin polynomial on K = [−2, 2]2

f (x1, x2) = x4
1 x

2
2 + x2

1 x
4
2 − 3x2

1 x
2
2 + 1

Four global minimizers: (−1,−1), (−1, 1), (1,−1), (1, 1)
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Example: Motzkin polynomial on [−2, 2]2 (ctd.)

Optimal SoS density h of degree 12
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Example: Motzkin polynomial on [−2, 2]2 (ctd.)

Optimal SoS density h of degree 16

−2
−1

0
1

2

−2

−1

0

1

2
0

0.2

0.4

0.6

0.8

x
1

x
2

h* (x
1,x

2)



Example: Motzkin polynomial on [−2, 2]2 (ctd.)

Optimal SoS density h of degree 20
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Example: Motzkin polynomial on [−2, 2]2 (ctd.)

Optimal SoS density h of degree 24
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Goal: Analyze rate of convergence of error range:

E (r)(f ) = E
(r)
µ,K (f ) := f (r) − fmin

compact K E (r)(f ) µ
Hypercube
f linear Θ(1/r2) (1− x2)λ, λ > −1 de Klerk-L 2020
any f O(1/r2) Chebyshev: λ = −1/2 ” ”
any f O(1/r2) λ ≥ −1/2 Slot-L 2020

Sphere
f homogeneous O(1/r) Haar Doherty-Wehner’12

any f O(1/r2) Haar de Klerk-L 2020

Ball
any f O(1/r2) (1− ‖x‖2)λ, λ ≥ 0 Slot-L 2020

Simplex, ‘round’ O(1/r2)

Lebesgue

Slot-L 2020
convex body

Convex body, O((log r)2/r2) Lebesgue Slot-L 2020
fat semialgebraic
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Key proof strategies

(1) Reformulate f (r) as an eigenvalue problem and

relate f (r) to extremal roots of orthogonal polynomials

 O(1/r2) rate for the Chebyshev measure on [−1, 1],

and other measures (with Jacobi weight) for linear polynomials

() Use tricks (Taylor approx., integration, ’local similarity’) to

transport the O(1/r2) rate for [−1, 1] to more sets (and measures):

hypercube, simplex, ball, sphere, ‘round’ convex bodies

(2) Design ‘nice’ SoS polynomial densities

‘that look like the Dirac delta at a global minimizer’

and use push-up measures to reduce to the univariate case

in order to get the O((log r)2/r2) rate for general K
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First basic trick:
reduction to the analysis of

quadratic polynomials



Analyze simpler upper estimators

Lemma
Let a ∈ K be a global minimizer of f in K.

Set γ = maxx∈K ‖∇2f (x)‖.

By Taylor’s theorem, f has a quadratic, separable upper estimator:

f (x) ≤ f (a) + 〈∇f (a), x − a〉+ γ‖x − a‖2 := g(x),

where f (a) = g(a)  fmin = gmin.

Hence, for all r ∈ N,
E (r)(f ) ≤ E (r)(g).

 It suffices to analyze quadratic (separable) polynomials

and sometimes we may even obtain a linear upper estimator!
(e.g. for the sphere)
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Eigenvalue reformulation

&

application to the

univariate case: K = [−1, 1]
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K = [−1, 1], linear case: f (x) = x

Theorem (classical theory of orthogonal polynomials)
Let {p0, p1, p2, . . .} be a (graded) orthonormal basis of R[x ] w.r.t. µ.
Then the polynomials pk satisfy a 3-term recurrence:

xpk = akpk+1 + bkpk + ak−1pk−1 for k ≥ 0, p0 constant
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−1
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is tri-diagonal and
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Theorem (de Klerk-L 2019)
For the Jacobi measure dµ = (1− x2)λdx with λ > −1, and f (x) = x:

f (r) = λmin(Mr (x)) = smallest root of pr+1 = −1 + Θ(1/r2) = fmin + Θ(1/r2)
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Chebyshev measure on K = [−1, 1], f (x) = x2 + kx

(1) Minimizer on boundary (i.e., k 6∈ [−2, 2]): Then f has a linear upper

estimator: f (x) ≤ g(x) := kx + 1  E (r)(f ) ≤ E (r)(g) = O(1/r2)

NB: This holds for any Jacobi measure (1− x2)λdx , λ > −1

(2) Minimizer in interior: Then, f (r) = λmin(Mr (f )) where

Mr (f ) =
(∫ 1

−1
(x2 + kx)pipjdµ

)r
i,j=0

is 5-diagonal ‘almost’ Toeplitz:
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Write Mr (f ) =

∗ ∗ . . .
∗ ∗ . . .
...

... B

, with B 5-diagonal Toeplitz of size r − 1

Embed B in a symmetric circulant matrix C of size r + 1

By interlacing of eigenvalues:

λmin(Mr (f )) ≤ λmin(B) ≤ λ3(C ) = −k2

4
+O(1/r2) = fmin +O(1/r2)

Theorem (de Klerk-L 2019)
For the Chebyshev measure on [−1, 1]n and any polynomial f :

f (r) − fmin = O(1/r2)
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O
(

1
r2

)
convergence rate

for the sphere



Key steps

(1) Reduce to the case when f is linear:

By Taylor, f has a quadratic

linear

upper estimator:

f (x) ≤ f (a) +∇f (a)T (x − a) + γ‖x − a‖2

(2− 2xTa)

Up to rotation and translation, we may assume f (x) = x1

(2) Reduce to the analysis for the interval [−1, 1]:

Key fact: Let h(x1) be a degree 2r univariate optimal SoS density

for the univariate problem min
x1∈[−1,1]

x1 (with dµ = (1− x2
1 )(n−3)/2dx1)

Then h(x1) (rescaled) gives a (good) SoS density for the
multivariate problem: min

x∈Sn−1
x1 (with µ Haar measure)

This is based on the integration trick:

1 =

∫ 1

−1

h(x1)(1− x2
1 )

n−3
2 dx1 = C

∫
Sn−1

h(x1)dµ

− 1 + O
( 1

r2

)
=

∫ 1

−1

x1h(x1)(1− x2
1 )

n−3
2 dx1 = C

∫
Sn−1

x1h(x1)dµ

[de Klerk-L 2020]
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By Taylor, f has a

quadratic

linear upper estimator:

f (x) ≤ f (a) +∇f (a)T (x − a) + γ

‖x − a‖2

(2− 2xTa)

Up to rotation and translation, we may assume f (x) = x1

(2) Reduce to the analysis for the interval [−1, 1]:

Key fact: Let h(x1) be a degree 2r univariate optimal SoS density

for the univariate problem min
x1∈[−1,1]

x1 (with dµ = (1− x2
1 )(n−3)/2dx1)

Then h(x1) (rescaled) gives a (good) SoS density for the
multivariate problem: min
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x1 (with µ Haar measure)
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The bound 1/r 2 is tight

Theorem (de Klerk-L 2020)
For any polynomial f (x) = (−1)d(cT x)d , the analysis is tight:

E (r)(f ) = Ω
( 1

r2

)
This relies on the following link to cubature rules:

Fact (Martinez et al. 2019)
Let {(x (i),wi ) : i ∈ [N]} be a positive cubature rule on K that is

exact for integrating polynomials of degree d + 2r . If f has degree d

f (r) =

∫
K

fhdµ =
N∑
i=1

wi f (x (i))h(x (i)) ≥ min
i∈[N]

f (x (i))

=1︷ ︸︸ ︷∑
i

wih(x (i)) ≥ fmin

For K = Sn−1, use cubature rule from the roots of Gegenbauer polys.



‘Local similarity’ trick

&

Application to box, ball,

simplex, round convex body



‘Local similarity’: lift results from (K̂ , ŵ) to (K ,w)

Lemma (Slot-L 2020)
Let a ∈ K be a global minimizer of f in K. Assume:

K ⊆ K̂ , w a weight function on K, ŵ weight function on K̂ satisfy:

(1) K , K̂ are ‘locally similar’ at a:

K ∩ Bε(a) = K̂ ∩ Bε(a) for some ε > 0.

K

K̂

K

K̂

(2) w , ŵ are ‘locally similar’ at a:

m · ŵ(x) ≤ w(x) on int(K ) ∩ Bε(a) for some ε,m > 0.

(3) w(x) ≤ ŵ(x) for all x ∈ int(K ).

Then, f has an upper estimator g on K̂ , exact at a, satisfying

E
(r)
K ,w (f ) ≤ E

(r)

K̂ ,ŵ
(g).

Note: (1),(2) clearly hold if a ∈ int(K )
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(1) K , K̂ are ‘locally similar’ at a:

K ∩ Bε(a) = K̂ ∩ Bε(a) for some ε > 0.

K

K̂

K

K̂
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m · ŵ(x) ≤ w(x) on int(K ) ∩ Bε(a) for some ε,m > 0.
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Lift known O(1/r 2) rate for K̂ = [−1, 1], λ = −1
2

(1) to K = [−1, 1], with w(x) = (1− x2)λ, λ ≥ −1/2, any f

[using Chebyshev weight ŵ(x) = (1− x2)−1/2], to K = [−1, 1]n

(2) to any K , with w = 1, when minimizer a lies in the interior of K

[using K ⊆ K̂ = [−1, 1]n with ŵ = 1]

(3) to K simplex, with w = 1, when minimizer lies on the boundary

[after applying affine mapping and using K̂ = [0, 1]n with ŵ = 1]

φ

(4) to K ball, with w(x) = (1− ‖x‖2)λ, λ ≥ 0

[using a linear upper estimator and an integration trick, when the
minimizer lies on the boundary]

(5) to K ‘round’ convex body, with w = 1 (i.e., K has inscribed and
circumscribed tangent balls at any boundary point)

[using the result for the ball K̂ with ŵ = 1]
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SoS approximations of

Dirac measures

&

application to

convex bodies and to fat

compact semialgebraic sets



Cheaper bounds using the ‘push-forward measure’

• µ measure supported by K (e.g., Lebesgue measure)

 µf push-forward of µ by f , supported by f (K ) = [fmin, fmax] ⊆ R:∫
f (K)

ϕ(t)dµf (t) =

∫
K

ϕ(f (x))dµ(x) for ϕ : R→ R

• This motivates defining the weaker ‘univariate’ upper bounds:

f
(r)
pfm = min

∫
K
f (x)s(f (x))dµ(x) s.t.

∫
K
s(f (x))dµ(x) = 1, deg(s) ≤ 2r

s univariate sum-of-squares

= min
∫
f (K)

t · s(t)dµf (t) s.t.
∫
f (K)

s(t)dµf (t) = 1, deg(s) ≤ 2r

s univariate sum-of-squares

fmin ≤ f (rd) ≤ f
(r)
pfm if d = deg(f ); f

(r)
pfm ↘ fmin [Lasserre 2019]

Error rate: f
(r)
pfm − fmin = O

(
(log r)2

r2

)
[Slot-L 2020]

f
(r)
pfm = smallest root of orthogonal polynomial pr+1 w.r.t. measure µf ,

but this is not known in general!  need another approach
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• May assume f (K ) = [0, 1] (up to affine transformation)

• Use the (half-)needle polynomials shr (t) of [Kroó-Swetits 1992]
(h > 0, r ∈ N, defined as squares of Chebyshev polynomials)
with degree 4r and satisfying

shr (t)


= 1 at t = 0
≤ 1 at t ∈ [0, 1]

≤ 4e−
1
2

√
hr at t ∈ [h, 1]

as univariate SoS density (with h = (log r)2/r2)

-1.5 -1 -h 0 h 1 1.5

0.5

1

In green, the half-needle polynomial with h = 1/5
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Theorem (Slot-L 2020)
Assume K is a convex body, or K is compact, fat (with dense interior)
and semialgebraic. Then

f
(r)
pfm − fmin = O

( (log r)2

r2

)

I The analysis is almost tight and there can be a separation between
the multivariate and univariate bounds:

For f (x) = x2k and K = [−1, 1]:

fmin = 0 ≤ f (2kr) = O(
(log r)2k

r2k
) ≤ f

(r)
pfm = Ω(

1

r2
)

I Open question: Can one get rid of the factor (log r)2?



Concluding remarks (1)

I Can compute f (r) as smallest eigenvalue of a matrix with size O(nr ),

and the bounds f
(r)
pfm as smallest eigenvalue of a matrix of size r + 1

... but computing its entries is more expensive
since one needs to integrate powers of f

I There is a link to simulated annealing: [de Klerk-L 2018]

Instead of sampling w.r.t. Boltzman distribution e−f (x)/T with
temperature T > 0, use the Taylor expansion of t → e−t/T

truncated at degree r ∼ 1/T as univariate SoS density

(to analyze f
(r)
pfm and thus f (r))

But, while the measure-based upper bound has error O( (log r)2

r2 ), it is
known that the simulated annealing bound has error O(1/r) for
convex f [Kalai-Vempala 2006], which is tight for linear f

I The error analysis for f (r) extends to rational functions f [dK-L’19]
and can be adapted to the general problem of moments

[de Klerk-Postek-Kuhn’19]
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and can be adapted to the general problem of moments
[de Klerk-Postek-Kuhn’19]



Concluding remarks (1)

I Can compute f (r) as smallest eigenvalue of a matrix with size O(nr ),

and the bounds f
(r)
pfm as smallest eigenvalue of a matrix of size r + 1

... but computing its entries is more expensive
since one needs to integrate powers of f

I There is a link to simulated annealing: [de Klerk-L 2018]

Instead of sampling w.r.t. Boltzman distribution e−f (x)/T with
temperature T > 0, use the Taylor expansion of t → e−t/T

truncated at degree r ∼ 1/T as univariate SoS density
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pfm and thus f (r))

But, while the measure-based upper bound has error O( (log r)2

r2 ), it is
known that the simulated annealing bound has error O(1/r) for
convex f [Kalai-Vempala 2006], which is tight for linear f

I The error analysis for f (r) extends to rational functions f [dK-L’19]
and can be adapted to the general problem of moments

[de Klerk-Postek-Kuhn’19]



Concluding remarks (2)

I Comparison to grid-point search: When optimizing over all grid
points in K = [0, 1]n with denominator r one gets an upper bound
with error in O(1/r2)

... but this requires rn function evaluations, compared to solving an
SDP with matrix size O(nr ) for the bounds f (r)

I How to get an improved analysis for the lower bounds f(r)?

I An analysis in O( 1
r2 ) is shown by [Fang-Fawzi 2020] for the unit

sphere, which interestingly uses the analysis for the upper bounds
(for a related univariate problem, obtained by symmetry reduction),
and the polynomial kernel method

I Extension to the case of the binary hypercube K = {0, 1}n
[Slot-L 2021]

I Open question: Extension to more general sets K?
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