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Sum-of-ratios problems

Nonsmooth and nonconcave fractional maximization problem:

m fi(xi)
max F(x) := h(x1,. .., xm) + ~—L
X=(X1,..0,Xm ) ES: =51 XX Sy i1 gi(Xi)

(P)

Here, for all x; € S;, fi(x;) > 0 and g;(x;) > 0.
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Nonsmooth and nonconcave fractional maximization problem:
" fi(x)
— gi(xi)

max F(x) = h(Xl,«..,Xm)+
X:(X17--~7Xm)€5::51><..‘><5m

(P)
Here, for all x; € S;, fi(x;) > 0 and g;(x;) > 0.

Classical sum-of-ratios optimization problem:

m

fi(z)
rzneag( IZ_; gi(z)’

which can be rewritten as

max ifi(xi) st. xp=---=
t Xy == Xp.

X1,...,Xmec i=1 gI(X/)
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Sum-of-ratios problems

Nonsmooth and nonconcave fractional maximization problem:

X1,-- 7Xme

" fi(x)
max F(x):= h(x1,...,xm)+ Do P
X=(X1 ooy Xim ) EST=51 X+ X Spy (x) = h(a ) — gi(xi) )
Here, for all x; € S;, fi(x;) > 0 and g;(x;) > 0.
Classical sum-of-ratios optimization problem:
-~ fi(2)
rzneag(iz_; gi(z)’
which can be rewritten as
m
Z ==

gl X/

A plausible alternative optimization formulation:

m
max_ =y | —x?
m€C P

X1 geeeyX
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Motivation

# Energy efficiency maximization problem:
max W
xe]RdZ 'P

where x is the transmit power, R; is the data rate of the ith user device, P;
is the power consumption to achieve the data rate R;, and the coefficients
w; are to weight the user devices' energy efficiency.

s.t. 0 < x < Xmax;,

Minh N. Dao A Proximal Subgradient Method for Nonsmooth Sum-of-Ratios Optimization Problems



# Energy efficiency maximization problem:
max Z e
xR £

where x is the transmit power, R; is the data rate of the ith user device, P;
is the power consumption to achieve the data rate R;, and the coefficients
w; are to weight the user devices' energy efficiency.

s.t. 0 < x < Xmax;,

# Sparse generalized eigenvalue problem:

x| Ax
max
xeRd x T Bx

—A¢(x) st x| =1,

where A> 0, B> 0, A >0, and ¢ is a regularization function which
induces sparsity of the solution.

Minh N. Dao

A Proximal Subgradient Method for Nonsmooth Sum-of-Ratios Optimization Problems



Single-ratio problems

- f(x)
Y 2 () (1)
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Single-ratio problems

f
min f(x) (1)
xeS g(x)
# Dinkelbach-type methods:
> In each iteration n, find an optimal solution x,41 of the subproblem

: N C%)
min (f(x) —0,g(x)), where 8, := 200)" (2)

» Require that f and g are smooth, f is convex, and g is concave.

» Solving each (2) is typically as expensive and difficult as solving (1).
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Single-ratio problems

(1)
# Dinkelbach-type methods:
> In each iteration n, find an optimal solution x,41 of the subproblem
. f(xn
min (£(x) — fag(x)), where 6, := Rl (2)
» Require that f and g are smooth, f is convex, and g is concave.
» Solving each (2) is typically as expensive and difficult as solving (1).

# Bot—Csetnek (2017):

» Solve subproblem (2) by proximal gradient methods.

» Require that f is a convex function and g is a smooth function which
is either concave or convex.
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Single-ratio problems

(1)
# Dinkelbach-type methods:
> In each iteration n, find an optimal solution x,41 of the subproblem
. f(xn
min (£(x) — fag(x)), where 6, := Rl (2)
» Require that f and g are smooth, f is convex, and g is concave.
» Solving each (2) is typically as expensive and difficult as solving (1).

# Bot—Csetnek (2017):
» Solve subproblem (2) by proximal gradient methods.
» Require that f is a convex function and g is a smooth function which
is either concave or convex.
# Bot-D-Li (2021):
» Solve subproblem (2) by extrapolated proximal subgradient methods.
» Only require that g is weakly convex.
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© Proximal subgradient method
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Standing assumptions

We assume throughout that S is closed but not necessarily convex, —h is
proper and lower semicontinuous, and, for each i € {1,..., m},
@ f; is nonnegative and locally Lipschitz on an open set containing S;

and there exists «; > 0 such that, for all x;,z; € S; and all
u € ILfi(xi),
(57— ) < VE@) - V) + Sz —xl% (A1)

whenever fi(x;) > 0;
@ g is locally Lipschitz on an open set containing S; and there exists
B;i > 0 such that, for all x;,z; € S; and all v € 9, gi(x;),

vz = x) > gi(z) — gi0) ~ Dz —xlP (A2
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Standing assumptions

We assume throughout that S is closed but not necessarily convex, —h is
proper and lower semicontinuous, and, for each i € {1,..., m},

@ f; is nonnegative and locally Lipschitz on an open set containing S;
and there exists «; > 0 such that, for all x;,z; € S; and all
uec 8Lf,'(X,'),

o
(5mzi—x) < V@) - VEG) + Sz —xl?, (A

whenever fi(x;) > 0;
@ g is locally Lipschitz on an open set containing S; and there exists
B;i > 0 such that, for all x;,z; € S; and all v € 9, gi(x;),

Bi
(v,zi — xi) > gi(zi) — &i(xi) — 5\\Zi—><i\|2- (A2)
# (A1) <— +/f; is weakly convex or S; is compact and f; is differentiable

with Lipschitz continuous gradient.
# (A2) +— g; is differentiable with Lipschitz continuous gradient.
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Fractional vs. Non-fractional formulations

We consider

m
fi(xi)
max h(x1,...,Xm) + P
X:(Xl,...,Xm)GS::Sl><---><Sm ( ' m) ;g{(xi) ( )
and

m
X:(xmai< s h(xi, ..., Xm) + Z [2}/, fi(xi) — y; g,(x,)} (P1)

y:(y11- «««««««« );mrqET’” i=1
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Fractional vs. Non-fractional formulations

We consider

max h(X17~~-7Xm)+Z filxi) (P)

X=(X1 .., Xm )ES: =51 XX S ] g,'(X,')

and

X is a global solution for (P) if and only if (X,y) is a global solution for

(P1), wherey = (¥1,...,¥m) €E R™ withy; = Vg,f("g)"), in which case, both
problems have the same optimal value.
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max H(x,y) := h(x1,...,xm) + Z [2)/,- fi(x;) — y,-Zg,-(X,-) }

o rm i=1
y=(¥1,---,ym)€ H/'(X/'sYI)

Minh N. Dao A Proximal Subgradient Method for Nonsmooth Sum-of-Ratios Optimization Problems



m
oMo HOOY) = RO, m) 3 [ 20/ fix) — vigi(x)]
Y:(yllﬁ-ﬁ--,}m)QRm i=1 H(x, yl-)

# H — Hi(xi,yi) —
max (x,y) max i(xi, vi)
. f;'(XiA,n)

)/i,n - g/(Xi,n) .

Minh N. Dao A Proximal Subgradient Method for Nonsmooth Sum-of-Ratios Optimization Problems



m

max H(x,y) := h(x1,. ... xm) + Z [2yiV/fi(x) — yigi(x) ]
y:ml’ ''''' Ik =t Hi(xi,yi)
# max H(x,y) — max H;(x;, y;) —
yieR ( y) yicR I( i y/)
_ fi(Xi,n)
Yion = “e0in)

“ ma§< H(X y) — ma§<{h(x1,.. . 7Xm) + Hi(Xi7yi)} —
X;i€S;

Xi n+1 € argmax {hi,n+1(Xi) — Tnl|Xi — Xi,n — %TnWi.n||2}
X,‘ES,‘
_ . 1
a proxﬁ(fhi7n+1+['5,')(xhn + 27p Wl’n)7

where hj n11(xi) == h(X1, 041, -+, Xi—1,n415 Xi» Xi+1,n - - - » Xm,n) and

Wi n € OfHi(Xi.n, Yin).

prox. () := argmin, (h(x) + %Hx —z|]3).
The indicator function vc: tc(x) := 0 if x € C and t¢(x) := +oo otherwise.
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Inertial proximal subgradient method

@D Let n=0,x_1=x0= (Xl,g,...,Xm,o) €S5,0>0,andv e [0,5/2)
@ Set yn = (Yi,ns---»Ym,n) With

Yion = gi(.Xi,,;) ’
Choose 7, > 6 + max,-:17“.7m{%(2y,-7,,a; —|—y,-27nﬁ,-)} and v, € [0,7/7,]. For
each i € {1,...,m}, let z; , = Xi p + Vn(Xi.n — Xi n—1), Uin € OLfi(Xin),
Vin € 018i(Xi,n), and

Uj.n

Yin - y;%nvi,n if fi(Xi,n) > 0;

Wi = fi(xi,n) -
0 if fi(xin) =0.
Denote h,‘,n_t'_]_(X,‘) = h(X17n+1, ooy Xi—1,n+15 Xis Xi+1,ns - - - 7Xm,n) and find

it € argmax { hi o1 () = Tallxi = 2o = 2 il -
X ES;

Update Xp11 = (X1,n41, - - - » Xmnt1)-

) If a termination criterion is not met, let n = n+ 1 and go to Step 2.
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Subsequential convergence

From now on, suppose that F is bounded from above on S and that the
set {x € S: F(x) > F(xp)} is bounded.

Theorem (Bot-D-Li)
@ VneN, F(x,) — 7|xn — xp—1]|?> < F(xnt1) — (6 — D) ||Xnr1 — xnl|?.

@ The sequence (xp)nen is bounded and 3120 || xpi1 — Xn||? < +o00.
Moreover, the sequence (F(xp))nen is convergent.

© I/flimsup, ., . 7, =7 < +00 and h is continuous on S N dom h, then
every cluster point X of (Xp)nen is a lifted coordinate-wise stationary
point for (P): For eachi € {1,...,m},
—gi(xi)oLfi(xi) + fi(xi)OL&i(Xi)
8i(Xi)?

where 0" denotes the subdifferential w.r.t. x;-variable

0€d(—h+ts)(X) +

)

# The assumption on continuity of h can be removed if m = 1.
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Convergence to a stationary point

Every cluster point X of (X,)nen is a stationary point for (P), i.e.,
0 € 0L(—F +ts)(x)

provided that liminf, 1 7, =7 > 0 and one of the following holds:

@ m=1, —h+ s and gy are regular on S, and f; is strictly
differentiable on an open set containing S;

@ h is strictly differentiable on an open set containing S, ¢s is regular on
S, and for each i € {1,..., m}, f; is strictly differentiable on an open
set containing S; and g; is regular on S;;

© h is strictly differentiable on an open set containing S and, for each
i€{l,...,m}, f; and g; are strictly differentiable on an open set
containing S;.
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© Unified analysis framework of descent methods
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Kurdyka—tojasiewicz (KL) property

A proper lower semicontinuous function h is said to satisfy the KL property
at X € dom 9 h if there exist a neighborhood U of X, 1 € (0, +o¢], and a
continuous concave function ¢: [0,77) — Ry such that

@ ¢(0) =0 and ¢ is continuously differentiable on (0,7) with ¢’ > 0;
@ for all x € U with h(x) < h(x) < h(X) + 7,

¢ (h(x) — h(x)) dist(0, O h(x)) > 1. (3)
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Kurdyka—tojasiewicz (KL) property

A proper lower semicontinuous function h is said to satisfy the KL property
at X € dom 9 h if there exist a neighborhood U of X, 1 € (0, +o¢], and a
continuous concave function ¢: [0,77) — Ry such that

@ ¢(0) =0 and ¢ is continuously differentiable on (0,7) with ¢’ > 0;
@ for all x € U with h(x) < h(x) < h(X) + 7,

¢'(h(x) — h(x)) dist(0, o h(x)) > 1. (3)
If o(s) = ys1~ for some v > 0 and « € [0, 1), then (3) becomes
dist(0, 9 h(x)) > c|h(x) — h(x)|*, (4)

and we say that h has the KL property with exponent « at X.
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Kurdyka—tojasiewicz (KL) property

A proper lower semicontinuous function h is said to satisfy the KL property
at X € dom 9 h if there exist a neighborhood U of X, 1 € (0, +o¢], and a
continuous concave function ¢: [0,77) — Ry such that

@ ¢(0) =0 and ¢ is continuously differentiable on (0,7) with ¢’ > 0;
@ for all x € U with h(x) < h(x) < h(X) + 7,

¢'(h(x) — h(x)) dist(0, o h(x)) > 1. (3)
If o(s) = ys1~ for some v > 0 and « € [0, 1), then (3) becomes
dist(0, 9 h(x)) > c|h(x) — h(x)|*, (4)

and we say that h has the KL property with exponent « at X.

» Semialgebraic functions: KL with some exponent « € [0, 1).

» Piecewise linear quadratic functions: KL with exponent 1/2.

Minh N. Dao A Proximal Subgradient Method for Nonsmooth Sum-of-Ratios Optimization Problems



Global convergence with KL property

Attouch—Bolte (2009), Attouch—Bolte—Svaiter (2013):
@ Vne N, h(xpp1) + allxpr1 — xal1? < h(xn).
@ Vn e N, dist(0, 9. h(xn+1)) < B|Xn+1 — Xnl|-

© There exist a subsequence (xk,)nen and X such that xx, — x and
h(xx,) — h(x) as n — 4o0.
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Global convergence with KL property

Attouch—Bolte (2009), Attouch—Bolte—Svaiter (2013):
@ Vne N, h(xpp1) + allxpr1 — xal1? < h(xn).
@ Vn e N, dist(0, 9. h(xn+1)) < B|Xn+1 — Xnl|-

© There exist a subsequence (xk,)nen and X such that xx, — x and
h(xx,) — h(x) as n — 4o0.

Ochs (2019):
@ Vn e N, h(xpi1, Uni1) + anlA2 < h(xn, up).
@ Vn e N, B,dist(0, ALh(xn, tn)) < B ic) ANibni+en (e A = 1),
© There exist a subsequence ((xx,, Uk,))nen and (x, u) such that
(xk,, ux,) — (X, u) and h(x,, ux,) — h(x, u) as n — +o0.
Q infrenan > 0, infrey anfn >0, Y272 B, = 400, & 219 e, < +o0.
Q@ JjcZ ceR: VneN, |[xp41 — Xal| < cApyj.
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A unified analysis framework

H, K: finite-dimensional real Hilbert spaces,

h: K — (—o0, +00]: a proper lower semicontinuous function,
VneN, x,eH, z,e K, ap, 8, >0, Ap,ep > 0.

Let 2 <7 be integers and, for each i € | :={3,2+1,...,7}, let A; > 0 with
Ziel A =1. We set Ay =0 for k < 0 and assume that
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A unified analysis framework

H, K: finite-dimensional real Hilbert spaces,
h: K — (—o0, +00]: a proper lower semicontinuous function,
VneN, x,eH, z,e K, ap, 8, >0, Ap,ep > 0.

Let 2 < 7 be integers and, for each i € | := {1,24+1,...,7}, let \; > 0 with
Ziel A =1. We set Ay =0 for k < 0 and assume that

O (Sufficient decrease) Vn € N, h(zy41) + anA2 < h(z,).

@ (Relative error) Vn € N, f,dist(0,0.h(z,)) < > ic) Ailhn—i + €n.

@ (Continuity) There exist a subsequence (zx, )nen and Z such that
zy, — z and h(zy,) — h(z) as n — +oo.

© (Parameter) inf ey oy > 0, infpeny anfn > 0, and +°i ep < +00.

n=

@ (Distance) 3j € Z, c e R: Vn € N, || Xpt1 — Xn|| < cApyj.
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Abstract convergence

Theorem (Bot-D-Li 2021)

Suppose that (z,)nen is a bounded sequence with set of cluster points (2,
and h is constant on Q2 and satisfies the KL property at each point of 0.
Set Qo :={z € Q: h(z,) = h(Z) as n — +oo} and h := h(z) for z € Q.
Then

Q > 1% ||xn+1 — xal| < +00, and the sequence (xn)nen is convergent.
@ Ifinfaen By > 0, then ¥z € Qq, 0 € 9, h(Z).

© Suppose further that h satisfies the KL property with exponent
o < 1/2 at every point of 0, that 1 <1, and that

ian Bn>0 and e, = O(h(zp—;) — h(zp41-,)) as n — +oo.
ne -

Then 3y >0, p € (0,1), and X € H such that

VneN, h(z,)—h<~yp" and ||x, — x| < p2.
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Global and linear convergence

Theorem (Bot—D-Li)

Suppose that, for each i € {1,...,m}, f; and g; are continuously
differentiable on an open set containing S;, and V% is Lipschitz
continuous on S;. Suppose further that limsup, ,, 7, =T < 400, that
either m =1 or h is differentiable on an open set containing S with
Lipschitz continuous gradient on S, and that

G(x,u) = —F(x) + t5(x) + 7[)x — ul|?
satisfies KL property at (X,X) for all x € dom O, (—F + ts).
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Global and linear convergence

Theorem (Bot—D-Li)

Suppose that, for each i € {1,...,m}, f; and g; are continuously
differentiable on an open set containing S;, and Vé is Lipschitz
continuous on S;. Suppose further that limsup, ,, 7, =T < 400, that
either m =1 or h is differentiable on an open set containing S with
Lipschitz continuous gradient on S, and that

G(x,u) = —F(x) + t5(x) + 7||x — u]|?

satisfies KL property at (X,X) for all x € dom Oy (—F + ts). Then

Q > 25 [Xnt1 — Xn|| < 400, and the sequence (x,)nen converges to a
stationary point x* for (P), i.e., 0 € Or(—F + ts)(x*).

@ If G satisfies the KL property with exponent ov < 1/2 at (X,X) for all
x € dom 9y (—F +ts), then 3y > 0, p € (0,1) such that

VneN |x, —x*| <yp% and |[[F(x) — F(x*)|| < 7p".
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Generalized eigenvalue problem with cardinality regularization

x| Ax

— t. =1 GEP
max <X Alxlo st x| =1L (GEP)

where A is positive semidefinite, B is positive definite, and A > 0.
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Generalized eigenvalue problem with cardinality regularization

max <X Alxlo st x| =1L (GEP)

where A is positive semidefinite, B is positive definite, and A > 0.
The corresponding merit function takes the form

x| Agx
x ' Bx

where Ag = —A is symmetric, A = {x € R : ||x|| = 1}, and p > 0.

®gep(x,u) = + A[xlo + ea(x) + pljx — u])?,
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Generalized eigenvalue problem with cardinality regularization

x| Ax

— . =1 EP
max <X Alxlo st x| =1L (GEP)

where A is positive semidefinite, B is positive definite, and A > 0.
The corresponding merit function takes the form

x| Agx
x ' Bx

where Ag = —A is symmetric, A = {x € R : ||x|| = 1}, and p > 0.

®Gep(x,u) = + AIx[o + ea(x) + pl|x — ul|?,

Theorem (Bot—D-Li)

Consider ®(x) = % + Al|x|lo + ¢a(x), where A, B are symmetric
matrices with B positive definite, and A > 0. Then

Q & is a KL function with exponent 1/2.

@ Forallp >0, EISGEP satisfies the KL property with exponent 1/2 at
(x,X) for all x € dom 9, P.
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Generalized eigenvalue problem with sparsity constraint

x| Ax
max <X st x| =1, fxlo < v (GEPS)

where A is positive semidefinite, B is positive definite, and r > 0.
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Generalized eigenvalue problem with sparsity constraint
T
x ' Ax
max =2 st x| =1, o <. (GEPS)

where A is positive semidefinite, B is positive definite, and r > 0.

The corresponding merit function takes the form

x| Agx
x| Bx

a)GEPS(Xa u) = + tanc, (x) + pllx — UH27

where Ay = —A is symmetric, C, = {x € R? : ||x||o < r}, and p > 0.
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Generalized eigenvalue problem with sparsity constraint

x| Ax
max <X st x| =1, fxlo < v (GEPS)

where A is positive semidefinite, B is positive definite, and r > 0.

The corresponding merit function takes the form
x| Agx
x ' Bx

where Ag = —A is symmetric, C, = {x € R : ||x|o < r}, and p > 0.

a)GEPS(Xa u) = + tanc, (x) + pllx — UHQ,

Theorem (Bot—D-Li)

. T . .
Consider ®(x) = ’;7‘1‘30: + tanc, (x), where A, B are symmetric matrices
with B positive definite, and r > 0. Then

Q & is a KL function with exponent 1/2.

@ Forallp >0, EISGEPS satisfies the KL property with exponent 1/2 at
(x,X) for all x € dom 9, P.
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@ Numerical example
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Sparse generalized eigenvalue problem

Consider p observations zy,...,z, € RY, each of which belongs to one of
two distinct classes.

Let /I € {1,...,p} contain the indices of the observations in class k, with
pc = |lk|, k=1,2,and p; + p» = p. Let g, = éZielk z;, for k=1,2.
The so-called within-class and between-class covariance matrices are

2

2
1 . T 1 " AT
Vw = ; E E (zi — i )(zi — ) and V= B E Prib g -
k=1 i€ly k=1
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Sparse generalized eigenvalue problem

Consider p observations zy,...,z, € RY, each of which belongs to one of
two distinct classes.

Let /I € {1,...,p} contain the indices of the observations in class k, with
pc = |lk|, k=1,2,and p; + p» = p. Let g, = éZielk z;, for k=1,2.
The so-called within-class and between-class covariance matrices are

2

2
1 . T 1 " AT
Vw = ; E E (zi — i )(zi — ) and V= B E Prib g -
k=1 i€ly k=1

The classification problem using sparse Fisher discriminant analysis:
x| Vpx

max
xcRd x|V, x

“(x) st x| =1, (SFDA)

where ¢ is a regularization function inducing sparsity, and A > 0.
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Sparse generalized eigenvalue problem

Consider p observations zy,...,z, € RY, each of which belongs to one of
two distinct classes.

Let /I € {1,...,p} contain the indices of the observations in class k, with
pi = |l|, k =1,2,and p1 + po = p. Let fiye = >, i, for k =1,2.

The so-called within-class and between-class covariance matrices are
2

2
1 . T 1 " AT
Vw = ; E E (zi — i )(zi — ) and V= B E Prib g -
k=1 i€ly k=1

The classification problem using sparse Fisher discriminant analysis:
x| Vpx

max
xcRd x|V, x

—Ap(x) st x| =1, (SFDA)
where ¢ is a regularization function inducing sparsity, and A > 0.

» Truncated Rayleigh flow method (TRFM) proposed by Tan et al. (2018):
Local linear convergence for ¢ = tc, with C, := {x € R? : ||xo|| < r}.

» Our method: Global linear convergence for ¢ = ¢, or ¢ = || - ||o-
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Sparsity constraint

Adopting the same setting as in Tan et al. (2018), we run TRFM and our
method (Algorithm 1) for 50 trials.

Sparsity level of | Objective value of | CPU | Number of

computed sol. | the computed sol. | time iterations
TRFM 26 11.5051 6.1950 1202
Our method 23 12.5158 3.9684 564

106 & )

Euclidean distance between x, and x* in every iteration
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Cardinality regularization

Sparsity level of | Objective value of | CPU | Number of
computed sol. | the computed sol. | time Iterations
22 12.3854 4.7104 1053

100 . ! - v ! |

€ — Algorithm 1 for cardinality regularization problem |

s

108k s . . g J
0 200 400 600 800 1000 1200

Euclidean distance between x, and x* in every iteration
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