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Sum-of-ratios problems

Nonsmooth and nonconcave fractional maximization problem:

max
x=(x1,...,xm)∈S:=S1×···×Sm

F (x) := h(x1, . . . , xm) +
m∑
i=1

fi (xi )

gi (xi )
. (P)

Here, for all xi ∈ Si , fi (xi ) ≥ 0 and gi (xi ) > 0.

Classical sum-of-ratios optimization problem:

max
z∈C

m∑
i=1

fi (z)

gi (z)
,

which can be rewritten as

max
x1,...,xm∈C

m∑
i=1

fi (xi )

gi (xi )
s.t. x1 = · · · = xm.

A plausible alternative optimization formulation:

max
x1,...,xm∈C

−γ
m∑
i=2

‖x1 − xi‖2 +
m∑
i=1

fi (xi )

gi (xi )
.
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Motivation

b Energy efficiency maximization problem:

max
x∈Rd

d∑
i=1

wi
Ri (x)

Pi (x)
s.t. 0 ≤ x ≤ xmax,

where x is the transmit power, Ri is the data rate of the ith user device, Pi

is the power consumption to achieve the data rate Ri , and the coefficients
wi are to weight the user devices’ energy efficiency.

b Sparse generalized eigenvalue problem:

max
x∈Rd

x>Ax

x>Bx
− λφ(x) s.t. ‖x‖ = 1,

where A � 0, B � 0, λ > 0, and φ is a regularization function which
induces sparsity of the solution.
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Single-ratio problems

min
x∈S

f (x)

g(x)
(1)

b Dinkelbach-type methods:

I In each iteration n, find an optimal solution xn+1 of the subproblem

min
x∈S

(f (x)− θng(x)), where θn := f (xn)
g(xn) . (2)

I Require that f and g are smooth, f is convex, and g is concave.

I Solving each (2) is typically as expensive and difficult as solving (1).

b Boţ–Csetnek (2017):

I Solve subproblem (2) by proximal gradient methods.

I Require that f is a convex function and g is a smooth function which
is either concave or convex.

b Boţ–D–Li (2021):

I Solve subproblem (2) by extrapolated proximal subgradient methods.

I Only require that g is weakly convex.
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Standing assumptions

We assume throughout that S is closed but not necessarily convex, −h is
proper and lower semicontinuous, and, for each i ∈ {1, . . . ,m},

1 fi is nonnegative and locally Lipschitz on an open set containing Si
and there exists αi ≥ 0 such that, for all xi , zi ∈ Si and all
u ∈ ∂Lfi (xi ),〈

u

2
√

fi (xi )
, zi − xi

〉
≤
√

fi (zi )−
√

fi (xi ) +
αi

2
‖zi − xi‖2, (A1)

whenever fi (xi ) > 0;

2 gi is locally Lipschitz on an open set containing Si and there exists
βi ≥ 0 such that, for all xi , zi ∈ Si and all v ∈ ∂Lgi (xi ),

〈v , zi − xi 〉 ≥ gi (zi )− gi (xi )−
βi
2
‖zi − xi‖2. (A2)

b (A1) ←−
√
fi is weakly convex or Si is compact and fi is differentiable

with Lipschitz continuous gradient.
b (A2) ←− gi is differentiable with Lipschitz continuous gradient.
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Fractional vs. Non-fractional formulations

We consider

max
x=(x1,...,xm)∈S :=S1×···×Sm

h(x1, . . . , xm) +
m∑
i=1

fi (xi )

gi (xi )
(P)

and

max
x=(x1,...,xm)∈S

y=(y1,...,ym)∈Rm

h(x1, . . . , xm) +
m∑
i=1

[
2yi
√
fi (xi )− y2

i gi (xi )
]
. (P1)

Lemma

x is a global solution for (P) if and only if (x, y) is a global solution for

(P1), where y = (y1, . . . , ym) ∈ Rm with y i =

√
fi (x i )

gi (x i )
, in which case, both

problems have the same optimal value.
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Observation

max
x=(x1,...,xm)∈S

y=(y1,...,ym)∈Rm

H(x, y) := h(x1, . . . , xm) +
m∑
i=1

[
2yi
√

fi (xi )− y2
i gi (xi )︸ ︷︷ ︸

Hi (xi ,yi )

]
.

b max
yi∈R

H(x, y) −→ max
yi∈R

Hi (xi , yi ) −→

yi ,n =

√
fi (xi,n)

gi (xi,n) .

b max
xi∈Si

H(x, y) −→ max
xi∈Si
{h(x1, . . . , xm) + Hi (xi , yi )} −→

xi ,n+1 ∈ argmax
xi∈Si

{
hi ,n+1(xi )− τn‖xi − xi ,n − 1

2τn
wi ,n‖2

}
= prox 1

2τn
(−hi,n+1+ιSi )

(xi ,n + 1
2τn

wi ,n),

where hi ,n+1(xi ) := h(x1,n+1, . . . , xi−1,n+1, xi , xi+1,n, . . . , xm,n) and
wi ,n ∈ ∂xLHi (xi ,n, yi ,n).

proxγh(z) := argminx(h(x) + 1
2γ
‖x − z‖2).

The indicator function ιC : ιC (x) := 0 if x ∈ C and ιC (x) := +∞ otherwise.
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Inertial proximal subgradient method

1© Let n = 0, x−1 = x0 = (x1,0, . . . , xm,0) ∈ S , δ > 0, and ν ∈ [0, δ/2).

2© Set yn = (y1,n, . . . , ym,n) with

yi ,n =

√
fi (xi,n)

gi (xi,n) ,

Choose τn ≥ δ + maxi=1,...,m{1
2 (2yi ,nαi + y2

i ,nβi )} and νn ∈ [0, ν/τn]. For
each i ∈ {1, . . . ,m}, let zi ,n = xi ,n + νn(xi ,n − xi ,n−1), ui ,n ∈ ∂Lfi (xi ,n),
vi ,n ∈ ∂Lgi (xi ,n), and

wi ,n =

yi ,n
ui,n√
fi (xi,n)

− y2
i ,nvi ,n if fi (xi ,n) > 0,

0 if fi (xi ,n) = 0.

Denote hi ,n+1(xi ) := h(x1,n+1, . . . , xi−1,n+1, xi , xi+1,n, . . . , xm,n) and find

xi ,n+1 ∈ argmax
xi∈Si

{
hi ,n+1(xi )− τn‖xi − zi ,n − 1

2τn
wi ,n‖2

}
.

Update xn+1 = (x1,n+1, . . . , xm,n+1).

3© If a termination criterion is not met, let n = n + 1 and go to Step 2.
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Subsequential convergence

From now on, suppose that F is bounded from above on S and that the
set {x ∈ S : F (x) ≥ F (x0)} is bounded.

Theorem (Boţ–D–Li)

1 ∀n ∈ N, F (xn)− ν‖xn − xn−1‖2 ≤ F (xn+1)− (δ − ν)‖xn+1 − xn‖2.

2 The sequence (xn)n∈N is bounded and
∑+∞

n=0 ‖xn+1 − xn‖2 < +∞.
Moreover, the sequence (F (xn))n∈N is convergent.

3 If lim supn→+∞ τn = τ < +∞ and h is continuous on S ∩ dom h, then
every cluster point x of (xn)n∈N is a lifted coordinate-wise stationary
point for (P): For each i ∈ {1, . . . ,m},

0 ∈ ∂xiL (−h + ιS)(x) +
−gi (x i )∂Lfi (x i ) + fi (x i )∂Lgi (x i )

gi (x i )2
,

where ∂xiL denotes the subdifferential w.r.t. xi -variable

b The assumption on continuity of h can be removed if m = 1.
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Convergence to a stationary point

Every cluster point x of (xn)n∈N is a stationary point for (P), i.e.,

0 ∈ ∂L(−F + ιS)(x)

provided that lim infn→+∞ τn = τ > 0 and one of the following holds:

1 m = 1, −h + ιS and g1 are regular on S , and f1 is strictly
differentiable on an open set containing S ;

2 h is strictly differentiable on an open set containing S , ιS is regular on
S , and for each i ∈ {1, . . . ,m}, fi is strictly differentiable on an open
set containing Si and gi is regular on Si ;

3 h is strictly differentiable on an open set containing S and, for each
i ∈ {1, . . . ,m}, fi and gi are strictly differentiable on an open set
containing Si .
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Kurdyka– Lojasiewicz (KL) property

A proper lower semicontinuous function h is said to satisfy the KL property
at x ∈ dom ∂Lh if there exist a neighborhood U of x , η ∈ (0,+∞], and a
continuous concave function ϕ : [0, η)→ R+ such that

1 ϕ(0) = 0 and ϕ is continuously differentiable on (0, η) with ϕ′ > 0;

2 for all x ∈ U with h(x) < h(x) < h(x) + η,

ϕ′(h(x)− h(x)) dist(0, ∂Lh(x)) ≥ 1. (3)

If ϕ(s) = γs1−α for some γ > 0 and α ∈ [0, 1), then (3) becomes

dist(0, ∂Lh(x)) ≥ c |h(x)− h(x)|α, (4)

and we say that h has the KL property with exponent α at x .

I Semialgebraic functions: KL with some exponent α ∈ [0, 1).

I Piecewise linear quadratic functions: KL with exponent 1/2.
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Global convergence with KL property

Attouch–Bolte (2009), Attouch–Bolte–Svaiter (2013):

1 ∀n ∈ N, h(xn+1) + α‖xn+1 − xn‖2 ≤ h(xn).

2 ∀n ∈ N, dist(0, ∂Lh(xn+1)) ≤ β‖xn+1 − xn‖.
3 There exist a subsequence (xkn)n∈N and x̃ such that xkn → x̃ and

h(xkn)→ h(x̃) as n→ +∞.

Ochs (2019):

1 ∀n ∈ N, h(xn+1, un+1) + αn∆2
n ≤ h(xn, un).

2 ∀n ∈ N, βn dist(0, ∂Lh(xn, un)) ≤ β
∑

i∈I λi∆n−i + εn (
∑

i∈I λi = 1).

3 There exist a subsequence ((xkn , ukn))n∈N and (x̃ , ũ) such that
(xkn , ukn)→ (x̃ , ũ) and h(xkn , ukn)→ h(x̃ , ũ) as n→ +∞.

4 infn∈N αn > 0, infn∈N αnβn > 0,
∑+∞

n=1 βn = +∞, &
∑+∞

n=1 εn < +∞.

5 ∃j ∈ Z, c ∈ R: ∀n ∈ N, ‖xn+1 − xn‖ ≤ c∆n+j .
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1 ∀n ∈ N, h(xn+1) + α‖xn+1 − xn‖2 ≤ h(xn).

2 ∀n ∈ N, dist(0, ∂Lh(xn+1)) ≤ β‖xn+1 − xn‖.
3 There exist a subsequence (xkn)n∈N and x̃ such that xkn → x̃ and

h(xkn)→ h(x̃) as n→ +∞.

Ochs (2019):

1 ∀n ∈ N, h(xn+1, un+1) + αn∆2
n ≤ h(xn, un).

2 ∀n ∈ N, βn dist(0, ∂Lh(xn, un)) ≤ β
∑

i∈I λi∆n−i + εn (
∑

i∈I λi = 1).

3 There exist a subsequence ((xkn , ukn))n∈N and (x̃ , ũ) such that
(xkn , ukn)→ (x̃ , ũ) and h(xkn , ukn)→ h(x̃ , ũ) as n→ +∞.

4 infn∈N αn > 0, infn∈N αnβn > 0,
∑+∞

n=1 βn = +∞, &
∑+∞

n=1 εn < +∞.
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A unified analysis framework

H,K: finite-dimensional real Hilbert spaces,
h : K → (−∞,+∞]: a proper lower semicontinuous function,
∀n ∈ N, xn ∈ H, zn ∈ K, αn, βn > 0, ∆n, εn ≥ 0.

Let ı ≤ ı be integers and, for each i ∈ I := {ı, ı+ 1, . . . , ı}, let λi ≥ 0 with∑
i∈I λi = 1. We set ∆k = 0 for k < 0 and assume that

1 (Sufficient decrease) ∀n ∈ N, h(zn+1) + αn∆2
n ≤ h(zn).

2 (Relative error) ∀n ∈ N, βn dist(0, ∂Lh(zn)) ≤
∑

i∈I λi∆n−i + εn.

3 (Continuity) There exist a subsequence (zkn)n∈N and z̃ such that
zkn → z̃ and h(zkn)→ h(z̃) as n→ +∞.

4 (Parameter) infn∈N αn > 0, infn∈N αnβn > 0, and
∑+∞

n=1 εn < +∞.

5 (Distance) ∃j ∈ Z, c ∈ R: ∀n ∈ N, ‖xn+1 − xn‖ ≤ c∆n+j .
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Abstract convergence

Theorem (Boţ–D–Li 2021)

Suppose that (zn)n∈N is a bounded sequence with set of cluster points Ω,
and h is constant on Ω and satisfies the KL property at each point of Ω.
Set Ω0 := {z ∈ Ω : h(zn)→ h(z) as n→ +∞} and h := h(z) for z ∈ Ω0.
Then

1
∑+∞

n=0 ‖xn+1 − xn‖ < +∞, and the sequence (xn)n∈N is convergent.

2 If infn∈N βn > 0, then ∀z ∈ Ω0, 0 ∈ ∂Lh(z).

3 Suppose further that h satisfies the KL property with exponent
α ≤ 1/2 at every point of Ω, that ı ≤ 1, and that

inf
n∈N

βn > 0 and εn = O(h(zn−ı)− h(zn+1−ı)) as n→ +∞.

Then ∃γ > 0, ρ ∈ (0, 1), and x ∈ H such that

∀n ∈ N, h(zn)− h ≤ γρn and ‖xn − x‖ ≤ γρ
n
2 .
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Global and linear convergence

Theorem (Boţ–D–Li)

Suppose that, for each i ∈ {1, . . . ,m}, fi and gi are continuously
differentiable on an open set containing Si , and ∇ fi

gi
is Lipschitz

continuous on Si . Suppose further that lim supn→+∞ τn = τ < +∞, that
either m = 1 or h is differentiable on an open set containing S with
Lipschitz continuous gradient on S , and that

G (x,u) = −F (x) + ιS(x) + ν‖x− u‖2

satisfies KL property at (x, x) for all x ∈ dom ∂L(−F + ιS). Then

1
∑+∞

n=0 ‖xn+1 − xn‖ < +∞, and the sequence (xn)n∈N converges to a
stationary point x∗ for (P), i.e., 0 ∈ ∂L(−F + ιS)(x∗).

2 If G satisfies the KL property with exponent α ≤ 1/2 at (x, x) for all
x ∈ dom ∂L(−F + ιS), then ∃γ > 0, ρ ∈ (0, 1) such that

∀n ∈ N ‖xn − x∗‖ ≤ γρ
n
2 and ‖F (xn)− F (x∗)‖ ≤ γρn.
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Generalized eigenvalue problem with cardinality regularization

max
x∈Rd

x>Ax

x>Bx
− λ‖x‖0 s.t. ‖x‖ = 1, (GEP)

where A is positive semidefinite, B is positive definite, and λ > 0.

The corresponding merit function takes the form

Φ̂GEP(x,u) =
x>A0x

x>Bx
+ λ‖x‖0 + ιΛ(x) + ρ‖x− u‖2,

where A0 = −A is symmetric, Λ = {x ∈ Rd : ‖x‖ = 1}, and ρ ≥ 0.

Theorem (Boţ–D–Li)

Consider Φ(x) = x>A0x
x>Bx

+ λ‖x‖0 + ιΛ(x), where A,B are symmetric
matrices with B positive definite, and λ > 0. Then

1 Φ is a KL function with exponent 1/2.

2 For all ρ ≥ 0, Φ̂GEP satisfies the KL property with exponent 1/2 at
(x, x) for all x ∈ dom ∂LΦ.
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Generalized eigenvalue problem with sparsity constraint

max
x∈Rd

x>Ax

x>Bx
s.t. ‖x‖ = 1, ‖x‖0 ≤ r , (GEPS)

where A is positive semidefinite, B is positive definite, and r > 0.

The corresponding merit function takes the form

Φ̂GEPS(x,u) =
x>A0x

x>Bx
+ ιΛ∩Cr (x) + ρ‖x− u‖2,

where A0 = −A is symmetric, Cr = {x ∈ Rd : ‖x‖0 ≤ r}, and ρ ≥ 0.

Theorem (Boţ–D–Li)

Consider Φ(x) = x>A0x
x>Bx

+ ιΛ∩Cr (x), where A,B are symmetric matrices
with B positive definite, and r > 0. Then

1 Φ is a KL function with exponent 1/2.

2 For all ρ ≥ 0, Φ̂GEPS satisfies the KL property with exponent 1/2 at
(x, x) for all x ∈ dom ∂LΦ.
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Sparse generalized eigenvalue problem

Consider p observations z1, . . . , zp ∈ Rd , each of which belongs to one of
two distinct classes.

Let Ik ⊆ {1, . . . , p} contain the indices of the observations in class k , with
pk = |Ik |, k = 1, 2, and p1 + p2 = p. Let µ̂k = 1

pk

∑
i∈Ik zi , for k = 1, 2.

The so-called within-class and between-class covariance matrices are

Vw =
1

p

2∑
k=1

∑
i∈Ik

(zi − µ̂k)(zi − µ̂k)> and Vb =
1

p

2∑
k=1

pkµ̂kµ̂
>
k .

The classification problem using sparse Fisher discriminant analysis:

max
x∈Rd

x>Vbx

x>Vwx
− λφ(x) s.t. ‖x‖ = 1, (SFDA)

where φ is a regularization function inducing sparsity, and λ > 0.

I Truncated Rayleigh flow method (TRFM) proposed by Tan et al. (2018):
Local linear convergence for φ = ιCr with Cr := {x ∈ Rd : ‖x0‖ ≤ r}.
I Our method: Global linear convergence for φ = ιCr or φ = ‖ · ‖0.
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Sparsity constraint

Adopting the same setting as in Tan et al. (2018), we run TRFM and our
method (Algorithm 1) for 50 trials.

Sparsity level of Objective value of CPU Number of
computed sol. the computed sol. time iterations

TRFM 26 11.5051 6.1950 1202

Our method 23 12.5158 3.9684 564

Euclidean distance between xn and x∗ in every iteration
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Cardinality regularization

Sparsity level of Objective value of CPU Number of
computed sol. the computed sol. time Iterations

22 12.3854 4.7104 1053

Euclidean distance between xn and x∗ in every iteration
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