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Outline

• Optimization problems that depend on solutions

of other optimization problems

– MOPECs, GNEPs, Multi-level optim.,

2-stage stochastic progr., Hierarchical games

• Parametric optimization. Why smoothing?

• Even in “good” cases (smooth, convex, CQs)

– solution mapping set-valued, nonsmooth

– value-function nonsmooth, nonconvex

– both given implicitly (compute derivatives?)

• Computationally tractable regularized smoothing

(approximating solutions and value-function)



Multi-Level Optimization

E.g., (optimistic) bilevel problem:

min
(x,p)

fu(x, p) s.t. gu(x, p) ≤ 0, x ∈ SOLl(p),

where

SOLl(p) = argmin
x

fl(x, p) s.t. gl(x, p) ≤ 0.

Def. value-function of the lower parametric problem:

V (p) = min
x

fl(x, p) s.t. gl(x, p) ≤ 0.

The value-function formulation of bilevel problem:

min
(x,p)

fu(x, p) s.t. gu(x, p) ≤ 0, gl(x, p) ≤ 0, fl(x, p) ≤ V (p).



Two-Stage Stochastic Programming

E.g., two-stage stochastic problem with linear 2nd

stage:

min
p

c(p) +

K∑
s=1

ξsVs(p), s.t. p ∈ Π,

where

Vs(p) = min
x
〈qs, x〉 s.t. Wx = hs − Tsp, x ≥ 0.

Here, randomness has known probability distribution,

with finite support described by scenarios

s = 1, . . . ,K, with probabilities ξs ∈ (0, 1).



Single-Leader Multi-Follower Games

An example of MOPEC:

for a given parameter p, agents a ∈ A determine

their decisions independently:

xa(p) = argmin
x

fa(x, p) s.t. ga(x, p) ≤ 0.

Then, some criterion F is optimized, coupling all the

agents’ decisions: XA(p) = (xa(p), a ∈ A),

min
p

F (XA(p)) s.t. p ∈ Π.

The leader’s problem involves solution mappings of

the followers.



Generalized Nash Equilibrium Problems

There are a ∈ A agents with conflicting interests,

each solving

min
pa

fa(pa, p−a) s.t. ga(pa) ≤ 0, h(pa, p−a) ≤ 0.

In particular, p−a are variables not controled by

agent a, i.e., parameters for agent’s a problem.

On the other hand, pa is a variable in this problem,

and a parameter in all others.

The h-constraint is “shared”, same for all agents.

A point p̄ is an equilibrium if no agent can improve

unilaterally.



Fully Parametrized Convex Problems

In the applications discussed above, appear

parametrized problems like

min
x

f(x, p) s.t. B(p)x = b(p), g(x, p) ≤ 0.

• All functions are suffiently smooth in x and p

• Functions f and g are convex in x for each p

• B(p) full rank ∀ p

• For every p Slater CQ is satisfied

(possibly with different Slater points x̂(p))

• For every p the problem has at least one solution

(need not be unique, SOL(p) can be unbounded)



Solution Mapping and Value-Function

Even so, under “perfect assumptions”, consider

min
x

px s.t. x ∈ [−1, 1], x, p ∈ R.

All the assumptions above are satisfied.

SOL(p) =


1, p < 0

[−1, 1], p = 0,

−1, p > 0

V (p) = −|p|.

• Solution mapping SOL(p) is multi-valued

• The value-function V (p) is nonsmooth and

nonconvex

• SOL(p) and/or V (p) enter other problem(s)!



Regularized Log-Barrier Smoothing

We approximate the solution mapping SOL(p) and

the value-function V (p) of

min
x

f(x, p) s.t. B(p)x = b(p), g(x, p) ≤ 0,

by the solution xε(p) of Tikhonov-regularized interior

penalty approximation of this problem, given by

min
x

f(x, p)−ε
∑

log(−gi(x, p))+ε
r

2
‖x‖2 s.t. B(p)x = b(p).

The solution xε(p) is unique for each p (ε > 0, r ≥ 0),

and xε(·) is continuously differentiable. Then, so is

V ε(·), where

V ε(p) = f(xε(p), p).



Some Comments

• There is vast literature on continuity and

generalized differentiability of value-functions

• But not much on computing (or approximating)

(generalized) derivatives, except special cases

• That said, log-barrier had been used before for

this purpose (Fiacco, Ishizuka, 1990), under

strong assumptions (solutions unique, etc. )

• The combination of log-barrier and

regularization appears to be new/important

• Approximations inside of other problems is new.



Smoothness of the Approximating Solution Mapping

Approximating subproblem

min
x

f(x, p)−ε
∑

log(−gi(x, p))+ε
r

2
‖x‖2 s.t. B(p)x = b(p).

Lagrange optimality conditions (hold automatically):

∇xf(xε(p), p)−ε
∑ ∇xgi(xε(p), p)

gi(xε(p), p)
+εrxε(p)−(B(p))>λε(p) = 0,

B(p)xε(p)− b(p) = 0.

The Jacobian of this system of nonlinear equations is

Jε(x,λ)((x
ε(p), λε(p))p) =

 ∇2
xxf(xε(p), p) + · · ·+ εrI −(B(p))>

B(p) 0

 .



Smoothness of the Approximations

This Jacobian is non-singular. Hence,

The Implicit Function Theorem

⇓

continuous differentiabilty of xε(·) and of λε(·),

and then also of V ε(·) = f(xε(·), p) .

Moreover, their derivatives are computable by

solving systems of linear equations (also via IFT).

—————-

For Φ(z, p) = 0, (Φ′x(z(p), p))z
′(p) = −Φ′p(z(p), p).



Value-Function Bounds

For any r ≥ 0 and ε > 0, if xε(p) exists then

V (p) ≤ V ε(p) ≤ V (p) +mε+ ε
r

2
min

x∈SOL(p)
‖x‖2,

where m is the number of inequality constraints.

If r > 0, then xε(p) exists for every ε > 0, and it holds

in addition that

r

2
min

x∈SOL(p)
‖x‖2 +m ≥

r

2
‖xε(p)‖2.

——————

(for r = 0, reduces to a bound known in the interior

penalties literature)



Asymptotics for Value-Function and Its Smoothing

V (p) ≤ V ε(p) ≤ V (p) +mε+ ε
r

2
min

x∈SOL(p)
‖x‖2.

We want:

lim
ε↘0,p→p̄

V ε(p) = V (p̄).

This is automatic if r = 0. Otherwise, assume

lim sup
p→p̄

{
min

x∈SOL(p)
‖x‖2

}
< +∞.

• SOL(p̄) is locally bounded (around p̄), which is

automatic if feasible set is locally bounded.

• Minimal-norm solutions are locally bounded

(SOL(p) can be unbounded).



Asymptotics for Smoothing of the Solution Mapping

V (p) ≤ V ε(p) ≤ V (p) +mε+ ε
r

2
min

x∈SOL(p)
‖x‖2,

If r > 0,
r

2
min

x∈SOL(p)
‖x‖2 +m ≥

r

2
‖xε(p)‖2.

If lim sup
p→p̄

{ min
x∈SOL(p)

‖x‖2} < +∞,

then, for any r ≥ 0, lim sup
ε↘0,p→p̄

xε(p) ⊂ SOL(p̄).

If r > 0, then xε(p) is uniformly bounded

(for small ε and p close to p̄), even if SOL(p) is not.

If r = 0, for xε(p) uniformly bounded, have to assume

local boundedness of SOL(p) around p̄, or directly

lim supε↘0,p→p̄ ‖xε(p)‖ < +∞.



Boundedness of Smoothing Gradients of the Value-Function

Let the smoothing be built with r > 0, and assume

lim sup
p→p̄

{
min

x∈SOL(p)
‖x‖2

}
< +∞.

Then
• Primal approx. xε(p) is locally uniformly bounded

(for small ε and p close to p̄)

• Dual approx. λε(p) and µεi (p) := −ε/gi(xε(p), p)
are locally uniformly bounded

And finally,

∇V ε(p) is locally uniformly bounded

(important for numerics)



On Lipschitz-Continuity of the Value-Function

It is interesting that, as a by-product of our

algorithmic development, we (easily) recover the

following result from the literature:

Under our standing assumptions and

lim sup
p→p̄

{ min
x∈SOL(p)

‖x‖2} < +∞,

the value-function V (·) is

locally Lipschitz-continuous around p̄

—————

This “lim sup” condition is called

“restricted inf-compactness” in

L. Guo, G.-H. Lin, J. Ye, J. Zhang (SIOPT 2014)



Proof: Under

lim sup
p→p̄

{ min
x∈SOL(p)

‖x‖2} < +∞,

Taking r > 0 in our smoothing algorithm, we proved

that ∇V ε(p) is locally bounded, and

lim
ε↘0,p→p̄

V ε(p) = V (p̄).

It is known that the latter (generally) implies that

∂V (p̄) ⊂ conv {lim sup
ε↘0,p→p̄

∇V ε(p)}.

Hence, ∂V (p̄) is also bounded. In this context,

∂V (p) locally bounded iff V (p) is locally Lipschitz.



On Gradient Consistency

We have

lim
ε↘0,p→p̄

V ε(p) = V (p̄),

and hence,

∂V (p̄) ⊂ conv

{
lim sup
ε↘0,p→p̄

∇V ε(p)

}
.

When V is locally Lipschitz-continuous,

gradient consistency between V ε and V holds, if

conv

{
lim sup
ε↘0,p→p̄

∇V ε(p)

}
⊂ ∂CV (p̄).

(When V is locally Lipschitz, ∂CV (p̄) = conv ∂V (p̄))



On Gradient Consistency

Let the smoothing be built with r > 0, and assume

lim sup
p→p̄

{ min
x∈SOL(p)

‖x‖2} < +∞.

Define

W ε(p) = V ε(p)− ε
∑

log(−gi(x, p)) + ε
r

2
‖x‖2.

• limε↘0,p→p̄ W
ε(p) = V (p̄).

• If V is convex, and W ε is convex for all ε small

enough, then W ε is gradient consistent with V .

• If the problem is parametrized only on the

mapping b in the RHS of constraint Bx = b(p),

and b(·) is affine, then V and W ε are convex.



Two-Stage Stochastic Programming

Given convex 1st and 2nd stage objective functions

c and qs, risk-averse two-stage stochastic problem is

min
p

c(p) +R(q1(x1(p)), . . . , qk(xk(p))) s.t. p ∈ Π,

where R is some risk measure, and

xs(p), s = 1, . . . , k, are solutions of

min
x

qs(x) s.t. Wx+ Tsp = hs, x ≥ 0.



Let the risk measure R be

AV aRα(qs) = min
t∈R

{
t+

1

1− α
E[max{qs − t, 0}]

}
, α ∈ (0, 1).

Re-writing “generic” min-max expression

min (max{z1, z2}) as min y s.t. y ≥ z1, y ≥ z2, we get

min
(p,t)

c(p) + t+
k∑
s=1

ξsVs(p, t) s.t. p ∈ Π, t ∈ R,

where

Vs(p, t) = min(x,y) qs(x) + y
1−α s.t. Wx = hs − Tsp, qs(x)− y ≤ t,

x ≥ 0, y ≥ 0.

Here, have RHS parametrization in the constraints.

Hence, “recourse functions” Vs are convex.



This two-stage problem

min
(p,t)

c(p) + t+
k∑
s=1

ξsVs(p, t) s.t. p ∈ Π, t ∈ R,

Vs(p, t) = min(x,y) qs(x) + y
1−α s.t. Wx = hs − Tsp, qs(x)− y ≤ t,

x ≥ 0, y ≥ 0,

is usually solved by L-shaped (cutting-planes) or,

much better, bundle methods.

Observe: If νs(p, t) and ρs(p, t) are Lagrange

multipliers associated at the solution xs(p, t) to the

first two constraints in the second-stage, then

(T>s νs(p, t), −ρs(p, t)) ∈ ∂Vs(p, t).

Convexity is important! (Otherwise... ∂Vs = ???)



Two-Stage Stochastic Programming

Our approach to solving this two-stage problem

min
(p,t)

c(p) + t+
∑
s

ξsVs(p, t) s.t. p ∈ Π, t ∈ R,

Vs(p, t) = min(x,y) qs(x) + y
1−α s.t. Wx = hs − Tsp, qs(x)− y ≤ t,

x ≥ 0, y ≥ 0,

is different, applicable to the nonconvex case too(!):

min
(p,t)

c(p) + t+
∑
s

ξsV
ε
s (p, t) s.t. p ∈ Π, t ∈ R,

V ε
s (p, t) = min(x,y) qs(x) + y

1−α

−ε log(y)− ε log(t+ y − qs(x))− ε
∑

log(xi)

s.t. Wx = hs − Tsp.



Numerical Experiments for 2-Stage Stochastic Probs.

I. Deák’s two-stage LPs, with

modified 2nd stage objective functions:

Vs(p, t) = min(x,y) 〈qs, x〉+ γ‖x‖2 + y
1−α

s.t. Wx = hs − Tsp, 〈qs, x〉+ γ‖x‖2 − y ≤ t,

x ≥ 0, y ≥ 0.

Thus, in the 2nd stage the Bundle Method solves

• LPs if γ = 0 (easy)

• QCQPs if γ > 0 (more difficult)

Smoothing Method solves linearly-constrained NLPs.



Numerical Experiments for 2-Stage Stochastic Probs.

S ∈ {1, . . . , 20}, ε ∈ {0.01, 0.1}, r ∈ {0, 0.1, 1}, γ ∈ {0, 0.01, 0.1, 1}

Performance for linear (left, γ = 0) and

quadratic (right, γ > 0) instances with risk.

Time normalized by max time; given time budget,

probability of delivering the best iterate.



Numerical Experiments for 2-Stage Stochastic Probs.

Affect of nonlinearity (of the value of γ)

How the “size” of the quadratic term affects the

Bundle Method (left)

and the Smoothing Method (right).



Single-Leader Multi-Follower Games

For a given parameter p, agents a ∈ A determine

their decisions independently:

xa(p) = argminx fa(x, p)

s.t. Ba(p)x = ba(p), ga(x, p) ≤ 0.

Then, some criterion F is optimized, coupling all the

agents’ decisions: XA(p) = (xa(p), a ∈ A),

min
p

F (XA(p)) s.t. p ∈ Π.

The leader’s problem involves solution mappings of

the followers (not value-functions).



The Smoothing Approach

Recall that xa(·) are, in general, nonsmooth. Define

xε,ra (p) = argminx fa(x, p)− ε
∑

log(−ga(x, p)) + ε r(ε)
2
‖x‖2

s.t. Ba(p)x = ba(p),

ε > 0, r(ε) ≥ 0, and approximate the leader’s problem

min
p

F (XA(p)) s.t. p ∈ Π,

by

min
p

F (Xε,r
A (p)) s.t. p ∈ Π,

where

Xε,r
A (p) = (xε,ra (p), a ∈ A).



Smoothing Properties

Under the previous standing assumptions,

Xε,r
A (·) and F (Xε,r

A (·)) are smooth,

lim
ε↘0,p′∈Π,p′→p

xε,ra (p′) = xa(p) ∀ p ∈ Π and a ∈ A.

With proper management of ε and r(ε),

F (Xε,r
A (p)) converges epigraphically to F (XA(p)).

The latter implies (among other things):

lim sup
ε↘0

{ε− argmin
p∈Π

F (Xε,r
A (p)} ⊂ argmin

p∈Π
F (XA(p)), ε→ 0.



Decomposition

Agent-wise decomposition is readily available:

1. Given pk, compute pk+1, an approx. solution of

min
p

F (Xεk,rk
A (p)) s.t. p ∈ Π,

taking pk,0 = pk as the starting point.

When the solver asks function and gradient of

F (Xεk,rk
A (·)) at its inner iterate pk,i, i = 0, 1, . . .

– For each a ∈ A solve independently

minx fa(x, pk,i)− ε
∑

log(−ga(x, pk,i)) + εk
rk
2
‖x‖2

s.t. Ba(pk,i)x = ba(pk,i).

2. Update ε and r. Go to Step 1.



Numerical Experiments for Walrasian Equilibrium Problems

2 agents exchanging n ∈ {2, 10, 20, 30} goods.

(from J. Deride, A. Jofré and R.J-B. Wets, 2017)

Deterministic WEP with symmetric agents

n SM-Time SM-Clearing PATH-Time PATH-Clearing

2 0.03 / 0.01 10−6 / 10−6 0.01 / 0.00 10−33 / 10−33

10 0.13 / 0.01 10−5 / 10−5 0.57 / 1.09 10−33 / 10−33

20 0.16 / 0.02 10−4 / 10−4 0.07 / 0.00 10−32 / 10−32

30 0.21 / 0.02 10−4 / 10−4 0.13 / 0.00 10−32 / 10−32

Except for the experiments with n = 10, where PATH

seems to have struggled for one run,

Newtonian iterations in PATH make the output more

precise and faster for this set of problems, as expected.



Numerical Experiments for Walrasian Equilibrium Problems

5 agents exchanging 10 goods

(from H.E. Skarf, 1973; also

J. Deride, A. Jofré and R.J-B. Wets, 2017)

SM-Time SM-Clearing PATH-Time PATH-Clearing

Avg. 2.30 10−5 10.24 10−10

Std. 1.76 10−2 5.45 10−8

• While PATH is still more precise,

the smoothing approach is now faster

(to termination).

• Increasing the size, as the PATH formulation

does not allow decomposition, PATH starts to fail.



Scaling Capabilities of Decomposition Across Agents

We extend the previous example to an economy with 80

goods, and the number of agents ranging from 2 to 640.

In log scale, running times grow linearly with respect to

the number of agents (log scale because the number of

agents in the experiment grows exponentially).



Decomposition

When the agents’ problems are two-stage stochastic

programs, our construction allows

• decomposition across agents

• decomposition across scenarios

• decomposition across both agents and scenarios



Conclusions

• Optimization problems that invlove solutions of

other optimization problems

(i.e., solution mappings or value-functions)

• Fully parameterized convex problems

– Solutions and value-functions are nonsmooth

– Solutions and value-functions are implicit

– Smoothing via Tikhonov-regularized log-barrier

– The approximation “converges”

– Derivatives are computable

(the approach is computonally tractable)

• Applications to, and numerical experiments for:

– Two-stage stochastic programming

– Walrasian equilibrium problems



Details:

• Mathematical Programming, 2020,

DOI 10.1007/s10107-020-01582-2

• Computational Optimization and Applications, 2021,

Vol. 78, pp. 675–704.

or

http://www.impa.br/˜optim/solodov.html

Thanks!


