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Outline
▸ Distributionally robust nonlinear optimization problem (DROP)

▸ Tractability (in an NLP sense) via quadratic (Taylor) expansion of cost
function and constraints w.r.t. random parameters

→ Approximated DROP

▸ Resulting cost and constraint functions are sums of value functions of a
semidefinite program and a trust region problem

▸ Construction of smoothing functions for both value functions

→ Smoothed approximated DROP

▸ Analysis of DROP as well as of approximated and smoothed DROP

▸ Continuation method that drives smoothing parameters to zero

▸ Convergence results

▸ DROP with PDE constraints

▸ Application to DRO for steady and unsteady Burgers equation
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Distributionally Robust Nonlinear Optimization

Distributionally Robust NLP:

min
x∈X

sup
P∈P
EP[f (x , ξ)] s.t. sup

P∈P
EP[gi(x , ξ)] ≤ 0 (DROP)

▸ P ambiguity set of probability distributions on Ξ (= Rp in the following)

→ DRO targets at “robustifying” against distributional uncertainty

▸ in this talk mostly X = Rn; later X , is a Hilbert space of controls

▸ f ∶ X ×Ξ → R parametric cost function

▸ gi ∶ X ×Ξ → R parametric constraint functions, i ∈ [m] ∶= {1, . . . ,m}

▸ we could have further “deterministic” constraints x ∈ Xad with Xad ⊂ X closed
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Distributionally Robust Nonlinear Optimization
Distributionally Robust NLP:

min
x∈X

sup
P∈P
EP[f (x , ξ)] s.t. sup

P∈P
EP[gi(x , ξ)] ≤ 0 (DROP)

▸ P ambiguity set of probability distributions on Ξ (= Rp in the following)
→ DRO targets at “robustifying” against distributional uncertainty

▸ in this talk mostly X = Rn; later X , is a Hilbert space of controls
▸ f ∶ X ×Ξ → R parametric cost function
▸ gi ∶ X ×Ξ → R parametric constraint functions, i ∈ [m]

We are particularly interested in cases where f (and possibly gi) is complicated
(e.g., only implicitly given).

Example: Optimal control problems
▸ x is the control
▸ f (x , ξ) = J(S(x , ξ), x , ξ), where S is the control-to-state operator, i.e.:
State y(ξ) = S(x , ξ) corresponding to x ∈ U solves parametric state equation

e(y(ξ), x , ξ) = 0, ξ ∈ Ξ.
Michael Ulbrich An approximation scheme for distributionally robust nonlinear optimization OWOS 2021 April 12, 2021 2



Distributionally Robust Nonlinear Optimization (2)

▸ DROP is a robust version of a

Stochastic Optimization Problem (SOP):

min
x∈X
EP[f (x , ξ)] s.t EP[gi(x , ξ)] ≤ 0, 1 ≤ i ≤ m,

where distribution P is known and fixed
▸ Thus, SOP corresponds to a DROP with P = {P}
▸ Robust Optimization Problems with uncertainty set U ⊂ Ξ

min
x∈X

sup
ξ∈U

f (x , ξ) s.t sup
ξ∈U

gi(x , ξ) ≤ 0, 1 ≤ i ≤ m,

can be viewed as DROPs with P = {δξ ∶ ξ ∈ U}
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Distributionally Robust Nonlinear Optimization (3)

▸ We explain the main ideas for the following

Distributionally Robust Optimization Problem (DROP)

min
x∈X

sup
P∈P
EP[f (x , ξ)]

▸ Distributionally robust constraints can be handled by the same techniques

We present
▸ A sampling-free tractable approximation of x ↦ sup

P∈P
EP[f (x , ξ)]

▸ A numerical strategy for solving the resulting approximated DROP
which combines a smoothing approach with a continuation method
and allows to use standard derivative-based NLP solvers

▸ Milz and M.U., SIOPT, 2020
→ DRO in finite dimensions; convergence of sequence of stationary points

▸ Milz and M.U., 2020, submitted to SICON, under revision
→ DRO with PDE constraints
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Some Literature on Optimization under Uncertainty

Robust optimization (minx supξ∈U f (x , ξ), U ⊂ Ξ ⇔ P = {δξ ∶ ξ ∈ U})
▸ Ben-Tal, Nemirovski 1998; Ben-Tal, El Ghaoui, Nemirovski 2009; Diehl, Bock,
Kostina 2006; Hale, Zhang 2007; de Gournay, Allaire, Jouve 2008; Sichau, Ulbrich
2012; Ben-Tal, den Hertog 2014; Lass, Ulbrich 2017; Kolvenbach, Lass, Ulbrich
2018; Alla, Hinze, Kolvenbach, Lass, Ulbrich 2019; ...

Distributionally robust optimization with ambiguity set defined by
▸ moment constraints: Scarf 1957; Shapiro, Kleywegt 2002; Popescu 2007; Delage,
Ye 2010; Goh, Sim 2010; Wiesemann, Kuhn, Sim 2014; ...

▸ distance to reference measure: Pflug, Wozabal 2007; Gao, Kleywegt 2016; Shapiro
2017; Esfahani, Kuhn 2018; ...

Risk averse PDE-constrained optimization
▸ Borzì, von Winckel 2009; Conti, Held, Pach, Rumpf, Schultz 2011; Kouri et al.
(2013); Chen, Quarteroni 2014; Kouri 2017; Alexanderian, Petra, Stadler, Ghattas
2017; Kouri, Surowiec 2018; Chen, Villa, Ghattas 2018; Kouri, Shapiro 2018;
Van Barel, Vandewalle 2019; Kouri, Surowiec 2020; Garreis, Surowiec, Ulbrich 2021;
...
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Ambiguity Set
▸ Moment constraints and entropic dominance modeling confidence regions;
cf. Delage, Ye 2010; So 2011; Chen, Sim, Xu 2019:

P = {P ∶ ∥Σ̄− 1
2 (EP[ξ] − µ̄)∥2 ≤ ∆,

(trust-region for mean)

Σ̄0 ≼ CovP[ξ] ≼ Σ̄1,

(semidefinite box constraints on covariance)

lnEP [exp (yT (ξ −EP[ξ]))] ≤ yT Σ̄1y , ∀y ∈ Rp

(implies existence of all finite moments)},

where ∆ > 0, Σ̄ ≻ 0, and 0 ≼ Σ̄0 ≼ Σ̄ ≼ Σ̄1 in Sp
(Sp sym. p × p-matrices, ≼ Löwner partial order on Sp)

▸ P contains the following set of normal distributions:

{P = N(µ,Σ) ∶ ∥Σ̄− 1
2 (µ − µ̄)∥2 ≤ ∆, Σ̄0 ≼ Σ ≼ Σ̄1 }.

▸ P is weak∗ closed and tight
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Approximation Scheme for DROP
We require that f (x , ⋅) is sufficiently smooth for all x ∈ X .

Our approximation scheme consists of the following steps:

1. f (x , ⋅) is approximated by 2nd order Taylor’s expansion Q(x , ⋅) about µ̄:

Q(x , ξ) ∶= f (x , µ̄) + ∇ξf (x , µ̄)T (ξ − µ̄) + 1
2(ξ − µ̄)

T∇ξξf (x , µ̄)(ξ − µ̄),

Alternatively, we could use any other quadratic approximation Q(x , ⋅) of f (x , ⋅).

2. We assume and use: Ψ(x) = sup
P∈P
EP[Q(x , ξ)] ≈ sup

P∈P
EP[f (x , ξ)]

→ Approximated DROP: min
x∈X

Ψ(x) with Ψ(x) = sup
P∈P
EP[Q(x , ξ)]

3. Important observation: Ψ is sum of two tractable value functions

4. We construct a smoothing function Ψ̃ for Ψ → tractable smoothed DROPs

5. Smoothing parameters are driven to 0 within a continuation method

6. Study convergence of continuation sequence to solution of approx. DROP
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Our approximation scheme consists of the following steps:

1. f (x , ⋅) is approximated by 2nd order Taylor’s expansion Q(x , ⋅) about µ̄:

Q(x , ξ) ∶= f (x , µ̄) + ∇ξf (x , µ̄)
T
(ξ − µ̄) + 1

2(ξ − µ̄)
T
∇ξξf (x , µ̄)(ξ − µ̄),

Alternatively, we could use any other quadratic approximation Q(x , ⋅) of f (x , ⋅).

2. We assume and use: Ψ(x) = sup
P∈P
EP[Q(x , ξ)] ≈ sup

P∈P
EP[f (x , ξ)]

→ Approximated DROP: min
x∈X

Ψ(x) with Ψ(x) = sup
P∈P
EP[Q(x , ξ)]

3. Important observation: Ψ is sum of two tractable value functions
4. We construct a smoothing function Ψ̃ for Ψ → tractable smoothed DROPs
5. Smoothing parameters are driven to 0 within a continuation method
6. Study convergence of continuation sequence to solution of approx. DROP

Taylor expansions also used for robust / risk-measure-based optimization in, e.g.,
Rockafellar, Royset 2010; Ben-Tal, den Hertog 2014; Alexanderian, Petra, Stadler, Ghattas
2017; Lass, Ulbrich 2017; Chen, Villa, Ghattas 2018; Kolvenbach, Lass, Ulbrich 2018
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Tractable but Nonsmooth Optimal Value Functions
▸ Since ξ ↦ Q(x , ξ) is quadratic, we obtain that

Ψ(x) = sup
P∈P
EP[Q(x , ξ)] = ΨSDP(x) + ΨTRP(x)

with the semidefinite program (SDP)

ΨSDP(x) =max
Σ∈Sp

{ 1
2∇ξξf (x , µ̄) ●Σ ∶ Σ̄0 ≼ Σ ≼ Σ̄1 }

and the nonconvex trust-region problem (TRP)

ΨTRP(x) = max
µ∈Rp

{Q(x , µ) ∶ ∥Σ̄− 1
2 (µ − µ̄)∥2 ≤ ∆} .

(A ●B = trace[ATB] Frobenius inner product)

We obtain value functions defined by semidefinite programs and trust-region
problems which are computationally tractable, however, nonsmooth.
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Continuation Method
▸ We consider the approximated DROP

min
x∈X

Ψ(x), where Ψ(x) = sup
P∈P
EP[Q(x , ξ)] = ΨSDP(x) + ΨTRP(x)

▸ Let Ψ̃SDP(⋅; τ) and Ψ̃TRP(⋅;ν, η) be smoothing functions for ΨSDP and ΨTRP,
respectively, with smoothing parameters τ, ν, η > 0.

Continuation method
Choose ρ1 = (τ1, ν1, η1) ∈ R3++ and x0 ∈ X .

For k = 1,2, . . .
1. Compute approx. stationary point xk (starting from xk−1) of smoothed DROP

min
x∈X

Ψ̃SDP(x ; τk) + Ψ̃TRP(x ;νk , ηk)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶Ψ̃(x ;ρk)

2. Choose 0 < ρk+1 ≤ ρk (componentwise), ρk+1 ≠ ρk such that ρk → 0

▸ Method based on Chen, Nashed, Qi 2000; Chen 2012
▸ Distrib. robust constraints will be approximated and smoothed in the same way
▸ We will present global convergence results
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Smoothing Functions

▸ Our smoothing will involve s = 3 parameters, collected in a vector ρ ∈ R3++
▸ φ̃ ∶ X ×Rs++ → R is a smoothing function of the C 0-function φ ∶ X → R if

● φ̃(⋅;ρ) is continuously differentiable for every ρ ∈ Rs++
● There exists γ ∶ Rm++ → R+ with limρ→0+ γ(ρ) = 0 such that:

∣φ̃(x ;ρ) − φ(x)∣ ≤ γ(ρ) ∀ x ∈ X , ρ ∈ Rm++.

▸ Let X = Rn and φ locally Lipschitz with smoothing function φ̃.

Then gradient consistency holds if, for all x , we have

Sφ̃(x) = ∂φ(x) (Clarke’s differential),

where

Sφ̃(x) = conv{z ∈ Rn ∶ ∃ Rn ×Rm++ ∋ (xk , ρk) → (x ,0), ∇x φ̃(xk ;ρk) → z}.

Note: Our results on smoothing functions will hold in H-spaces X , while our
gradient consistency results will refer to X = Rn.
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Smoothing Function for Value Function of SDP
▸ We can apply the following explicit formula (cf. Xu, Sun, Qi 2011):

ΨSDP(x) = max{ 1
2∇ξξf (x , µ̄) ●Σ ∶ Σ̄0 ≼ Σ ≼ Σ̄1 }

= 1
2∇ξξf (x , µ̄) ● Σ̄0 + 1

2

p

∑
i=1

max{0, λi(B(x))}

with B(x) = (Σ̄1 − Σ̄0)
1
2∇ξξf (x , µ̄)(Σ̄1 − Σ̄0)

1
2 , λi(A) = ith eigenvalue of A

▸ Entropy fct. ln(1 + ez/τ), τ > 0, is used to analytically approximate max{0, z}
▸ Gradient consistent smoothing function Ψ̃SDP is obtained by replacing
max{0, ⋅} with ln(1 + e ⋅/τ); proof via theory of spectral functions (Lewis 1996)

▸ Error estimate uniformly in x ∈ X : For all (x , τ) ∈ X × (0,∞):

ΨSDP(x) ≤ Ψ̃SDP(x ; τ) ≤ ΨSDP(x) + τp (p = parameter dimension)

Evaluations of x ↦ Ψ̃SDP(x ; τ) and x ↦ ∇x Ψ̃SDP(x ; τ) are computationally
tractable and are based on an eigendecomposition of B(x)
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Smoothing Function for Value Function of TRP I
Consider maps g ∶ X → Rp and H ∶ X → Sp.
We now show that a smoothing function for

vTRP(x) = max
s∈Rp

{ 1
2s

TH(x)s + g(x)T s ∶ 1
2∥s∥

2
2 ≤ 1

2∆
2 } (TRP)

is provided by the value function of the following lifted TRP:

ṽTRP(x ;ν, η) = max
s̃∈Rp+2

{ 1
2 s̃

T H̃η(x)s̃ + g̃ν(x)T s̃ ∶ 1
2∥s̃∥

2
2 ≤ 1

2∆
2 } , (LTRP)

where (ν, η) > 0,

H̃η(x) =
⎡⎢⎢⎢⎢⎢⎣

H(x)
0

E(H(x);η)

⎤⎥⎥⎥⎥⎥⎦
∈ Sp+2, g̃ν(x) =

⎡⎢⎢⎢⎢⎢⎣

g(x)√
2ν√
2ν

⎤⎥⎥⎥⎥⎥⎦
∈ Rp+2,

and
E(H;η) = λmax(H) + η ln

p

∑
i=1

exp
λi(H) − λmax(H)

η
≈ λmax(H) (entropy fct.)
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Smoothing Function for Value Function of TRP II
We motivate the approximation property

ṽTRP(x ;ν, η)≈ vTRP(x)

▸ For brevity, we omit the dependence on x

▸ Strong duality for TRPs (cf. Stern, Wolkowicz 1995) implies that

vTRP = max { 1
2s

THs + gT s ∶ 1
2∥s∥

2
2 ≤ 1

2∆
2}

= inf {d(λ) ∶ λ − λmax(H) > 0, λ ≥ 0} (strong duality)

≈ inf {d(λ) ∶ λ − E(H;η) > 0, λ ≥ 0} (smooth max. eigenvalue fct.)

≈ min
λ

d(λ)+ν
λ
+ ν

λ − E(H;η) (reciprocal barrier)

= max { 1
2 s̃

T H̃η s̃ + g̃νT s̃ ∶ 1
2∥s̃∥

2
2 ≤ 1

2∆
2} (strong duality)

= ṽTRP(ν, η),

where d(λ) = 1
2g

T (λI −H)−1g + 1
2∆

2λ if λ − λmax(H) > 0
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ṽTRP(x ;ν, η)≈ vTRP(x)

▸ For brevity, we omit the dependence on x
▸ Strong duality for TRPs (cf. Stern, Wolkowicz 1995) implies that

vTRP = max { 1
2s

THs + gT s ∶ 1
2∥s∥

2
2 ≤ 1

2∆
2}

= inf {d(λ) ∶ λ − λmax(H) > 0, λ ≥ 0} (strong duality)

≈ inf {d(λ) ∶ λ − E(H;η) > 0, λ ≥ 0} (smooth max. eigenvalue fct.)

≈ min
λ

d(λ)+ν
λ
+ ν

λ − E(H;η) (reciprocal barrier)

= max { 1
2 s̃

T H̃η s̃ + g̃νT s̃ ∶ 1
2∥s̃∥

2
2 ≤ 1

2∆
2} (strong duality)
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Smoothing Function for Value Function of TRP III

▸ The lifted TR-problem (LTRP) has a unique optimal solution
▸ Sensitivity analysis and Danskin’s theorem imply that x ↦ ṽTRP(x ;ν, η) is as
smooth as x ↦ g(x) and x ↦ H(x) are

▸ Error estimate uniformly in x ∈ X : For all (x , η, ν) ∈ X × (0,∞)2:

vTRP(x) ≤ ṽTRP(η, ν) ≤ vTRP(x) + 2
√
2ν∆ + 1

2∆
2η lnp.

▸ We can prove that ṽTRP is a gradient consistent smoothing function for vTRP

▸ Lifted trust-region problem (LTRP) can be solved efficiently
→ Typically, the Moré-Sorensen algorithm takes ≤ 10 iterations

(Moré, Sorensen 1983)
▸ Derivative of x ↦ ṽTRP(x ;ν, η) is inexpensive to obtain (Danskin 1966)
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Smoothing Function Ψ̃TRP for ΨTRP

Recall

ΨTRP(x) = max
µ∈Rp

{Q(x , µ) ∶ ∥Σ̄− 1
2 (µ − µ̄)∥2 ≤ ∆} , where

Q(x , ξ) = f (x , µ̄) + ∇ξf (x , µ̄)T (ξ − µ̄) + 1
2(ξ − µ̄)

T∇ξξf (x , µ̄)(ξ − µ̄),

Making the substitutions

g(x) = Σ̄ 1
2∇ξf (x , µ̄), H(x) = Σ̄ 1

2∇ξξf (x , µ̄)Σ̄
1
2 (and s = Σ̄− 1

2 (ξ − µ̄))

in the definitions of vTRP and ṽTRP(⋅;ν, η), we obtain

ΨTRP(x) = vTRP(x)∣substitution

and we can construct a smoothing function for ΨTRP via

Ψ̃TRP(x ;ν, η) = f (x , µ̄) + ṽTRP(x ;ν, η)∣substitution
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Smoothed Approximated DRO Problem

▸ We started with the DRO problem:

min
x∈X

sup
P∈P
EP[f (x , ξ)]

▸ We approximated f (x , ξ) by quadratic Taylor expansion w.r.t. ξ:

min
x∈X

sup
P∈P
EP[Q(u, ξ)]

▸ This was shown to be equivalent to

min
x∈X

ΨSDP(x) + ΨTRP(x)

▸ We then approximated ΨSDP and ΨTRP by smoothing functions:
Smoothed Approximated DRO Problem:

min
x∈X

Ψ̃SDP(x ; τ) + Ψ̃TRP(x ;ν, η)

▸ If f (⋅, ξ), ∇ξf (⋅, ξ), ∇ξξf (⋅, ξ) are C q, then this problem has a C q-objective
▸ We thus can apply standard optimization solvers
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Extension to Distributionally Robust Constraints
Distributionally Robust NLP:

min
x∈Rn

sup
P∈P
EP[f (x , ξ)] s.t. sup

P∈P
EP[gi(x , ξ)] ≤ 0 (i ∈ [m]) (DROP)

For each gi , we proceed as we did for f :
▸ gi is approximated by a function Qgi (x , ξ) that is quadratic w.r.t. ξ
(we use Taylor expansion about µ̄)

▸ Approximated DROP:

min
x∈Rn

sup
P∈P
EP[Q(x , ξ)] s.t. sup

P∈P
EP[Qgi (x , ξ)] ≤ 0 (i ∈ [m])

▸ There holds supP∈P EP[Qgi (x , ξ)] = Ψgi
SDP(x) + Ψ

gi
TRP(x)

▸ We construct smoothing functions Ψ̃gi
SDP(x ; τ) and Ψ̃gi

TRP(x ;ν, η)
▸ Smoothed Approximated DROP:

min
x∈Rn

Ψ̃SDP(x ; τ) + Ψ̃TRP(x ;ν, η) s.t. Ψ̃gi
SDP(x ; τ) + Ψ̃gi

TRP(x ;ν, η) ≤ 0 (i ∈ [m])

▸ Standard NLP solvers are applicable to the smoothed approximated DROP
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Convergence of Smoothing Method for Approximated DROP

F(x) ∶= ΨSDP(x) + ΨTRP(x), F̃(x ;ρ) ∶= Ψ̃SDP(x ; τ) + Ψ̃TRP(x ;ν, η),
Gi(x) ∶= Ψgi

SDP(x) + Ψ
gi
TRP(x), G̃i(x ;ρ) ∶= Ψ̃gi

SDP(x ; τ) + Ψ̃gi
TRP(x ;ν, η).

Approximated DROP:

min
x∈Rn

F(x) s.t. Gi(x) ≤ 0 (i ∈ [m]) (ADROP)

KKT conditions for ADROP:

0 ∈ ∂F(x̄) +∑i λ̄i∂Gi(x̄),
λ̄i ≥ 0, Gi(x̄) ≤ 0, λ̄iGi(x̄) = 0 (i ∈ [m])

Smoothed approximated DROP (ρ = ρk):
min
x∈Rn

F̃(x ;ρk) s.t. G̃i(x ;ρk) ≤ 0 (i ∈ [m]) (SADROP)

We compute εk -KKT-pairs (xk , λk) of (SADROP), required to satisfy

∥∇x F̃(xk ;ρk) +∑i λ
k
i ∇x G̃i(xk ;ρk)∥∞ ≤ εk ,

∣min{−Gi(xk ;ρk), λki }∣ ≤ εk (i ∈ [m])
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Convergence Result

Feasibility:

If (ADROP) has a strictly feasible point, then there exists δ > 0 such that, for all
ρk ∈ (0, δ]3, (SADROP) is feasible.

Convergence to KKT-points:

Let R++ ∋ εk → 0, R3++ ∋ ρk → 0 and consider a sequence (xk , λk) of
εk -KKT-pairs (xk , λk) of (SADROP).

Then every accumulation point (x̄ , λ̄) of (xk , λk) is a KKT-pair of (ADROP).

It is also possible to prove results about convergence of global solutions.

Michael Ulbrich An approximation scheme for distributionally robust nonlinear optimization OWOS 2021 April 12, 2021 19



Preliminary Remarks on Numerical Performance
In Milz, M.U., SIOPT 2020, we numerically compare several approaches for
solving unconstrained approximated DROPs.

DROPs are generated from unconstrained testset (Moré, Garbow, Hillstrom) via

f (x , ξ) = f̂ (x + ξ) (f̂ = cost function given in the testset)

We compare
▸ our continuation method, using IPOPT with BFGS-updates
▸ nonconvex bundle method MPBNGC (Mäkelä, Karmitsa, Wilppu 2016)
▸ PENLAB (Fiala, Kocvara, Stingl 2013) applied to a nonlinear SDP
reformulation of the approximated DROP

Our method is competitive and needs lowest no. of higher order derivative evals

We can use any NLP solver and our approach can handle additional
distributionally robust (and other) constraints quite easily

I postpone numerical experiments to the end, where I will present results for
PDE-constrained DROPs
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Distributionally Robust Optimization with PDEs
Distributionally Robust Reduced Optimal Control Problem:

min
u∈Uad

sup
P∈P
EP[Ĵ(u, ξ)] (DROPDE)

▸ P ambiguity set of probability distributions on Ξ (here: Ξ = Rp)
▸ Uad ⊂ U set of admissible controls, U a Hilbert space
▸ Ĵ ∶ U ×Ξ → R reduced parametric cost function, defined by

Ĵ(u, ξ) = J(S(u, ξ),u, ξ),

▸ J ∶ Y ×U ×Ξ → R parametric cost function,
▸ S ∶ U ×Ξ → Y unique solution operator of a parametric PDE:

Given u ∈ U, the parametric state y(ξ) = S(u, ξ) solves

e(y(ξ),u, ξ) = 0, ξ ∈ Ξ,

where e ∶ Y ×U ×Ξ → Z and Y , Z Banach spaces
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PDE-Constrained DROP: Assumptions

Assumptions on control-to-state operator S :
▸ PDE has uniquely defined solution operator S ∶ Uad ×Ξ → Y
▸ S(⋅, ξ) is weakly-weakly continuous on Uad for all ξ ∈ Ξ
▸ S(u, ⋅) is continuous for all u ∈ Uad

Assumptions on cost function J:
▸ J ∶ VY ×Uad ×Ξ → R is continuous with VY ⊃ S(Uad,Ξ)
▸ J(⋅, ⋅, ξ) is weakly lower semicontinuous for all ξ ∈ Ξ
▸ There exists γ ∈ R with Ĵ(u, ξ) ≥ γ for all u ∈ Uad, ξ ∈ Ξ
▸ Ĵ(u, ⋅) is uniformly integrable w.r.t. P for all u ∈ Uad:

lim
t→∞

sup
P∈P
EP[∣Ĵ(u, ξ)∣1∣Ĵ(u,⋅)∣≥t(ξ)] = 0

▸ {u ∈ Uad ∶ EP[Ĵ(u, ξ)] ≤ η ∀P ∈ P} is nonempty and bounded for some η ∈ R

(similar assumptions can be found in Kouri, Surowiec 2018)
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PDE-Constrained DROP: Existence Results
Assumptions on control-to-state operator S:
▸ PDE has uniquely defined solution operator S ∶ Uad ×Ξ → Y
▸ S(⋅, ξ) is weakly-weakly continuous for all ξ ∈ Ξ on Uad

▸ S(u, ⋅) is continuous for all u ∈ Uad

Assumptions on cost function J:
▸ J ∶ VY ×Uad ×Ξ → R is continuous with VY ⊃ S(Uad,Ξ)
▸ J(⋅, ⋅, ξ) is weakly lower semicontinuous for all ξ ∈ Ξ
▸ There exists γ ∈ R with Ĵ(u, ξ) ≥ γ for all u ∈ Uad, ξ ∈ Ξ
▸ Ĵ(u, ⋅) is uniformly integrable w.r.t. P for all u ∈ Uad:

lim
t→∞ sup

P∈P
EP[∣Ĵ(u, ξ)∣1∣Ĵ(u,⋅)∣≥t(ξ)] = 0

▸ {u ∈ Uad ∶ EP[Ĵ(u, ξ)] ≤ η ∀P ∈ P} is nonempty and bounded for some η ∈ R

Theorem: Let the Assumptions hold. Then:
1. supP EP[Ĵ(⋅, ξ)] is finite-valued and weakly lower semicontinuous on Uad

2. If Uad is closed and convex, then the DROP has an optimal solution
3. For each u ∈ Uad, there exists P∗ ∈ P with EP∗[Ĵ(u, ξ)] = supP∈P EP[Ĵ(u, ξ)]
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Approximated and Smoothed PDE-Constrained DROP:
Existence and Convergence
Assumptions:
▸ PDE solution operator S ∶ Uad ×Bε(µ̄) → Y is uniquely defined
▸ Ĵ(u, ⋅) is twice differentiable at µ̄ for all u ∈ Uad

▸ Ĵ(⋅, µ̄) is weakly lower semicontinuous on Uad

▸ ∇ξĴ(⋅, µ̄) and ∇ξξĴ(⋅, µ̄) are weakly continuous on Uad

▸ Uad is nonempty, closed, convex; Uad is bounded or Ψ is coercive on Uad

Remark: Conditions on Ĵ can be translated to assumptions on J, S , and/or e

Theorem: Let the Assumptions hold. Then:
1. Ψ and Ψ̃(⋅;ρk) are weakly lower semicontinuous on Uad for all ρk ∈ R3++
2. The approximated DROP has an optimal solution
3. The smoothed approximated DROP has an optimal solution for all ρk ∈ R3++
4. If R3++ ∋ ρk → 0 and (uk) is a corresponding solution sequence of the

smoothed approximated DROP, then (uk) ⊂ Uad is bounded and every weak
accumulation point of (uk) is a solution of the approximated DROP
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Computation of Quadratic Approximation and Derivatives

▸ UFL and FEniCS are used to compute derivatives similar to dolfin-adjoint

▸ Formulas for derivatives are provided in Kolvenbach, Lass, Ulbrich 2018

▸ We combine sensitivity and adjoint approaches to compute derivatives

▸ For not too high parameter dim. p, we compute the full matrix ∇ξξĴ(u, µ̄)
▸ Allows to compute ∇ξξĴ(u, µ̄) ● Σ̄0 and eigendecomposition of ∇ξξĴ(u, µ̄)
▸ Note: Products ∇ξξĴ(u, µ̄)sξ suffice if iterative methods are used

Number of PDE solves
objective ΨSDP(u) + ΨTRP(u) 1 state, p lin., p + 1 adj.
smoothed obj. Ψ̃SDP(u; τ) + Ψ̃TRP(u;ν, η) 1 state, p lin., p + 1 adj.
derivative ∇uΨ̃SDP(u; τ) + ∇uΨ̃TRP(u;ν, η) p lin., p adj.

(ρ = (τ, ν, η) smoothing parameters)
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DRO for Steady Burgers Equation
Consider

min
u∈U

sup
P∈P
EP[ 12∥S(u, ξ) − yd∥2L2(D)] + α

2 ∥u∥
2
L2(D) ,

where y(ξ) = S(u, ξ) ∈ Y = H1(D) solves the weak form of the

Steady Burgers Equation:

−a(ξ)yxx(x , ξ) + y(x , ξ)yx(x , ξ) = b(ξ) + u(x), x ∈ D, ξ ∈ Ξ
y(0, ξ) = d0(ξ),
y(1, ξ) = d1(ξ)

▸ D = (0,1), U = L2(D), α = 10−3, yd = 1 ∈ L2(D)
▸ a,b ∶ Ξ = R4 → R, a(ξ) = 10ξ1−2 > 0, b(ξ) = 0.01 ξ2
▸ d0, d1 ∶ Ξ → R, d0(ξ) = 1 + 10−3ξ3, d1(ξ) = 10−3ξ4

▸ Problem based on Kouri, Heinkenschloss, Ridzal, van Bloemen Waanders 2013
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DRO for Steady Burgers Equation (2)

▸ Existence of solutions to Burgers equation (ξ fixed) shown in Volkwein 1997

▸ If a(ξ) > 0 is sufficiently large, then the solution y(ξ) is unique

▸ There exists a solution operator S that is measurable w.r.t. ξ ∈ Ξ
▸ ∥S(u, ⋅)∥rY is uniformly integrable w.r.t. P for all r ≥ 1

▸ Hence, many types of reduced cost functions Ĵ (in particular, tracking type
functionals as in the test problem) are uniformly integrable w.r.t. P

▸ The PDE operator (y ,u, ξ) ↦ e(y ,u, ξ) is smooth on H1(D) ×H−1(D) ×Ξ
▸ ey(y ,u, ξ) is boundedly invertible, hence the implicit function theorem yields
that, locally, S is smooth

→ Combining all this, we can verify the assumptions of our theory
(at least if S is unique, e.g., if a is sufficiently large)
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DRO for Steady Burgers Equation (3)

Discretization

▸ Continuous piecewise linear finite elements on uniform grid with N = 2000
elements as in Kouri, Heinkenschloss, Ridzal, van Bloemen Waanders 2013

Application of continuation method

▸ u0 = 0 and (τ1, ν1, η1) = 10−2(1,10−2,1).
▸ Update rule (τk+1, νk+1, ηk+1) = 10−1(τk ,10−1νk , ηk).
▸ We use moola with LBFGS, Wolfe line search and termination tolerance
< 10−4 for each inner iteration (Schwedes, Ham, Funke, Piggott 2017)

▸ Termination if ηk < 10−4 (three outer iterations)
▸ Trust-region problems are solved with Moré-Sorensen algorithm algorithm
taking ≤ 5 iterations; cf. Moré, Sorensen 1983
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Numerical Results for Steady Burgers Equation
▸ Compare stat. point u∗DR(∆) of approx. DROP min

u∈U
sup

P∈P(∆)
EP[Q(u, ξ)]

with stat. point u∗N of the nominal problem min
u∈U

Ĵ(u, µ̄)

▸ P(∆) = {P ∶ ∥EP[ξ]∥2 ≤ ∆, 0 ≼ CovP[ξ] ≼ ∆ I}, µ̄ = 0
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Numerical Results for Steady Burgers Equation (2)
▸ P(0.1) = {P ∶ ∥EP[ξ]∥2 ≤ 0.1, 0 ≼ CovP[ξ] ≼ 0.1 I}, µ̄ = 0.

Table: Iteration history of continuation method (Ψ̃(u;ρ) = Ψ̃SDP(u;ν) + Ψ̃TRP(u; τ, η)).

k Ψ̃(uk ;ρk) ∥∇uΨ̃(uk ;ρk)∥U #iter ∥uk−uk−1∥U
1+∥uk−1∥U #Ψ̃(uk ;ρk) #∇uΨ̃(uk ;ρk)

1 7.97059e-03 6.13993e-05 18 8.24726e-01 21 21
2 4.71019e-03 9.30584e-05 9 7.27281e-02 11 11
3 4.54354e-03 8.85734e-05 3 3.23832e-03 5 5

Table: Empirical “performance” of u∗N and u∗DR(0.1).
control Em(u) SDm(u) Qm

0.80(u) Qm
0.95(u) Qm

0.99(u)
u∗N 5.27694e-03 3.36866e-03 8.68155e-03 1.12073e-02 1.19278e-02
u∗DR 5.01929e-03 2.70053e-03 7.68191e-03 9.81026e-03 1.04263e-02

Em
(u) ≈ max

1≤i≤m
EPi [Ĵ(u, ξ)], (max. expectation – estimate of obj. val. of DROP)

SDm
(u) ≈ max

1≤i≤m
SDPi [Ĵ(u, ξ)], (max. standard deviation)

Qm
β (u) ≈ max

1≤i≤m
VaRPi ,β(Ĵ(u, ξ)),(max. β-quantile)

Pi = N(µi , σ2i I) ∈ P, µi uniformly distr. on {µ ∶ ∥µ∥2 ≤ 0.1}, σ2i on {σ2 ∶ 0 ≤ σ2 ≤ 0.1}, m = 10.
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DRO for Unsteady Burgers Equation
Consider

min
u∈U

sup
P∈P
EP[ 12∥S(u, ξ) − yd∥2L2(D×I)] + α

2 (∥u1∥
2
L2(I) + ∥u2∥2L2(I)) ,

where the state y(ξ) = S(u, ξ) ∈ Y solves the weak form of the

Unsteady Burgers Equation:

yt(x , t, ξ) − a(ξ)yxx(x , t, ξ) + y(x , t, ξ)yx(x , t, ξ) = b(t, ξ), (x , t) ∈ D × I , ξ ∈ Ξ,
y(x ,0, ξ) = y0(x , ξ), x ∈ D,

yx(0, t, ξ) = u1(t), yx(1, t, ξ) = u2(t), t ∈ I

▸ D = (0,1), U = L2(D) × L2(D), α = 10−2
▸ Y = W (I) = {v ∈ L2(I ; H1(D)) ∶ vt ∈ L2(I ; H1(D)∗)}
▸ a(ξ) = 10ξ1−1, b(t, ξ) = 0.01 ξ4t
▸ y0(x , ξ) = (1 − 10ξ2)x2(1 + 10ξ3 − x)(1 − x), ξ ∈ Ξ = R4

▸ Problem based on Büskens, Griesse 2006
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DRO for Unsteady Burgers Equation (2)

▸ Theory for the deterministic case can be found in Volkwein 2001

▸ For all u ∈ U, the state equation has a unique solution y(ξ) = S(u, ξ)
▸ The (weak) state equation operator is smooth w.r.t. (y , µ, ξ) ∈ Y ×U ×R4

▸ ey(y ,u, ξ) is boundedly invertible, hence the implicit function theorem yields
that the solution operator S is smooth

▸ The weak-weak continuity of S(⋅, ξ) can be inferred from the weak closedness
of {(y ,u) ∶ e(y ,u, ξ) = 0} and the estimate ∥S(u, ξ)∥Y ≤ C(ξ)(1 + ∥u∥U)

▸ J(⋅, ⋅, ξ) is weakly lower semicontinuous and J is bounded below

▸ Analyzing C(ξ) shows that ∥S(u, ξ)∥2Y is uniformly integrable w.r.t. P
▸ Hence, Ĵ is uniformly integrable w.r.t. P
▸ We also can show that Ĵ(⋅, ξ) is weakly lower semicontinuous and ∇ξĴ(⋅, ξ),
∇ξξĴ(⋅, ξ) are weakly continuous

→ Combining all this, we can verify the assumptions of our theory
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DRO for Unsteady Burgers Equation (3)

Discretization

▸ Implicit Euler scheme in time on a uniform mesh of (0,1) with 100 steps.
▸ Piecewise linear finite elements in space on a uniform mesh with 100 elements.

Application of continuation method

▸ We choose u0 = u∗N (stationary control of nominal problem),
(τ1, ν1, η1) = 10−2(1,10−2,1).

▸ Update rule (τk+1, νk+1, ηk+1) = 10−1(τk ,10−1νk , ηk)
▸ We use scipy with LBFGS; termination tolerance < 10−6 for inner iterations
▸ Termination if ηk < 10−4 (three outer iterations)
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Numerical Results for Unsteady Burgers Equation
▸ Compare stat. point u∗DR(∆) of approx. DROP min

u∈U
sup

P∈P(∆)
EP[Q(u, ξ)]

with stat. point u∗N of the nominal problem min
u∈U

Ĵ(u, µ̄)

▸ P(∆) = {P ∶ ∥EP[ξ]∥2 ≤ ∆, 0 ≼ CovP[ξ] ≼ ∆ I}, µ̄ = 0
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Numerical Results for Unsteady Burgers Equation

▸ P(0.01) = {P ∶ ∥EP[ξ]∥2 ≤ 0.01, 0 ≼ CovP[ξ] ≼ 0.01 I}, µ̄ = 0.

Table: Iteration history of continuation method (Ψ̃(u;ρ) = Ψ̃SDP(u; τ) + Ψ̃TRP(u;ν, η)).

k Ψ̃(uk ;ρk) ∥∇uΨ̃(uk ;ρk)∥U #iter ∥uk−uk−1∥U
1+∥uk−1∥U #Ψ̃(uk ;ρk) #∇uΨ̃(uk ;ρk)

1 9.71222e-03 7.95245e-04 22 2.71162e-03 26 26
2 8.30158e-03 7.45890e-03 16 3.05599e-04 20 20
3 8.17309e-03 3.15171e-03 3 3.16757e-05 7 7

Table: Empirical “performance” of u∗N and u∗DR(0.01).

control Em(u) SDm(u) Qm
0.80(u) Qm

0.95(u) Qm
0.99(u)

u∗N 7.06471e-03 1.25907e-02 9.09762e-03 3.38810e-02 5.98617e-02
u∗DR 6.56620e-03 1.14197e-02 8.45055e-03 3.06941e-02 5.42306e-02
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Conclusions

▸ Developed an approximation scheme for DRO using quadratic (Taylor’s)
expansion w.r.t. ξ of parametric objective function and constraints

▸ Designed continuation algorithm based on smoothing methods

▸ Proved convergence result for continuation method

▸ Considered PDE-constrained DRO

▸ Proved existence of optimal solutions of the DROP, the approximated DROP
and the smoothed DROP

▸ Showed numerical results
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