
Optimization with
Learning-Informed

Differential Equation
Constraints and its

Applications

Michael Hintermüller1,2

1Weierstrass Institute for Applied Analysis
and Stochastics,

2Humboldt University of Berlin

One World
Optimization Seminar

U. Vienna

Joint work with Guozhi Dong and Kostas Papafitsoros One World Seminar, U-VIE; May 10, 2021



Data-driven methods of model prediction
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Physics-based model Data-based model Prediction
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Figure: Ab initio models typically used to analyze experimental data and for prediction

Making the physics model more and more accurate is a continuous challenge.

Artificial neural networks are efficient tools to learn physical laws from data.

Taking advantage of ever increasing computational power and data availability.
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A general optimization work flow with learned physics

Learning-informed models as constraints in optimization

Input {ui}Ni=1

Output {yi}Ni=1

(Partially) unknown

Physical process

y = Π(u)

Learning-informed

model

y = ΠN (u)

A general optimization framework

min
(y,u)

1
2‖Ay − g‖2H + α

2 ‖u‖2U

subject to y = ΠN (u), u ∈ Cad

2

Figure: Work flow of optimization with learning-informed physical constraints
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Mathematics of deep learning
and its "current state"

5/35 Learning-informed physics



Artificial neural networks (ANNs) in brief

Figure: A diagram of an artificial neural network

Key components:

u: input data

y: output data

h(l+1) = σ(Wlh
l + bl)

σ: activation function

Wl: weight matrix

bl: bias vector

One hidden-layer case:
N (u) := W1σ(W0u+b0)+b1 → y

Wl and bl are unknowns to be fixed

Supervised learning is about solving the following generic optimization problem:

minimize
(W,b)∈Fad

n∑
j=1

d(N (uj), yj) + r(W, b)

for given training data pairs (uj, yj)nj=1, and W := (Wl)Ll=0, b := (bl)Ll=0.
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Universal approximation theorem1

ANNs have been very successful approximators for functions f : Ω → Rn, defined
on bounded Ω ⊂ Rm.

Theorem (function value approximation)
A standard multi-layer feedforward network with a continuous activation function
can uniformly approximate any continuous function to any degree of accuracy if and
only if its activation function is not a polynomial.

Theorem (derivative approximation)
There exists a neural network which can approximate both the function value and
the derivatives of f uniformly to any degree of accuracy if the activation function is
continuously differentiable and is not a polynomial.

1Pinkus, Approximation theory of the MLP model in neural networks. Acta Numerica, 1999.

7/35 Learning-informed physics



Activation functions of ANNs

Examples of smooth activation functions:

• Sigmoid: e.g., tansig (σ(z) = ez−e−z

ez+e−z ), logsig (σ(z) = 1
1+e−z )), arctan

(σ(z) = arctan(z)), etc.

• Probability functions: e.g., softmax (σi(z) = e−zi∑
j e
−zj

)

Examples of nonsmooth activation functions:

• ReLU: Rectified Linear Unit (σ(z) = max(0, z))

Important: Choosing smooth vs. nonsmooth activation functions should respect
prior information on to be approximated object and has numerous implications in
optimization.
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Current state on ANN’s approximation

NNs approximate an objective f in different settings

1. f : Ω ⊂ Rm → Rn, with finite m and n
Universal approximation theorem

2. f : K ⊂ B1 → Rn, where B1 is some Banach space
Under-development (mostly convolutionary NNs)

3. f : Ω ⊂ Rm → B2, where B2 is some Banach space
Under-development (many different methods)

4. f : K ⊂ B1 → B2, (Bk)2
k=1 can be infinite dimensional

Under-development (very few still)

Examples

(Generalized)
Regression

(Image)
Classification

Solving (partial)
differential equations

Operator learning

Except for case 1, mathematical understanding of cases 2–4 still mostly in progress.

Main difficulty: Compactness condition problematic.

9/35 Learning-informed physics



Physics-informed learning2 vs Learning-informed physics3

Physics-informed learning

Physical models enter learning and
neural networks

PDE residuals are part of loss
function for training

Usually of type f : Ω→ B2

Learning-informed physics

Using ANNs to predict physical
models or their constituents

Loss function is not necessarily PDE
dependent

Typically of type f : B1 → B2

To directly learn operators between Banach spaces using ANNs has been discussed
in some limited cases only; e.g., model reduction for Nemytskii operators a.

aBhattacharya, Hosseini, Kovachki and Stuart, Model reduction and neural networks for parametric PDEs, arXiv
preprint, 2020.

2Rassi, Perdikaris and Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear PDEs. J. Comp. Phys. 2019.

3Dong, Hintermüller and Papafitsoros, Optimization with learning-informed differential equation constraints and its
applications, WIAS preprint 2754, 2020.
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Optimization constrained by
learning-informed models
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A general framework involving physics-based models

We study the following optimization problem:

minimize
(y,u)∈(Y×U)

1
2
‖Ay − g‖2

H + α

2
‖u‖2

U ,

subject to e(y, u) = 0,
u ∈ Cad.

A : U → Y a bounded, linear operator

e(y, u) = 0 physical model; e.g., (system of) ODEs or PDEs

Well-posedness e(y, u) = 0 leads to y = Π(u)
ANNs for operator learning yield ΠN ∼ Π (possibly via different pathways)

Fundamental questions:

Conditions for well-posedness of learned physical model and universal
approximation property of ΠN ∼ Π.

Approximation properties of optimizers associated to learning-informed
models vs. those related to original physics-based models.
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Existence of solutions

Let Q := AΠ (or AΠN ).

Proposition
Suppose that Q is weakly-weakly sequentially closed, i.e., if un

U
⇀ u and

Q(un) H
⇀ ḡ, then ḡ = Q(u). Then the optimization problem admits a solution

ū ∈ U .
In the special case when Cad is a bounded set of a subspace Û compactly
embedded into U , then strong-weak sequential closedness of Q is sufficient to
guarantee existence of a solution.

In many PDE models, regularity of the resp. solution helps the weak-weak
sequential closedness condition of the control-to-state map to be satisfied.

While in imaging applications (inverse problems, more generally) regularization
usually plays a role similar to Û .
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Convergence under operator perturbations

Let Qn := AΠNn
be the reduced learning-informed operators.

Theorem
Let Q and Qn for n ∈ N be weakly sequentially closed operators, and

sup
u∈Cad

‖Q(u)−Qn(u)‖H ≤ εn, for εn ↓ 0.

Suppose (un)n∈N is a sequence of minimizers associated to the optimization
problems with reduced operator Qn for all n ∈ N.
Then, there is the strong convergence

un → ū in U, and Qn(un)→ Q(ū) in H, as n→∞,
where ū is a minimizer of the original optimization problem.
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Convergence rates

Denote L0 and L1 the Lipschitz constants associated to Q and Q′, respectively,
where Q′ is the Fréchet derivative of Q, and ηn := ‖Q′ −Q′n‖L(U,H).

Theorem
Under smallness of L0, L1, the solutions un converge to ū at the following rate

‖un − ū‖U = O (L0εn + ‖Q(ū)− g‖H ηn) .

Theorem (when J ′(ū) = 0)
Suppose the Lipschitz constant L1 satisfies

L1 ‖Q(ū)− g‖H < α.

If J ′(ū) = 0, then for sufficiently large n ∈ N we have the following error bound

‖un − ū‖U = O
(√

ε2n + 2 ‖Q(ū)− g‖2
H

)
.
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Case studies
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Learn control-to-state map for semilinear PDEs

We consider the following model problem:

minimize
(y,u)

1
2
‖y − g‖2

L2(Ω) + α

2
‖u‖2

L2(Ω),

subject to −∆y + f (·, y) = u in Ω, ∂νy = 0 on ∂Ω,
u ∈ Cad := {v ∈ L2(Ω) : u(x) ≤ v(x) ≤ u(x), for x ∈ Ω}.

f is some unknown map, e.g., modeling phase separation

Goal is to learn the control-to-state (C2S) map Π : u→ y

Ideal: learn f through a neural networkN via f (·, y) = ∆y + u

The learning-informed PDE with componentN , induces the C2S map ΠN
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Assumptions on the nonlinearity

(Regularity) f = f (x, z) : Ω× R→ R is measurable in x and continuous in z.

(Growth-rate) There is F : Ω× R→ R so that ∂zF (·, z) = f (·, z), satisfying

|f (·, z)| ≤ b1 + c1 |z|p−1 and − f (·, z)z + F (·, z) ≤ b2,

resulting in
F (·, z) ≤ b0 + c0 |z|p ,

for some constants b0, b1, b2 ∈ R and c0, c1 > 0, and for some p so that the
embedding H1(Ω) ⊂ Lp(Ω) holds.

(Coercivity) F is coercive in the sense that lim‖y‖Lp(Ω)→∞

∫
Ω F (x,y)dx
‖y‖Lp(Ω)

=∞.

(Boundedness) F is bounded from below, i.e., F (x, z) ≥ F0 for some F0 ∈ R.
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A priori bounds on PDE solutions

A variational problem connected to nonlinear PDE:

G(y) := 1
2
‖∇y‖2

L2(Ω) +
∫

Ω
F (x, y) dx−

∫
Ω
uy dx over y ∈ H1(Ω). (3.1)

Proposition
Suppose that u ∈ Lr(Ω) for some r ≥ p

p−1. Then the optimization problem (3.1)

admits a solution in H1(Ω), which satisfies the constraint PDE.

Theorem
Let Cad ⊂ L∞(Ω) be bounded. Then there exists a constant K > 0 such that for all
solutions y of the semilinear PDE, it holds

‖y‖H1(Ω) + ‖y‖C(Ω) ≤ K, for all u ∈ Cad.
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Existence of solutions for learning-informed PDEs

Proposition
Let f : Ω× R→ R and F : Ω× R→ R be given as before with the extra
assumption that f ∈ C(Ω× R). Then, for every ε > 0 there exists a neural
networkN ∈ C∞(Rd × R) such that

sup
‖y‖L∞(Ω)<K

‖f (·, y)−N (·, y)‖U < ε, (3.2)

with K the uniform bound. Moreover, the learning-informed PDE

−∆y +N (·, y) = u in Ω, ∂νy = 0 on ∂Ω,
admits a weak solution which satisfies the a priori bound for sufficiently small ε > 0.

Only local approximation property ‖y‖L∞(Ω) < K is needed in (3.2) .
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Sensitivity of control-to-solution map

Theorem (under constraint on negative part of ∂yf (·, y0))
Suppose un = u0 + tnh for a sequence tn → 0, and suppose there exists
yn ∈ ΠN (un) with yn → y0 in H1(Ω). Then, we have

Local Lipschitz property:

‖yn − y0‖H1(Ω) ≤ Ctn,

for some constant C .

Directional differentiability: Every weak cluster point of yn−y0
tn

, denoted by p,
solves

−∆p + ∂yN (·, y0)p = h in Ω, ∂νp = 0 on ∂Ω,
and p satisfies the energy bounds for every h ∈ L2(Ω),

‖p‖H1(Ω)∩C(Ω ≤ C ‖h‖L2(Ω)

for some constant C .
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Learning-informed double-well potential
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Learning-informed double-well potential
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Universal approximation of learning-informed operator

Proposition
There existsN : Rd × R→ R so that

sup
‖y‖L∞(Ω)<M

‖f (·, y)−N (·, y)‖U ≤ ε,

for ε > 0 arbitrarily small. Further, we have the error bounds

‖Π(u)− ΠN (u)‖H ≤ Cε, for all u ∈ Cad,
where the constant C > 0 depends on f and y0. When f is locally Lipschitz, there

exists alsoN so that

sup
‖y‖L∞(Ω)<M

‖∂yf (·, y)− ∂yN (·, y)‖U ≤ ε1,

for sufficiently small ε1 > 0, and there exist some constants C0 > 0 and C1 > 0
‖p0 − pε‖H1(Ω)∩C(Ω) ≤ C1ε1 + C0ε, for all u ∈ Cad.

The adjoint variables pε, p0 are directional derivatives of ΠN and Π, respectively.
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KKT condition and semismooth Newton method

The KKT system of the optimal control problem

−∆y +N (·, y)− u = 0 in Ω, ∂νy = 0 on ∂Ω,
−∆p + ∂yN (·, y)p + y = g in Ω, ∂νp = 0 on ∂Ω,

−p + λ + αu = 0 in Ω,
λ−max(0, λ + c(u− u))−min(0, λ + c(u− u)) = 0 in Ω,

We use a semismooth Newton (SSN) method for solving the above system.

The PDE is only fulfilled in the end of the iteration of the SSN.

To respect the nature of the reduced problem, a SSN Sequential Quadratic
Programming (SQP) algorithm is considered:

minimize
δu∈U

〈J ′N (uk) + 1
2
Hk(uk)δu, δu〉U∗,U ,

subject to u ≤ uk + δu ≤ u a.e. in Ω.
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A SSN-SQP algorithm

Define a merit function Φk(µ) as

JN (uk + µδu,k) + βk(
∥∥(uk + µδu,k − u)+∥∥

L2(Ω) +
∥∥(uk + µδu,k − u)−

∥∥
L2(Ω)).

• Initialization: Using semi-smooth Newton for an initial guess of solutions.
• Key steps of every SQP:

(1) Compute an update direction δu,k using again SSN but to the SQP stationary
equation.

(2) Using line search with Armijo condition to adjust step length in every SQP
sub-problem.
For every iteration in the line search, to evaluate JN (uk + µlkδu,k) we need the
solution of the PDE which is obtained by Newton iterations.

Primal-dual active set strategy (pdAS) is employed as SSN in every SQP
sub-problem solve.
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Example of stationary Allen-Cahn equation

Plots of state and control pairs (yN , uN ) and (y∗, u∗) by learned (left) and exact (middle) PDEs, respectively, as well as their
differences (right) |yN − y∗|, |uN − u∗|
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Example of stationary Allen-Cahn equation
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Preliminary on (quantitative) MRI

Bloch equations describe the physical law behind MRI

∂y

∂t
(t) = y(t)× γB(t)−

(
y1(t)
T2

,
y2(t)
T2

,
y3(t)− ρme

T1

)
,

where B = B0 + B1 + G denotes magnetic field, ρ is proton density.
MRI experiment consists of three major steps:

Aligning magnetic nuclear spins in an applied constant magnetic field B0

Perturbing this alignment via radio frequency (RF) pulse B1

Applying magnetic gradient field G to distinguish individual contributions

Figure: MRI diagram (Published in Health and Medicine)
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Figure: Simulated ideal tissue parameters of a brain phantom.
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qMRI as a control taste problem

qMRI fits to the general framework:

minimize
(y,u)

1
2
‖PF(y)− gδ‖2

H + α

2
‖u‖2

U ,

subject to

∂y

∂t
(t) = y(t)× γB(t)−

(
y1(t)
T2

,
y2(t)
T2

,
y3(t)− ρme

T1

)
, t = t1, . . . , tL,

y(0) = ρm0,
u ∈ Cad.

The goal is to estimate the physical parameters u = (ρ, T1, T2)

ANNsN approximate the parameter-to-solution map (Nemytskii type):

(ρ, T1, T2) 7→ (yt1, . . . , ytL)
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ANNs for time series

General ordinary differential dynamical system and its solution map:{
ẏ(t) = f [u](y(t); t),
y(0) = y0.

⇒ y(t) = Φy0,t(u).

The nature of the pulse sequence in fact leads to a time series of the above
dynamics.

Applying the idea of residual neural network, we use the following architecture to
learn the time series:{

y(tk) = y(0) + Nk[Θk](u), for every k ∈ {1, 2, · · · , L} ,
y(0) = y0.

Nk[Θk] is a standard fully connected feed-forward network, and the architecture is
identical for every k ∈ {1, 2, · · · , L}.

29/35 Learning-informed physics



Universal approximation of learning-informed Bloch operator

Proposition
The operator Π : Cad ⊂ [L∞ε (Ω)+]3 → [(L∞(Ω))3]L is Lipschitz continuous, and
Fréchet differentiable with locally Lipschitz derivative.

Both Π and ΠN = N are operators of Nemytskii type in the qMRI case.

Proposition
Let u = (T1, T2, ρ)> ∈ Cad. Then for arbitrary small ε > 0 and ε1 > 0, there
always exist neural network approximations so that

‖ΠN (u)− Π(u)‖[L∞(Ω)3]L ≤ ε,

and
‖Π′N (u)− Π′(u)‖L([L2(Ω)]3,[L∞(Ω)3]L) ≤ ε1,

are satisfied.
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SQP algorithm

Define

JN (u) := 1
2
‖PF(N (u))− gδ‖2

H + α

2
‖u‖2

U .

The derivative J ′N (u) has an explicit form

(ρ(N ′(T1, T2))∗,N (T1, T2))>F∗(F(ρN (T1, T2))− g) + α(Id−∆)(T1, T2, ρ)>.

Every QP-step solves

minimize 〈J ′N (uk), h〉U∗,U + 1
2
〈Hk(uk)h, h〉U∗,U over h ∈ U

s.t. uk + h ∈ Cad,
where Hk(uk) is a pos.-def. approx. of the Hessian of JN at uk ∈ Cad:

(ρ(N ′(T1, T2))∗,N (T1, T2))>F∗F(ρ(N ′(T1, T2)),N (T1, T2)) + α(Id−∆).
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Quantitative magnetic resonance imaging

Learning-based (bottom) compared to ab initio physics-integrated method (above)
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Quantitative magnetic resonance imaging

Learning-based (bottom) compared to a pure physics-integrated method (above)
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Conclusion

What we offer:

A generic optimization framework with learning-informed physical constraints

Both analysis and numerical algorithms for the overall optimization framework

Learning specific operators between infinite dimensional spaces

Universal approximation properties for the learning-informed operators

On going:

The framework for learning-informed nonsmooth physical models

More general physical operator learning schemes

Interplay of operator learning and optimal control

Hybrid physics-informed NN for multi-scale problems
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Thank you!
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