Optimization with Learning-Informed Differential Equation Constraints and its Applications

Michael Hintermüller^{1,2}

¹Weierstrass Institute for Applied Analysis and Stochastics,

²Humboldt University of Berlin

One World
Optimization Seminar
U. Vienna

Data-driven methods of model prediction

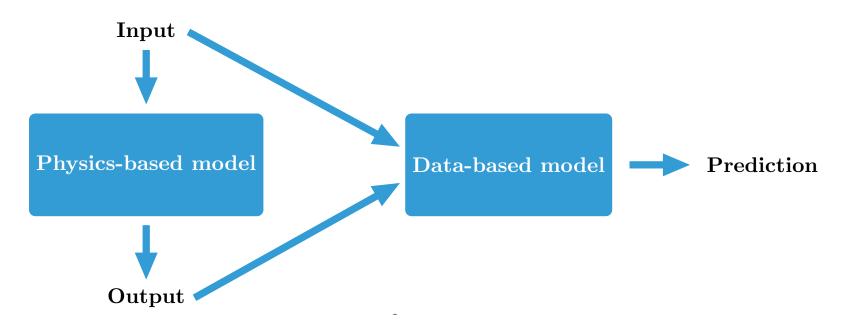


Figure: Ab initio models typically used to analyze experimental data and for prediction

- Making the physics model more and more accurate is a continuous challenge.
- Artificial neural networks are efficient tools to learn physical laws from data.
- Taking advantage of ever increasing computational power and data availability.

A general optimization work flow with learned physics

Learning-informed models as constraints in optimization

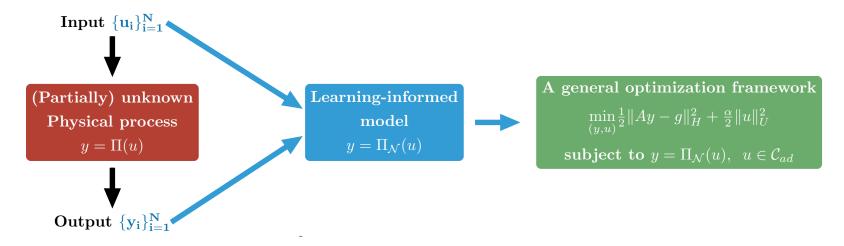
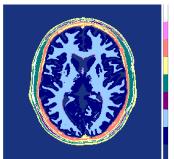


Figure: Work flow of optimization with learning-informed physical constraints

Phase separation

Quantitative MRI



- ← skin/muscle
- \leftarrow skin
- \leftarrow adipose
- \leftarrow white matter
- \leftarrow grey matter

Contents

- 1. Motivation
- 2. Mathematics of deep learning and its "current state"
- 3. Optimization constrained by learning-informed models
 - 3.1 General well-posedness results
 - 3.2 Case study: Optimal control of semilinear PDEs
 - 3.3 Case study: Quantitative MRI
- 4. Conclusion

Mathematics of deep learning and its "current state"

Artificial neural networks (ANNs) in brief

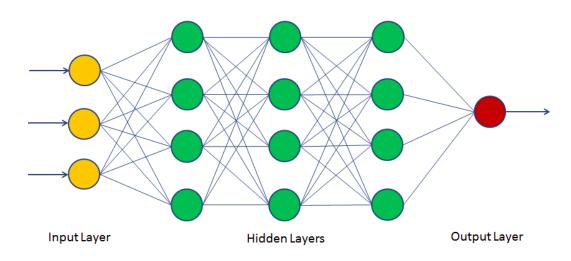


Figure: A diagram of an artificial neural network

Key components:

- *u*: input data
- y: output data
- $\bullet h^{(l+1)} = \sigma(W_l h^l + b_l)$
- σ : activation function
- W_l : weight matrix
- b_l: bias vector
- One hidden-layer case: $\mathcal{N}(u) := W_1 \sigma(W_0 u + b_0) + b_1 \rightarrow y$
- W_l and b_l are unknowns to be fixed

Supervised learning is about solving the following generic optimization problem:

for given training data pairs $(u_j, y_j)_{j=1}^n$, and $W := (W_l)_{l=0}^L$, $b := (b_l)_{l=0}^L$.

Universal approximation theorem¹

ANNs have been very successful approximators for functions $f:\Omega\to\mathbb{R}^n$, defined on bounded $\Omega\subset\mathbb{R}^m$.

Theorem (function value approximation)

A standard multi-layer feedforward network with a continuous activation function can uniformly approximate any continuous function to any degree of accuracy if and only if its activation function is not a polynomial.

Theorem (derivative approximation)

There exists a neural network which can approximate both the function value and the derivatives of f uniformly to any degree of accuracy if the activation function is continuously differentiable and is not a polynomial.

¹Pinkus, Approximation theory of the MLP model in neural networks. Acta Numerica, 1999.

Activation functions of ANNs

Examples of smooth activation functions:

- Sigmoid: e.g., tansig $(\sigma(z)=\frac{e^z-e^{-z}}{e^z+e^{-z}})$, logsig $(\sigma(z)=\frac{1}{1+e^{-z}})$, arctan $(\sigma(z)=\arctan(z))$, etc.
- ullet Probability functions: e.g., softmax ($\sigma_i(z)=rac{e^{-z_i}}{\sum_j e^{-z_j}}$)

Examples of nonsmooth activation functions:

• ReLU: Rectified Linear Unit ($\sigma(z) = \max(0, z)$)

Important: Choosing smooth vs. nonsmooth activation functions should respect prior information on to be approximated object and has numerous implications in optimization.

Current state on ANN's approximation

NNs approximate an objective f in different settings

Examples

- 1. $f:\Omega\subset\mathbb{R}^m\to\mathbb{R}^n$, with finite m and n Universal approximation theorem
- 2. $f: \mathcal{K} \subset \mathcal{B}_1 \to \mathbb{R}^n$, where \mathcal{B}_1 is some Banach space Under-development (mostly convolutionary NNs)
- 3. $f: \Omega \subset \mathbb{R}^m \to \mathcal{B}_2$, where \mathcal{B}_2 is some Banach space Under-development (many different methods)
- 4. $f: \mathcal{K} \subset \mathcal{B}_1 \to \mathcal{B}_2$, $(\mathcal{B}_k)_{k=1}^2$ can be infinite dimensional Under-development (very few still)

- (Generalized)Regression
- (Image)Classification
- Solving (partial) differential equations
- Operator learning

Except for case 1, mathematical understanding of cases 2-4 still mostly in progress.

Main difficulty: Compactness condition problematic.

Physics-informed learning² vs Learning-informed physics³

Physics-informed learning

- Physical models enter learning and neural networks
- PDE residuals are part of loss function for training
- ullet Usually of type $f:\Omega o \mathcal{B}_2$

Learning-informed physics

- Using ANNs to predict physical models or their constituents
- Loss function is not necessarily PDE dependent
- ullet Typically of type $f:\mathcal{B}_1 o\mathcal{B}_2$

To directly learn operators between Banach spaces using ANNs has been discussed in some limited cases only; e.g., model reduction for Nemytskii operators ^a.

^aBhattacharya, Hosseini, Kovachki and Stuart, Model reduction and neural networks for parametric PDEs, arXiv preprint, 2020.

³Dong, Hintermüller and Papafitsoros, Optimization with learning-informed differential equation constraints and its applications, WIAS preprint 2754, 2020.

²Rassi, Perdikaris and Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear PDEs. J. Comp. Phys. 2019.

Optimization constrained by learning-informed models

We study the following optimization problem:

$$\begin{array}{ll} \underset{(y,u)\in(Y\times U)}{\text{minimize}} & \frac{1}{2}\|Ay-g\|_H^2 + \frac{\alpha}{2}\|u\|_U^2, \\ \text{subject to} & e(y,u)=0, \\ & u\in\mathcal{C}_{ad}. \end{array}$$

- ullet A:U o Y a bounded, linear operator
- e(y, u) = 0 physical model; e.g., (system of) ODEs or PDEs

We study the following optimization problem:

- ullet A:U o Y a bounded, linear operator
- e(y, u) = 0 physical model; e.g., (system of) ODEs or PDEs
- Well-posedness e(y, u) = 0 leads to $y = \Pi(u)$

We study the following optimization problem:

- ullet A:U o Y a bounded, linear operator
- e(y, u) = 0 physical model; e.g., (system of) ODEs or PDEs
- Well-posedness e(y, u) = 0 leads to $y = \Pi(u)$
- ANNs for operator learning yield $\Pi_{\mathcal{N}} \sim \Pi$ (possibly via different pathways)

We study the following optimization problem:

- ullet A:U o Y a bounded, linear operator
- e(y, u) = 0 physical model; e.g., (system of) ODEs or PDEs
- Well-posedness e(y, u) = 0 leads to $y = \Pi(u)$
- ANNs for operator learning yield $\Pi_{\mathcal{N}} \sim \Pi$ (possibly via different pathways)

Fundamental questions:

- Conditions for well-posedness of learned physical model and universal approximation property of $\Pi_{\mathcal{N}} \sim \Pi$.
- Approximation properties of optimizers associated to learning-informed models vs. those related to original physics-based models.

Existence of solutions

Let $Q := A\Pi$ (or $A\Pi_{\mathcal{N}}$).

Proposition

Suppose that Q is weakly-weakly sequentially closed, i.e., if $u_n \stackrel{U}{\rightharpoonup} u$ and $Q(u_n) \stackrel{H}{\rightharpoonup} \bar{g}$, then $\bar{g} = Q(u)$. Then the optimization problem admits a solution $\bar{u} \in U$.

In the special case when C_{ad} is a bounded set of a subspace \hat{U} compactly embedded into U, then strong-weak sequential closedness of Q is sufficient to guarantee existence of a solution.

- In many PDE models, regularity of the resp. solution helps the weak-weak sequential closedness condition of the control-to-state map to be satisfied.
- \blacksquare While in imaging applications (inverse problems, more generally) regularization usually plays a role similar to \hat{U} .

Convergence under operator perturbations

Let $Q_n := A\Pi_{\mathcal{N}_n}$ be the reduced learning-informed operators.

Theorem

Let Q and Q_n for $n \in \mathbb{N}$ be weakly sequentially closed operators, and

$$\sup_{u \in \mathcal{C}_{ad}} \|Q(u) - Q_n(u)\|_H \le \epsilon_n, \quad \textit{for} \quad \epsilon_n \downarrow 0.$$

Suppose $(u_n)_{n\in\mathbb{N}}$ is a sequence of minimizers associated to the optimization problems with reduced operator Q_n for all $n\in\mathbb{N}$.

Then, there is the strong convergence

$$u_n o \bar{u}$$
 in U , and $Q_n(u_n) o Q(\bar{u})$ in H , as $n o \infty$,

where \bar{u} is a minimizer of the original optimization problem.

Convergence rates

Denote L_0 and L_1 the Lipschitz constants associated to Q and Q', respectively, where Q' is the Fréchet derivative of Q, and $\eta_n := \|Q' - Q'_n\|_{\mathcal{L}(U,H)}$.

Theorem

Under smallness of L_0 , L_1 , the solutions u_n converge to \bar{u} at the following rate

$$||u_n - \bar{u}||_U = \mathcal{O}(L_0\epsilon_n + ||Q(\bar{u}) - g||_H \eta_n).$$

Theorem (when $\mathcal{J}'(\bar{u}) = 0$)

Suppose the Lipschitz constant L_1 satisfies

$$L_1 \|Q(\bar{u}) - g\|_H < \alpha.$$

If $\mathcal{J}'(\bar{u})=0$, then for sufficiently large $n\in\mathbb{N}$ we have the following error bound

$$||u_n - \bar{u}||_U = \mathcal{O}\left(\sqrt{\epsilon_n^2 + 2||Q(\bar{u}) - g||_H^2}\right).$$

Case studies

Learn control-to-state map for semilinear PDEs

We consider the following model problem:

$$\begin{split} & \underset{(y,u)}{\text{minimize}} & \frac{1}{2}\|y-g\|_{L^2(\Omega)}^2 + \frac{\alpha}{2}\|u\|_{L^2(\Omega)}^2, \\ & \text{subject to } -\Delta y + f(\cdot,y) = u \quad \text{in } \ \Omega, \quad \partial_\nu y = 0 \quad \text{on } \ \partial\Omega, \\ & u \in \mathcal{C}_{ad} := \{v \in L^2(\Omega) : \underline{u}(x) \leq v(x) \leq \overline{u}(x), \quad \text{for } x \in \Omega\}. \end{split}$$

- f is some unknown map, e.g., modeling phase separation
- ullet Goal is to learn the control-to-state (C2S) map $\Pi:u o y$

Learn control-to-state map for semilinear PDEs

We consider the following model problem:

$$\begin{split} & \underset{(y,u)}{\text{minimize}} & \frac{1}{2}\|y-g\|_{L^2(\Omega)}^2 + \frac{\alpha}{2}\|u\|_{L^2(\Omega)}^2, \\ & \text{subject to } -\Delta y + \mathcal{N}(\cdot,y) = u \quad \text{in } \ \Omega, \quad \partial_\nu y = 0 \quad \text{on } \ \partial\Omega, \\ & u \in \mathcal{C}_{ad} := \{v \in L^2(\Omega) : \underline{u}(x) \leq v(x) \leq \overline{u}(x), \quad \text{for } x \in \Omega\}. \end{split}$$

- f is some unknown map, e.g., modeling phase separation
- ullet Goal is to learn the control-to-state (C2S) map $\Pi:u o y$
- Ideal: learn f through a neural network \mathcal{N} via $f(\cdot,y)=\Delta y+u$
- The learning-informed PDE with component \mathcal{N} , induces the C2S map $\Pi_{\mathcal{N}}$

Assumptions on the nonlinearity

- (Regularity) $f = f(x, z) : \Omega \times \mathbb{R} \to \mathbb{R}$ is measurable in x and continuous in z.
- (Growth-rate) There is $F:\Omega\times\mathbb{R}\to\mathbb{R}$ so that $\partial_z F(\cdot,z)=f(\cdot,z)$, satisfying

$$|f(\cdot,z)| \le b_1 + c_1 |z|^{p-1}$$
 and $-f(\cdot,z)z + F(\cdot,z) \le b_2$,

resulting in

$$F(\cdot, z) \le b_0 + c_0 |z|^p,$$

for some constants $b_0, b_1, b_2 \in \mathbb{R}$ and $c_0, c_1 > 0$, and for some p so that the embedding $H^1(\Omega) \subset L^p(\Omega)$ holds.

- (Coercivity) F is coercive in the sense that $\lim_{\|y\|_{L^p(\Omega)}\to\infty}\frac{\int_{\Omega}F(x,y)dx}{\|y\|_{L^p(\Omega)}}=\infty$.
- (Boundedness) F is bounded from below, i.e., $F(x,z) \geq F_0$ for some $F_0 \in \mathbb{R}$.

A priori bounds on PDE solutions

A variational problem connected to nonlinear PDE:

$$G(y) := \frac{1}{2} \|\nabla y\|_{L^2(\Omega)}^2 + \int_{\Omega} F(x,y) \, dx - \int_{\Omega} uy \, dx \quad \text{ over } y \in H^1(\Omega). \tag{3.1}$$

Proposition

Suppose that $u \in L^r(\Omega)$ for some $r \geq \frac{p}{p-1}$. Then the optimization problem (3.1) admits a solution in $H^1(\Omega)$, which satisfies the constraint PDE.

Theorem

Let $C_{ad} \subset L^{\infty}(\Omega)$ be bounded. Then there exists a constant K > 0 such that for all solutions y of the semilinear PDE, it holds

$$||y||_{H^1(\Omega)} + ||y||_{C(\overline{\Omega})} \le K$$
, for all $u \in \mathcal{C}_{ad}$.

Existence of solutions for learning-informed PDEs

Proposition

Let $f:\Omega \times \mathbb{R} \to \mathbb{R}$ and $F:\Omega \times \mathbb{R} \to \mathbb{R}$ be given as before with the extra assumption that $f \in C(\overline{\Omega} \times \mathbb{R})$. Then, for every $\epsilon > 0$ there exists a neural network $\mathcal{N} \in C^\infty(\mathbb{R}^d \times \mathbb{R})$ such that

$$\sup_{\|y\|_{L^{\infty}(\Omega)} < K} \|f(\cdot, y) - \mathcal{N}(\cdot, y)\|_{U} < \epsilon, \tag{3.2}$$

with K the uniform bound. Moreover, the learning-informed PDE

$$-\Delta y + \mathcal{N}(\cdot, y) = u$$
 in Ω , $\partial_{\nu} y = 0$ on $\partial \Omega$,

admits a weak solution which satisfies the a priori bound for sufficiently small $\epsilon>0$.

Only local approximation property $||y||_{L^{\infty}(\Omega)} < K$ is needed in (3.2) .

Sensitivity of control-to-solution map

Theorem (under constraint on negative part of $\partial_y f(\cdot,y_0)$)

Suppose $u_n=u_0+t_nh$ for a sequence $t_n\to 0$, and suppose there exists $y_n\in \Pi_{\mathcal{N}}(u_n)$ with $y_n\to y_0$ in $H^1(\Omega)$. Then, we have

Local Lipschitz property:

$$||y_n - y_0||_{H^1(\Omega)} \le Ct_n,$$

for some constant C.

■ Directional differentiability: Every weak cluster point of $\frac{y_n-y_0}{t_n}$, denoted by p, solves

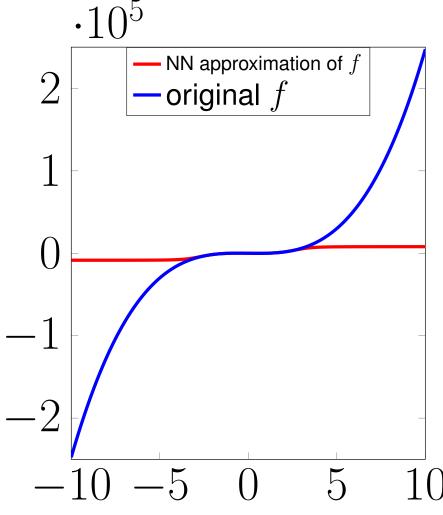
$$-\Delta p + \partial_y \mathcal{N}(\cdot, y_0) p = h$$
 in Ω , $\partial_\nu p = 0$ on $\partial \Omega$,

and p satisfies the energy bounds for every $h \in L^2(\Omega)$,

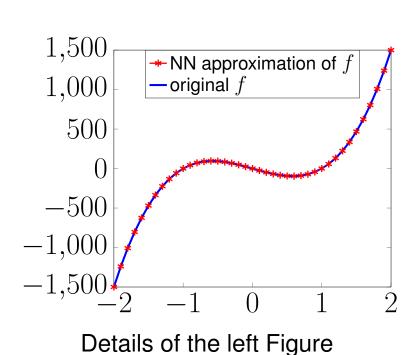
$$||p||_{H^1(\Omega)\cap C(\overline{\Omega}} \le C ||h||_{L^2(\Omega)}$$

for some constant C.

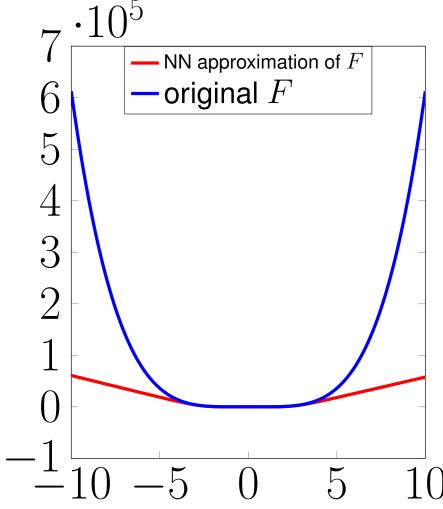
Learning-informed double-well potential



Approximation of $f(y) = \frac{1}{0.004}(y^3 - y)$ by neural network function.



Learning-informed double-well potential



() () Iy.

The double well potential F and $F_{\mathcal{N}}$ reconstructed from f and \mathcal{N} , respectively.

Universal approximation of learning-informed operator

Proposition

There exists $\mathcal{N}:\mathbb{R}^d imes\mathbb{R} o\mathbb{R}$ so that

$$\sup_{\|y\|_{L^{\infty}(\Omega)} < M} \|f(\cdot, y) - \mathcal{N}(\cdot, y)\|_{U} \le \epsilon,$$

for $\epsilon > 0$ arbitrarily small. Further, we have the error bounds

$$\|\Pi(u) - \Pi_{\mathcal{N}}(u)\|_H \le C\epsilon$$
, for all $u \in \mathcal{C}_{ad}$,

where the constant C>0 depends on f and y_0 . When f is locally Lipschitz, there exists also $\mathcal N$ so that

$$\sup_{\|y\|_{L^{\infty}(\Omega)} < M} \|\partial_y f(\cdot, y) - \partial_y \mathcal{N}(\cdot, y)\|_U \le \epsilon_1,$$

for sufficiently small $\epsilon_1 > 0$, and there exist some constants $C_0 > 0$ and $C_1 > 0$

$$\|p_0 - p_{\epsilon}\|_{H^1(\Omega) \cap C(\overline{\Omega})} \le C_1 \epsilon_1 + C_0 \epsilon, \quad \text{ for all } u \in \mathcal{C}_{ad}.$$

The adjoint variables p_{ϵ} , p_0 are directional derivatives of $\Pi_{\mathcal{N}}$ and Π , respectively.

KKT condition and semismooth Newton method

The KKT system of the optimal control problem

$$\begin{split} -\Delta y + \mathcal{N}(\cdot,y) - u &= 0 \ \text{in } \Omega, \quad \partial_{\nu} y = 0 \ \text{on } \partial \Omega, \\ -\Delta p + \partial_{y} \mathcal{N}(\cdot,y) p + y &= g \ \text{in } \Omega, \quad \partial_{\nu} p = 0 \ \text{on } \partial \Omega, \\ -p + \lambda + \alpha u &= 0 \ \text{in } \Omega, \\ \lambda - \max(0,\lambda + c(u - \overline{u})) - \min(0,\lambda + c(u - \underline{u})) &= 0 \ \text{in } \Omega, \end{split}$$

- We use a semismooth Newton (SSN) method for solving the above system.
- The PDE is only fulfilled in the end of the iteration of the SSN.
- To respect the nature of the reduced problem, a SSN Sequential Quadratic Programming (SQP) algorithm is considered:

minimize
$$\langle \mathcal{J}_{\mathcal{N}}'(u_k) + \frac{1}{2} H_k(u_k) \delta_u, \delta_u \rangle_{U^*,U},$$
 subject to $\underline{u} \leq u_k + \delta_u \leq \overline{u}$ a.e. in Ω .

A SSN-SQP algorithm

Define a merit function $\Phi_k(\mu)$ as

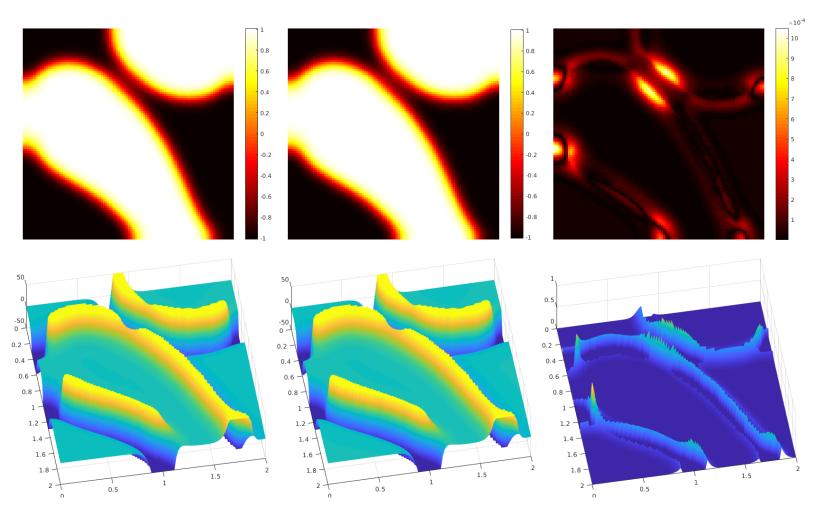
$$\mathcal{J}_{\mathcal{N}}(u_k + \mu \delta_{u,k}) + \beta_k (\left\| (u_k + \mu \delta_{u,k} - \overline{u})^+ \right\|_{L^2(\Omega)} + \left\| (u_k + \mu \delta_{u,k} - \underline{u})^- \right\|_{L^2(\Omega)}).$$

- Initialization: Using semi-smooth Newton for an initial guess of solutions.
- Key steps of every SQP:
- (1) Compute an update direction $\delta_{u,k}$ using again SSN but to the SQP stationary equation.
- (2) Using line search with Armijo condition to adjust step length in every SQP sub-problem.

For every iteration in the line search, to evaluate $\mathcal{J}_{\mathcal{N}}(u_k + \mu_k^l \delta_{u,k})$ we need the solution of the PDE which is obtained by Newton iterations.

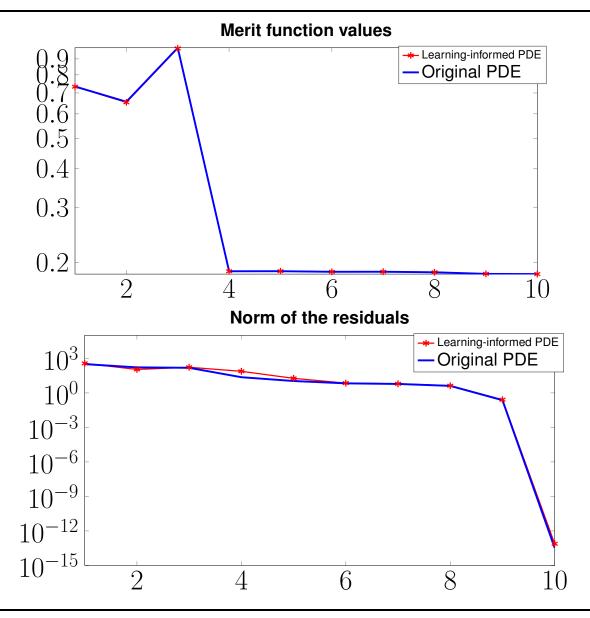
Primal-dual active set strategy (pdAS) is employed as SSN in every SQP sub-problem solve.

Example of stationary Allen-Cahn equation



Plots of state and control pairs $(y_{\mathcal{N}},u_{\mathcal{N}})$ and (y^*,u^*) by learned (left) and exact (middle) PDEs, respectively, as well as their differences (right) $|y_{\mathcal{N}}-y^*|$, $|u_{\mathcal{N}}-u^*|$

Example of stationary Allen-Cahn equation



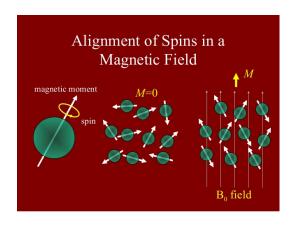
Preliminary on (quantitative) MRI

Bloch equations describe the physical law behind MRI

$$\frac{\partial y}{\partial t}(t) = y(t) \times \gamma B(t) - \left(\frac{y_1(t)}{T_2}, \frac{y_2(t)}{T_2}, \frac{y_3(t) - \rho m_e}{T_1}\right),\,$$

where $B=B_0+B_1+G$ denotes magnetic field, ρ is proton density. MRI experiment consists of three major steps:

- ullet Aligning magnetic nuclear spins in an applied constant magnetic field B_0
- ullet Perturbing this alignment via radio frequency (RF) pulse B_1
- ullet Applying magnetic gradient field G to distinguish individual contributions



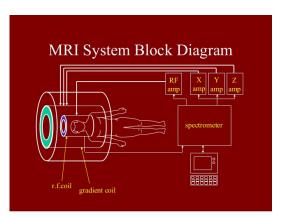


Figure: MRI diagram (Published in Health and Medicine)

Preliminary on (quantitative) MRI

Bloch equations describe the physical law behind MRI

$$\frac{\partial y}{\partial t}(t) = y(t) \times \gamma B(t) - \left(\frac{y_1(t)}{T_2}, \frac{y_2(t)}{T_2}, \frac{y_3(t) - \rho m_e}{T_1}\right),\,$$

where $B=B_0+B_1+G$ denotes magnetic field, ρ is proton density.



Figure: Simulated ideal tissue parameters of a brain phantom.

qMRI as a control taste problem

qMRI fits to the general framework:

subject to

$$\frac{\partial y}{\partial t}(t) = y(t) \times \gamma B(t) - \left(\frac{y_1(t)}{T_2}, \frac{y_2(t)}{T_2}, \frac{y_3(t) - \rho m_e}{T_1}\right), \ t = t_1, \dots, t_L,$$

$$y(0) = \rho m_0,$$

$$u \in \mathcal{C}_{ad}.$$

ullet The goal is to estimate the physical parameters $u=(
ho,T_1,T_2)$

qMRI as a control taste problem

qMRI fits to the general framework:

subject to

$$y = \mathcal{N}(u),$$

$$u \in \mathcal{C}_{ad}.$$

- ullet The goal is to estimate the physical parameters $u=(
 ho,T_1,T_2)$
- ANNs N approximate the parameter-to-solution map (Nemytskii type):

$$(\rho, T_1, T_2) \mapsto (y_{t_1}, \dots, y_{t_L})$$

ANNs for time series

General ordinary differential dynamical system and its solution map:

$$\begin{cases} \dot{y}(t) = f[u](y(t);t), \\ y(0) = y_0. \end{cases} \Rightarrow y(t) = \Phi_{y_0,t}(u).$$

The nature of the pulse sequence in fact leads to a time series of the above dynamics.

Applying the idea of residual neural network, we use the following architecture to learn the time series:

$$\begin{cases} \mathfrak{y}(t_k) = \mathfrak{y}(0) + N_k[\Theta_k](u), & \text{for every } k \in \{1, 2, \cdots, L\}, \\ \mathfrak{y}(0) = y_0. \end{cases}$$

 $N_k[\Theta_k]$ is a standard fully connected feed-forward network, and the architecture is identical for every $k \in \{1, 2, \cdots, L\}$.

Universal approximation of learning-informed Bloch operator

Proposition

The operator $\Pi: \mathcal{C}_{ad} \subset [L^{\infty}_{\epsilon}(\Omega)^{+}]^{3} \to [(L^{\infty}(\Omega))^{3}]^{L}$ is Lipschitz continuous, and Fréchet differentiable with locally Lipschitz derivative.

Both Π and $\Pi_{\mathcal{N}} = \mathcal{N}$ are operators of Nemytskii type in the qMRI case.

Proposition

Let $u = (T_1, T_2, \rho)^{\top} \in \mathcal{C}_{ad}$. Then for arbitrary small $\epsilon > 0$ and $\epsilon_1 > 0$, there always exist neural network approximations so that

$$\|\Pi_{\mathcal{N}}(u) - \Pi(u)\|_{[L^{\infty}(\Omega)^3]^L} \le \epsilon,$$

and

$$\|\Pi'_{\mathcal{N}}(u) - \Pi'(u)\|_{\mathcal{L}([L^2(\Omega)]^3, [L^{\infty}(\Omega)^3]^L)} \le \epsilon_1,$$

are satisfied.

SQP algorithm

Define

$$\mathcal{J}_{\mathcal{N}}(u) := \frac{1}{2} \|P\mathcal{F}(\mathcal{N}(u)) - g^{\delta}\|_{H}^{2} + \frac{\alpha}{2} \|u\|_{U}^{2}.$$

The derivative $\mathcal{J}'_{\mathcal{N}}(u)$ has an explicit form

$$(\rho(\mathcal{N}'(T_1,T_2))^*,\mathcal{N}(T_1,T_2))^{\top}\mathcal{F}^*(\mathcal{F}(\rho\mathcal{N}(T_1,T_2))-g)+\alpha(\operatorname{Id}-\Delta)(T_1,T_2,\rho)^{\top}.$$

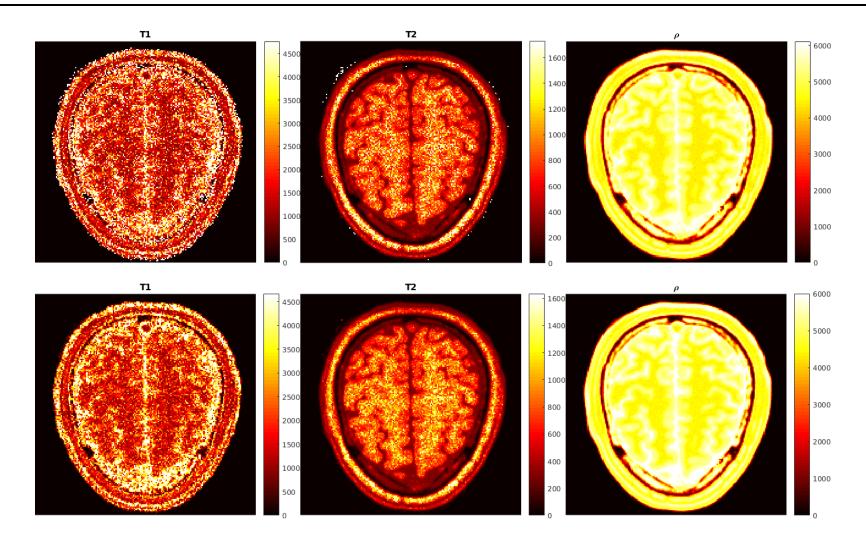
Every QP-step solves

minimize
$$\langle \mathcal{J}_{\mathcal{N}}'(u_k), h \rangle_{U^*,U} + \frac{1}{2} \langle H_k(u_k)h, h \rangle_{U^*,U}$$
 over $h \in U$ s.t. $u_k + h \in \mathcal{C}_{ad}$,

where $H_k(u_k)$ is a pos.-def. approx. of the Hessian of $\mathcal{J}_{\mathcal{N}}$ at $u_k \in \mathcal{C}_{ad}$:

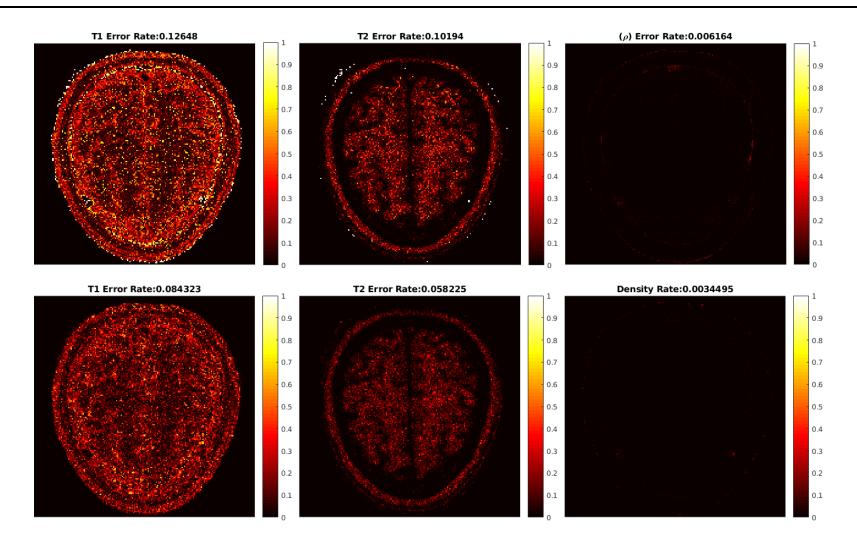
$$(\rho(\mathcal{N}'(T_1,T_2))^*,\mathcal{N}(T_1,T_2))^{\top}\mathcal{F}^*\mathcal{F}(\rho(\mathcal{N}'(T_1,T_2)),\mathcal{N}(T_1,T_2)) + \alpha(\mathsf{Id}-\Delta).$$

Quantitative magnetic resonance imaging



Learning-based (bottom) compared to ab initio physics-integrated method (above)

Quantitative magnetic resonance imaging



Learning-based (bottom) compared to a pure physics-integrated method (above)

Conclusion

What we offer:

- A generic optimization framework with learning-informed physical constraints
- Both analysis and numerical algorithms for the overall optimization framework
- Learning specific operators between infinite dimensional spaces
- Universal approximation properties for the learning-informed operators

On going:

- The framework for learning-informed nonsmooth physical models
- More general physical operator learning schemes
- Interplay of operator learning and optimal control
- Hybrid physics-informed NN for multi-scale problems

Thank you!

