Learning via non-convex min-max optimization

Meisam Razaviyayn

University of Southern California

Maher Nouiehed USC \rightarrow AUB

Tianjian Haung USC

Maziar Sanjabi Facebook AI

Sze-chuan Suen USC

Andrew Lowy USC

Ahmad Beirami Facebook AI

Sina Baharlouei USC

Babak Barazandeh USC → Splunk

Jason Lee Princeton

Dmitrii Ostrovskii USC

Non-convex min-max games/optimizations

- > Why is this problem important? Applications?
- > Why is it challenging?
- Some algorithms and discussions
- ✓ $f(\theta, \alpha)$ is (strongly) concave in α
- ✓ Small coupling between two variables: $\nabla^2_{\theta\alpha} f(\theta, \alpha)$ is small
- \checkmark The radius of $\mathcal A$ is small

Application 1: Min-max problems and robustness

- > Design a system with a robust performance against changes in certain parameters
- Design for nominal value:

 $\min_{oldsymbol{ heta}\in\Theta} \quad f(oldsymbol{ heta},oldsymbol{lpha}_0)$

➢ Robust design:

 $\min_{oldsymbol{ heta}\in\Theta} \max_{\|oldsymbol{lpha}-oldsymbol{lpha}_0\|\leq\delta} f(oldsymbol{ heta},oldsymbol{lpha})$

Application 1: Min-max problems and robustness

Adversarial attacks to neural networks

 $+0.007 \times$

"panda" 57.7% confidence

"gibon" 99.3% confidence

Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." *arXiv preprint arXiv:1412.6572* (2014). Carlini, Nicholas, and David Wagner. "Towards evaluating the robustness of neural networks." *2017 IEEE Symposium on Security and Privacy (SP)*. IEEE, 2017.

Application 2: Min-max and GANs

Goal: Generate samples that look like real samples $\mathbf{x}_1, \ldots, \mathbf{x}_n \sim \mathbb{P}_x$

Neural Network

We need $G(\mathbf{z})$ to have the same distribution as \mathbb{P}_x

> The two neural networks are playing a zero-sum game

Application 2: Min-max and GANs

> MMD GANs
$$\min_{G} \max_{D} \|\mathbb{E}[D(G(\mathbf{z}))] - \mathbb{E}[D(\mathbf{x})]\|$$

> Jensen-Shannon GANs: $\min_{G} \max_{D \in \mathbb{D}} \mathbb{E}_{\mathbf{x}} \left[\log D(\mathbf{x}) \right] + \mathbb{E}_{\mathbf{z}} \log \left(1 - D(G(\mathbf{z})) \right)$ $\mathbb{D} = \text{ set of all functions with range } (0, 1)$

 $\begin{array}{ll} \succ \text{ Wasserstein GANs:} & \min_{G} & \max_{\gamma} & \mathbb{E}_{\mathbf{x}} \left[\gamma(\mathbf{x}) \right] - \mathbb{E}_{\mathbf{z}} \left[\gamma(G(\mathbf{z})) \right] \\ & \text{ s.t. } & \gamma(\mathbf{x}) - \gamma(\mathbf{y}) \leq \|\mathbf{x} - \mathbf{y}\|_{2}, \forall \mathbf{x}, \mathbf{y} \end{array}$

All are non-convex min-max problems!

Why are non-convex min-max problems challenging?

$$\min_{\boldsymbol{\theta}\in\Theta} \max_{\boldsymbol{\alpha}\in\mathcal{A}} \quad f(\boldsymbol{\theta},\boldsymbol{\alpha})$$

➢ What should we do? Gradient descent/ascent?

 $\boldsymbol{\theta}^{t+1} = \boldsymbol{\theta}^t - \eta \, \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}^t, \boldsymbol{\alpha}^t)$ $\boldsymbol{\alpha}^{t+1} = \boldsymbol{\alpha}^t + \eta \, \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}^t, \boldsymbol{\alpha}^t)$

Iterates trajectory for $f(\theta, \alpha) = \theta \alpha$

 $\min_{oldsymbol{eta}\in\mathcal{B}} h(oldsymbol{eta})$

- > Apply (projected) gradient descent:
 - Objective function improves over iterates
 - \succ It is not exhaustive search
 - Convergence to certain stationarity concepts
 - Iteration complexity lower- and upper- bounds

> Even more: what should we compute?

What is a reasonable solution?

 $\min_{\boldsymbol{\theta}\in\Theta} \max_{\boldsymbol{\alpha}\in\mathcal{A}} f(\boldsymbol{\theta},\boldsymbol{\alpha})$

Bilevel/Stackelberg viewpoint

$$\min_{\boldsymbol{\theta}\in\Theta} \left(g(\boldsymbol{\theta}) \triangleq \max_{\boldsymbol{\alpha}\in\mathcal{A}} f(\boldsymbol{\theta},\boldsymbol{\alpha}) \right)$$

Find a $heta^*$ which is a reasonable/stationary point of $g(\cdot)$

Find a ϵ – stationary point of $g(\cdot)$

 $\|\nabla \tilde{g}(\boldsymbol{\theta})\| \leq \epsilon$

Nash viewpoint

 $\min_{oldsymbol{ heta}\in\Theta}f(oldsymbol{ heta},oldsymbol{lpha})\ \max_{oldsymbol{lpha}\in\mathcal{A}}f(oldsymbol{ heta},oldsymbol{lpha})$

Find a point $(\overline{\theta}, \overline{\alpha})$ so that $\overline{\theta}$ and $\overline{\alpha}$ are stationary/reasonable points of their own utility

Find a $(\epsilon_{\theta}, \epsilon_{\alpha})$ – First-order Nash equilibrium of $f(\cdot, \cdot)$

 $\|\nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}, \boldsymbol{\alpha})\| \leq \epsilon_{\boldsymbol{\theta}} \qquad \|\nabla_{\boldsymbol{\alpha}} f(\boldsymbol{\theta}, \boldsymbol{\alpha})\| \leq \epsilon_{\boldsymbol{\alpha}}$

What is a reasonable solution?

Bilevel/Stackelberg viewpoint $\min_{\boldsymbol{\theta}\in\Theta} \left(g(\boldsymbol{\theta}) \triangleq \max_{\boldsymbol{\alpha}\in\mathcal{A}} f(\boldsymbol{\theta}, \boldsymbol{\alpha}) \right)$

Find a θ^* which is a reasonable/stationary point of $g(\cdot)$

Nash viewpoint $\min_{\boldsymbol{\theta}\in\Theta}f(\boldsymbol{\theta},\boldsymbol{\alpha})$ $\max_{\boldsymbol{\alpha}\in\mathcal{A}}f(\boldsymbol{\theta},\boldsymbol{\alpha})$

Find a point $(\bar{\theta}, \bar{\alpha})$ so that $\bar{\theta}$ and $\bar{\alpha}$ are stationary/reasonable points of their own utility

- > Example: $\min_{\theta} \max_{-2 \le \alpha \le 2} \theta \alpha + \frac{1}{3} \alpha^3$
- > Bilevel optimal solution: $\theta^* = -1$
- First-order Nash equilibrium: $(\bar{\theta}, \bar{\alpha}) = (0,0)$

g(θ) 3

2

 \blacktriangleright In some cases (e.g. nonconvex-concave setting) the two solution concepts coincide

2

Iteration complexity

$$\begin{array}{c} \min \ \max \ f(\theta, \alpha) \\ \hline \theta \in \Theta \ \alpha \in \mathcal{A} \end{array} f(\theta, \alpha) \\ \hline for \ t = 1, 2, \dots \ do \\ \alpha^{t+1} \approx \arg \max \ \alpha \in \mathcal{A} \ f(\theta^t, \alpha) \end{array} \xrightarrow{\mathsf{Apply K steps of projected}}_{\substack{K \approx \mathcal{O}(\log(\epsilon^{-1})) \\ \text{gradient ascent on } \alpha} K \approx \mathcal{O}(\log(\epsilon^{-1})) \\ \hline \theta^{t+1} = \left[\theta^t - \gamma \nabla_{\theta} f(\theta^t, \alpha^{t+1})\right]_{+} \xrightarrow{\mathsf{Need } \mathcal{O}(\epsilon^{-2}) \text{ iterations on } \theta}
\end{array}$$

Theorem [Nouiehed, Huang, Sanjabi, Lee, Razaviyayn 2018]: Assume $f(\theta, \alpha)$ is strongly concave in α . Then, the algorithm requires $O(\epsilon^{-2} \log \epsilon^{-1})$ gradient evaluations for computing ϵ —stationary.

- > Optimal rate up to logarithmic factors
- Can be obtained under Polyak-Łojasiewicz (PL) condition
 - Requires establishing Danskin's-type result under PL assumption

Strongly convex composite with affine \checkmark Relaxing the strong convexity assumption?

Non-convex-concave scenario

- > Assume $f(\theta, \alpha)$ is concave in α (but not strongly concave)
- ≥ $g(\cdot)$ is no longer differentiable

Smoothify
$$g(\cdot)$$
 $g_{\lambda}(\boldsymbol{\theta}) \triangleq \max_{\boldsymbol{\alpha} \in \mathcal{A}} f(\boldsymbol{\theta}, \boldsymbol{\alpha}) - \frac{\lambda}{2} \|\boldsymbol{\alpha}\|^2$

> Algorithm:

Iteration complexity

Theorem [Nouiehed, Huang, Sanjabi, Lee, Razaviyayn 2018]: Assume $f(\theta, \alpha)$ is concave in α . Then, the above algorithm requires $\geq O(\epsilon^{-3.5} \log \epsilon^{-1})$ gradient evaluations for computing (ϵ, ϵ) —first order NE (Nash viewpoint) $\geq O(\epsilon^{-4})$ gradient evaluations for computing ϵ — stationary point (Stackelberg viewpoint)

> Why does it become so much slower compared to the nonconvex-strongly concave setting?

Why do we observe significant rate drop?

 $f(\boldsymbol{\theta}, \boldsymbol{\alpha})$

 $\min_{\boldsymbol{\theta} \in \Theta} \max_{\boldsymbol{\alpha} \in \mathcal{A}}$

Iteration complexity

$$\begin{array}{c} \underset{\boldsymbol{\theta}}{\text{Proximal Point Algorithm:}} \\ \boldsymbol{\theta}^{t+1} = \arg\min_{\boldsymbol{\theta}\in\Theta} g_{\lambda}(\boldsymbol{\theta}) + \frac{1}{2\eta} \|\boldsymbol{\theta} - \boldsymbol{\theta}^{t}\|^{2} \\ (\boldsymbol{\theta}^{t+1}, \boldsymbol{\alpha}^{t+1}) \approx \arg\min_{\boldsymbol{\theta}\in\Theta} \max_{\boldsymbol{\alpha}\in\mathcal{A}} f(\boldsymbol{\theta}, \boldsymbol{\alpha}) - \frac{\lambda}{2} \|\boldsymbol{\alpha}\|^{2} + \frac{1}{2\eta} \|\boldsymbol{\theta} - \boldsymbol{\theta}^{t}\|^{2} \\ = \arg\max_{\boldsymbol{\alpha}\in\mathcal{A}} \min_{\boldsymbol{\theta}\in\Theta} f(\boldsymbol{\theta}, \boldsymbol{\alpha}) - \frac{\lambda}{2} \|\boldsymbol{\alpha}\|^{2} + \frac{1}{2\eta} \|\boldsymbol{\theta} - \boldsymbol{\theta}^{t}\|^{2}
\end{array}$$

Theorem [Ostrovskii, Lowy, and Razaviyayn 2020]: Assume $f(\theta, \alpha)$ is concave in α . Then, the above algorithm requires $O(\epsilon^{-2.5} \log \epsilon^{-1})$ gradient evaluations for computing ϵ –first-order NE.

[Lin, Jin, and Jordan 2020]

Relation to closely related works

[Thekumparampil-Jain-Netrapalli 2019]

- > Only for the unconstrained case of $\Theta = R^d$
- A bit more complex (extra-gradient + Nesterov)
- Does not work for non-Euclidean proximal geometries
- > Weaker stationary notion (Slower rate of convergence)

$\min_{\boldsymbol{\theta} \in \Theta} \max_{\boldsymbol{\alpha} \in \mathcal{A}} \quad f(\boldsymbol{\theta}, \boldsymbol{\alpha})$

[Lin-Jin-Jordan 2020]

- Solve Going from Nash to Stackelberg is for unconstrained setting $\Theta = R^d$
- Does not work for non-Euclidean proximal geometries
- Weaker stationary notion (Slower rate of convergence)

Difference in stationary notion:

$$\min_{z \in \mathbb{Z}} h(z)$$
 $\epsilon - \text{stationary of the first type:} \quad \ell \left\| P_{\mathbb{Z}} \left(\bar{z} - \frac{1}{\ell} \nabla h(\bar{z}) \right) - \bar{z} \right\| \le \epsilon \quad (1)$
 $\epsilon - \text{stationary of the second type:} \quad -2\ell \min_{z \in \mathbb{Z}} \left[\langle \nabla h(\bar{z}), z - \bar{z} \rangle + \frac{\ell}{2} \| z - \bar{z} \|^2 \right] \le \epsilon^2 \quad (2)$

Theorem: ϵ – stationary of the second type is a stronger notion, i.e., if a point satisfies (2), it also satisfies (1). Moreover, there exists a problem for which a given feasible point \overline{z} is ϵ –stationary point of the first type, but it is not ϵ' –stationary point of the second type for any $\epsilon' < \sqrt{\epsilon}$.

[Kong-Monteiro 2019],[Zhao 2020]

Can we go beyond nonconvex-concave setting?

Two other relatively easy cases

Example 1:

 $\min_{\theta} \max_{\alpha} f_1(\theta) + f_2(\alpha)$ $\min_{\theta} \max_{\alpha \in \{\alpha_0\}} f(\theta, \alpha)$

Example 2: \min_{θ}

Theorem [Ostrovskii, Barazandeh, and Razaviyayn 2021]: When $\min \left\{ L_{\theta \alpha} D_{\alpha}, D_{\alpha} \sqrt{L_{\alpha \alpha} L_{\theta \theta}} \right\} \lesssim \epsilon$ Then instead of solving $\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$, we can solve $\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha_0) + \langle \nabla_{\alpha} f(\theta, \alpha_0), \alpha - \alpha_0 \rangle$ Concave in α

Resulting in efficient algorithms when radius of \mathcal{A} is small, or when the coupling is small.

- > Can be generalized to higher-order approximations and lead to efficient algorithms
 - Strovskii, Barazandeh, and Razaviyayn, "Nonconvex-Nonconcave Min-Max Optimization with a Small Maximization Domain," arXiv 2110.03950, 2021.
- > Application: Defense against adversarial attacks in neural networks

Extensions to zeroth order methods

$\min_{\boldsymbol{\theta}\in\Theta} \max_{\boldsymbol{\alpha}\in\mathcal{A}} \quad f(\boldsymbol{\theta},\boldsymbol{\alpha})$

Zhongruo Wang UC Davis

Krishnakumar Balasubramanian UC Davis

Shiqian Ma UC Davis

Z. Wang, K. Balasubramanian, S. Ma, and M. Razaviyayn, "Zeroth-Order Algorithms for Nonconvex Minimax Problems with Improved Complexities," *arXiv preprint arXiv:2001.07819, 2020*

Are these results/algorithms useful in practice?

Training robust neural networks

[Madry et al. 2017]: Repeat:

- \succ Apply multi-steps of gradient ascent on δ (reinitialize multiple times and pick the best)
- Perform one step of gradient descent on w
- > No theoretical convergence guarantee, not scalable, and requires heavy tuning to work
- Can we apply our theory and algorithm?

Training robust neural networks

➢ Idea: approximate the maximization with a concave function

 $\min_{\mathbf{w}} \sum_{i=1}^{n} \left[\max_{\mathbf{t}\in\mathcal{P}} \sum_{k=0}^{9} t_k \ell(\mathbf{w}, \mathbf{x}_i + d_k(\mathbf{w}, \mathbf{x}_i)) \right]$

Non-convex in **w**, but concave in **t**

Numerical results

[1] Madry et al. "Towards deep learning models resistant to adversarial attacks." *ICLR 2017*[2] Zhang et al. "Theoretically principled trade-o between robustness and accuracy" *ICML 2019*. No theoretical convergence guarantee

	Regular Performance	Performance under FGSM attack			Performance under PGD attack		
		$\delta = 0.2$	$\delta = 0.3$	$\delta = 0.4$	$\delta = 0.2$	$\delta = 0.3$	$\delta = 0.4$
[1]	98.58%	96.09%	94.82%	89.84%	94.64%	91.41%	78.67%
[2]	97.21%	96.19%	96.17%	96.14%	95.01%	94.36%	94.11%
Proposed	98.20%	97.04%	96.66%	96.23%	96.00%	95.17%	94.22%

FGSM attack: Goodfellow, Shlens, and Szegedy, "Explaining and harnessing adversarial examples," *arXiv:1412.6572* (2014).PGD attack: Kurakin, Goodfellow, and Bengio, "Adversarial Machine Learning" at Scale, ICLR 2016.

Min-max and fairness among users in learning

Designing a machine learning model that works for everyone

$$\min_{\mathbf{w}} \max\{\ell_1(\mathbf{w}), \dots, \ell_k(\mathbf{w})\}$$
$$\min_{\mathbf{w}} \max_{\mathbf{t}\in\mathcal{P}} \sum_{i=1}^k t_i \ell_i(\mathbf{w})$$

Mohri et al. "Agnostic federated learning." arXiv:1902.00146 (2019).

Numerical results

> Fair performance among different categories of data

$$\min_{\mathbf{w}} \max \{\ell_1(\mathbf{w}), \ell_2(\mathbf{w}), \ell_3(\mathbf{w}) \\ \min_{\mathbf{w}} \max_{\mathbf{t}\in\mathcal{P}} \sum_{i=1}^3 t_i \ell_i(\mathbf{w})$$

Average performance over 100 training:

	T-shirt/Top	Coat	Shirt
Normal Training	84.1 ±1.8%	86.4 ±2.1%	70.6 ±3.7%
Min-max no regularizer	75.4 ±1.5%	71.6 ±3.0%	73.3 ±1.9%
Min-max with regularizer	76.3 ±1.4%	73.9 ±2.8%	74.8 ±1.6%

- Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D Lee, and Meisam Razaviyayn, "Solving a class of non-convex min-max games using iterative first order methods," arXiv:1902.08297, accepted in NeurIPS 2019.
- Mohri et al. "Agnostic federated learning." *arXiv:1902.00146* (2019).

Numerical results

Mohri et al. "Agnostic federated learning." arXiv:1902.00146 (2019).

Fair learning

- > Discriminatory behaviors in human decisions and machine learning models:
 - ▶ [Bickel et al., 1975]: Sex bias in graduate admissions in Berkeley
 - > [Datta et al. 2015]: Google's online advertising showed high-income jobs ads to men more than to women.
 - ▶ [Sweeney 2013]: ads for arrest records shows up on searches for distinctively black names.
 - Amazon's recruitment engine has bias against women*
- Different reasons such as old data human bias
- Regulated domains: employment, housing, education, ...

Designing *discrimination-free* machine learning models

➤ Goals:

- > Make \hat{y} and s independent
- $\succ \text{ Keep } \widehat{y} \text{ close to } y$

116

Protected

Different correlation measures: Mutual information [*Kamishima et al. 2011*], false positive/negative rates [*Bechavod & Ligett 2017*], equalized odds [*Donini et al. 2018*], Pearson correlation coefficient [*Zaffar et al. 2015, 2017*], Hilbert Schmidt independence criterion [*Pérez-Suay et al. 2017*]

> Either do not have convergence guarantees or cannot guarantee statistical independence

Rényi Fair Inference

> Goals:

- > Make \hat{y} and s independent
- \succ Keep \hat{y} close to y

$\min_{\boldsymbol{\theta}} \quad \mathbb{E}[\ell(\mathbf{y}, \hat{\mathbf{y}}_{\boldsymbol{\theta}}(\mathbf{x}))] + \lambda \rho(\hat{\mathbf{y}}_{\boldsymbol{\theta}}(\mathbf{x}), \mathbf{s})$

Use Rényi (maximal) correlation

$$\begin{split} \rho(A,B) = &\sup_{f,g} \quad \mathbb{E}[f(A)g(B)] \\ &\text{s.t.} \quad \mathbb{E}[f(A)] = \mathbb{E}[g(B)] = 0, \quad \mathbb{E}[f^2(A)] = \mathbb{E}[g^2(B)] = 1 \end{split}$$

Kényi Fair Inference [Bahrlouei, Nouiehed, Beirami, Razaviyayn, ICLR 2020]

$$\begin{split} \min_{\boldsymbol{\theta}} \max_{f,g} & \mathbb{E}[\ell(\mathbf{y}, \hat{\mathbf{y}}_{\boldsymbol{\theta}}(\mathbf{x}))] + \lambda \mathbb{E}[f(\hat{\mathbf{y}}_{\boldsymbol{\theta}}(\mathbf{x}))g(\mathbf{s})] \\ & \text{s.t.} & \mathbb{E}[f(\hat{\mathbf{y}}_{\boldsymbol{\theta}}(\mathbf{x}))] = \mathbb{E}[g(\mathbf{s})] = 0, \ \mathbb{E}[f^2(\hat{\mathbf{y}}_{\boldsymbol{\theta}}(\mathbf{x}))] = \mathbb{E}[g^2(\mathbf{s})] = 1 \end{split}$$

Can be solved for discrete random variables

Numerical Experiments

- Pearson correlation coefficient \succ ➤ [Zaffar et al. 2015, 2017]
- Hilbert Schmidt Independence Criterion ▶ [Pérez-Suay et al. 2017]

Rényi Fair Inference

 $\min_{\boldsymbol{\theta}}$

► [Baharlouei et al. 2019]

Extension to stochastic setting and applications in training GANs

Sanjabi, Ba, Razaviyayn, Lee. "On the convergence and robustness of training GANs with regularized optimal transport," NeurIPS 2018 \geq

> Non-convex min-max problems appear in many modern applications

> Non-convex min-max problems are challenging

Special cases can be solved *efficiently*

≻ Still many open problems

A long history

- ➤ Using monotone operator:
 - [Sibony'70], [Korpelevich'76], [Nemirovski'04], [Martinet'70], [Rockafellar'76], [Di-Sun'99], [Juditsky-Nemirovsky'16], ...
- Weak Monotonicity
 - [Davis-Grimmer'17], [Davis-Drusvyatskiy'18], [Zhang-He'18], [Lin et al'18], ...
- ➢ More general VI's
 - ► [Facchinei-Pang'03], [Monteiro-Svaiter'10], [Nesterov'07], [Dong-Lan'14], ...
- Stochastic VI's
 - [Juditsky-Nemirovski-Tauvel '11], [Koshal-Nedic-Shanbag'13], [Rosasco-Villa-Vũ'14], [Balamurugan-Bach'16],
- Bilinear convex-concave
 - [Arrow-Hurwicz-Uzawa'58, Zhu-Chan'08], [Chambolle-Pock'11&16], [Chen-Lan-Ouyang'14], [Dong-Lan'14, Chambolle et al'17], [Wang-Xiao'17], ...
- Convex-Concave saddle points
 - ≻ [Tseng'08], [He and Monterio'17], [Hamedani-Jalilzadeh-Aybat-Shanbhag'18], ...

Other recent results for min-max regimes

- ➢ [Ioan Bot-Böhm 2021]
- ➢ [Jamali-Rad and Szabó 2021]
- ➢ [Ouyang-Xu 2021]
- ➢ [Anagnostidi, Lucchi, and Diouane 2021]
- ➢ [Huang, Gao, and Huang 2021]
- ➢ [Yoon and Ryu 2021]
- ➢ [Han, Xie, and Zhang 2021]
- ➢ [Vladislav et al 2021]
- [Mangoubi and Vishnoi 2021]
- ➢ [Zhang et al 2020]
- ➢ [Tran-Dinh et al 2020]
- ➢ [Yang, Kiavash, and He 2020]
- ▶ [Lin, Jin, Jordan 2020]
- ▶ [Lu, Tsaknakis, and Hong 2019]
- [Gidel, Hemmat, Pezeshki, Huang, Lepriol, Lacoste-Julien, and Mitligkas 2018]
- ➢ [Gidel, Jebara, and Lacoste-Julien 2018]
- ➢ [Lu, Tsaknakis, Hong, Chen 2019]
- [Mokhtari, Ozdaglar, Pattathil 2019]
- ➢ [Daskalakis and Panageas 2019]
- > [Thekumparampil, Jain, Netrapalli, and Oh 2019]
- ➢ [Jin, Netrapalli, and Jordan 2019]
- ➢ [Lin, Jin, Jordan 2019]
- ➢ [Letcher, Balduzzi, Racaniere, Martens, Foerster, Tuyls, and Graepel 2019]
- ➢ [Lin, Liu, Rafique, Yang 2018]
- [Hameani, Jalilzadeh, Aybat, Shanbhag 2018]
- ▶ [Rafique, Liu, Lin, and Yang 2018]
- ➢ [Sinha, Namkoong, and Duchi 2018]
- ➢ [Mescheder, Geiger, and Nowozin 2018]
- > [Daskalakis and Panageas 2018]
- ➤ And many other recent works...

References

- M. Sanjabi, J. Ba, M. Razaviyayn, and J. D. Lee. "On the convergence and robustness of training GANs with regularized optimal transport," *NeurIPS* 2018.
- M. Nouiehed, M. Sanjabi, T. Huang, J. D. Lee, and M. Razaviyayn, "Solving a class of non-convex min-max games using iterative first-order methods," *NeurIPS 2019*.
- D. Ostrovskii, A. Lowy, and M. Razaviyayn, "Efficient search of first-order Stationary points in nonconvex-concave smooth min-max problems," SIOPT, 2021.
- S. Baharlouei, M. Nouiehed, and M. Razaviyayn. "Rènyi fair inference," ICLR 2020.
- B. Barazandeh and M. Razaviyayn, "Solving non-convex non-differentiable min-max games using proximal gradient method," ICASSP 2020.
- Z. Wang, K. Balasubramanian, S. Ma, and M. Razaviyayn, "Zeroth-order algorithms for nonconvex minimax problems with improved complexities," *arXiv:2001.07819, 2020*.
- M. Razaviyayn, T. Huang, S. Lu, M. Nouiehed, M. Sanjabi, and M. Hong. "Nonconvex min-max optimization: Applications, challenges, and recent theoretical advances." *IEEE Signal Processing Magazine*, 2020.
- D. Ostrovskii, B. Barazandeh, and M. Razaviyayn, "Nonconvex-Nonconcave Min-Max Optimization with a Small Maximization Domain," arXiv: 2110.03950, 2021.
- Codes are available at https://github.com/optimization-for-data-driven-scienc