Learning via non-convex min-max optimization

Meisam Razaviyayn

University of Southern California

Maher Nouiehed
USC — AUB

Maziar Sanjabi Sze-chuan Suen
Facebook Al usc

Andrew Lowy Ahmad Beirami Sina Baharlouei Babak Barazandeh Jason Lee Dmitrii Ostrovskii

USC |
USC Facebook Al USC > Splunk Princeton Use

1



Non-convex min-max games/optimizations

Stochastic setting
Convex sets Smooth with Lipschitz gratdient
(non-convex)

Nonsmooth setting

» Why is this problem important? Applications?

> Why 1S 1t Challenging? v f(6,a) is (strongly) concave in a
v Small coupling between two variables: Vg, f (6, @) is small

» Some algorithms and discussions v' The radius of A is small
7



Application 1: Min-max problems and robustness

» Design a system with a robust performance against changes in certain parameters

» Design for nominal value: 1min f (0 , X )
0cO
» Robust design: IN11) max

ee@ ||a_aO||§5 Macro cell

» Massive MIMO application

min max £(w, H)
w  HeH




Application 1: Min-max problems and robustness

» Adversarial attacks to neural networks
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Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." arXiv preprint arXiv:1412.6572 (2014).
Carlini, Nicholas, and David Wagner. "Towards evaluating the robustness of neural networks." 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017.
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Application 2: Min-max and GANs

Goal: Generate samples that look like real samples X1, . ..

G(z)

Neural Network R T T

Z

We need GG(z) to have the same distribution as P,

G(z)

Z
Goodfellow et al 2014

Are they different?
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» The two neural networks are playing a zero-sum game
https://junyanz.github.io/CycleGAN/ 19



Application 2: Min-max and GANs Z 4’% G(z)

> MMD GANs mén mAax ||E[D(G(Z))] — E[D(x)] H

> Jensen-Shannon GANSs: min max [Ey [10g D(X)] + [, lOg (1 — D(G(Z)))

G DeD
D = set of all functions with range (0, 1)
» Wasserstein GANSs: mén max Ky [’V(X)] — [, ["}/(G(Z))]
8

.t (%) = () S [[x—yll2, Vx,y

All are non-convex min-max problems!
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Why are non-convex min-max problems challenging?

min max f(0,a) min  h(B)

0cO® acA BeB

» What should we do? Gradient descent/ascent? » Apply (projected) gradient descent:
o't = 0'— 1 V, F(6%, at) » Objective function improves over iterates
o't = al+ 1 Ve f(6', at) Iterates trajectory » It is not exhaustive search

for £(60,a) = o » Convergence to certain stationarity concepts

2 / (A ==~ SXAap ‘
- -—, = - v . .
10.0 s T 0 Agn&\‘ » Iteration complexity lower- and upper- bounds
1
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» Even more: what should we compute?
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What 1s a reasonable solution?

min max f (6, o)

0cO acA
Bilevel/Stackelberg viewpoint Nash viewpoint
R min f (0, o)
min ( g(0) = max f(0, o) 0cO p
0cO acA max f(6, o)
acA
Find a 8" which is a reasonable/stationary point of g(-) Find a point(6, @) so that @ and @ are stationary/reasonable

points of their own utility
Find a € — stationary point of g()
Find a (eg, €,) — First-order Nash equilibrium of f(:,-)

IV3(0)]| < e IVof@.a)l <co  ||Vaf(0 a)| < ea
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What 1s a reasonable solution?

Bilevel/Stackelberg viewpoint Nash viewpoint
. A .
min 0) = max (0, o min (0, o max f (0, o
pin (9(6) 2 max (6,0 ) min / (6, o) ma /(0,0
Find a 8* which is a reasonable/stationary point of g(+) Find a point(8, @) so that 8 and @ are stationary/reasonable
points of their own utility

» The two solution concepts are generally different:

. 1
» Example: min max fOa+ —a°
6 —2<a<2 3

» Bilevel optimal solution: 8% = —1 |
» First-order Nash equilibrium: (8, a ) = (0,0) 0

» In some cases (e.g. nonconvex-concave setting) the two solution concepts coincide
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[teration complexity min max f(6, a)

0cO acA
Gortzl,Q,...do A
t+1 t Apply K steps of projected ~ Olog(e—1
o ~ alg glgﬁ f(e ’a) > gradient ascent on K~ Olog(e™))
' = [Ht — vV f(6, at+1)] —— Need O(e?) iterations on

\_ +/

Theorem [Nouiehed, Huang, Sanjabi, Lee, Razaviyayn 2018]: Assume f (8, a) is strongly concave in a.
Then, the algorithm requires O(e~? log e 1) gradient evaluations for computing € —stationary.

» Optimal rate up to logarithmic factors

» Can be obtained under Polyak-t.ojasiewicz (PL) condition Strongly convex composite with affine v

Relaxing the strong convexity assumption?

» Requires establishing Danskin’s-type result under PL assumption o



Non-convex-concave scenario min max f(0, o)
0cO |ac A

» Assume f (0, «) is concave in a (but not strongly concave)

» g(-) is no longer differentiable IBHEI(I%I 9 (0)

» Smoothify g(+) gx(0) = glgi( f(0, ) — %”a”z
> Algorithm: f \
Danskin’s fort=1,2,... do
Theorem Py
0" ~ [0~ 1V002(0)], > | o s armay £(0'0) el
k 9t+1 [at L ,yv f( t—l—l)]

"
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min max f(0,a)

[teration complexity 60 acA

/ Algorithm: \

fort=1,2,... do

t+1

A
~ arg max f(gt, 04) ||a||2 » Solve with Nesterov’s algorithm

acA B 5
0! = [0 — Vo (6", 0 )]

(81

T

4 )

Theorem [Nouiehed, Huang, Sanjabi, Lee, Razaviyayn 2018]: Assume f (0, ) is concave in a. Then, the
above algorithm requires

> 0(e 35loge™1) gradient evaluations for computing (¢, €) —first order NE (Nash viewpoint)

> 0(e™*) gradient evaluations for computing € — stationary point (Stackelberg viewpoint)

\_ J

» Why does it become so much slower compared to the nonconvex-strongly concave setting?

61



min max f(0,a)

Why do we observe significant rate drop? 60 acA

min gx(0)

et—l-l _ Ot . Tlng(et) 77 ~ ¢

0t+1 _ Bt - ﬁVgA(OtH)

1
Ht-l-l _ . 0 0 _ gt 5
xgpin 92(6) + 510 - 6|

73



[teration complexity

Proximal Point Algorithm: )
1 o
it = i )+ —||0 — 6*| min 6
argmin 0:(0) + 50— 0'] in g»(6)
G J

A 1
(0", o) ~argminmax f(6,a) - Tl + LA 0°|*
A

= argmaxmin f(0,a) —

1
Sl + 16 — 6|
acA 0O 2 2m

Theorem [Ostrovskii, Lowy, and Razaviyayn 2020]: Assume f (0, &) is concave in a. Then, the above
algorithm requires O (e~ log e 1) gradient evaluations for computing € —first-order NE.

78

[Lin, Jin, and Jordan 2020] What can we do in nonconvex-nonconcave regime?



Relation to closely related works fog max f(6,0)

[ Thekumparampil-Jain-Netrapalli 2019] [Lin-Jin-Jordan 2020]
> Only for the unconstrained case of ® = R » Going from Nash to Stackelberg is for unconstrained
» A bit more complex (extra-gradient + Nesterov) setting ®@ = R
» Does not work for non-Euclidean proximal geometries » Does not work for non-Euclidean proximal geometries
» Weaker stationary notion (Slower rate of convergence) » Weaker stationary notion (Slower rate of convergence)
Difference in stationary notion: min h(z)
zeZ
_ 1 _ _
€ — stationary of the first type: £ ||Pz | Z — ZVh(z) —Z|| <€ (1)
. N4 _
€ — stationary of the second type: —2/ wlin [(Vh(é), z—Z)+ §||z — z||2] < €2 )
z

Theorem: € — stationary of the second type is a stronger notion, 1.¢., if a point satisfies (2), it also satisfies (1).
Moreover, there exists a problem for which a given feasible point Z is € —stationary point of the first type, but it 1s
not €' —stationary point of the second type for any €’ < /€.

_ Can we go beyond nonconvex-concave setting?
[Kong-Monteiro 2019],[Zhao 2020] 82



Two other relatively easy cases min max f(0,a)

PcO acA
Example 1: mein max f1(0) + fo(a)
. ] 0,
Example 2: meln algf{%)g} f(6,a)

~

Theorem [Ostrovskii, Barazandeh, and Razaviyayn 2021]: When min {Laa Da, Da \/LaaLeo} 5 €

- i min max f(6,a) we can solve
Then instead of solving heo oe f( ) ),

_ gréiél max f(0,a0) +(Vaf(8,a0),a — ap) Concave in )

» Resulting in efficient algorithms when radius of A is small, or when the coupling is small.
» Can be generalized to higher-order approximations and lead to efficient algorithms
» Ostrovskii, Barazandeh, and Razaviyayn, “Nonconvex-Nonconcave Min-Max Optimization with a Small Maximization Domain,” arXiv 211003950, 2021.

» Application: Defense against adversarial attacks in neural networks



Extensions to zeroth order methods min max f(0, )

\&&l’ ‘hm\l\\\“‘.

Krishnakumar Balasubramanian Shigian Ma

Zhongruo Wan
& & UC Davis UC Davis

UC Davis

Z. Wang, K. Balasubramanian, S. Ma, and M. Razaviyayn, “Zeroth-Order Algorithms for Nonconvex Minimax
Problems with Improved Complexities,” arXiv preprint arXiv:2001.07819, 2020

Are these results/algorithms useful in practice? .



Training robust neural networks

+ 0.007 x —
“panda” | “gibon”
57.7% confidence 99.3% confidence
4 n h (" n N
min E (W, X;) »| min max £(w,X;+0)
W wo = |d][<e
. =1 y \ 1=1 py

[Madry et al. 2017]: Repeat:
» Apply multi-steps of gradient ascent on § (reinitialize multiple times and pick the best)
» Perform one step of gradient descent on w

» No theoretical convergence guarantee, not scalable, and requires heavy tuning to work
» Can we apply our theory and algorithm? 93



n

Training robust neural networks min max £(w,x;+0)

w8 <e
1=1
» ldea: approximate the maximization with a concave function
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Numerical results

[1] Madry et al. "Towards deep learning models resistant to adversarial attacks." ICLR 2017 No theoretical

[2] Zhang et al. “Theoretically principled trade-o between robustness and accuracy” ICML 2019. convergence guarantee

- Regular Performance Performance under FGSM attack Performance under PGD attack

===z 6 =0.2 6 =03 6=04 6 =0.2 6=0.3 6=04

[1] 98.58% 96.09% 94.82% 89.84% 94.64% 91.41% 78.67%

[2] 97.21% 96.19% 96.17% 96.14% 95.01% 94.36% 94.11%
Proposed 98.20% 97.04% 96.66% 96.23% 96.00% 95.17% 94.22%

FGSM attack: Goodfellow, Shlens, and Szegedy, “Explaining and harnessing adversarial examples,” arXiv:1412.6572 (2014).
PGD attack: Kurakin, Goodfellow, and Bengio, “Adversarial Machine Learning” at Scale, ICLR 2016.
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Min-max and fairness among users in learning

» Designing a machine learning model that works for everyone 9

min max{fli(W),..., (W)}

W \\\

L N

min max til; (W)
W teP P

Mohri et al. "Agnostic federated learning." arXiv:1902.00146 (2019).
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Numerical results
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» Fair performance among different categories of data i? & :h ..j: %(' ;;
A - 4
min max{l,(w), lo(W),l3(W)} ?mﬂ%\nl - "‘LT{
W A E A §
3 aiialNTOSE
min max » tili(w) B-—@amlAMA
YT a =] A8 ' R
P ol =i ‘Z‘ ' m | Q A

Average performance over 100 training

Normal Training 84.1 +1.8% 86.4 +2.1% 70.6 +3.7%
Min-max no regularizer 75.4 +1.5% 71.6 +3.0% 73.3 +£1.9%
Min-max with regularizer 76.3 +1.4% 73.9 +2.8% 74.8 £1.6%

» Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D Lee, and Meisam Razaviyayn, “Solving a class of non-convex min-max
games using iterative first order methods,” arXiv:1902.08297, accepted in NeurIPS 2019.

» Mohri et al. "Agnostic federated learning." arXiv.:1902.00146 (2019). 109



Numerical results

» Fair performance among different categories of data

—— MinMax

0.95 - — MinMax with Regularization

() 1000 2000 3000 4000 5000
| FEpoch
Min-max with regularizer 76.3 +1.4% 73.9 +2.8% 74.8 +£1.6% 73.4 +2.4%

Mohri et al. "Agnostic federated learning." arXiv:1902.00146 (2019). 10



Fair learning

» Discriminatory behaviors in human decisions and machine learning models:
» [Bickel et al., 1975]: Sex bias in graduate admissions in Berkeley
» [Datta et al. 2015]: Google’s online advertising showed high-income jobs ads to men more than to women.
» [Sweeney 2013]: ads for arrest records shows up on searches for distinctively black names.
» Amazon’s recruitment engine has bias against women*

Protected

» Different reasons such as old data human bias feature

» Regulated domains: employment, housing, education, ... (X —> | G — Y R Y

» Designing discrimination-free machine learning models

> Goals:
» Make y and s independent
» Keep y close to y

. 116
* https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MKO08G



Imposing fairness via regularization

Protected
feature
» Goals:
» Make /)\1 and s independent (X I Prediction ry XY
» Keep y close to y

min - E[U(y, Yo ()D+ &p(¥o(x),s)

Keep classification
error small

Imposing
fairness

Different correlation measures: Mutual information [Kamishima et al. 2011], false positive/negative rates [Bechavod

& Ligett 2017], equalized odds [Donini et al. 2018], Pearson correlation coefficient [Zaffar et al. 2015, 2017], Hilbert
Schmidt independence criterion [Pérez-Suay et al. 2017]

» Either do not have convergence guarantees or cannot guarantee statistical independence

122



Rényi1 Fair Inference

> Goals: . ~ ~
» Make y and s independent 11111 E[E(Y7 Yo (X))] T )‘p(ye (X)7 S)

» Keep y close to y

» Use Rényi (maximal) correlation
p(A,B) = Sup Elf(A)g(B)]
7g

st. E[f(4)] =E[g(B)] =0, E[f2(A)] =E[g*(B)] =1

» Rényi Fair Inference [Bahrlouei, Nouiched, Beirami, Razaviyayn, ICLR 2020]

minmax  El((y,ye(x))] + AE[f (Y0 (x))g(s)]

st. E[f(Fe(x))] =E[g(s)] = 0, E[f*(Fe(x))] = E[g*(s)] =1

» (Can be solved for discrete random variables 126




Numerical EXp eriments Adult Dataset

8ar

82 -

» Pearson correlation coefficient
» [Zaffar et al. 2015, 2017]

Regularizer
87 M Rényi

Accuracy (%)

M Pearson
. HHsIC
» Hilbert Schmidt Independence Criterion
» [Pérez-Suay et al. 2017 a0 S0 e 70 8 %0 100

P%-rule

Adult Dataset with 2 Sensitive Features

» Rényi Fair Inference
» [Baharlouei et al. 2019]

84 -

go\ 82 -
>
. R ~ C 80-
meln E[E(Y7 Yo (X))] + )‘p(ye (X), S) § Regularizer
< '°° M Rényi
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§ 1/(2IBP VioIatSiI(:)n) °

Accuracy (%)

Accuracy (%)
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DP Violation = max P(Y =1|S =a) —P(Y =1|S = b)|

- MHSIC

Bank Dataset

Regularizer
M Rényi
M Pearson

" 40 50 60 70 80 90 100

P%-rule

German Dataset

Regularizer
M Rényi

M Pearson
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Extension to stochastic setting and applications in training GANSs

» Sanjabi, Ba, Razaviyayn, Lee. “On the convergence and robustness of training GANs with regularized optimal transport,” NeurlPS 2018
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Summary

» Non-convex min-max problems appear in many modern applications
» Non-convex min-max problems are challenging
» Special cases can be solved efficiently

» Still many open problems

129



A long history lgél({)l gleail( f(0, )
» Using monotone operator:

» [Sibony’70], [Korpelevich’76], [Nemirovski’04], [Martinet’70], [Rockafellar’76], [Di-Sun’99], [Juditsky-
Nemirovsky’16], ...

» Weak Monotonicity
» [Davis-Grimmer’17], [Davis-Drusvyatskiy’18], [Zhang-He’18], [Lin et al’ 18], ...

» More general VI’s
» [Facchinei-Pang’03], [Monteiro-Svaiter’10], [Nesterov’07], [Dong-Lan’14], ...

» Stochastic VI’s
» [Juditsky-Nemirovski-Tauvel *11], [Koshal-Nedic-Shanbag’13], [Rosasco-Villa-Vii’14], [Balamurugan-Bach’16],

» Bilinear convex-concave
» [Arrow-Hurwicz-Uzawa’58, Zhu-Chan’08], [Chambolle-Pock’11&16], [Chen-Lan-Ouyang’14], [Dong-Lan’14,
Chambolle et al’17], [Wang-Xiao’17], ...

» Convex-Concave saddle points
» [Tseng’08], [He and Monterio’17], [Hamedani-Jalilzadeh-Aybat-Shanbhag’18], ... 10



Other recent results for min-max regimes

[loan Bot-Bohm 2021]

[Jamali-Rad and Szab¢6 2021]

[Ouyang-Xu 2021]

[Anagnostidi, Lucchi, and Diouane 2021]
[Huang, Gao, and Huang 2021]

[Yoon and Ryu 2021]

[Han, Xie, and Zhang 2021]

[Vladislav et al 2021]

[Mangoubi and Vishnoi 2021]

[Zhang et al 2020]

[Tran-Dinh et al 2020]

[Yang, Kiavash, and He 2020]

[Lin, Jin, Jordan 2020]

[Lu, Tsaknakis, and Hong 2019]

[Gidel, Hemmat, Pezeshki, Huang, Lepriol, Lacoste-Julien, and Mitligkas 2018]
[Gidel, Jebara, and Lacoste-Julien 2018]

[Lu, Tsaknakis, Hong, Chen 2019]

[Mokhtari, Ozdaglar, Pattathil 2019]

[Daskalakis and Panageas 2019]
[Thekumparampil, Jain, Netrapalli, and Oh 2019]
[Jin, Netrapalli, and Jordan 2019]

[Lin, Jin, Jordan 2019]

[Letcher, Balduzzi, Racaniere, Martens, Foerster, Tuyls, and Graepel 2019]
[Lin, Liu, Rafique, Yang 2018]

[Hameani, Jalilzadeh, Aybat, Shanbhag 2018]
[Rafique, Liu, Lin, and Yang 2018]

[Sinha, Namkoong, and Duchi 2018]
[Mescheder, Geiger, and Nowozin 2018]
[Daskalakis and Panageas 2018]

And many other recent works. ..

VVVVVVVVVVVVVVVVVVVVYVVVVVYYVYVYYYYY
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