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Resolvent Splitting with Minimal Lifting

Joint work with Yura Malitsky (Linkdping).

Reference for the talk:

[d Resolvent splitting for sums of monotone operators with
minimal lifting. Preprint: arXiv:2108.02897.



Monotone Operators

Let H be a real Hilbert space. An operator B: H = H is monotone if
(x=y,u—v) =20 V(x,u),(y,v) € graph B.

A monotone operator B is maximally monotone if there exists no
monotone operator whose graph properly contains graph B.

H — H

@ Bauschke, H. H., & Combettes, P. L. (2011). Convex analysis and monotone
operator theory in Hilbert spaces. New York: Springer.



Monotone Inclusions

Problem (n-operator monotone inclusion)

find x € H such that 0 € > _ A(x),
i=1

where A;: H = H is maximally monotone for all i € {1,...,n}.




Monotone Inclusions

Problem (n-operator monotone inclusion)

find x € H such that 0 € > _ A(x),
i=1

where A;: H = H is maximally monotone for all i € {1,...,n}.

Some important examples (potentially nonsmooth, finite sum):
e Minimisation: A; = Of; for convex f; gives

n
min Z fi(x).
X
i=1
o Minimax: A; = (BV(?”_%[)) for convex-concave ®;(u, v) gives

n
min maxz ®i(u,v).
u v

i=1

(But examples are not the main focus of this talk.)



Solving Monotone Inclusions (n = 1)

Recall that the resolvent of an operator B : H = H is defined as
Jg = (ld+B)™%

If B is maximally monotone, then Jg is a single-valued with full domain.

Proximal Point Algorithm

Let A;: H = H be maximally monotone with zer A; # (. Given z° € H,
consider the sequence (z) given by

2" = Ja, (2¥) VkeN.

Then zk —~ z € Fix Ja, = zer A;.




Solving Monotone Inclusions (n = 2)

Douglas—Rachford Splitting

Let Ay, A>: H =2 ‘H be maximally monotone with zer(A; + A;) # 0.
Given z° € H, consider the sequence (z) given by

2K = Tpr(2¥) 1= 25 + Ja, (244, (2%) — 2) — Ja,(2¥) Yk EN.

Then z¥ — z € Fix Tpgr and Ja, (2¥) = Ja,(2) € zer(Ay + Az).

Note, two different sequences are involved:
e Tpr generates (z¥), but this sequence does not solve the problem.

o The resolvent Ju, is applied to (z¥) to get the solution sequence.



Solving Monotone Inclusions (n > 3)

Let A= (Aq,...,A,) be an n-tuple of maximally monotone operators.



Solving Monotone Inclusions (n > 3)

Let A= (Aq,...,A,) be an n-tuple of maximally monotone operators.

Reformulate the n-operator inclusion as a two operator inclusion:
n
X € zer <ZA;> CH <= x=(x,...,x)€zer(Na, +A) CH",
i=1

where Na, is normal cone to the diagonal subspace given by

Ay ={(x1,....,%) EH" 1 x1 = = xp}.



Solving Monotone Inclusions (n > 3)
Let A= (Aq,...,A,) be an n-tuple of maximally monotone operators.

Reformulate the n-operator inclusion as a two operator inclusion:
n
X € zer <ZA;> CH <= x=(x,...,x)€zer(Na, +A) CH",
i=1

where Na, is normal cone to the diagonal subspace given by

Ay ={(x1,....,%) EH" 1 x1 = = xp}.

Douglas—Rachford Splitting in the Product Space

Apply Douglas—Rachford splitting in " to the two operator inclusion
involving Na, and A. The DR operator Tpg: H" — H" can be expressed

in terms of Js = (Ja,,...,Ja,) and

Ina, (2) = Pa,(2) = <,1722/, e ,1122,) -

i=1

n




Goal of this Talk

@ The literature is mostly devoted establishing what is possible:

e Developing and analysing algorithms for solving monotone inclusions.
o Algorithms distinguished based on the properties of A1, ..., A,:

o Set or single-valued, Lipschitz, cocoercive, strongly monotone, etc.

@ Very little work concerned with examining what is not possible.

o Statements like “There exists no algorithm with the following properties.”
e To be able to make such statements, we need to formalise the “rules”.



Goal of this Talk

@ The literature is mostly devoted establishing what is possible:

e Developing and analysing algorithms for solving monotone inclusions.
o Algorithms distinguished based on the properties of A1, ..., A,:

o Set or single-valued, Lipschitz, cocoercive, strongly monotone, etc.

@ Very little work concerned with examining what is not possible.

o Statements like “There exists no algorithm with the following properties.”
e To be able to make such statements, we need to formalise the “rules”.

* Main goal of talk belongs to the second category.

Roughly speaking, our rules are:
@ Fixed point algorithms which employ the resolvents of Ay, ..., A,.



Structure of Resolvent Splitting Algorithms

Definitions in this section from:

@ Ryu, E. K. (2020). Uniqueness of DRS as the 2 operator resolvent-splitting and
impossibility of 3 operator resolvent-splitting. Mathematical Programming,
182(1), 233-273.
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Let A, denote the set of n-tuples of maximally monotone operators.
ie, A=(A1,...,A,) € A, when all A;'s are maximally monotone.
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Let A, denote the set of n-tuples of maximally monotone operators.
ie, A=(A1,...,A,) € A, when all A;'s are maximally monotone.

Definition (Fixed point encoding)

A pair of single-valued operators (Ta, Sa) is a fixed point encoding for A,
if, for all A € A, the following hold:

Q FixTa#0 < zer (3], A) #0.
Q@ z€FixTy = Sa(z) €zer (X7, A).

To interpret this definition, it helps to keep the following in mind:
@ The fixed point operator, Ty, is the basis for the iterative algorithm:

Kt = Ta(2") VkeN.

@ The solution operator, Sa, maps fixed points of T4 to solutions.

1Ryu's original paper uses the terminology “unconditionally convergent” for (3).



Fixed Point Encodings

Let A, denote the set of n-tuples of maximally monotone operators.
ie, A=(A1,...,A,) € A, when all A;'s are maximally monotone.

Definition (Fixed point encoding)

A pair of single-valued operators (Ta, Sa) is a fixed point encoding for A,
if, for all A € A, the following hold:

Q FixTa#0 < zer (3], A) #0.
Q@ z€FixTy = Sa(z) €zer (X7, A).
In addition, a fixed point encoding is said to be convergent if:*
© For all initial points z°, we have z“*1 = T,(z*) — z € Fix Tx.

To interpret this definition, it helps to keep the following in mind:
@ The fixed point operator, T, is the basis for the iterative algorithm:

Kt = Ta(2") VkeN.

@ The solution operator, S4, maps fixed points of T4 to solutions.

1Ryu's original paper uses the terminology “unconditionally convergent” for (3).



Examples of Fixed Point Encodings

o Proximal point algorithm is a fixed point encoding for .A; with

TA :JA1 and SA =1d.
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o Proximal point algorithm is a fixed point encoding for .A; with

TA :JA1 and SA =1d.

o Douglas—Rachford splitting is a fixed point encoding for .4, with

Ta=1d +JA2(2JA1 — |d) — JA1 and S, = JA1-

@ DR splitting in the product space is a fixed point encoding for A, with
1 n
Ta=Id+J4(2PA, —Id) — P, d S = - i
A=1d+Ja(2Pa, —Id) — Pa, and S5a(2) n’;Z

where we note that, for this case, T4: H" — H" and Sa: H" — H.



Examples of Fixed Point Encodings

o Proximal point algorithm is a fixed point encoding for .A; with

TA = JA1 and SA =1d.

o Douglas—Rachford splitting is a fixed point encoding for .4, with

Ta=1d +JA2(2JA1 — |d) — JA1 and S, = JA1-

@ DR splitting in the product space is a fixed point encoding for A, with
1 n
Ta=Id+J4(2PA, —Id) — P, d S = - i
A=1d+Ja(2Pa, —Id) — Pa, and S5a(2) n’;Z

where we note that, for this case, T4: H" — H" and Sa: H" — H.

* All these examples are actually convergent fixed point encodings.



An Example which is not a Fixed Point Encoding

@ The forward-backward algorithm given by
Trg = Jaa, (Id —AA)

is not a convergent fixed point encoding for A> because:

o Convergence of fixed point iteration requires Az to be cocoercive.
o Trg is single-valued only when A; is single-valued.

@ To be a fixed point encoding for A, the properties must hold for all
pairs of maximally monotone operators A = (A, As) € As.



Resolvent Splitting and Frugality

Definition (Resolvent splitting and frugality)

A fixed point encoding (Ta, Sa) is a resolvent splitting if, for all A € A,
there is a procedure that evaluates T, and S, at a point that uses only:

© Vector addition.

@ Scalar multiplication.

© The resolvents Jga,, ..., Ja,.
In addition, if the procedure uses each resolvent only once, then the
resolvent splitting is said to be frugal.




Resolvent Splitting and Frugality

Definition (Resolvent splitting and frugality)

A fixed point encoding (Ta, Sa) is a resolvent splitting if, for all A € A,
there is a procedure that evaluates T, and S, at a point that uses only:

© Vector addition.

@ Scalar multiplication.

© The resolvents Jga,, ..., Ja,.
In addition, if the procedure uses each resolvent only once, then the
resolvent splitting is said to be frugal.

Implications for T4 and Sa:
@ Allows for a kind of canonical form in terms of coefficient matrices.

@ Informally, non-linearities in T4 can only arise from the resolvents.
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resolvent splittings, even though they use Ja,, ..., Ja,.

e Haugazeau-type methods, Projective splitting (Eckstein—Svaiter '08), etc.



Examples for (Frugal) Resolvent Splittings

All fixed point encoding on previous slide are frugal resolvent splittings.

The convergent fixed point encoding (Ta, Sa) for A; given by
Ta=1d4+Ja,(2Ja, —Id) — Ja, and Sa = Ja,.

is a resolvent splitting but it is not a frugal resolvent splitting.

Methods whose iterations project onto separating hyperplanes are not
resolvent splittings, even though they use Ja,, ..., Ja,.

e Haugazeau-type methods, Projective splitting (Eckstein—Svaiter '08), etc.

Methods whose iterations use the resolvents Jy, 4,, .- ., x4, With

different values for Ay,..., A\, > 0 are not resolvent splittings

o Parallel Douglas—Rachford with reduced dimension
(Condat—Kitaharra—Contreras—Hirabayashi '20, Campoy '21).



The Structure of the Solution Map

Recall that a fixed point encoding must satisfy:

z€ Fix Tp = Sa(z) € zer (Z A;) )

i=1

Using the canonical form of a frugal resolvents splitting, properties about
the general structure of all such algorithms can be derived.



The Structure of the Solution Map

Recall that a fixed point encoding must satisfy:

z€ FixTp = Sa(z) € zer <Z A,—) )

i=1

Using the canonical form of a frugal resolvents splitting, properties about
the general structure of all such algorithms can be derived.

Proposition (Malitsky—T.)

Let (Ta, Sa) be a frugal resolvent splitting for A,. Suppose z € Fix Tx
and let y; denote the point where J,, is evaluated in the procedure for
evaluating Ta(z). Then, necessarily, we have

ZYI JA1 }/1 = JAn(y")'




Lifting

Definition (Lifting)

Let d € N. A fixed point encoding (Ta, Sa) is a d-fold lifting for A, if
Ta: H? — H? and Sp: HY — H.

@ Value of d represents number of copies of variable needed to use T4.
@ Smaller d means the corresponding algorithm needs less memory.

o Methods which attain the smallest value of d (for a given n) are said
to have “minimal lifting”. That is, they have the lowest memory
requirements for algorithm class.

* We focus on (minimal) lifting for frugal resolvent splittings.
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e Douglas—Rachford splitting for A, has 1-fold lifting (i.e., no lifting):
Ta: H — H where

Ta=1Id +JA2 (2./,41 - |d) — JA1'

@ DR splitting in the product space for A, has n-fold lifting:
Ta: H" — H" where

Ta=Id+Ja(2Ps, — Id) — Pa .

n



Examples of Lifting for Frugal Resolvent Splittings

@ Proximal point algorithm for A; has 1-fold lifting (i.e., no lifting).

e Douglas—Rachford splitting for A, has 1-fold lifting (i.e., no lifting):
Ta: H — H where

Ta=1Id +JA2 (2./,41 - |d) — JA1'

@ DR splitting in the product space for A, has n-fold lifting:
Ta: H" — H" where

Ta=Id+Ja(2Ps, — Id) — Pa .

@ Primal-dual hybrid gradient (PDHG) for A, has 2-fold lifting:
Ta: H? — H? given by

] ([) = oot omy
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Lifting for Frugal Resolvent Splittings

For convenience, denote:

d*(n) == minimal amount of lifting needed by
" ]| convergent frugal resolvent splittings for A,

Upper bound: DR splitting applied to the product space gives

d*(n)<n VneN.

The first few values of d*(n) are known in the literature:
e d*(1)=1 due to the proximal point algorithm.
o d*(2)=1 due to Douglas—Rachford splitting.
o d*(3) =177



Ryu’s Splitting Algorithm for n = 3
Let v € (0,1). Ryu's splitting algorithm is given by T4: H? — H? where

x1 = Ja, (21)
X:

—x
3 where { xo = Ja, (20 + x1)
3 — X2

Ta(z)=z+~ (x

X3 = JA3(X1 —2Z1+ X0 — 22).

a Ryu, E. K. (2020). Uniqueness of DRS as the 2 operator resolvent-splitting and
impossibility of 3 operator resolvent-splitting. Math. Program., 182(1), 233-273.

ﬁ Aragén Artacho, F. J., Campoy, R., & Tam, M. K. (2021). Strengthened
splitting methods for computing resolvents. COAP, 80(2), 549-585.
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Let v € (0,1). Ryu’s splitting algorithm is given by Ta: H? — H? where

Xt = Ja, ()

kK k
xk — x
K = Ta(2¥) = 2"+ ( 3 i) where  { x§ = Ja, (25 + x{)
3T K _ Kk k. Uk _k
x5 = Jda (4 —z1 + x5 — 2)).
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Ryu’s Splitting Algorithm for n = 3
Let v € (0,1). Ryu’s splitting algorithm is given by Ta: H? — H? where

. Xt = Ja, (2()
K = Ta(2¥) = 2"+ (f,'( B j}) where { x5 = Ja, (28 + x§)

3 — Xy
K Kk k. Uk _k
x5 = Jda (4 —z1 + x5 — 2)).

Theorem (Ryu, Aragén—Campoy-T.)

Let Ay, Ay, As: H = H be maximally monotone with zer(z:?:1 A;) # 0.
Given an initial z° € 72, define the sequences (z*) and (x*) as above.
Then the following assertions hold.

Q z¥ —~ zc FixTa.

Q x¥ — (x,x,x) € H3 with x € zer(z;?':1 Ap).

@ Ryu, E. K. (2020). Uniqueness of DRS as the 2 operator resolvent-splitting and
impossibility of 3 operator resolvent-splitting. Math. Program., 182(1), 233-273.

@ Aragén Artacho, F. J., Campoy, R., & Tam, M. K. (2021). Strengthened
splitting methods for computing resolvents. COAP, 80(2), 549-585.
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Upper bound: DR splitting applied to the product space gives

d*(n)<n VneN.

The first few values of d*(n) are known in the literature:
e d*(1)=1 due to the proximal point algorithm.
e d*(2)=1 due to Douglas—Rachford splitting.
e d*(3)=2 due to Ryu's splitting algorithm.



Lifting for Frugal Resolvent Splittings

For convenience, denote:

d*(n) == minimal amount of lifting needed by
" ]| convergent frugal resolvent splittings for A,

Upper bound: DR splitting applied to the product space gives

d*(n)<n VneN.

The first few values of d*(n) are known in the literature:
e d*(1)=1 due to the proximal point algorithm.
e d*(2)=1 due to Douglas—Rachford splitting.
e d*(3)=2 due to Ryu’s splitting algorithm.

The minimal amount of lifting is given by d*(n) = n—1 for n > 2.
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Theorem (Malitsky-T.)

Let n > 2. If (Ta,Sa) is a frugal resolvent splitting for A, with d-fold
lifting, then d > n— 1.

@ Proof is by contradiction and uses the rank-nullity theorem applied
to the coefficient matrices in the canonical form of Tj4.

@ No need to consider S, directly — already determined by proposition.



Resolvent Splitting with Lifting

As a first step towards resolving the conjecture, we showed the following.

Theorem (Malitsky-T.)

Let n > 2. If (Ta,Sa) is a frugal resolvent splitting for A, with d-fold
lifting, then d > n— 1.

@ Proof is by contradiction and uses the rank-nullity theorem applied
to the coefficient matrices in the canonical form of Tj4.

@ No need to consider S, directly — already determined by proposition.
e Consequence of theorem: d*(n) = n—1or d*(n) = n.

* Do frugal resolvents splittings with (n — 1)-lifting exist for n > 37




Frugal Resolvent Splitting with Minimal Lifting



Extending Ryu's Splitting from n =3 to n =4

We tried (unsuccessfully) to extend Ryu's scheme to n > 4 operators.

Let v € (0,1). Define T: H2 — H? according to

X1 = JA1 (21)
XA_XI) x2 = Jay (22 + x1)
where

X4 — X3

T(z) = z+v (

xa = Ja,(x1 — 21 + x2 — )
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We tried (unsuccessfully) to extend Ryu's scheme to n > 4 operators.

Let v € (0,1). Define T: H3 — H3 according to

X1 = JA1 Zl)

(
X4 — X1 _
x2 = Jay (22 + x1)
T(z) = z+ X4 — X: where
@) 7(4 2) x3 = Jaz(z3 + x2 — x1)
(

X4 — X3
xa =Ja,(xt —z1+x2 — 22 + x3 — z3),




Extending Ryu's Splitting from n =3 to n =4

We tried (unsuccessfully) to extend Ryu's scheme to n > 4 operators.

Let v € (0,1). Define T: H3 — H3 according to

X1 = JAl(Zl)
X4 — X1 _
x2 = Ja, (22 + x:
T(z)=z+7 | xa — x where 2 ha (22 1)
Xa — X3 x3 = Jaz(z3 + x2 — x1)
(

xa =Ja,(xt —z1+x2 — 22 + x3 — z3),

Possible four operator extension of Ryu's splitting (red terms new).
If zc Fix T, then X1 = Xo = X3 = Xg € zer(A1 + As +A3 —|—A4)
However, fixed point iteration of T does not always converge.

In fact, it only converges when A, is 1-strongly monotone.
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Let z=(z1,...,2p-1) €EH" Yand x = (x1,. .., %), ¥ = (V1,---,¥n) €EH.

Consider candidates for the operator T, of the form
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for some matrix M € R(n=1)xn
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Searching for New Methods

Let z=(z1,...,2p-1) €EH" Yand x = (x1,. .., %), ¥ = (V1,---,¥n) €EH.

Consider candidates for the operator T, of the form

Ta(z) =z+yMx where x; = Ja(y;) Vie{l,...,n}

for some matrix M € R(n=1)xn

Assuming T, is a frugal resolvent splitting, we can deduce that:
Q@ zcFixT < x€kerM.
Q If x € ker M, then x* == x; = -+ = x,.

So after choosing such an M, we need to investigate expressions for y:
@ If x* is a solution, then x* = %Zle y* (by sol'n map proposition).
@ y; must be a linear combination of z;,...,z,-1 and xg,...,x_1.

@ In addition, need the resulting fixed point iteration to be convergent!
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A New Family of Resolvent Splitting
We propose the following family of splitting algorithms.

Let v € (0,1) and Ta: H" 1 — H ! be given by

X2 — X1

X3 — X2
Ta(z) =z+~ ) ,

Xn — Xn—1

where x = (x1,...,%,) € H" is given by

x = Ja(21),
X,':JA,.(Z,'-FX,',l—Z,',l) Vi e {2,...,/‘]—1}

Xp = JA,,(Xl + Xp—1 — Zn—l)-

o If n =2, then T4 is the same as Tpgy for A; and A,.
@ When n = 3, it is different to Ryu'’s splitting method.



The Fixed Point Set of Ty

Lemma (Malitsky-T.)
Let n >2, A= (A1,...,A,) € A, and v > 0. Then we have:
Q FixTa#0 < zer (X7 A) #0.
Q Ifz=(z,...,2,-1) € Fix Th, then x € zer (}_7_; A;) where

x:=Jda(z21) = Ja(zi + x — zi—1) = Ja,(2x — z5_1) (1)

forallie{2,...,n—1}.
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Lemma (Malitsky-T.)
Let n >2, A= (A1,...,A,) € A, and v > 0. Then we have:
Q FixTa#0 < zer (X7 A) #0.
Q Ifz=(z,...,2,-1) € Fix Th, then x € zer (}_7_; A;) where

x:=Jda(z21) = Ja(zi + x — zi—1) = Ja,(2x — z5_1) (1)

forallie{2,....,n—1}.

@ Shows that T, can be used to define a fixed point encoding for A,,.

@ Any resolvents in (1) can be used solution map. For instance:

Sa(z) := Ja, (7).

e How about (weak) convergence of the fixed point iteration?



Nonexpansivity Properties of Tx

Lemma (Malitsky—T.)
Let n>2, A= (Aq,...,A,) € A, and 7 > 0. Then we have

ITa(z) = Ta@)[? + 1_Tvll(ld ~Ta)(2) - (Id=Ta)@)

n—1

fHZ (1d—Ta)(2)i = Y _(1d = Ta) @) < Iz 2%,

i=1

where z = (z1,...,z,) e H" Yand 2 = (Z,...,2,) € H" L.




Nonexpansivity Properties of Tx

Lemma (Malitsky—T.)
Let n>2, A= (Aq,...,A,) € A, and 7 > 0. Then we have

ITa(z) = Ta@)[? + 1_Tvll(ld ~Ta)(2) - (Id=Ta)@)

n—1

fHZ (1d—=Ta)@)i — > (d=Ta)@)i|” < Iz z|1%,

i=1

where z = (z1,...,z,) e H" Yand 2 = (Z,...,2,) € H" L.

e If v € (0,1), then the operator T4 is y-averaged nonexpansive.
o Counter-example in paper: in general, we cannot take v = 1.
@ However, if n = 2, then inequality simplifies and can take v € (0, 2).



Main Convergence Theorem

Fixed point algorithm:

k k
Xy — X1 p K
X — xk xg = Ja, (21),
k+1 k k k k k k
z = TA(Z ) =z +v . where X; = JA,.(Zi +Xi_1— Z_4
. k __ k k k
k k Xp = JAn(Xl +Xn71 - znfl)'
Xn — Xn—1

Theorem (Malitsky-T.)
Let n>2, A= (Aq,...,A,) € A, with zer (X7, A;) # 0, and v € (0, 1).
Given z° € H" 1, let (z€) € H"~! and (x¥) C H" be given as above.
Then, the following assertions hold.

Q z¥ —~ z € Fix Ta.

Q x* — (x,...,x) € H" with x € zer (3], Aj).




Main Convergence Theorem

Fixed point algorithm:

k k
Xo — X1 X B
x5 — x5 x1 = Jay (21),
k+1 k k X X B P
7 =Taz") =24y . where { xf = Ja(zF +xF — 2z,
: k k k k
k k Xn = JAn(X1 + Xp_1 — Zn71)~
Xn — Xp—1

Some further refinements:
o If Ay, ..., A, are uniformly monotone (but not necessarily A;),
then (x¥) converges strongly. This holds in the limiting case 7 = 1
e In contrast, Peaceman—Rachford splitting (= limiting case of DR) in
the product space requires all operators to be uniformly monotone.
e If A;’s are normal cones to subspaces S;, then (x*) converges

strongly and x := P s, (nlj S z,-0>. (Bauschke-Singh—Wang)

@ Bauschke, H. H., Singh, S., & Wang, X. (2021). The splitting algorithms by Ryu
and by Malitsky—Tam applied to normal cones of linear subspaces converge
strongly to the projection onto the intersection. arXiv:2109.11072.
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The minimal amount of lifting is given by d*(n) = n—1 for n > 2.

Combining everything in this talk so far, gives the following answer.

Corollary (Malitsky-T.)

Suppose n > 2. There exists a convergent frugal resolvent splitting for
A, with (n — 1)-fold lifting. Moreover, this is the minimal amount of
lifting possible with frugal resolvent splittings for A,.




Minimal Lifting for Frugal Resolvent Splitting

The minimal amount of lifting is given by d*(n) = n—1 for n > 2.

Combining everything in this talk so far, gives the following answer.

Corollary (Malitsky-T.)

Suppose n > 2. There exists a convergent frugal resolvent splitting for
A, with (n — 1)-fold lifting. Moreover, this is the minimal amount of
lifting possible with frugal resolvent splittings for A,.

Algorithmic consequences:
@ In general, it is not possible to do too much better than the product
space: n-fold lifting vs (n — 1)-fold lifting.
e For small n, the difference is more significant. For large n, less so.



Concluding Remarks



Concluding Remarks

In this work, we have shown:
e Minimal amount of lifting for n-operator inclusion is n — 1.

@ New n-operator resolvent splitting method that generalises DR.

@ Resolvent splitting for sums of monotone operators with minimal lifting
with Yura Malitsky. arXiv:2108.02897.



Concluding Remarks

In this work, we have shown:
e Minimal amount of lifting for n-operator inclusion is n — 1.

@ New n-operator resolvent splitting method that generalises DR.

Directions for future work:
o Finer properties of new splitting algorithm (e.g., inconsistent prob).
o How does frugality affect the amount of lifting needed? Trade off?
o Characterise all frugal resolvent splittings for n-operators?

# of Operators

Minimal Amount ‘ Algorithm(s)

of Lifting
1 1 Proximal Point algorithm
2 1 Douglas—Rachford algorithm
3 2 Ryu's algorithm + This Work + Others?
n>?2 n—1 This Work + Others?

@ Resolvent splitting for sums of monotone operators with minimal lifting
with Yura Malitsky. arXiv:2108.02897.



Concluding Remarks

In this work, we have shown:
e Minimal amount of lifting for n-operator inclusion is n — 1.

@ New n-operator resolvent splitting method that generalises DR.

Directions for future work:
o Finer properties of new splitting algorithm (e.g., inconsistent prob).
o How does frugality affect the amount of lifting needed? Trade off?
o Characterise all frugal resolvent splittings for n-operators?

# of Operators

Minimal Amount ‘ Algorithm(s)

of Lifting
1 1 Proximal Point algorithm
2 1 Douglas—Rachford algorithm
3 2 Ryu's algorithm + This Work + Others?
n>?2 n—1 This Work + Others?

‘* Perhaps we should more often examine what might not be possible

@ Resolvent splitting for sums of monotone operators with minimal lifting
with Yura Malitsky. arXiv:2108.02897.



