
Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Generalised Self-concordant analysis of
Frank-Wolfe algorithms

Pavel Dvurechensky1 Shimrit Shtern2 Mathias
Staudigl3

1WIAS 2The Technion 3Maastricht University

OWOS, April, 11, 2022

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Ill-Conditioned minimisation in Machine Learning

A common problem in machine learning is the
minimisation of a convex function

f (x) =
1
m

m

∑
i=1

ℓi(x) +
µ

2
∥x∥2

2 .

ℓi : Rn → R is a statistical loss function (smooth)
Typically n and m are huge.
first-order (i.e. gradient based) methods are favorable
optimization tools.
Convergence rates depend on the condition number
Lf /µ, where Lf is the Lipschitz modulus of ∇f .

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

A point for Ill-conditioned problems

Convex Lipschitz continuous losses lead to the general
non-asymptotic bounds for the excess risk

f (x∗)− f (x◦) ≈ L2
f

µm
+ µ ∥x◦∥2 = Variance + Bias.

Statistical optimal choice of the regularisation parameter
µ = O(1√

m
).

If m≫ 1, then µ is very small. Lf is typically very large.

Optimization problems with large condition number are
nearly ill-conditioned. A class of ill-conditioned problems
which are tractable, are generalised self-concordant
functions.

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Problem Formulation

X ⊂ E convex compact. Consider the optimisation
problem

min
x∈X

f (x). (P)

Definition ([Sun and Tran-Dinh, 2018])

f ∈ C3(dom(f)) with dom f open, is generalised
self-concordant (GSC) if ∃(M, ν) ∈ R+ ×R+ such that

∣∣φ′′′(t)
∣∣ ≤ M φ′′(t)ν/2

for φ(t) = f (x + td), x ∈ dom f , d ∈ E and x + td ∈ dom f .
Call FMf ,ν(dom f) the set of GSC functions.

Cf. [Nesterov and Nemirovski, 1994, Bach, 2010, Tran-Dinh et al., 2019, Ostrovskii and Bach, 2021,

Marteau-Ferey et al., 2019]

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Examples

Generalised Self-concordant functions

Logistic Loss

f (x) =
1
m

m

∑
i=1

ln (1 + exp(bi ⟨ai , x⟩)) + µ

2
∥x∥2

2 .

where bi ∈ {−1, 1}, µ > 0, ai ∈ Rn.
Robust regression

f (x) =
1
m

m

∑
i=1

φ(bi − ⟨ai , x⟩), φ(u) = ln(eu + e−u).

Distance-Weighted Discrimination

f (x) =
1
m

m

∑
i=1

(a⊤i w + βyi + ξi)
−q + ⟨c, ξ⟩ , x = (w , β, ξ).

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Examples

Self-concordant functions

Portfolio Optimisation

f (x) = −
T

∑
t=1

ln(⟨rt , x⟩), x ∈ X = ∆n

Covariance Estimation:

f (x) = − ln(det(x)) + tr(Σx),
x ∈ X = {x ∈ Sn

+ : ∥vec(x)∥1 ≤ R}.
Poisson Inverse Problem

f (x) =
m

∑
i=1
⟨wi , x⟩ −

m

∑
i=1

yi ln(⟨wi , x⟩),

x ∈ X = {x ∈ Rn| ∥x∥1 ≤ R}.

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Examples

Further applications

D-Optimal Design Given m points a1, . . . , am ∈ Rn

whose affine hull is Rn, find

min f (x) = − log det

(
m

∑
i=1

xiaia⊤i

)
s.t.: x ∈ ∆m.

Finding the analytic centre Consider a domain
{x ∈ Rn|Ax ≤ 1, x ∈ {0, 1}n}. Find an approximate
feasible point by solving the analytic centre problem for
the barrier

f (x) =− log

[
L− log

(
∑

i
exp(L ⟨ai , x⟩)

)]

−
(

2L
3

)2 n

∑
i=1

log(xi).

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Hypothesis

Standing Hypothesis

The following assumptions shall be in place:

(A.1) f ∈ FMf ,ν with ν ∈ [2, 3].
(A.2) X∗ = argmin{f (x)|x ∈ X} ̸= ∅:
(A.3) X is a convex compact subset in Rn

(A.4) ∇2f is continuous and positive definite on dom f ∩X.

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Classical Frank-Wolfe Methods

Conditional Gradient aka Frank-Wolfe

The analysis of FW involves
(a) a search direction

s(x) = argmin
s∈X

⟨∇f (x), s⟩ .

(b) as merit function

Gap(x) = ⟨∇f (x), x − s(x)⟩

Standard Frank-Wolfe method:
If Gap(xk) > ε then
1 Obtain sk = s(xk);
2 Update xk+1 = xk + αk (sk − xk) for some

αk ∈ [0, 1).

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Classical Frank-Wolfe Methods

Why projection-free optimization?

First-order methods in covex optimization gained
significance in connection with
large-scale optimization problems.
Optimization models are dependent on data that can be
noisy, so no need for high-accuracy solutions.
First-order methods are appealing in practice because
of their lower computational burden per iteration.
First-order methods are able to preserve problem
structure (e.g. sparsity), and can be extended to
non-smooth problems.

See [Dvurechensky et al., 2021] for a recent survey.

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Classical Frank-Wolfe Methods

Convergence Analysis

Because of great scalability and sparsity properties,
Frank-Wolfe (FW) methods (Frank & Wolfe, 1956)
received lot of attention in ML.

1 Convergence guarantees require Lipschitz continuous
gradients, or finite curvature constants on f (Jaggi,
2013)

2 Even for well-conditioned problems only sublinear
convergence rates guaranteed in general.

x⇤

x(t)

x(0)

x(t+1)

st x⇤

x(t)

x(0)

vt

stx(t+1) x⇤

x(t)

x(0)

vt

st

/
/

x(t+1)

/
/

Figure 1: (left) The FW algorithm zig-zags when the solution x⇤ lies on the boundary. (middle) Adding the
possibility of an away step attenuates this problem. (right) As an alternative, a pairwise FW step.

between the vertices defining the face containing the solution x⇤ (see left of Figure 1). In fact, the
1/t rate is tight for a large class of functions: Canon and Cullum [6], Wolfe [34] showed (roughly)
that f(x(t))�f(x⇤) � ⌦

�
1/t1+�

�
for any � > 0 when x⇤ lies on a face of M with some additional

regularity assumptions. Note that this lower bound is different than the ⌦
�
1/t
�

one presented in [15,
Lemma 3] which holds for all one-atom-per-step algorithms but assumes high dimensionality d � t.

1 Improved Variants of the Frank-Wolfe Algorithm

Algorithm 1 Away-steps Frank-Wolfe algorithm: AFW(x(0), A, ✏)

1: Let x(0) 2 A, and S(0) := {x(0)} (so that ↵(0)
v = 1 for v = x(0) and 0 otherwise)

2: for t = 0 . . . T do
3: Let st := LMOA

�
rf(x(t))

�
and dFW

t := st � x(t) (the FW direction)
4: Let vt 2 arg max

v2S(t)

⌦
rf(x(t)), v

↵
and dA

t := x(t) � vt (the away direction)

5: if gFW
t :=

⌦
�rf(x(t)), dFW

t

↵
 ✏ then return x(t) (FW gap is small enough, so return)

6: if
⌦
�rf(x(t)), dFW

t

↵
�
⌦
�rf(x(t)), dA

t

↵
then

7: dt := dFW
t , and �max := 1 (choose the FW direction)

8: else
9: dt := dA

t , and �max := ↵vt/(1� ↵vt) (choose away direction; maximum feasible step-size)
10: end if
11: Line-search: �t 2 arg min

�2[0,�max]

f
�
x(t) + �dt

�

12: Update x(t+1) := x(t) + �tdt (and accordingly for the weights ↵(t+1), see text)

13: Update S(t+1) := {v 2 A s.t. ↵
(t+1)
v > 0}

14: end for

Algorithm 2 Pairwise Frank-Wolfe algorithm: PFW(x(0), A, ✏)

1: . . . as in Algorithm 1, except replacing lines 6 to 10 by: dt = dPFW
t := st�vt, and �max := ↵vt

.

Away-Steps Frank-Wolfe. To address the zig-zagging problem of FW, Wolfe [34] proposed to
add the possibility to move away from an active atom in S(t) (see middle of Figure 1); this simple
modification is sufficient to make the algorithm linearly convergent for strongly convex functions.
We describe the away-steps variant of Frank-Wolfe in Algorithm 1.3 The away direction dA

t is
defined in line 4 by finding the atom vt in S(t) that maximizes the potential of descent given by
gA

t :=
⌦
�rf(x(t)), x(t) � vt

↵
. Note that this search is over the (typically small) active set S(t),

and is fundamentally easier than the linear oracle LMOA. The maximum step-size �max as defined
on line 9 ensures that the new iterate x(t) + �dA

t stays in M. In fact, this guarantees that the convex
representation is maintained, and we stay inside conv(S(t)) ✓M. When M is a simplex, then the
barycentric coordinates are unique and x(t) +�maxd

A
t truly lies on the boundary of M. On the other

hand, if |A| > dim(M) + 1 (e.g. for the cube), then it could hypothetically be possible to have a
step-size bigger than �max which is still feasible. Computing the true maximum feasible step-size
would require the ability to know when we cross the boundary of M along a specific line, which
is not possible for general M. Using the conservative maximum step-size of line 9 ensures that we

3The original algorithm presented in [34] was not convergent; this was corrected by Guélat and Marcotte
[12], assuming a tractable representation of M with linear inequalities and called it the modified Frank-Wolfe
(MFW) algorithm. Our description in Algorithm 1 extends it to the more general setup of (1).

3

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Development of the algorithms

Why do standard Methods fail in ill-conditioned problems?

Consider f (x1, x2) = − ln(x1)− ln(x2) over
x1, x2 ∈ [0, 1], x1 + x2 = 1.

Start from x0 = (1/4, 3/4)
Apply the standard 2/(k + 2)-step size policy, then
α0 = 1.
x1 = (1, 0) /∈ dom f .

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Development of the algorithms

The Dikin Ellipsoid

The analysis of GSC minimisation algorithms makes
use of the local norm:

∥a∥x ≜
√
⟨∇2f (x)a, a⟩, ∥a∥∗x ≜

√
⟨a, [∇2f (x)]−1a⟩

for x ∈ dom f .
Define the metric

dν(x , y) ≜
{

Mf ∥y − x∥2 if ν = 2,
ν−2

2 Mf ∥y − x∥3−ν
2 ∥y − x∥ν−2

x if ν > 2.

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Development of the algorithms

Dikin Ellipsoid

The Dikin Ellipsoid is defined as

W(x , r) ≜ {y ∈ E|dν(x , y) < r} ⊂ dom f ∀r ∈ (0, 1).

-2 -1 0 1 2

-2

-1

0

1

2

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Algorithm 1

Algorithm 1: Analytic step size method

Algorithm FW-GSC

Input: x0 ∈ dom f ∩X initial state, ε > 0 error tolerance,
and f ∈ FM,ν(dom f).
for k = 0, . . . do

if Gap(xk) > ε then
Obtain sk = s(xk)
Obtain αk = αMf ,ν(x

k)

Set xk+1 = xk + αk (sk − xk)
end if

end for

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Algorithm 1

Derivations

Let x+
t = x + t(s(x)− x), t > 0

For t > 0 such that dν(x , x+
t) < 1, obtain the GSC

descent inequality:

f (x+
t) ≤ f (x) +

〈
∇f (x), x+

t − x
〉

+ ων(dν(x , x+
t))

∥∥x+
t − x

∥∥2
x

Optimising the per-iteration decrease w.r.t t leads to an
analytic step-size criterion

αMf ,ν(x) = min{1,tMf ,ν(x)}.

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Algorithm 1

Determining the step size

The GSC descent lemma can be written as

f (x+
t) ≤ f (x)− tGap(x) + ων(tMf δν(x))t2e(x)2,

= f (x)− ηx ,Mf ,ν(t) t ∈ (0, 1/δν(x)),

where

ων(t) =

1
t2

(et − t − 1) if ν = 2,
−t−ln(1−t)

t2
if ν = 3,

(
ν−2
4−ν

)
1
t

[
ν−2

2(3−ν)t ((1− t)
2(3−ν)

2−ν − 1)− 1

]
if ν ∈ (2, 3).

δν(x) =
{

β(x) if ν = 2,
ν−2

2 β(x)3−νe(x)ν−2 if ν > 2,
and

β(x) = ∥s(x)− x∥2 , e(x) = ∥s(x)− x∥x ,

ηx ,M,ν(t) = Gap(x)

[
t −ων(tMδν(x))t2 e(x)2

Gap(x)

]
.

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Algorithm 1

Solving maxt ηx ,ν(t) yields

tM,ν(x) =

1
Mδ2(x)

ln
(

1 + Gap(x)Mδ2(x)
e(x)2

)
if ν = 2,

1
Mδν(x)

[
1−

(
1 + Mδν(x)Gap(x)

e(x)2
4−ν
ν−2

)− ν−2
4−ν

]
if ν ∈ (2, 3)

Gap(x)
Mδ3(x)Gap(x)+e(x)2 if ν = 3.

Calling ∆k = ηxk ,ν(αν(xk)), to get

f (xk+1) ≤ f (xk)− ∆k < f (xk)

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Convergence Analysis

Asymptotic Convergence

Proposition

Let (xk)k∈N0 be generated by algorithm FW-GSC. Then
the following assertions hold:
1
(
f (xk)

)
k is non-increasing;

2 ∑k ∆k < ∞ and hence limk→∞ ∆k = 0;
3 For all K ≥ 1 we have mink≤K ∆k ≤ 1

K (f (x0)− f (x∗)).

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Complexity

Iteration Complexity

Define the approximation error : hk = f (xk)− f ∗. Let

S(x0) = {x ∈ X|f (x) ≤ f (x0)}, and

L∇f = max
x∈S(x0)

λmax(∇2f (x)).

Theorem

For given ε > 0, define Nε(x0) = min{k ≥ 0|hk ≤ ε}.
Then,

Nε(x0) ≤
ln
(

c1(Mf ,ν)
h0c2(Mf ν)

)

ln(1− c1(Mf , ν))
+

1
c2(Mf , ν)ε

,

where c1(Mf , ν), c2(Mf , ν) are explicit constants.

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Algorithm 2: Backtracking over the Lipschitz modulus

An adaptive quadratic model-based algorithm

Consider the quadratic model

Q(x , t ,L) = f (x)− tGap(x) +
t2L

2
∥s(x)− x∥2

2 .

On the level set S(xk), we get the descent lemma

f (xk + t(s(xk)− xk)) ≤ Q(xk , t , Lk)

for Lk a local estimate of the Lipschitz constant on the
level set.
A backtracking strategy on Lk yields a new algorithm.

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Algorithm 2: Backtracking over the Lipschitz modulus

Algorithm 2

Algorithm LBTFWGSC
Input: x0 ∈ dom f ∩X initial state; L−1 initial Lipschitz estimate, γu > 1 > γd .
for k = 1, . . . do

if Gap(xk) > ε then
Obtain sk = s(xk) and set vk = sk − xk

Set (αk ,Lk) = stepL(f , vk , xk ,Lk−1)

Set xk+1 = xk + αk (sk − xk)
end if

end for

Algorithm Function stepL(f , v , x ,L)
Choose L̄ ∈ [γdL,L]

α = min{ Gap(x)
L̄∥v∥22

, 1}

if x + αv /∈ dom f or f (x + αv) > QL(x , α, L̄) then
L̄← γu L̄

α← min{ Gap(x)
L̄∥v∥22

, 1}

end if
Return α, L̄

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Algorithm 2: Backtracking over the Lipschitz modulus

Complexity Estimate

Theorem

Let (xk)k be generated by LBTFWGSC. Then

Nε(x0) ≤ 2L̄ diam(X)2

ε
+

ln(L̄ diam(X)2/h0)

ln(1/2)

where L̄ = max{γuL∇f ,L−1}.

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Algorithm 3: Backtracking over the GSC parameter Mf

Searching for the scale parameter

Let vFW (x) = s(x)− x the FW-search direction.

Suppose µ > 0 is a local guess of the GSC parameter Mf .
For the search point x+

t = x + tvFW (xk) we have

f (x+
t) ≤ f (x)− tGap(x)+ t2e(x)2ων(tµδν(x)) ≡ QM(x , t , µ).

Optimize the new model with respect to t gives a step size
policy αν(x , µ).

Search for the best µ to obtain a close fit between the
upper model and the actual function values.

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Algorithm 3: Backtracking over the GSC parameter Mf

Algorithm 3: MBTFWGSC

Algorithm MBTFWGSC
Input: x0 ∈ dom f ∩X initial state; µ−1 initial Lipschitz estimate, γu > 1 > γd .
for k = 1, . . . do

if Gap(xk) > ε then
Obtain sk = s(xk) and set vk = sk − xk

Set (αk , µk) = stepM (f , vk , xk , µk−1)

Set xk+1 = xk + αk vk

end if
end for

Algorithm Function stepM(f , v , x , µ)

Choose M̄ ∈ [γd µ, µ]
α = αM̄,ν(x)
if x + αv /∈ dom f or f (x + αv) > QM (x , α, M̄) then

M̄ ← γuM̄
α← αM̄,ν(x)

end if
Return α, M̄

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Algorithm 3: Backtracking over the GSC parameter Mf

Complexity Analysis

Theorem

Let (xk)k be generated by MBTFWGSC. Then

Nε(x0) ≤
ln
(

c1(M̃,ν)
h0c2(M̃,ν)

)

ln(1− c1(M̃, ν))
+

1
c2(M̃, ν)ε

,

where M̃ = max{γuMf , µ−1}.

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Preparations

All methods so far displayed a complexity of O(1/ε);
It is known that FW can be accelerated under various
hypothesis:

Strong convexity coupled with interior solutions
[GuéLat and Marcotte, 1986,
Lacoste-Julien and Jaggi, 2015];
Composition of strongly convex with affine transformation
[Beck and Shtern, 2017];
X strongly convex [Garber and Hazan, 2015,
Kerdreux and d’Aspremont, 2020];

see the recent survey [Bomze et al., 2021].

Assumption

X = {x ∈ Rn|Bx ≤ b}

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Local Linear Minimization Oracles

Local Linear minimization oracle

Definition ([Garber and Hazan, 2016])

A procedure A(x , r , c), where x ∈ X, r > 0, c ∈ Rn, is a
LLOO with parameter ρ ≥ 1 for the polytope X if A(x , r , c)
returns a point u = u(x , r , c) ∈ X such that for all
x ∈ Br (x) ∩X

⟨c, x⟩ ≥ ⟨c, s⟩ and ∥x − s∥2 ≤ ρr .

Such oracles exist for any compact polyhedral domain.
Particular simple implementation for Simplex-like
domains.

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Local Linear Minimization Oracles

Modifications

Define the modified merit function

Γ(x , r) = ⟨∇f (x), x − u(x , r ,∇f (x))⟩
= max

s∈Br (x)∩X
⟨∇f (x), x − s⟩

and
u(x , r , c) = min

s∈Br (x)∩X
⟨c, s⟩ .

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Local Linear Minimization Oracles

Algorithm 4: FWLLOO

Algorithm FWLLOO
Input: A(x , r , c)-LLOO with parameter ρ ≥ 1 for polytope X, f ∈ FMf ,ν(dom f). σf > 0 convexity parameter.

x0 ∈ dom f ∩X, and let h0 = f (x0)− f ∗ , and c0 = 1.
for k = 0, 1, . . . , do

Set rk = r2
0 ck

Obtain uk = u(xk , rk ,∇f (xk))

Set αk = αν(xk)

Update xk+1 = x0 + αk (uk − xk)
end for

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Local Linear Minimization Oracles

Iteration Complexity

Theorem

Let (xk)k≥0 be generated by FWLLOO. Then, for all k ≥ 0,
we have x∗ ∈ Brk (x

k) and

hk ≤ Gap(x0) exp

(
−1

2

k−1

∑
i=0

αi

)
.

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

FW with correction steps

Preparations

FWLLOO needs σf or L∇f as input.
Both are hard to estimate in practice.
Away step method exploits the geometry of X, and a
Hoffman bound to compensate for these input
parameters.

Definition

Let U = Ext(X), so that X = conv(U). µ : U→ [0, 1] is a
vertex representration of x , if x = ∑u∈U µuu. Let U(x) be
the set of active vertices at x

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

FW with correction steps

Away Steps

Assumption ([Beck and Shtern, 2017])
The LMO is a vertex linear oracle:

s(x) ∈ argmin
d∈X

⟨∇f (x), d⟩

returns a point in U.

Definition
Given x ∈ X, we call

vFW (x) = s(x)− x a forward step
vA(x) = x − u(x), where
u(x) ∈ argmaxd∈U(x) ⟨∇f (x), d⟩, an away step.

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

FW with correction steps

Algorithm 5: ASFWGSC

Algorithm ASFWGSC
Input: x0 ∈ dom f ∩U where µ1

u = 0 for all u ∈ U \ {x1} and U1 = {x1}.
for k = 0, 1, . . . do

Set sk = s(xk), uk = u(xk), and vA(xk) = xk − uk , vFW (xk) = sk − xk

if
〈
∇f (xk), sk − xk

〉
≤
〈
∇f (xk), xk − uk

〉
then

Set vk = vFW (xk)
else

Set vk = vA(xk)
end if
Set βk =

∥∥∥vk
∥∥∥

2
, ek =

∥∥∥vk
∥∥∥

xk , t̄k ≡ t̄(xk)

Find αk = argmint∈[0,t̄k]
t
〈
∇f (xk), vk

〉
+ t2e2

k ων(tMf δν(xk))

Update xk+1 = xk + αk vk

if vk = vFW (xk) then
Update Uk+1 = Uk ∪ {sk }

else
if vk = vA(xk) and αk = t̄k then

Update Uk+1 = Uk \ {uk } and µk+1

else
Update Uk+1 = Uk

end if
end if

end for

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

FW with correction steps

Iteration Complexity

Theorem

Let {xk}k∈N be the trajectory generated by ASFWGSC.
Then, for all k ≥ 0, we have

hk ≤ h0 exp(−θk/2).

where θ = min
{

0.5, c1(Mf ,ν)Ω
2 diam(X)

, c2(Mf ,ν)Ω2σf
8

}
.

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

The logistic regression

The Elastic Net

Consider

f (x) =
1
p

p

∑
i=1

log (1 + exp(−yi ⟨ai , x⟩+ µ)) +
γ

2
∥x∥2

2

Since [Bach, 2010], we know that this can be seen as a
GSC minimization problem with ν = 2 or ν = 3.
Consider the elastic net formulation

min
x :∥x∥1≤R

f (x).

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

The logistic regression

Dependence on the GSC model

Figure: Comparison between ν = 3 and ν = 2 for data set a9a.

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

The logistic regression

Numerical Results - Performance Profiles

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Distance-Weigthed Discrimination

Experimental Setup

Consider the distance weighted discrimination (DWD)
problem, introduced in [Marron et al., 2007].

The classification loss attains the form

f (x) =
1
p

p

∑
i=1

(a⊤i w + µyi + ξi)
−q + c⊤ξ,

over the convex compact set

X = {x = (w , µ, ξ)| ∥w∥2 ≤ 1, µ ∈ [−u, u], ∥ξ∥2 ≤ R, ξ ∈ R
p
+},

where R > 0 is a hyperparameter that has to be learned
via cross-validation.

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Distance-Weigthed Discrimination

Results on DWD

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Covariance Estimation

Experimental Setup

Consider learning a Gaussian graphical random field of p
nodes/variables.

To learn the graphical model via an ℓ1-regularization
framework in its constrained formulation, we minimize the
loss function

f (x) = − log det(mat(x)) + tr(Σ̂mat(x))

over
X = {x ∈ Rn| ∥x∥1 ≤ R,mat(x) ∈ Sn

+}

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Covariance Estimation

Covariance Estimation

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Covariance Estimation

Thank you!

For details see:
[Dvurechensky et al., 2020, Dvurechensky et al., 2022]

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

References I

Bach, F. (2010).
Self-concordant analysis for logistic regression.
Electron. J. Statist., 4:384–414.

Beck, A. and Shtern, S. (2017).
Linearly convergent away-step conditional gradient for
non-strongly convex functions.
Mathematical Programming, 164(1):1–27.

Bomze, I. M., Rinaldi, F., and Zeffiro, D. (2021).
Frank-wolfe and friends: a journey into projection-free
first-order optimization methods.
4OR, 19(3):313–345.

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

References II

Dvurechensky, P., Ostroukhov, P., Safin, K., Shtern,
S., and Staudigl, M. (2020).
Self-concordant analysis of Frank-Wolfe algorithms.
In III, H. D. and Singh, A., editors, Proceedings of the
37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning
Research, pages 2814–2824, Virtual. PMLR.
arXiv:2002.04320.

Dvurechensky, P., Safin, K., Shtern, S., and Staudigl,
M. (2022).
Generalized self-concordant analysis of frank-wolfe
algorithms.
Mathematical Programming.

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

References III

Dvurechensky, P., Shtern, S., and Staudigl, M. (2021).
First-order methods for convex optimization.
EURO Journal on Computational Optimization,
9:100015.
arXiv:2101.00935.

Garber, D. and Hazan, E. (2015).
Faster rates for the frank-wolfe method over
strongly-convex sets.
In Bach, F. and Blei, D., editors, Proceedings of the
32nd International Conference on Machine Learning,
volume 37 of Proceedings of Machine Learning
Research, pages 541–549, Lille, France. PMLR.

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

References IV

Garber, D. and Hazan, E. (2016).
A linearly convergent variant of the Conditional
Gradient algorithm under strong convexity, with
applications to online and stochastic optimization.
SIAM Journal on Optimization, 26(3):1493–1528.

GuéLat, J. and Marcotte, P. (1986).
Some comments on Wolfe’s ‘away step’.
Mathematical Programming, 35(1):110–119.

Kerdreux, T. and d’Aspremont, A. (2020).
Frank-wolfe on uniformly convex sets.
arXiv preprint arXiv:2004.11053.

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

References V

Lacoste-Julien, S. and Jaggi, M. (2015).
On the global linear convergence of Frank-Wolfe
optimization variants.
In Cortes, C., Lawrence, N., Lee, D., Sugiyama, M.,
and Garnett, R., editors, Advances in Neural
Information Processing Systems, volume 28, pages
496–504. Curran Associates, Inc.

Marron, J. S., Todd, M. J., and Ahn, J. (2007).
Distance-weighted discrimination.
Journal of the American Statistical Association,
102(480):1267–1271.

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

References VI

Marteau-Ferey, U., Ostrovskii, D., Bach, F., and Rudi,
A. (2019).
Beyond least-squares: Fast rates for regularized
empirical risk minimization through self-concordance.
In Beygelzimer, A. and Hsu, D., editors, Proceedings
of the Thirty-Second Conference on Learning Theory,
volume 99 of Proceedings of Machine Learning
Research, pages 2294–2340, Phoenix, USA. PMLR.

Nesterov, Y. and Nemirovski, A. (1994).
Interior Point Polynomial methods in Convex
programming.
SIAM Publications.

Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

References VII

Ostrovskii, D. M. and Bach, F. (2021).
Finite-sample analysis of m-estimators using
self-concordance.
Electronic Journal of Statistics, 15(1):326–391.

Sun, T. and Tran-Dinh, Q. (2018).
Generalized self-concordant functions: a recipe for
Newton-type methods.
Mathematical Programming.

Tran-Dinh, Q., Sun, T., and Lu, S. (2019).
Self-concordant inclusions: a unified framework for
path-following generalized Newton-type algorithms.
Mathematical Programming, 177(1):173–223.

	Introduction
	Problem Formulation
	Examples
	Hypothesis
	Classical Frank-Wolfe Methods
	Development of the algorithms

	FW-GSC
	Algorithm 1
	Convergence Analysis
	Complexity

	Backtracking FW Variants
	Algorithm 2: Backtracking over the Lipschitz modulus
	Algorithm 3: Backtracking over the GSC parameter Mf

	Linearly Converging Variants
	Local Linear Minimization Oracles
	FW with correction steps

	Experiments
	The logistic regression
	Distance-Weigthed Discrimination
	Covariance Estimation

	References

