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Ill-Conditioned minimisation in Machine Learning

A common problem in machine learning is the
minimisation of a convex function

f (x) =
1
m

m

∑
i=1

ℓi(x) +
µ

2
∥x∥2

2 .

ℓi : Rn → R is a statistical loss function (smooth)
Typically n and m are huge.
first-order (i.e. gradient based) methods are favorable
optimization tools.
Convergence rates depend on the condition number
Lf /µ, where Lf is the Lipschitz modulus of ∇f .



Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

A point for Ill-conditioned problems

Convex Lipschitz continuous losses lead to the general
non-asymptotic bounds for the excess risk

f (x∗)− f (x◦) ≈ L2
f

µm
+ µ ∥x◦∥2 = Variance + Bias.

Statistical optimal choice of the regularisation parameter
µ = O( 1√

m
).

If m≫ 1, then µ is very small. Lf is typically very large.

Optimization problems with large condition number are
nearly ill-conditioned. A class of ill-conditioned problems
which are tractable, are generalised self-concordant
functions.
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Problem Formulation

X ⊂ E convex compact. Consider the optimisation
problem

min
x∈X

f (x). (P)

Definition ([Sun and Tran-Dinh, 2018])

f ∈ C3(dom(f )) with dom f open, is generalised
self-concordant (GSC) if ∃(M, ν) ∈ R+ ×R+ such that

∣∣φ′′′(t)
∣∣ ≤ M φ′′(t)ν/2

for φ(t) = f (x + td), x ∈ dom f , d ∈ E and x + td ∈ dom f .
Call FMf ,ν(dom f ) the set of GSC functions.

Cf. [Nesterov and Nemirovski, 1994, Bach, 2010, Tran-Dinh et al., 2019, Ostrovskii and Bach, 2021,

Marteau-Ferey et al., 2019]
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Examples

Generalised Self-concordant functions

Logistic Loss

f (x) =
1
m

m

∑
i=1

ln (1 + exp(bi ⟨ai , x⟩)) + µ

2
∥x∥2

2 .

where bi ∈ {−1, 1}, µ > 0, ai ∈ Rn.
Robust regression

f (x) =
1
m

m

∑
i=1

φ(bi − ⟨ai , x⟩), φ(u) = ln(eu + e−u).

Distance-Weighted Discrimination

f (x) =
1
m

m

∑
i=1

(a⊤i w + βyi + ξi)
−q + ⟨c, ξ⟩ , x = (w , β, ξ).
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Examples

Self-concordant functions

Portfolio Optimisation

f (x) = −
T

∑
t=1

ln(⟨rt , x⟩), x ∈ X = ∆n

Covariance Estimation:

f (x) = − ln(det(x)) + tr(Σx),
x ∈ X = {x ∈ Sn

+ : ∥vec(x)∥1 ≤ R}.
Poisson Inverse Problem

f (x) =
m

∑
i=1
⟨wi , x⟩ −

m

∑
i=1

yi ln(⟨wi , x⟩),

x ∈ X = {x ∈ Rn| ∥x∥1 ≤ R}.
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Examples

Further applications

D-Optimal Design Given m points a1, . . . , am ∈ Rn

whose affine hull is Rn, find

min f (x) = − log det

(
m

∑
i=1

xiaia⊤i

)
s.t.: x ∈ ∆m.

Finding the analytic centre Consider a domain
{x ∈ Rn|Ax ≤ 1, x ∈ {0, 1}n}. Find an approximate
feasible point by solving the analytic centre problem for
the barrier

f (x) =− log

[
L− log

(
∑

i
exp(L ⟨ai , x⟩)

)]

−
(

2L
3

)2 n

∑
i=1

log(xi).
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Hypothesis

Standing Hypothesis

The following assumptions shall be in place:

(A.1) f ∈ FMf ,ν with ν ∈ [2, 3].
(A.2) X∗ = argmin{f (x)|x ∈ X} ̸= ∅:
(A.3) X is a convex compact subset in Rn

(A.4) ∇2f is continuous and positive definite on dom f ∩X.
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Classical Frank-Wolfe Methods

Conditional Gradient aka Frank-Wolfe

The analysis of FW involves
(a) a search direction

s(x) = argmin
s∈X

⟨∇f (x), s⟩ .

(b) as merit function

Gap(x) = ⟨∇f (x), x − s(x)⟩

Standard Frank-Wolfe method:
If Gap(xk ) > ε then
1 Obtain sk = s(xk );
2 Update xk+1 = xk + αk (sk − xk ) for some

αk ∈ [0, 1).
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Classical Frank-Wolfe Methods

Why projection-free optimization?

First-order methods in covex optimization gained
significance in connection with
large-scale optimization problems.
Optimization models are dependent on data that can be
noisy, so no need for high-accuracy solutions.
First-order methods are appealing in practice because
of their lower computational burden per iteration.
First-order methods are able to preserve problem
structure (e.g. sparsity), and can be extended to
non-smooth problems.

See [Dvurechensky et al., 2021] for a recent survey.
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Classical Frank-Wolfe Methods

Convergence Analysis

Because of great scalability and sparsity properties,
Frank-Wolfe (FW) methods (Frank & Wolfe, 1956)
received lot of attention in ML.

1 Convergence guarantees require Lipschitz continuous
gradients, or finite curvature constants on f (Jaggi,
2013)

2 Even for well-conditioned problems only sublinear
convergence rates guaranteed in general.

x⇤

x(t)

x(0)

x(t+1)

st x⇤

x(t)

x(0)

vt

stx(t+1) x⇤

x(t)

x(0)

vt

st

/
/

x(t+1)

/
/

Figure 1: (left) The FW algorithm zig-zags when the solution x⇤ lies on the boundary. (middle) Adding the
possibility of an away step attenuates this problem. (right) As an alternative, a pairwise FW step.

between the vertices defining the face containing the solution x⇤ (see left of Figure 1). In fact, the
1/t rate is tight for a large class of functions: Canon and Cullum [6], Wolfe [34] showed (roughly)
that f(x(t))�f(x⇤) � ⌦

�
1/t1+�

�
for any � > 0 when x⇤ lies on a face of M with some additional

regularity assumptions. Note that this lower bound is different than the ⌦
�
1/t
�

one presented in [15,
Lemma 3] which holds for all one-atom-per-step algorithms but assumes high dimensionality d � t.

1 Improved Variants of the Frank-Wolfe Algorithm

Algorithm 1 Away-steps Frank-Wolfe algorithm: AFW(x(0), A, ✏)

1: Let x(0) 2 A, and S(0) := {x(0)} (so that ↵(0)
v = 1 for v = x(0) and 0 otherwise)

2: for t = 0 . . . T do
3: Let st := LMOA

�
rf(x(t))

�
and dFW

t := st � x(t) (the FW direction)
4: Let vt 2 arg max

v2S(t)

⌦
rf(x(t)), v

↵
and dA

t := x(t) � vt (the away direction)

5: if gFW
t :=

⌦
�rf(x(t)), dFW

t

↵
 ✏ then return x(t) (FW gap is small enough, so return)

6: if
⌦
�rf(x(t)), dFW

t

↵
�
⌦
�rf(x(t)), dA

t

↵
then

7: dt := dFW
t , and �max := 1 (choose the FW direction)

8: else
9: dt := dA

t , and �max := ↵vt/(1� ↵vt) (choose away direction; maximum feasible step-size)
10: end if
11: Line-search: �t 2 arg min

�2[0,�max]

f
�
x(t) + �dt

�

12: Update x(t+1) := x(t) + �tdt (and accordingly for the weights ↵(t+1), see text)

13: Update S(t+1) := {v 2 A s.t. ↵
(t+1)
v > 0}

14: end for

Algorithm 2 Pairwise Frank-Wolfe algorithm: PFW(x(0), A, ✏)

1: . . . as in Algorithm 1, except replacing lines 6 to 10 by: dt = dPFW
t := st�vt, and �max := ↵vt

.

Away-Steps Frank-Wolfe. To address the zig-zagging problem of FW, Wolfe [34] proposed to
add the possibility to move away from an active atom in S(t) (see middle of Figure 1); this simple
modification is sufficient to make the algorithm linearly convergent for strongly convex functions.
We describe the away-steps variant of Frank-Wolfe in Algorithm 1.3 The away direction dA

t is
defined in line 4 by finding the atom vt in S(t) that maximizes the potential of descent given by
gA

t :=
⌦
�rf(x(t)), x(t) � vt

↵
. Note that this search is over the (typically small) active set S(t),

and is fundamentally easier than the linear oracle LMOA. The maximum step-size �max as defined
on line 9 ensures that the new iterate x(t) + �dA

t stays in M. In fact, this guarantees that the convex
representation is maintained, and we stay inside conv(S(t)) ✓M. When M is a simplex, then the
barycentric coordinates are unique and x(t) +�maxd

A
t truly lies on the boundary of M. On the other

hand, if |A| > dim(M) + 1 (e.g. for the cube), then it could hypothetically be possible to have a
step-size bigger than �max which is still feasible. Computing the true maximum feasible step-size
would require the ability to know when we cross the boundary of M along a specific line, which
is not possible for general M. Using the conservative maximum step-size of line 9 ensures that we

3The original algorithm presented in [34] was not convergent; this was corrected by Guélat and Marcotte
[12], assuming a tractable representation of M with linear inequalities and called it the modified Frank-Wolfe
(MFW) algorithm. Our description in Algorithm 1 extends it to the more general setup of (1).

3
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Development of the algorithms

Why do standard Methods fail in ill-conditioned problems?

Consider f (x1, x2) = − ln(x1)− ln(x2) over
x1, x2 ∈ [0, 1], x1 + x2 = 1.

Start from x0 = (1/4, 3/4)
Apply the standard 2/(k + 2)-step size policy, then
α0 = 1.
x1 = (1, 0) /∈ dom f .
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Development of the algorithms

The Dikin Ellipsoid

The analysis of GSC minimisation algorithms makes
use of the local norm:

∥a∥x ≜
√
⟨∇2f (x)a, a⟩, ∥a∥∗x ≜

√
⟨a, [∇2f (x)]−1a⟩

for x ∈ dom f .
Define the metric

dν(x , y) ≜
{

Mf ∥y − x∥2 if ν = 2,
ν−2

2 Mf ∥y − x∥3−ν
2 ∥y − x∥ν−2

x if ν > 2.
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Development of the algorithms

Dikin Ellipsoid

The Dikin Ellipsoid is defined as

W(x , r ) ≜ {y ∈ E|dν(x , y) < r} ⊂ dom f ∀r ∈ (0, 1).

-2 -1 0 1 2

-2

-1

0

1

2
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Algorithm 1

Algorithm 1: Analytic step size method

Algorithm FW-GSC

Input: x0 ∈ dom f ∩X initial state, ε > 0 error tolerance,
and f ∈ FM,ν(dom f ).
for k = 0, . . . do

if Gap(xk ) > ε then
Obtain sk = s(xk )
Obtain αk = αMf ,ν(x

k )

Set xk+1 = xk + αk (sk − xk )
end if

end for
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Algorithm 1

Derivations

Let x+
t = x + t(s(x)− x), t > 0

For t > 0 such that dν(x , x+
t ) < 1, obtain the GSC

descent inequality:

f (x+
t ) ≤ f (x) +

〈
∇f (x), x+

t − x
〉

+ ων(dν(x , x+
t ))

∥∥x+
t − x

∥∥2
x

Optimising the per-iteration decrease w.r.t t leads to an
analytic step-size criterion

αMf ,ν(x) = min{1,tMf ,ν(x)}.
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Algorithm 1

Determining the step size

The GSC descent lemma can be written as

f (x+
t ) ≤ f (x)− tGap(x) + ων(tMf δν(x))t2e(x)2,

= f (x)− ηx ,Mf ,ν(t) t ∈ (0, 1/δν(x)),

where

ων(t) =





1
t2

(et − t − 1) if ν = 2,
−t−ln(1−t)

t2
if ν = 3,

(
ν−2
4−ν

)
1
t

[
ν−2

2(3−ν)t ((1− t)
2(3−ν)

2−ν − 1)− 1

]
if ν ∈ (2, 3).

δν(x) =
{

β(x) if ν = 2,
ν−2

2 β(x)3−νe(x)ν−2 if ν > 2,
and

β(x) = ∥s(x)− x∥2 , e(x) = ∥s(x)− x∥x ,

ηx ,M,ν(t) = Gap(x)

[
t −ων(tMδν(x))t2 e(x)2

Gap(x)

]
.
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Algorithm 1

Solving maxt ηx ,ν(t) yields

tM,ν(x) =





1
Mδ2(x)

ln
(

1 + Gap(x)Mδ2(x)
e(x)2

)
if ν = 2,

1
Mδν(x)

[
1−

(
1 + Mδν(x)Gap(x)

e(x)2
4−ν
ν−2

)− ν−2
4−ν

]
if ν ∈ (2, 3)

Gap(x)
Mδ3(x)Gap(x)+e(x)2 if ν = 3.

Calling ∆k = ηxk ,ν(αν(xk )), to get

f (xk+1) ≤ f (xk )− ∆k < f (xk )
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Convergence Analysis

Asymptotic Convergence

Proposition

Let (xk )k∈N0 be generated by algorithm FW-GSC. Then
the following assertions hold:
1
(
f (xk )

)
k is non-increasing;

2 ∑k ∆k < ∞ and hence limk→∞ ∆k = 0;
3 For all K ≥ 1 we have mink≤K ∆k ≤ 1

K (f (x0)− f (x∗)).
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Complexity

Iteration Complexity

Define the approximation error : hk = f (xk )− f ∗. Let

S(x0) = {x ∈ X|f (x) ≤ f (x0)}, and

L∇f = max
x∈S(x0)

λmax(∇2f (x)).

Theorem

For given ε > 0, define Nε(x0) = min{k ≥ 0|hk ≤ ε}.
Then,

Nε(x0) ≤
ln
(

c1(Mf ,ν)
h0c2(Mf ν)

)

ln(1− c1(Mf , ν))
+

1
c2(Mf , ν)ε

,

where c1(Mf , ν), c2(Mf , ν) are explicit constants.
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Algorithm 2: Backtracking over the Lipschitz modulus

An adaptive quadratic model-based algorithm

Consider the quadratic model

Q(x , t ,L) = f (x)− tGap(x) +
t2L

2
∥s(x)− x∥2

2 .

On the level set S(xk ), we get the descent lemma

f (xk + t(s(xk )− xk )) ≤ Q(xk , t , Lk )

for Lk a local estimate of the Lipschitz constant on the
level set.
A backtracking strategy on Lk yields a new algorithm.
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Algorithm 2: Backtracking over the Lipschitz modulus

Algorithm 2

Algorithm LBTFWGSC
Input: x0 ∈ dom f ∩X initial state; L−1 initial Lipschitz estimate, γu > 1 > γd .
for k = 1, . . . do

if Gap(xk ) > ε then
Obtain sk = s(xk ) and set vk = sk − xk

Set (αk ,Lk ) = stepL(f , vk , xk ,Lk−1)

Set xk+1 = xk + αk (sk − xk )
end if

end for

Algorithm Function stepL(f , v , x ,L)
Choose L̄ ∈ [γdL,L]

α = min{ Gap(x)
L̄∥v∥22

, 1}

if x + αv /∈ dom f or f (x + αv) > QL(x , α, L̄) then
L̄← γu L̄

α← min{ Gap(x)
L̄∥v∥22

, 1}

end if
Return α, L̄
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Algorithm 2: Backtracking over the Lipschitz modulus

Complexity Estimate

Theorem

Let (xk )k be generated by LBTFWGSC. Then

Nε(x0) ≤ 2L̄ diam(X)2

ε
+

ln(L̄ diam(X)2/h0)

ln(1/2)

where L̄ = max{γuL∇f ,L−1}.
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Algorithm 3: Backtracking over the GSC parameter Mf

Searching for the scale parameter

Let vFW (x) = s(x)− x the FW-search direction.

Suppose µ > 0 is a local guess of the GSC parameter Mf .
For the search point x+

t = x + tvFW (xk ) we have

f (x+
t ) ≤ f (x)− tGap(x)+ t2e(x)2ων(tµδν(x)) ≡ QM(x , t , µ).

Optimize the new model with respect to t gives a step size
policy αν(x , µ).

Search for the best µ to obtain a close fit between the
upper model and the actual function values.
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Algorithm 3: Backtracking over the GSC parameter Mf

Algorithm 3: MBTFWGSC

Algorithm MBTFWGSC
Input: x0 ∈ dom f ∩X initial state; µ−1 initial Lipschitz estimate, γu > 1 > γd .
for k = 1, . . . do

if Gap(xk ) > ε then
Obtain sk = s(xk ) and set vk = sk − xk

Set (αk , µk ) = stepM (f , vk , xk , µk−1)

Set xk+1 = xk + αk vk

end if
end for

Algorithm Function stepM(f , v , x , µ)

Choose M̄ ∈ [γd µ, µ]
α = αM̄,ν(x)
if x + αv /∈ dom f or f (x + αv) > QM (x , α, M̄) then

M̄ ← γuM̄
α← αM̄,ν(x)

end if
Return α, M̄
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Algorithm 3: Backtracking over the GSC parameter Mf

Complexity Analysis

Theorem

Let (xk )k be generated by MBTFWGSC. Then

Nε(x0) ≤
ln
(

c1(M̃,ν)
h0c2(M̃,ν)

)

ln(1− c1(M̃, ν))
+

1
c2(M̃, ν)ε

,

where M̃ = max{γuMf , µ−1}.
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Preparations

All methods so far displayed a complexity of O(1/ε);
It is known that FW can be accelerated under various
hypothesis:

Strong convexity coupled with interior solutions
[GuéLat and Marcotte, 1986,
Lacoste-Julien and Jaggi, 2015];
Composition of strongly convex with affine transformation
[Beck and Shtern, 2017];
X strongly convex [Garber and Hazan, 2015,
Kerdreux and d’Aspremont, 2020];

see the recent survey [Bomze et al., 2021].

Assumption

X = {x ∈ Rn|Bx ≤ b}
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Local Linear Minimization Oracles

Local Linear minimization oracle

Definition ([Garber and Hazan, 2016])

A procedure A(x , r , c), where x ∈ X, r > 0, c ∈ Rn, is a
LLOO with parameter ρ ≥ 1 for the polytope X if A(x , r , c)
returns a point u = u(x , r , c) ∈ X such that for all
x ∈ Br (x) ∩X

⟨c, x⟩ ≥ ⟨c, s⟩ and ∥x − s∥2 ≤ ρr .

Such oracles exist for any compact polyhedral domain.
Particular simple implementation for Simplex-like
domains.
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Local Linear Minimization Oracles

Modifications

Define the modified merit function

Γ(x , r ) = ⟨∇f (x), x − u(x , r ,∇f (x))⟩
= max

s∈Br (x)∩X
⟨∇f (x), x − s⟩

and
u(x , r , c) = min

s∈Br (x)∩X
⟨c, s⟩ .
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Local Linear Minimization Oracles

Algorithm 4: FWLLOO

Algorithm FWLLOO
Input: A(x , r , c)-LLOO with parameter ρ ≥ 1 for polytope X, f ∈ FMf ,ν(dom f ). σf > 0 convexity parameter.

x0 ∈ dom f ∩X, and let h0 = f (x0)− f ∗ , and c0 = 1.
for k = 0, 1, . . . , do

Set rk = r2
0 ck

Obtain uk = u(xk , rk ,∇f (xk ))

Set αk = αν(xk )

Update xk+1 = x0 + αk (uk − xk )
end for



Introduction Problem Formulation FW-GSC Backtracking FW Variants Linearly Converging Variants Experiments References

Local Linear Minimization Oracles

Iteration Complexity

Theorem

Let (xk )k≥0 be generated by FWLLOO. Then, for all k ≥ 0,
we have x∗ ∈ Brk (x

k ) and

hk ≤ Gap(x0) exp

(
−1

2

k−1

∑
i=0

αi

)
.
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FW with correction steps

Preparations

FWLLOO needs σf or L∇f as input.
Both are hard to estimate in practice.
Away step method exploits the geometry of X, and a
Hoffman bound to compensate for these input
parameters.

Definition

Let U = Ext(X), so that X = conv(U). µ : U→ [0, 1] is a
vertex representration of x , if x = ∑u∈U µuu. Let U(x) be
the set of active vertices at x
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FW with correction steps

Away Steps

Assumption ([Beck and Shtern, 2017])
The LMO is a vertex linear oracle:

s(x) ∈ argmin
d∈X

⟨∇f (x), d⟩

returns a point in U.

Definition
Given x ∈ X, we call

vFW (x) = s(x)− x a forward step
vA(x) = x − u(x), where
u(x) ∈ argmaxd∈U(x) ⟨∇f (x), d⟩, an away step.
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FW with correction steps

Algorithm 5: ASFWGSC

Algorithm ASFWGSC
Input: x0 ∈ dom f ∩U where µ1

u = 0 for all u ∈ U \ {x1} and U1 = {x1}.
for k = 0, 1, . . . do

Set sk = s(xk ), uk = u(xk ), and vA(xk ) = xk − uk , vFW (xk ) = sk − xk

if
〈
∇f (xk ), sk − xk

〉
≤
〈
∇f (xk ), xk − uk

〉
then

Set vk = vFW (xk )
else

Set vk = vA(xk )
end if
Set βk =

∥∥∥vk
∥∥∥

2
, ek =

∥∥∥vk
∥∥∥

xk , t̄k ≡ t̄(xk )

Find αk = argmint∈[0,t̄k ]
t
〈
∇f (xk ), vk

〉
+ t2e2

k ων(tMf δν(xk ))

Update xk+1 = xk + αk vk

if vk = vFW (xk ) then
Update Uk+1 = Uk ∪ {sk }

else
if vk = vA(xk ) and αk = t̄k then

Update Uk+1 = Uk \ {uk } and µk+1

else
Update Uk+1 = Uk

end if
end if

end for
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FW with correction steps

Iteration Complexity

Theorem

Let {xk}k∈N be the trajectory generated by ASFWGSC.
Then, for all k ≥ 0, we have

hk ≤ h0 exp(−θk/2).

where θ = min
{

0.5, c1(Mf ,ν)Ω
2 diam(X)

, c2(Mf ,ν)Ω2σf
8

}
.
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The logistic regression

The Elastic Net

Consider

f (x) =
1
p

p

∑
i=1

log (1 + exp(−yi ⟨ai , x⟩+ µ)) +
γ

2
∥x∥2

2

Since [Bach, 2010], we know that this can be seen as a
GSC minimization problem with ν = 2 or ν = 3.
Consider the elastic net formulation

min
x :∥x∥1≤R

f (x).
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The logistic regression

Dependence on the GSC model

Figure: Comparison between ν = 3 and ν = 2 for data set a9a.
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The logistic regression

Numerical Results - Performance Profiles
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Distance-Weigthed Discrimination

Experimental Setup

Consider the distance weighted discrimination (DWD)
problem, introduced in [Marron et al., 2007].

The classification loss attains the form

f (x) =
1
p

p

∑
i=1

(a⊤i w + µyi + ξi)
−q + c⊤ξ,

over the convex compact set

X = {x = (w , µ, ξ)| ∥w∥2 ≤ 1, µ ∈ [−u, u], ∥ξ∥2 ≤ R, ξ ∈ R
p
+},

where R > 0 is a hyperparameter that has to be learned
via cross-validation.
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Distance-Weigthed Discrimination

Results on DWD
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Covariance Estimation

Experimental Setup

Consider learning a Gaussian graphical random field of p
nodes/variables.

To learn the graphical model via an ℓ1-regularization
framework in its constrained formulation, we minimize the
loss function

f (x) = − log det(mat(x)) + tr(Σ̂mat(x))

over
X = {x ∈ Rn| ∥x∥1 ≤ R,mat(x) ∈ Sn

+}
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Covariance Estimation

Covariance Estimation
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Covariance Estimation

Thank you!

For details see:
[Dvurechensky et al., 2020, Dvurechensky et al., 2022]
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