Properties of systems of inequalities and their influence in convex optimization

Marco A. López

University of Alicante

One World Optimization Seminar (17-05-2021)

Semi-infinite programming (SIP) problem

It is an optimization problem with *finitely many variables* x = (x₁,..., x_n) ∈ ℝⁿ and a feasible set, 𝔽, described by *infinitely many constraints*:

$$(\mathcal{P})$$
: Min $g(x)$ s.t. $f_t(x) \leq 0$ $t \in T$,

where T is an infinite *index set*. An important **extension** is the *generalized SIP* (GSIP), for which the index set T = T(x) depends on x, i.e.

 (\mathcal{P}) : Min g(x) s.t. $f_t(x) \leq 0$ $t \in T(x)$.

• In the last decades years Semi-infinite Programming has known a tremendous development. More than **1300 articles** and **10 books** on theory, numerical methods and applications of SIP.

Convex SIP problem

Today we are dealing with the convex optimization problem

$$\begin{array}{ll} (\mathcal{P}) & \text{Min} & g(x) \\ & \text{s.t.} & f_t(x) \leq \mathsf{0}, \ t \in \mathcal{T}, \\ & x \in \mathbb{C}, \end{array}$$

where \mathbb{C} is a (non-empty) closed convex set in \mathbb{R}^n , and $g, f_t : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}, t \in T$, are proper lower semicontinuous (lsc) convex functions.

We say that the *constraint system*

$$\tau := \{ f_t(x) \le 0, \ t \in T; \ x \in \mathbb{C} \}, \tag{1}$$

is consistent when $\mathbb{F} \neq \emptyset$. By v and S we represent the optimal value and the optimal set of problem (\mathcal{P}) , respectively.

In *linear SIP*, the explicit constraints are *affine* and $\mathbb{C} = \mathbb{R}^n$, i.e.

$$\tau = \{ \langle \mathbf{a}_t, \mathbf{x} \rangle \le \mathbf{b}_t, \ t \in T \}.$$
(2)

LSIP is very different to ordinary LP!

Example

Let us consider the LSIP problem, in \mathbb{R}^2 , with $\mathcal{T}:=]0, +\infty[$,

 $\begin{array}{ll} (\mathcal{P}): & \operatorname{Min}_{x_1,x_2} & x_1 \\ & s.t. & -t^{-2}x_1 - x_2 \leq -2t^{-1}, \ t \in \]0, +\infty[\end{array}$

Some drops of history...

• Prehistory of SIP is related to Chebyshev approximation, the classical work of *Alfréd Haar* on linear semi-infinite systems [Ha'24], and the *Fritz John* optimality condition [Jo'48].

Haar

Fritz John

• The term SIP was coined in 1962 by *Charnes, Cooper* and *Kortanek* [ChCoKo'62].

Charnes

Cooper

Kortanek

But ..., are there real-world optimization problems with **infinitely many constraints**?

- George Dantzig (1991): "(...) One of the results, published jointly with Abraham Wald, was on the Neyman-Pearson Lemma. In today's terminology, this part of my thesis was on the existence of Lagrange multipliers (or dual variables) for a semi-infinite linear program (...)".
- Other significant applications in statistics: *optimal experimental design* in regression, constrained multinomial *maximum-likelihood estimation*, *robustness* in Bayesian statistics, *actuarial risk theory*, etc.
- In the review papers HeKo'93 and Po'87, as well as in Go-ML'98, the reader will find many applications of SIP in different fields such as *functional approximation*, *robotics*, *pde's*, *engineering design*, *optimal control*, transportation problems, fuzzy sets, cooperative games, robust optimization, etc.
- Reputed optimization books devoted some chapters to SIP *e.g.*, *Krabs* [Kr'79], *Anderson-Nash* [AnNa'87], *Guddat* et al. [Gu'90], *Bonnans-Shapiro* [BoSh'00], and *Polak* [Po'97].

Polynomial approximation

We want to approximate the function f ∈ C([a, b]) by a polynomial of degree at most n − 1

$$p(x, t) := x_0 + x_1 t + \dots + x_{n-1} t^{n-1}$$
 with $t \in [a, b]$.

• If we use the ∞ -norm (Chebyshev-norm), minimizing the approximation error $z := \|f - p(x, \cdot)\|_{\infty}$ is a problem which is equivalently expressed as the linear SIP:

$$\underset{x,z}{\text{Min } z \text{ s.t. }} \left\{ \begin{array}{l} f(t) - x_0 - x_1 t - \dots - x_{n-1} t^{n-1} - z \le 0 \quad t \in [a, b], \\ -(f(t) - x_0 - x_1 t - \dots - x_{n-1} t^{n-1}) - z \le 0 \quad t \in [a, b]. \end{array} \right.$$

Theorem (Chebyshev, 1874)

A polynomial $p(x^{opt}, t)$ is a best approximation of f on [a, b] if and only if there exist n + 1 points $a \le t_1 < ... < t_{n+1} \le b$ and a number $\sigma \in \{-1, 1\}$ such that

$$(-1)^{i}\sigma\left\{f(t_{i})-p(x^{opt},t_{i})\right\}=\|f-p(x^{opt},\cdot)\|_{\infty}=z^{opt}.$$

The Minimum-Volume Circumscribed Ellipsoid Problem

- This is the problem of finding a minimum-volume ellipsoid covering a convex body K ⊂ ℝⁿ.
- Fritz John [FJ'47] proved that such an ellipsoid, denoted by E^K, exists and is unique. He was a pioneer in semi-infinite programming.
 John F., Extremum problems with inequalities as subsidiary conditions. In: Studies and Essays, Courant Anniversary Volume, New York: Interscience (1948), 187-204.
- In some convex programming algorithms, including the ellipsoid method, the exact or nearly exact ellipsoid needs to be computed. For K sufficientely simple, E^K can be obtained analytically. In more general cases, interior-point-type algorithms are used to approximate E^K.
- Some historic works dealing with this topic via SIP are: Juhnke F., Embedded maximal ellipsoids and semi-infinite optimization. Beiträge Algebra Geom. 35 (1994), 163–171. Juhnke F., Polarity of embedded and circumscribed ellipsoids. Beiträge Algebra Geom. 36 (1995), 17–24.

• If $X \in \mathcal{P}_n$, the convex (solid) cone of all the $n \times n$ symmetric positive definite matrices, and $c \in \mathbb{R}^n$, the set

$$E(X, c) := \{x \in \mathbb{R}^n : (x - c)^\top X (x - c) \le 1\}$$

is an *ellipsoid with center* c, whose *volume* is given by

$$\operatorname{vol} E(X, c) = (\det X)^{-1/2} \operatorname{vol}(\mathbb{B}) = (\det X)^{-1/2} \frac{\pi^{n/2}}{\Gamma((n/2)+1)},$$

where \mathbb{B} is the closed unit ball in \mathbb{R}^n .

• The associated SIP problem is

$$\min_{X,c} \operatorname{vol} E(X,c) \quad \text{ s.t. } (z-c)^\top X(z-c) \leq 1 \quad \forall z \in K,$$

or equivalently (taking logarithms)

$$\min_{X,c} - \lg(\det X) \quad \text{ s.t. } (z-c)^\top X(z-c) \le 1 \quad \forall z \in K.$$

10

• The function

$$X \in \mathcal{P}_n \mapsto -\lg(\det X), \tag{3}$$

is strictly convex and differentiable on \mathcal{P}_n , with $\nabla(-\lg(\det X)) = -X^{-1}$.

• Moreover, $-\lg(\det X) \to +\infty$ when X approaches a matrix $Z \in \operatorname{bd} \mathcal{P}_n$ since $\det Z = 0$, entailing that the function (3) is *coercive* on \mathcal{P}_n , and the problem

$$(\mathcal{P}): \min_{\substack{X \in \mathcal{P}_n \\ c \in \mathbb{R}^n}} -\lg(\det X) \quad \text{s.t.} \ (z-c)^\top X(z-c) \le 1 \ \forall z \in K,$$

has a unique optimal solution ..

• If σ_A denotes the support function of A (i.e., $\sigma_A(u) := \sup_{x \in A} \langle u, x \rangle$),

$$\mathcal{K} \subset \mathcal{E}(\mathcal{X}, c) \iff \sigma_{\mathcal{K}}(u) \leq \sigma_{\mathcal{E}(\mathcal{X}, c)}(u) = \langle u, c \rangle + \sqrt{u^{\top} \mathcal{X}^{-1} u}, \ \forall u \in \mathbb{R}^{n}.$$

Since the support function is positively homogeneous, and $-\lg(\det X) = \lg(\det X^{-1})$, we get the SIP reformulation

$$(\mathcal{P}): \min_{\substack{X \in \mathcal{P}_n \\ c \in \mathbb{R}^n}} \, \lg(\det X^{-1}) \quad \text{s.t. } \sigma_{\mathcal{K}}(u) \leq \langle u, c \rangle + \sqrt{u^\top X^{-1} u}, \; \forall u \in \operatorname{bd} \mathbb{B}.$$

Theorem 1 in Juhnke'95 caracterizes the unique optimal solution of (\mathcal{P}) .

- To study some properties of the infinite convex systems, as the Farkas-Minkowski property (FM, in brief) and the local Farkas-Minkowski property (LFM, in short), which give rise to weak CQ's in SIP.
- To provide optimality conditions by appealing to the properties of the supremum function of an infinite family of convex functions and the characterizations of its subdifferential.
- So To show how useful is *convex analysis* in the mathematical developments...
 - 927 publications according in *MathSciNet* for "Review Text=(optimality conditions).
 - 69 publications according in *MathSciNet* for "Review Text=(optimality conditions AND semi-infinite programming

Summary

- 1st step in formulating optimality conditions
- Notation and basic tools
- KKT'1 optimality conditions FM property
- KKT'2 optimality conditions LFM property
- KKT'3 asymptotic optimality conditions
- KKT'4 conditions for SIP under compacity/(upper)continuity
- Bibliographical comments and references

1st step in formulating optimality conditions

() If \bar{x} is optimal for (\mathcal{P}) , then it is optimal for the unconstrained problem

 $\min_{x\in\mathbb{R}^n} \varphi(x) := \sup\{g(x) - g(\bar{x}); \ f_t(x), \ t\in T; \ \mathbf{I}_{\mathbb{C}}(x)\},$

where $I_{\mathbb{C}}$ is the *indicator function* of \mathbb{C} . Obviously, for $x \in \mathbb{F}$ one has $g(x) - g(\bar{x}) \ge 0$, and so $\varphi(x) \ge \varphi(\bar{x}) = 0$. Hence,

 \bar{x} is optimal for $(\mathcal{P}) \implies 0_n \in \partial \varphi(\bar{x}).$

We need: a) To express $\partial \varphi(z)$ in terms of the *approximate/exact* subdifferentials of g and the f_t 's. (φ is a supremum function!)

A second obvious fact is

 $ar{x}$ is optimal for $(\mathcal{P}) \iff 0_n \in \partial(g + I_{\mathbb{F}})(ar{x})$,

and

$$\partial(g + I_{\mathbb{F}})(\bar{x}) \supset \partial g(\bar{x}) + \partial I_{\mathbb{F}}(\bar{x}) = \partial g(\bar{x}) + N_{\mathbb{F}}(\bar{x}),$$

where $N_{\mathbb{F}}(\bar{x})$ is the normal cone to \mathbb{F} at \bar{x} . We need: b) To provide conditions (*CQs*) ensuring that the inclusion " \supset " become an equality.

c) To express $N_{\mathbb{F}}(\bar{x})$ in terms of the functions f_t , $t \in T$, and $I_{\mathbb{C}}$.

- Given $A, B \subset \mathbb{R}^p$, we consider the *Minkowski sum*: $A + B := \{a + b \mid a \in A, b \in B\}, A + \emptyset = \emptyset + A = \emptyset.$
- co A is the convex hull of A, cone A is the convex cone generated by A.
- int *A* is the *interior* of *A*, cl *A* and \overline{A} denote indistinctly the *closure* of *A*; rint *A* is the topological *relative interior* of *A*.
- Given $h : \mathbb{R}^n \to \mathbb{R} \cup \{\pm \infty\}$, dom *h* and epi *h* represent its *(effective)* domain and epigraph, respectively.
- h is proper if dom h ≠ Ø and h(x) > -∞ ∀x ∈ ℝⁿ; it is convex if epi h is convex, and h ∈ Γ₀(ℝⁿ) if it is proper, lower semicontinuous and convex.
- $\overline{\operatorname{co}}h$ represents the *lsc convex hull* of *h*; i.e., $\operatorname{epi}(\overline{\operatorname{co}}h) = \overline{\operatorname{co}}(\operatorname{epi}h)$.
- The ε -subdifferential of h at $x \in h^{-1}(\mathbb{R})$, $\varepsilon \ge 0$, is the closed convex set

 $\partial_{\varepsilon}h(x) := \{ u \in \mathbb{R}^n \mid h(y) - h(x) \ge \langle u, y - x \rangle - \varepsilon, \ \forall y \in \mathbb{R}^n \}.$

The *Fenchel conjugate* of *h* is the lsc convex function $h^* : \mathbb{R}^n \to \mathbb{R} \cup \{\pm \infty\}$ given by

 $h^*(u) := \sup\{\langle u, x \rangle - h(x) \mid x \in \mathbb{R}^n\}.$

We have $h^* = (cl h)^* = (coh)^*$. Moreover, the *Fenchel-Young inequality* establishes

 $u \in \partial h(x) \Leftrightarrow h(x) + h^*(u) \le \langle u, x \rangle \Leftrightarrow h(x) + h^*(u) = \langle u, x \rangle.$

The *support* and the *indicator* functions of $A \neq \emptyset$ are respectively

$$\sigma_{\mathcal{A}}(u) := \sup\{\langle u, a \rangle \mid a \in A\}, \text{ for } u \in \mathbb{R}^n, \\ \mathbf{I}_{\mathcal{A}}(x) := \begin{cases} 0, & \text{if } x \in A, \\ +\infty, & \text{if } x \in \mathbb{R}^n \setminus A. \end{cases}$$

 σ_A is sublinear, lsc, and satisfies $\sigma_A = \sigma_{\overline{co}A} = I^*_{\overline{co}A}$. Therefore, epi σ_A is a closed convex cone.

For every family of functions f_i , $i \in I$, (I arbitrary), we have

$$(\inf_{i\in I} f_i)^* = \sup_{i\in I} f_i^*.$$
(4)

If $\{f_i, i \in I\} \subset \Gamma_0(\mathbb{R}^n)$ and $\sup_{i \in I} f_i$ is proper, then

$$(\sup_{i\in I} f_i)^* = \overline{\operatorname{co}}(\inf_{i\in I} f_i^*).$$
(5)

For $f, g \in \Gamma_0(X)$ such that dom $f \cap \text{dom } g \neq \emptyset$, it is well known that

$$(f\Box g)^* = f^* + g^*, \ (f + g)^* = \operatorname{cl}(f^*\Box g^*).$$
 (6)

Clearly, (6) and (4) imply that

$$epi(f+g)^* = cl(epi f^* + epi g^*), \tag{7}$$

and

$$\operatorname{epi}(\sup_{i\in I} f_i)^* = \overline{\operatorname{co}}(\cup_{i\in I} \operatorname{epi} f_i^*).$$

The cl in the first equation is superfluous if one of f and g is *continuous* at some point of dom $f \cap \text{dom } g$ (then, epi $f^* + \text{epi } g^*$ is closed).

(University of Alicante)

Subdifferential calculus rules for the sum

• First results for the sum:

1) Suppose that one of the following conditions holds:

- a) $\operatorname{rint}(\operatorname{dom} f) \cap \operatorname{rint}(\operatorname{dom} g) \neq \emptyset$,
- b) f is continuous at some point of dom g.

Then

$$\partial(f+g)(x) = \partial f(x) + \partial g(x).$$

2) If $f, g \in \Gamma_0(\mathbb{R}^n)$ one has (*Hiriart-Urruty, Phelps' 93*) $\partial(f+g)(x) = \bigcap_{\epsilon>0} \operatorname{cl}(\partial_{\epsilon}f(x) + \partial_{\epsilon}g(x)).$

3) If $f, g \in \Gamma_0(\mathbb{R}^n)$ and $(\operatorname{dom} g) \cap \operatorname{rint}(\operatorname{dom} f) \neq \emptyset$, then Th.12 in *Correa*, *Hantoute*, *ML* '16 yields

$$\partial (f+g)(x) = \bigcap_{\varepsilon>0} \operatorname{cl}(\partial f(x) + \partial g_{\varepsilon}(x)).$$

KKT'1 optimality conditions - FM property

Definition

We call *characteristic cone* of $\tau = \{f_t(x) \leq 0, t \in T; x \in \mathbb{C}\}$ to the convex cone

$$\mathbb{K} := \operatorname{cone} \left\{ \bigcup_{t \in \mathcal{T}} \operatorname{epi} f_t^* \cup \operatorname{epi} \sigma_{\mathbb{C}} \right\} = \operatorname{cone} \left\{ \bigcup_{t \in \mathcal{T}} \operatorname{epi} f_t^* \right\} + \operatorname{epi} \sigma_{\mathbb{C}}.$$
(8)

For the linear system (2),

epi
$$f_t^* = (a_t, b_t) + \mathbb{R}_+(0_n, 1), t \in T$$
,

and

$$\operatorname{epi} \sigma_{\mathbb{R}^n} = \mathbb{R}_+(\mathbf{0}_n, \mathbf{1}).$$

Hence,

$$\mathbb{K} = \operatorname{cone} \{ (a_t, b_t), t \in T; (0_n, 1) \}.$$

(9)

Lemma

If $\mathbb{F} = \{x \in \mathbb{C} : f_t(x) \le 0, t \in T\} \neq \emptyset$, then

$$\operatorname{epi} \sigma_{\mathbb{F}} = \operatorname{cl} \mathbb{K} = \operatorname{cl} \operatorname{cone} \left\{ \bigcup_{t \in T} \operatorname{epi} f_t^* \cup \operatorname{epi} \sigma_{\mathbb{C}} \right\}$$

Proof [sketch] If $h := \sup\{f_t, t \in T; I_{\mathbb{C}}\}$, we have

 $x \in \mathbb{F} \Leftrightarrow h(x) \leq 0 \Leftrightarrow h(x) = 0.$

Then, by (5),

$$\begin{array}{lll} \operatorname{epi} h^* &=& \operatorname{epi} \left(\{ \sup \left\{ f_t, \ t \in \mathcal{T}; \ \mathbf{I}_{\mathbb{C}} \right\} \}^* \right) \\ &=& \overline{\operatorname{co}} \left\{ \bigcup_{t \in \mathcal{T}} \operatorname{epi} f_t^* \cup \operatorname{epi} \sigma_{\mathbb{C}} \right\}, \end{array}$$

and

$$\operatorname{epi} \sigma_{\mathbb{F}} \stackrel{(*)}{=} \operatorname{\overline{cone}}(\operatorname{epi} h^*) = \operatorname{cl} \mathbb{K}.$$

(*) follows from Lemma 3.1(b) in Jey'03.

Theorem (generalized Farkas)

Let $\varphi, \psi \in \Gamma_0(\mathbb{R}^n)$. Then $\varphi(x) \leq \psi(x)$ for all $x \in \mathbb{F}$, assumed non-empty, if and only if

$$\operatorname{epi} \varphi^* \subset \operatorname{cl} \left(\operatorname{epi} \psi^* + \mathbb{K} \right). \tag{10}$$

Proof.

$$\begin{array}{rcl} \varphi(x) & \leq & \psi(x) \; \forall x \in \mathbb{F} \iff \varphi \leq \psi + \mathrm{I}_{\mathbb{F}} \\ \Leftrightarrow & (\psi + \mathrm{I}_{\mathbb{F}})^* \leq \varphi^* \\ \Leftrightarrow & \operatorname{epi} \varphi^* \subset \operatorname{epi} (\psi + \mathrm{I}_{\mathbb{F}})^*, \end{array}$$

but applying (7), the previous lemma, and cl(A + B) = cl(A + cl B):

$$\begin{split} \operatorname{epi} (\psi + \mathrm{I}_{\mathbb{F}})^* &= \operatorname{cl}(\operatorname{epi} \psi^* + \operatorname{epi} \sigma_{\mathbb{F}}) \\ &= \operatorname{cl}(\operatorname{epi} \psi^* + \operatorname{cl} \mathbb{K}) = \operatorname{cl}(\operatorname{epi} \psi^* + \mathbb{K}). \end{split}$$

Corollary

Given $(a, \alpha) \in \mathbb{R}^{n+1}$, the inequality $\langle a, x \rangle \leq \alpha$ holds for all $x \in \mathbb{F}$, assumed non-empty (i.e., $\langle a, x \rangle \leq \alpha$ is a linear consequence of τ), if and only if

 $(a, \alpha) \in \operatorname{cl} \mathbb{K}.$

Proof.

Apply the generalized Farkas theorem with $\varphi = \langle a, \cdot \rangle - \alpha$ and $\psi \equiv 0$. Then, $\langle a, x \rangle \leq \alpha$ holds for all $x \in \mathbb{F}$ if and only if

$$\begin{aligned} (a, \alpha) + \mathbb{R}_+(\mathbf{0}_n, \mathbf{1}) &= \operatorname{epi} \varphi^* \\ &\subset \operatorname{cl} (\operatorname{epi} \psi^* + \mathbb{K}) = \operatorname{cl} (\mathbb{R}_+(\theta, \mathbf{1}) + \mathbb{K}) = \operatorname{cl} \mathbb{K}. \end{aligned}$$

In other words, $\langle a, x \rangle \leq \alpha$ is a consequence of τ if and only if $(a_t, \alpha) \in \operatorname{cl} \mathbb{K}$.

The following property is crucial in getting optimality conditions for (\mathcal{P}) .

Definition

We say that the *consistent* system $\tau = \{f_t(x) \leq 0, t \in T; x \in \mathbb{C}\}\)$ is *Farkas-Minkowski* (*FM*, in brief) if **K** is closed.

Theorem

If τ is FM and consistent, then very linear consequence $\langle a, x \rangle \leq \alpha$ is a cosequence of τ if it is also consequence of a finite subsystem

 $au_S := \{f_t(x) \leq 0, t \in S; x \in \mathbb{C}\}, \text{ with } S \subset T \text{ and } |S| < \infty.$

The converse statement holds if τ is linear.

Theorem

For the linear SIP, if T is compact, the functions $\mathbf{a}_{(\cdot)} : T \to \mathbb{R}^n$ and $\mathbf{b}_{(\cdot)} : T \to \mathbb{R}$ are continuous, and there exists a point $\hat{\mathbf{x}}$ (Slater point) satisfying $\langle \mathbf{a}_t, \hat{\mathbf{x}} \rangle < \mathbf{b}_t, \ \forall t \in T$, then τ is FM.

Example

The constraint system τ of the following problem is not FM as $-x_1 \leq 0$ is a consequence of τ but not of any finite subsystem

$$\begin{array}{ll} (\mathcal{P}): & {\rm Min} & x_1 \\ & {\rm s.t.} & -x_1 - t^2 x_2 \leq -2t, \ t \in \mathcal{T} =]0, \infty[\end{array}$$

Observe that v = 0 and $S = \emptyset$, and that the optimal value of any finite subproblem is $v(S) = -\infty$.

The following theorem (*Dinh, Goberna, ML, Son' 07*) provides *non-asymptotic* KKT-type optimality conditions for the problem

with a non-empty feasible set \mathbb{F} .

Theorem (KKT'1)

Given the problem (\mathcal{P}) , assume that τ is FM and that one of the following conditions holds:

a) g is continuous at some point of \mathbb{F} ,

b) (rint \mathbb{F}) \cap rint(dom g) $\neq \emptyset$.

Then $\overline{x} \in \mathbb{F} \cap \operatorname{dom} g$ is a global minimum of (\mathcal{P}) if and only if there exists

 $\lambda \in \mathbb{R}^{(T)}_+$ such that $\partial f_t(\overline{x}) \neq \emptyset$, $\forall t \in \text{supp } \lambda$, and the KKT conditions

$$0_n \in \partial g(\overline{x}) + \sum_{t \in T} \lambda_t \partial f_t(\overline{x}) + N_{\mathbb{C}}(\overline{x}) \text{ and } \lambda_t f_t(\overline{x}) = 0, \ \forall t \in T, \qquad (\mathsf{KKT'1})$$

hold.

Here $\mathbb{R}^{(\mathcal{T})}_+$ is the convex cone of functions $\lambda : \mathcal{T} \to \mathbb{R}_+$ which vanishes at every point of \mathcal{T} except at finitely many.

Proof.

[Proof of KKT'1 (sketch)] The point $\overline{x} \in \mathbb{F} \cap \operatorname{dom} g$ is a minimizer of (\mathcal{P}) if and only if

$$0_n \in \partial(g + I_{\mathbb{F}})(\overline{x}) \stackrel{(^*)}{=} \partial g(\overline{x}) + \partial I_{\mathbb{F}}(\overline{x}) = \partial g(\overline{x}) + N_{\mathbb{F}}(\overline{x}); \tag{11}$$

i.e., if and only if there exists $u \in \partial g(\overline{x})$ such that $\langle -u, x \rangle \leq \langle -u, \overline{x} \rangle$ is consequence of τ .

(*) Thanks to the assumption: a) or b) holds.

 (\Rightarrow) If \overline{x} is a minimizer of (\mathcal{P}) , since τ is FM we have

$$-(u, \langle u, \overline{x} \rangle) \in \operatorname{cl} \mathbb{K} = \mathbb{K} = \operatorname{cone} \left\{ \bigcup_{t \in T} \operatorname{epi} f_t^* \right\} + \operatorname{epi} \sigma_{\mathbb{C}},$$

and $\exists \lambda \in \mathbb{R}^{(\mathcal{T})}_+$, $u_t \in \operatorname{dom} f_t^*$, $\alpha_t \geq 0$, $\forall t \in \mathcal{T}$, $v \in \operatorname{dom} \sigma_{\mathbb{C}}$, $\beta \geq 0$, satisfying

$$-(u, \langle u, \overline{x} \rangle) = \sum_{t \in T} \lambda_t (u_t, f_t^*(u_t) + \alpha_t) + (v, \sigma_{\mathbb{C}}(v) + \beta),$$

leading to (KKT'1) by the relationship between the subdifferential and the conjugate.

 (\Leftarrow) Straightforward (standard argument).

KKT'2 optimality conditions - LFM property

Let us introduce a weaker CQ. Given $z \in \mathbb{F}$, the set of indices corresponding to the active constraints at z is $T(z) := \{t \in T : f_t(z) = 0\}$. It is easily verified that

$$N_{\mathbb{C}}(z) + \operatorname{cone}\left(\bigcup_{t \in \mathcal{T}(z)} \partial f_t(z)\right) \subseteq N_{\mathbb{F}}(z).$$
(12)

Definition

The consistent constraint system τ is *locally Farkas-Minkowski (LFM*, in short) at $z \in \mathbb{F}$ if

$$N_{\mathbb{F}}(z) \subseteq N_{\mathbb{C}}(z) + \operatorname{cone}\left(\bigcup_{t \in \mathcal{T}(z)} \partial f_t(z)\right).$$
(13)

 τ is said to be LFM if it is LFM at every feasible point $z \in \mathbb{F}$.

In LSIP ($\mathbb{C} = \mathbb{R}^n$, $f_t(x) = \langle a_t, x \rangle - b_t$, $t \in T$), (13) becomes $N_{\mathbb{F}}(z) \subseteq \operatorname{cone} \{a_t, t \in T(z)\}$.

The LFM property is closely related to the so-called *basic constraint qualification* at z. In fact, LFM and BCQ are equivalent under the continuity of the function $f := \sup_{t \in T} f_t$ at the reference point z and $z \in int \mathbb{C}$.

The following proposition is a LFM counterpart of a similar property for FM systems.

Theorem

Let $z \in \mathbb{F}$. If τ is LFM at z and for certain $a \in \mathbb{R}^n$ we have

 $\langle a, x \rangle \leq \langle a, z \rangle$, for all $x \in \mathbb{F}$,

then $\langle a, x \rangle \leq \langle a, z \rangle$ is also a consequence of a finite subsystem of τ . The converse statement holds provided that τ is linear.

For general convex systems, it can be proved that

 τ is $FM \Rightarrow \tau$ is LFM at any $z \in \mathbb{F}$.

Example

The constraint system $-x_1 - t^2 x_2 \leq -2t$, $t \in T =]0, \infty[$, of the example is *LFM*.

The following theorem provides a *second* KKT-type optimality conditions for the problem

 (\mathcal{P}) Min g(x) s.t. $f_t(x) \leq 0, t \in T, x \in \mathbb{C}$.

Theorem (KKT'2)

Given the problem (\mathcal{P}) and $\overline{x} \in \mathbb{F} \cap \operatorname{dom} g$, assume that τ is LFM at \overline{x} , and that g is continuous at some point of \mathbb{F} . Then \overline{x} is a global minimum of (\mathcal{P}) if and only if there exists $\lambda \in \mathbb{R}^{(T)}_+$ such that $\partial f_t(\overline{x}) \neq \emptyset$, $\forall t \in \operatorname{supp} \lambda$, and the KKT conditions hold

$$\theta \in \partial g(\overline{x}) + \sum_{t \in T} \lambda_t \partial f_t(\overline{x}) + N_{\mathbb{C}}(\overline{x}) \text{ and } \lambda_t f_t(\overline{x}) = 0, \ \forall t \in T.$$
 (KKT'2)

Proof.

According to Pshenichnyi-Rockafellar theorem (e.g. Zal'02 [Th. 2.9.1]),

$$\begin{split} \bar{x} \text{ is optimal for } (\mathcal{P}) & \Leftrightarrow \quad \partial g(\bar{x}) \cap (-N_{\mathbb{F}}(\bar{x})) \neq \emptyset \\ & \Leftrightarrow \quad \theta \in \partial g(\bar{x}) + N_{\mathbb{F}}(\bar{x}) \\ \overset{\textit{LFM}}{\Leftrightarrow} \theta & \in \quad \partial g(\bar{x}) + \sum_{t \in \mathcal{T}(\bar{x})} \lambda_t \partial f_t(\bar{x}) + N_{\mathbb{C}}(\bar{x}). \end{split}$$

KKT'3 asymptotic optimality conditions

Theorem (KKT'3)

Given the problem (\mathcal{P}) , assume that τ is FM and $(\operatorname{rint} \mathbb{F}) \cap \operatorname{dom} g \neq \emptyset$. Then, $\overline{x} \in (\operatorname{dom} g) \cap \mathbb{F}$ is optimal for (\mathcal{P}) if and only if, for each fixed $\varepsilon > 0$, there exists $\lambda^{\varepsilon} \in \mathbb{R}^{(T)}_+$ such that $\operatorname{supp} \lambda^{\varepsilon} \subset T(\overline{x})$ and the following condition holds:

 $\theta \in \partial_{\varepsilon} g(\overline{x}) + \sum_{\operatorname{supp} \lambda^{\varepsilon}} \lambda_t^{\varepsilon} \partial f_t(\overline{x}) + N_{\mathbb{C}}(\overline{x}) + \varepsilon \mathbb{B},$ (14)

where \mathbb{B} is the closed unite ball (centered at 0_n).

Proof.

[Sketch of the proof] (\Rightarrow) Since $(rint \mathbb{F}) \cap dom g \neq \emptyset$, Th. 12 in *Correa, Hantoute, ML '16* yields

$$\partial(g + I_{\mathbb{F}})(\overline{x}) = \bigcap_{\epsilon > 0} \operatorname{cl}(\partial g_{\epsilon}(\overline{x}) + N_{\mathbb{F}}(\overline{x})).$$

Then,

$$\overline{x}$$
 is optimal for $(\mathcal{P}) \Leftrightarrow 0_n \in \bigcap_{\epsilon > 0} \operatorname{cl}(\partial g_{\epsilon}(\overline{x}) + N_{\mathbb{F}}(\overline{x})).$

Proof.

[Sketch of the proof - cont'd] Thus,

 \overline{x} is optimal for $(\mathcal{P}) \Leftrightarrow \mathbf{0}_n \in \partial g_{\varepsilon}(\overline{x}) + \mathbf{N}_{\mathbb{F}}(\overline{x}) + \rho \mathbb{B}$, for every positive ε and ρ .

If we take ho=arepsilon, for every arepsilon>0, there exists $u^*_arepsilon\in \mathrm{N}_{\mathbb{F}}(\overline{x})$ such that

$$0_n \in \partial g_{\varepsilon}(\overline{x}) + u_{\varepsilon}^* + \varepsilon \mathbb{B}.$$

Since $u_{\varepsilon}^* \in N_{\mathbb{F}}(\overline{x})$ is equivalent to say that $\langle u_{\varepsilon}^*, x \rangle \leq \langle u_{\varepsilon}^*, \overline{x} \rangle$ is a consequence of the FM system τ , we conclude the existence of $\lambda^{\varepsilon} \in \mathbb{R}^{(T)}_+$, $\operatorname{supp} \lambda^{\varepsilon} \subset T(\overline{x})$, such that

$$u_{\varepsilon}^* \in \sum_{\operatorname{supp} \lambda^{\varepsilon}} \lambda_t^{\varepsilon} \partial f_t(\overline{x}) + \mathcal{N}_{\mathbb{C}}(\overline{x}).$$

The necessity is proved.

 (\Leftarrow) Straightforward (standard arguments).

KKT'4 conditions for SIP under compacity/continuity

Consider the convex SIP problem

$$(\mathcal{P}) \quad \text{Min}\,g(x) \quad \text{s.t.}\,\,f_t(x) \leq 0, \ t \in T, \quad x \in \mathbb{C}.$$

Theorem

Suppose that, for a given
$$\overline{x} \in \mathbb{F}$$
, and some $\varepsilon_0 > 0$
(i) $T_{\varepsilon_0}(x)$ is compact,
(ii) $\forall z \in \text{dom } f, t \to f_t(z)$ is use on $T_{\varepsilon_0}(x)$,
(iii) $\exists x_0 \in \mathbb{D}$ such that $\sup_{t \in T(\overline{x})} f_t(x_0) < 0$ (Slater point),
then for some $\lambda_1, \dots, \lambda_k > 0$ and $t_1, \dots, t_k \in T(\overline{x})$

$$0_n \in \partial g(\overline{x}) + \sum_{i=1}^k \lambda_i \partial f_{t_i}(\overline{x}) + \mathcal{N}_{\mathbb{D}}(\overline{x}),$$

where $\mathbb{D} := \mathbb{C} \cap \operatorname{dom} g \cap \operatorname{dom}(\sup_{t \in T} f_t)$.

Proof Based on the equality (see Th. 3 in Correa, Hantoute, ML '19):

$$\partial f(x) = \operatorname{co}\left(\bigcup_{t \in T(x)} \partial (f_t + \operatorname{I}_{\operatorname{dom} f})(x)\right).$$

- The closedness of **K** was introduced in *Charnes, Cooper, Kortanek'65* as a general assumption for the duality theory in LSIP.
- The FM property for convex systems was first studied in *Jeyakumar, Lee, Dinh'04*, with X being Banach and all the functions finite valued, under the name of *closed cone constraint qualification*. In the framework of optimality conditions for the convex SIP was first considered in *ML-Vercher'83*.
- The LFM property, under the name of *basic constraint qualification* (*BCQ*), appeared in *Hiriart-Urruty*, *Lemaréchal'93*. It was extended in *Puente*, *Vera de Serio'99* to linear semi-infinite systems. The consequences of its extension to convex semi-infinite systems were analyzed in *Fajardo*, *López'99*.
- For a deep analysis of BCQ and related conditions see also *Li*, *Nahak*, *Singer'00* and *Li*, *Ng'05*. An extensive comparative analysis of constraints qualifications for (\mathcal{P}) is also given in *Li*, *Ng*, *Pong'08*.

References

- CHARNES A. COOPER W.W., K.O. KORTANEK K.O., On representations of semi-infinite programs which have no duality gaps, Management Science 12 (1965) 113–121.
- CORREA R., HANOUTE A., LÓPEZ M.A., *Moreau-Rockafellar-type* formulas for the subdifferential of the supremum function, SIAM Journal on Optimization 29 (2019)
- N. DINH N., GOBERNA M.A., LÓPEZ M.A., From linear to convex systems: consistency, Farkas' lemma and applications. J. Convex Anal. 13 (2006), 113–133.
- DINH N., GOBERNA M.A., LÓPEZ M.A., SON T.Q., New Farkas-type constraint qualifications in convex infinite programming, ESAIM: COCV 13 (2007)
- M.D. FAJARDO M.D., LÓPEZ M.A., Locally Farkas-Minkowski systems in convex semi-infinite programming. Journal of Optimization Theory and Applications 103 (1999), 313-335.

- GOBERNA M.A., LÓPEZ M.A., *Linear Semi-infinite Optimization*. J. Wiley, Chichester (1998).
- JEYAKUMAR V., Characterizing set containments involving infinite convex constraints and reverse-convex constraints, SIAM J. Optimization **13** (2003) 947-959.
- JEYAKUMAR V., LEE G.M., DINH N., A new closed cone constraint qualification for convex Optimization, Applied Mathematics Research Report AMR04/8, University of New South Wales, Sydney, Australia (2004)
- HIRIART-URRUTY J.-B., PHELPS R.R.: Subdifferential calculus using epsilon-subdifferentials, J. Funct. Anal., 118 (1993)

HIRIART-URRUTY J.-B., LEMARÉCHAL C.: *Convex Analysis and Minimization Algorithms I, II,* Springer-Verlarg, Berlin, 1993.

- LI W., NAHAK C., SINGER I., Constraint qualification for semi-infinite systems of convex inequalities. SIAM J. Optimization 11 (2000) 31-52.
- LI CH., NG K.F., On constraint qualification for an infinite system of convex inequalities in a Banach space. SIAM J. Optimization 15 (2005) 488-512.
- LI CH., NG K.F., PONG T.K., Constraint qualifications for convex inequality systems with applications in constrained optimization. SIAM J. Optim. 19 (2008), 163–187.
- LOPEZ M.A., VERCHER E., *Optimality conditions for nondifferentiable convex semi-infinite programming*. Math. Programming 27 (1983), 307-319.
- PUENTE R., VERA DE SERIO V.N., Locally Farkas-Minkowski linear semi-infinite systems. TOP 7 (1999) 103-121.
- ZALINESCU, C. Convex analysis in general vector spaces. World Scientific Publishing Co., Inc., River Edge, NJ, 2002.

Thank you for your attention