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Semi-infinite programming (SIP) problem

@ It is an optimization problem with finitely many variables
x=(x{,..., xp) € R™ and a feasible set, IF, described by infinitely many
constraints:

(P): Min g(x) st. frf(x) <0 teT,

where T is an infinite index set.
An important extension is the generalized SIP (GSIP), for which the index
set T = T(x) depends on x, i.e.

(P) : Min g(x) st. f(x) <0 te T(x).

@ In the last decades years Semi-infinite Programming has known a tremendous
development. More than 1300 articles and 10 books on theory, numerical
methods and applications of SIP.
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Convex SIP problem

Today we are dealing with the convex optimization problem

(P) Min g(x)
s.t. ft(X) S 0, t e T,
x € C,

where C is a (non-empty) closed convex set in IR”, and

g, ft : R" - RU{+oo}, t € T, are proper lower semicontinuous (Isc) convex
functions .

We say that the constraint system
T:={f(x) <0, teT; xeC}, (1)

is consistent when [F # @. By v and S we represent the optimal value and the
optimal set of problem (P), respectively.
In linear SIP , the explicit constraints are affine and C = R", i.e.

T = {(at,x> < bt, t e T} (2)
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LSIP is very different to ordinary LP!

Let us consider the LSIP problem, in R?, with T := ]0, +oo],

(P) : Miny, x, x1

st —t72x —xp < —2t71, t€]0, +oo]

X2

Xy = — 2 1

27 F=1(x,x;) ER Ixzzx—,x1>0
1

) U=0,S=®

1 1
xz_;:_t_z(%_t)

X1
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Some drops of history...

@ Prehistory of SIP is related to Chebyshev approximation, the classical work of
Alfréd Haar on linear semi-infinite systems [Ha'24], and the Fritz John
optimality condition [Jo'48].

Haar Fritz John

@ The term SIP was coined in 1962 by Charnes, Cooper and Kortanek
[ChCoKo'62].

Kortanek

Charnes
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But ..., are there real-world optimization problems with

infinitely many constraints?

o George Dantzig (1991): "(...) One of the results, published jointly with
Abraham Wald, was on the Neyman-Pearson Lemma. In today’s terminology,
this part of my thesis was on the existence of Lagrange multipliers (or dual
variables) for a semi-infinite linear program (...)".

@ Other significant applications in statistics: optimal experimental design in
regression, constrained multinomial maximum-likelihood estimation,
robustness in Bayesian statistics, actuarial risk theory, etc.

@ In the review papers HeKo'93 and Po'87, as well as in Go-ML’'98, the reader
will find many applications of SIP in different fields such as functional
approximation, robotics, pde'’s, engineering design, optimal control,
transportation problems, fuzzy sets, cooperative games, robust optimization,
etc.

@ Reputed optimization books devoted some chapters to SIP e.g., Krabs
[Kr'79], Anderson-Nash [AnNa'87], Guddat et al. [Gu'90], Bonnans-Shapiro
[BoSh'00], and Polak [Po'97].
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Polynomial approximation

@ We want to approximate the function f € C([a, b]) by a polynomial of degree
at most n—1

p(x, t) :=xg + X1t + ... + x,_1 "1 with t € [a, b].

o If we use the oco-norm (Chebyshev-norm), minimizing the approximation error

z:=||f — p(x, )|l is a problem which is equivalently expressed as the linear
SIP:

. f(t) —xg —xit — ... —x,_1t" 1 —2z<0  t€(ab],
Min z st { —(F(t) —xp— X1t — . —Xp_1t" 1) —2<0  t€ab]

Theorem (Chebyshev, 1874)

A polynomial p(x°Pt, t) is a best approximation of f on |a, b if and only if there
exist n+ 1 points a S t1 < ..<tp1 < bandanumberc c {—1,1} such that

~1)i0 {£(5) = PP, )} = | = (", ) o = 2"
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The Minimum-Volume Circumscribed Ellipsoid Problem

@ This is the problem of finding a minimum-volume ellipsoid covering a
convex body K C IR".

@ Fritz John [FJ'47] proved that such an ellipsoid, denoted by EK | exists and is
unique.He was a pioneer in semi-infinite programming .
John F. , Extremum problems with inequalities as subsidiary conditions. In: Studies
and Essays, Courant Anniversary Volume , New York: Interscience (1948), 187-204.

@ In some convex programming algorithms, including the ellipsoid method, the
exact or nearly exact ellipsoid needs to be computed. For K sufficientely
simple, EX can be obtained analytically. In more general cases,
interior-point-type algorithms are used to approximate EK.

@ Some historic works dealing with this topic via SIP are:
Juhnke F., Embedded maximal ellipsoids and semi-infinite optimization. Beitrdge
Algebra Geom. 35 (1994), 163-171.
Juhnke F., Polarity of embedded and circumscribed ellipsoids. Beitrige Algebra
Geom. 36 (1995), 17-24.
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e If X € P, the convex (solid) cone of all the n x n symmetric positive
definite matrices, and ¢ € IR”, the set

E(X,c):={x€R": (x—c) X(x—c) <1}

is an ellipsoid with center c, whose volume is given by

n/2

vol E(X, ¢) = (det X) /2 vol(B) = (detX)fl/2m,

where B is the closed unit ball in R".

@ The associated SIP problem is

r;(winvolE(X,c) st. (z—c)'X(z—c¢) <1 VzeK,
C

or equivalently (taking logarithms)

min — lg(det X) st (z—c) ' X(z—c)<1 VzeEK.
,C

(University of Alicante) Optimality theory in convex optimization.



@ The function
X € Pp— —lg(det X), (3)
is strictly convex and differentiable on P, with V(—lg(det X)) = —X 1.

@ Moreover, — Ig(det X) — oo when X approaches a matrix Z € bd P, since
det Z = 0, entailing that the function (3) is coercive on P, and the problem

(P): Xmi7r; —lg(detX) st (z—c)' X(z—c¢) <1 VzeK,
€Fn
ceR”

has a unique optimal solution..
e If 04 denotes the support function of A (i.e., ca(u) := supyea (U, x)),

KCEX,c) <= ox(u) <opx,e)(u) = (uc)+Vul X1y, YueR".

Since the support function is positively homogeneous, and
—lg(det X) = Ig(det X~1), we get the SIP reformulation

(P): Xmig lg(det X7 1) st ok (u) < (u,¢)+VuT X~ lu, Yu€bdB.
EPn
ceR”

Theorem 1 in Juhnke'95 caracterizes the unique optimal solution of (P).
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Today, our aims are:

@ To study some properties of the infinite convex systems, as the
Farkas-Minkowski property (FM, in brief) and the local Farkas-Minkowski
property (LFM, in short), which give rise to weak CQ’s in SIP.

@ To provide optimality conditions by appealing to the properties of the
supremum function of an infinite family of convex functions and the
characterizations of its subdifferential.

© To show how useful is convex analysis in the mathematical developments...

@ 927 publications according in MathScilNet for "Review Text=(optimality
conditions ).

@ 69 publications according in MathScilNet for "Review Text=(optimality
conditions AND semi-infinite programming
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1st step in formulating optimality conditions

@ If x is optimal for (P), then it is optimal for the unconstrained problem

Min ¢(x) := sup{g(x) —g(x); fi(x), t € T; Ic(x)},

xeR"?

where I¢ is the indicator function of C. Obviously, for x € IF one has
g(x) —g(x) >0, and so ¢(x) > ¢@(x) = 0. Hence,

x is optimal for (P) = 0, € d¢(%).

We need: a) To express d¢(z) in terms of the approximate/exact
subdifferentials of g and the fi's. (¢ is a supremum function!)
@ A second obvious fact is

x is optimal for (P) <= 0, € (g + Ig)(%),

and
d(g +1r)(x) D dg(x) + dlp(x) = dg(x) + Ng(x),
where N (%) is the normal cone to F at x.
We need: b) To provide conditions (CQs ) ensuring that the inclusion “D"
become an equality.
c) To express N (%) in terms of the functions fz, t € T, and I¢.
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Notations and basic tools

@ Given A, B C IRP, we consider the Minkowski sum:
A+B:={a+blacA beB},A+O=0+A=0Q.

@ co A is the convex hull of A, cone A is the convex cone generated by A.

e int A is the interior of A, cl A and A denote indistinctly the closure of A;
rint A is the topological relative interior of A.

e Given h: R" — R U {+oo}, dom h and epi h represent its (effective)
domain and epigraph , respectively.

e his proper if domh # @ and h(x) > —oco ¥x € R"; it is convex if epih is
convex, and h € Tg(IR") if it is proper, lower semicontinuous and convex.

@ COh represents the Isc convex hull of h; i.e., epi(coh) = co (epih) .

@ The e—subdifferential of h at x € hfl(]R), € >0, is the closed convex set

deh(x) :={ueR"| h(y) —h(x) > (u,y —x) —¢, Vy € R"}.
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The Fenchel conjugate of h is the Isc convex function
h*:R" — RU{=+co} given by

h*(u) :=sup{(u,x) — h(x) | x € R"}.

We have h* = (cl h)* = (coh)*. Moreover, the Fenchel-Young inequality
establishes

u € dh(x) < h(x) 4+ h"(u) < {(u,x) < h(x)+h (u) = (u,x).

The support and the indicator functions of A # @ are respectively

oa(u) : =sup{{u,a)|ac A}, forueR",
T4(x) |0 if x € A,
A T 4oo, ifx€RM\ A

04 is sublinear, Isc, and satisfies 04 = 054 = I5; 4. Therefore, epic 4 is a closed
convex cone.

(University of Alicante) Optimality theory in convex optimization.



For every family of functions f;,i € I, (I arbitrary), we have

(infic) ;)" = Supje/ f:* (4)

If {f;i,i €1} CTo(R") and sup,c, f; is proper, then

(supjes f;)* = co(infics £7). (5)

For f,g € To(X) such that dom f Ndom g # @, it is well known that

(fOg)" =" +g", (f+g)" = d(f Dg"). (6)

Clearly, (6) and (4) imply that
epi(f+g)" =cl(epif* +epig”), (7)

and

epi(sup;e; fj)" = co(Uje/ epif;”).
The cl in the first equation is superfluous if one of f and g is continuous at some
point of dom f N'dom g (then, epif* + epig* is closed).

(University of Alicante) Optimality theory in convex optimization.



Subdifferential calculus rules for the sum

o First results for the sum:
1) Suppose that one of the following conditions holds:

a) rint(dom f) Nrint(dom g) # @,
b) f is continuous at some point of dom g.
Then

A(f +g)(x) = of (x) + ag(x).

2) If f,g € To(R") one has (Hiriart-Urruty, Phelps’ 93)
I(f + &) (x) = Neso l(9ef (x) + 9eg(x)).

3)If f,g € Ip(R") and (dom g) Nrint(dom f) # @, then Th.12 in Correa,
Hantoute, ML 16 vyields

3(f +8)(x) = ., cl(OF (x) + g:(x)).
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KKT'1 optimality conditions - FM property

Definition

We call characteristic cone of T = {f;(x) <0, t € T; x € C} to the convex cone

K := cone{ U epify Uepi(rc} = cone{ U epi ft*} +epioc. (8)

teT teT

For the linear system (2),
epify’ = (ar, bt) + R4 (0n,1), t €T,

and
epi(TRn = ]R+(0n, 1)

Hence,
K = cone{(as, bt), t€ T; (05,1)}. (9)
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IFF={xeC: fi(x) <0, te T} #Q, then

epior = clK = clcone {UteT epify U epiac} .

Proof [sketch] If h:=sup{f;y, t € T; Ic}, we have

x € F< h(x) <0< h(x)=0.

Then, by (5),
epih® = epi({sup{fy, te T; Ic}}")
= @{UteTepi f Uepi(fc} ,
and

epioE © cone(epi h™) = clK.

() follows from Lemma 3.1(b) in Jey'03.
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Theorem (generalized Farkas)

Let ¢, € To(IR™). Then ¢(x) < ¥(x) for all x € F, assumed non-empty, if and
only if
epi ¢* C cl(epiyp* + K). (10)

Proof.

< Px)Vx€e€F <= ¢ <¢p+1If
& (p+Ip)* <@
& epig” Cepi(p+1Ip)",

@(x)

but applying (7), the previous lemma, and cl(A+ B) = cl(A+clB) :

epi (y +Ig)* = cl(epi¢p* + epiop)
= cl(epiyp™ + clK) = cl(epiyp* + K).
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Corollary

Given (a,n) € R, the inequality (a, x) < w holds for all x € F, assumed
non-empty (i.e., (a,x) < a is a linear consequence of T), if and only if

(a,a) € K.

Proof.

Apply the generalized Farkas theorem with ¢ = (a,-) —a and ¢ = 0. Then,
(a,x) < a holds for all x € IF if and only if

| A

(a,0) + R4 (0,,1) = epigp*
C d(epip*+K)=c(Ry(0,1)+K) = clK.

In other words, (a, x) < « is a consequence of T if and only if (a,a) € I K. [
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The following property is crucial in getting optimality conditions for (P).

Definition

We say that the consistent system T = {f;(x) <0, t € T; x € C}) is
Farkas-Minkowski (FM, in brief) if K is closed.

Theorem

If T is FM and consistent, then very linear consequence (a, x) < w is a cosequence
of T if it is also consequence of a finite subsystem

Ts:={ft(x) <0, t€S; xe€C}, withS C T and |S| < co.

The converse statement holds if T is linear.

Theorem

For the linear SIP, if T is compact, the functions a;y: T — R" and b/, : T — R
are continuous, and there exists a point X (Slater point) satisfying
(ar,X) < by, Yt € T, then T is FM.

—
<
—
~
A\
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The constraint system T of the following problem is not FM as —x; < 0 is a
consequence of T but not of any finite subsystem

(P): Min x
st —x; —t?x < —2t, t € T =]0, 00].

Observe that v = 0 and S = @, and that the optimal value of any finite
subproblem is v(S) = —oo.
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The following theorem (Dinh, Goberna, ML, Son’ 07) provides non-asymptotic
KKT-type optimality conditions for the problem

(P) Min g(x)
st. f(x)<0,teT, xeC,

with a non-empty feasible set IF.

Theorem (KKT'1)

Given the problem ('P), assume that T is FM and that one of the following
conditions holds:

a) g is continuous at some point of IF,

b) (rintF) Nrint(dom g) # @.

Then x € FNdom g is a global minimum of (P) if and only if there exists

S IR(J) such that ofi(x) # @, Vt € supp A, and the KKT conditions

On € 9g(X) + Y At0fi(X) + Ne(X) and A¢fi(X) =0, Ve € T,  (KKT'1)
teT
hold.

Here IR(J) is the convex cone of functions A : T — IR which vanishes at every

point of T except at finitely many.
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Proof.

[Proof of KKT'1 (sketch)] The point X € IF N dom g is a minimizer of (P) if and
only if

0, € (g +1If)(X) & 0g(X) + dlg(x) = dg(x) + NE(X); (11)

i.e., if and only if there exists u € dg(X) such that (—u, x) < (—u,X) is
consequence of T.

(*) Thanks to the assumption: a) or b) holds.

(=) If X is a minimizer of (P), since T is FM we have

—(u, (u,x)) e dK =K :cone{ U epi ft*} +epioc,

teT
and 3 A € ]Rg), ur €domf, oy >0, Vt € T, v € domog, B > 0, satisfying

—(u, (%)) = 3 Ae (ue, & (ue) +ae) + (v.oc (v) +B),

teT

leading to (KKT'1) by the relationship between the subdifferential and the
conjugate.
(<) Straightforward (standard argument). O]
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KKT'2 optimality conditions - LFM property

Let us introduce a weaker CQ. Given z € IF, the set of indices corresponding to the
active constraints at z is T(z) := {t € T : f;(z) = 0}. It is easily verified that

Ne(z) + cone (UteT " aft(z)> C Ng(2). (12)

Definition

The consistent constraint system T is locally Farkas-Minkowski (LFM, in short) at
zeFif

NE(z) € Ne(z) + cone (Ufer " Bft(z)) . (13)

T is said to be LFM if it is LFM at every feasible point z € F.

In LSIP (C =R", fr(x) = (at,x) — bt, t € T), (13) becomes
Np(z) C cone{a;, t € T(z2)}.
The LFM property is closely related to the so-called basic constraint qualification

at z. In fact, LFM and BCQ are equivalent under the continuity of the function
f := supsc T fr at the reference point z and z € intC.
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The following proposition is a LFM counterpart of a similar property for FM
systems.

Let z € F. If T is LFM at z and for certain a € R" we have

(a,x) < (a,z), forall x € F,

then (a,x) < (a, z) is also a consequence of a finite subsystem of T. The converse
statement holds provided that T is linear.

For general convex systems, it can be proved that

Tis FM = 7 is LFM at any z € F.

The constraint system —x; — t2x2 < —2t, t € T =]0, [, of the example is LFM.
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The following theorem provides a second KKT-type optimality conditions for the
problem
(P) Ming(x) st fr(x)<0,teT, xeC.

Theorem (KKT'2)

Given the problem (73) and x € FNdom g, assume that T is LFM at X, and that
g Is continuous at some point of . Then X is a global minimum of (P) if and

only if there exists A € IR(J) such that 0f;(X) # @, Vt € supp A, and the KKT
conditions hold

6 € 9g(X) + Y Atdfi(x) + Ne(X) and A¢f(X) =0, Vt € T. (KKT'2)
teT

Proof
According to Pshenichnyi-Rockafellar theorem (e.g. Zal’'02 [Th. 2.9.1]),

X is optimal for (P) < 9g(X) N (—Ng(x)) # @
S AS ag(?) + Ng(X)

g ¢ agx)+ ), Ataft ) + N (x).
teT(x
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KKT'3 asymptotic optimality conditions

Theorem (KKT'3)

Given the problem (P), assume that T is FM and (rint[F) Ndom g # @. Then,
x € (domg) N is optimal for (P) if and only if, for each fixed ¢ > 0, there

exists \° € ]RS_T) such that supp A® C T(X) and the following condition holds:
0 € d:g(x +Zsupp/\£/\ 91t (X) + N¢ (%) + €B, (14)

where B is the closed unite ball (centered at 0p).

Proof

[Sketch of the proof] (=) Since (rintIF) Ndom g # @, Th. 12 in Correa,
Hantoute, ML '16 vyields

3(g +18) (%) = .., L(0&:(%) + Ng (%)).

| \

Then,
X is optimal for (P) < 0, € ﬂ cl(dge(X) + Ng(x)).
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Proof.

[Sketch of the proof - cont'd]
Thus,

X is optimal for (P) < 0, € dge(X) + N (X) + pB, for every positive ¢ and p.
If we take p = ¢, for every € > 0, there exists uf € Np(X) such that
0p € 0ge(X) + u} + €B.

Since uf € N(X) is equivalent to say that (u}, x) < (u},X) is a consequence of
the FM system T, we conclude the existence of A® € ]R(J), supp A* C T(X), such
that

uf € Y A$f(X) + Ne(x).

supp A

The necessity is proved.
(<) Straightforward (standard arguments). O]
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KKT'4 conditions for SIP under compacity/continuity

Consider the convex SIP problem

(P) Ming(x) st fi(x) <0, teT, xeC.

Theorem

Suppose that, for a given x € [F, and some gy > 0

(i) Tg(x) is compact,

(if) Vz € domf, t — f:(z) is usc on Tg,(x),

(iif) 3 xo € ID such that sup,c 7 (x) ft(x0) < 0 (Slater point),
then for some Ay, -+ Ay >0and ty, -t € T(X)

0, € 9g(x) + iy A;9f; () + N (%),

where D := CNdom g Ndom(sup;e 1 ft).

Proof Based on the equality (see Th. 3 in Correa, Hantoute, ML '19):

3 (x) = €0 (UreT () 3(fe + laom £)(x) )

(University of Alicante) Optimality theory in convex optimization.



Bibliographic comments

@ The closedness of IK was introduced in Charnes, Cooper, Kortanek'65 as a
general assumption for the duality theory in LSIP.

@ The FM property for convex systems was first studied in Jeyakumar, Lee,
Dinh’04 , with X being Banach and all the functions finite valued, under the
name of closed cone constraint qualification. In the framework of optimality
conditions for the convex SIP was first considered in ML-Vercher'83.

@ The LFM property, under the name of basic constraint qualification (BCQ),
appeared in Hiriart-Urruty, Lemaréchal’93. It was extended in Puente, Vera
de Serio’99 to linear semi-infinite systems. The consequences of its extension
to convex semi-infinite systems were analyzed in Fajardo, Lopez'99.

@ For a deep analysis of BCQ and related conditions see also Li, Nahak,
Singer’00 and Li, Ng'05. An extensive comparative analysis of constraints
qualifications for (P) is also given in Li, Ng, Pong’08.
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Thank you for your attention
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