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Semi-in�nite programming (SIP) problem

It is an optimization problem with �nitely many variables
x = (x1, . . . , xn) 2 Rn and a feasible set, F, described by in�nitely many
constraints:

(P) : Min g(x) s.t. ft (x) � 0 t 2 T ,

where T is an in�nite index set.
An important extension is the generalized SIP (GSIP), for which the index
set T = T (x) depends on x , i.e.

(P) : Min g(x) s.t. ft (x) � 0 t 2 T (x).

In the last decades years Semi-in�nite Programming has known a tremendous
development. More than 1300 articles and 10 books on theory, numerical
methods and applications of SIP.
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Convex SIP problem

Today we are dealing with the convex optimization problem

(P) Min g(x)
s.t. ft (x) � 0, t 2 T ,

x 2 C,

where C is a (non-empty) closed convex set in Rn , and
g , ft : Rn ! R[ f+∞g, t 2 T , are proper lower semicontinuous (lsc) convex
functions .
We say that the constraint system

τ := fft (x) � 0, t 2 T ; x 2 Cg, (1)

is consistent when F 6= ∅. By v and S we represent the optimal value and the
optimal set of problem (P), respectively.
In linear SIP , the explicit constraints are a¢ ne and C = Rn , i.e.

τ = fhat , xi � bt , t 2 Tg. (2)
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LSIP is very di¤erent to ordinary LP!

Example

Let us consider the LSIP problem, in R2, with T := ]0,+∞[,

(P) : Minx1,x2 x1

s.t. � t�2x1 � x2 � �2t�1, t 2 ]0,+∞[
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Some drops of history...

Prehistory of SIP is related to Chebyshev approximation, the classical work of
Alfréd Haar on linear semi-in�nite systems [Ha�24], and the Fritz John
optimality condition [Jo�48].

Haar Fritz John
The term SIP was coined in 1962 by Charnes, Cooper and Kortanek
[ChCoKo�62].

Charnes Cooper Kortanek
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But ..., are there real-world optimization problems with
in�nitely many constraints?

George Dantzig (1991): "(...) One of the results, published jointly with
Abraham Wald, was on the Neyman-Pearson Lemma. In today�s terminology,
this part of my thesis was on the existence of Lagrange multipliers (or dual
variables) for a semi-in�nite linear program (...)".

Other signi�cant applications in statistics: optimal experimental design in
regression, constrained multinomial maximum-likelihood estimation,
robustness in Bayesian statistics, actuarial risk theory, etc.

In the review papers HeKo�93 and Po�87, as well as in Go-ML�98, the reader
will �nd many applications of SIP in di¤erent �elds such as functional
approximation, robotics, pde�s, engineering design, optimal control,
transportation problems, fuzzy sets, cooperative games, robust optimization,
etc.

Reputed optimization books devoted some chapters to SIP e.g., Krabs
[Kr�79], Anderson-Nash [AnNa�87], Guddat et al. [Gu�90], Bonnans-Shapiro
[BoSh�00], and Polak [Po�97].
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Polynomial approximation

We want to approximate the function f 2 C([a, b]) by a polynomial of degree
at most n� 1

p(x , t) := x0 + x1t + ...+ xn�1tn�1 with t 2 [a, b].

If we use the ∞-norm (Chebyshev-norm), minimizing the approximation error
z := kf � p(x , �)k∞ is a problem which is equivalently expressed as the linear
SIP:

Min
x ,z

z s.t.
�
f (t)� x0 � x1t � ...� xn�1tn�1 � z � 0 t 2 [a, b],
�(f (t)� x0 � x1t � ...� xn�1tn�1)� z � 0 t 2 [a, b].

Theorem (Chebyshev, 1874)

A polynomial p(xopt , t) is a best approximation of f on [a, b] if and only if there
exist n+ 1 points a � t1 < ... < tn+1 � b and a number σ 2 f�1, 1g such that

(�1)iσ
�
f (ti )� p(xopt , ti )

	
= kf � p(xopt , �)k∞ = zopt .
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The Minimum-Volume Circumscribed Ellipsoid Problem

This is the problem of �nding a minimum-volume ellipsoid covering a
convex body K � Rn .

Fritz John [FJ�47] proved that such an ellipsoid, denoted by EK , exists and is
unique.He was a pioneer in semi-in�nite programming .
John F. , Extremum problems with inequalities as subsidiary conditions. In: Studies
and Essays, Courant Anniversary Volume , New York: Interscience (1948), 187-204.

In some convex programming algorithms, including the ellipsoid method, the
exact or nearly exact ellipsoid needs to be computed. For K su¢ cientely
simple, EK can be obtained analytically. In more general cases,
interior-point-type algorithms are used to approximate EK .

Some historic works dealing with this topic via SIP are:
Juhnke F., Embedded maximal ellipsoids and semi-in�nite optimization. Beiträge
Algebra Geom. 35 (1994), 163�171.
Juhnke F., Polarity of embedded and circumscribed ellipsoids. Beiträge Algebra
Geom. 36 (1995), 17�24.
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If X 2 Pn , the convex (solid) cone of all the n� n symmetric positive
de�nite matrices, and c 2 Rn , the set

E (X , c) := fx 2 Rn : (x � c)>X (x � c) � 1g

is an ellipsoid with center c , whose volume is given by

volE (X , c) = (detX )�1/2 vol(B) = (detX )�1/2 πn/2

Γ((n/2) + 1)
,

where B is the closed unit ball in Rn .

The associated SIP problem is

min
X ,c

volE (X , c) s.t. (z � c)>X (z � c) � 1 8z 2 K ,

or equivalently (taking logarithms)

min
X ,c

� lg(detX ) s.t. (z � c)>X (z � c) � 1 8z 2 K .
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The function
X 2 Pn 7! � lg(detX ), (3)

is strictly convex and di¤erentiable on Pn , with r(� lg(detX )) = �X�1.
Moreover, � lg(detX )! +∞ when X approaches a matrix Z 2 bdPn since
detZ = 0, entailing that the function (3) is coercive on Pn , and the problem

(P) : min
X2Pn
c2Rn

� lg(detX ) s.t. (z � c)>X (z � c) � 1 8z 2 K ,

has a unique optimal solution..
If σA denotes the support function of A (i.e., σA(u) := supx2A hu, xi),

K � E (X , c) () σK (u) � σE (X ,c )(u) = hu, ci+
p
u>X�1u, 8u 2 Rn .

Since the support function is positively homogeneous, and
� lg(detX ) = lg(detX�1), we get the SIP reformulation

(P) : min
X2Pn
c2Rn

lg(detX�1) s.t. σK (u) � hu, ci+
p
u>X�1u, 8u 2 bd B.

Theorem 1 in Juhnke�95 caracterizes the unique optimal solution of (P).
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Today, our aims are:

1 To study some properties of the in�nite convex systems, as the
Farkas-Minkowski property (FM, in brief) and the local Farkas-Minkowski
property (LFM, in short), which give rise to weak CQ�s in SIP.

2 To provide optimality conditions by appealing to the properties of the
supremum function of an in�nite family of convex functions and the
characterizations of its subdi¤erential.

3 To show how useful is convex analysis in the mathematical developments...

927 publications according in MathSciNet for "Review Text=(optimality
conditions ).

69 publications according in MathSciNet for "Review Text=(optimality
conditions AND semi-in�nite programming
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1st step in formulating optimality conditions

1 If x̄ is optimal for (P), then it is optimal for the unconstrained problem
Min
x2Rn

ϕ(x) := supfg(x)� g(x̄); ft (x), t 2 T ; IC(x)g,

where IC is the indicator function of C. Obviously, for x 2 F one has
g(x)� g(x̄) � 0, and so ϕ(x) � ϕ(x̄) = 0. Hence,

x̄ is optimal for (P) =) 0n 2 ∂ϕ(x̄).

We need: a) To express ∂ϕ(z) in terms of the approximate/exact
subdi¤erentials of g and the ft�s. (ϕ is a supremum function!)

2 A second obvious fact is

x̄ is optimal for (P) () 0n 2 ∂(g + IF)(x̄),

and
∂(g + IF)(x̄) � ∂g(x̄) + ∂IF(x̄) = ∂g(x̄) +NF(x̄),

where NF(x̄) is the normal cone to F at x̄ .
We need: b) To provide conditions (CQs ) ensuring that the inclusion ���
become an equality.
c) To express NF(x̄) in terms of the functions ft , t 2 T , and IC.
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Notations and basic tools

Given A,B � Rp , we consider the Minkowski sum:
A+ B := fa+ b j a 2 A, b 2 Bg, A+∅ = ∅+ A = ∅.
coA is the convex hull of A, coneA is the convex cone generated by A.
intA is the interior of A, clA and A denote indistinctly the closure of A;
rintA is the topological relative interior of A.
Given h : Rn ! R[ f�∞g, dom h and epi h represent its (e¤ective)
domain and epigraph , respectively.

h is proper if dom h 6= ∅ and h(x) > �∞ 8x 2 Rn ; it is convex if epi h is
convex, and h 2 Γ0(Rn) if it is proper, lower semicontinuous and convex.
coh represents the lsc convex hull of h; i.e., epi(coh) = co (epi h) .
The ε�subdi¤erential of h at x 2 h�1(R), ε � 0, is the closed convex set

∂εh(x) := fu 2 Rn j h(y)� h(x) � hu, y � xi � ε, 8y 2 Rng.
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The Fenchel conjugate of h is the lsc convex function
h� : Rn ! R[ f�∞g given by

h�(u) := supfhu, xi � h(x) j x 2 Rng.

We have h� = (cl h)� = (coh)�. Moreover, the Fenchel-Young inequality
establishes

u 2 ∂h(x), h(x) + h�(u) � hu, xi , h(x) + h�(u) = hu, xi .

The support and the indicator functions of A 6= ∅ are respectively

σA(u) : = supfhu, ai j a 2 Ag, for u 2 Rn ,

IA(x) : =

�
0, if x 2 A,
+∞, if x 2 Rn n A.

σA is sublinear, lsc, and satis�es σA = σcoA = I�coA . Therefore, epi σA is a closed
convex cone.
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For every family of functions fi , i 2 I , (I arbitrary), we have

(inf i2I fi )
� = supi2I f

�
i . (4)

If ffi , i 2 Ig � Γ0(Rn) and supi2I fi is proper, then

(supi2I fi )
� = co(inf i2I f

�
i ). (5)

For f , g 2 Γ0(X ) such that dom f \ dom g 6= ∅, it is well known that

(f�g)� = f � + g�, (f + g)� = cl(f ��g�). (6)

Clearly, (6) and (4) imply that

epi(f + g)� = cl(epi f � + epi g�), (7)

and
epi(supi2I fi )

� = co([i2I epi f �i ).

The cl in the �rst equation is super�uous if one of f and g is continuous at some
point of dom f \ dom g (then, epi f � + epi g� is closed).
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Subdi¤erential calculus rules for the sum

First results for the sum:
1) Suppose that one of the following conditions holds:

a) rint(dom f ) \ rint(dom g) 6= ∅,
b) f is continuous at some point of dom g .

Then

∂(f + g)(x) = ∂f (x) + ∂g(x).

2) If f , g 2 Γ0(Rn) one has (Hiriart-Urruty, Phelps�93)

∂(f + g)(x) =
T

ε>0 cl(∂εf (x) + ∂εg(x)).

3) If f , g 2 Γ0(Rn) and (dom g) \ rint(dom f ) 6= ∅, then Th.12 in Correa,
Hantoute, ML �16 yields

∂(f + g)(x) =
\

ε>0
cl(∂f (x) + ∂gε(x)).
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KKT�1 optimality conditions - FM property

De�nition
We call characteristic cone of τ = fft (x) � 0, t 2 T ; x 2 Cg to the convex cone

K := cone

( [
t2T

epi f �t [ epi σC

)
= cone

( [
t2T

epi f �t

)
+ epi σC. (8)

For the linear system (2),

epi f �t = (at , bt ) +R+(0n , 1), t 2 T ,

and
epi σRn = R+(0n , 1).

Hence,
K = cone f(at , bt ), t 2 T ; (0n , 1)g . (9)
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Lemma
If F = fx 2 C : ft (x) � 0, t 2 Tg 6= ∅, then

epi σF = cl K = cl cone
n[

t2T epi f �t [ epi σC

o
.

Proof [sketch] If h := supfft , t 2 T ; ICg, we have

x 2 F , h(x) � 0, h(x) = 0.

Then, by (5),

epi h� = epi
�
fsup fft , t 2 T ; ICgg�

�
= co

n[
t2T epi f �t [ epi σC

o
,

and

epi σF

(�)
= cone(epi h�) = cl K.

(�) follows from Lemma 3.1(b) in Jey�03.
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Theorem (generalized Farkas)

Let ϕ,ψ 2 Γ0(Rn). Then ϕ(x) � ψ(x) for all x 2 F, assumed non-empty, if and
only if

epi ϕ� � cl (epi ψ� +K) . (10)

Proof.

ϕ(x) � ψ(x) 8x 2 F () ϕ � ψ+ IF

, (ψ+ IF)
� � ϕ�

, epi ϕ� � epi (ψ+ IF)
�,

but applying (7), the previous lemma, and cl(A+ B) = cl(A+ clB) :

epi (ψ+ IF)
� = cl(epi ψ� + epi σF)

= cl(epi ψ� + cl K) = cl(epi ψ� +K).
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Corollary

Given (a, α) 2 Rn+1, the inequality ha, xi � α holds for all x 2 F, assumed
non-empty (i.e., ha, xi � α is a linear consequence of τ), if and only if

(a, α) 2 cl K.

Proof.
Apply the generalized Farkas theorem with ϕ = ha, �i � α and ψ � 0. Then,
ha, xi � α holds for all x 2 F if and only if

(a, α) +R+(0n , 1) = epi ϕ�

� cl (epi ψ� +K) = cl (R+(θ, 1) +K) = cl K.

In other words, ha, xi � α is a consequence of τ if and only if (at , α) 2 cl K.
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The following property is crucial in getting optimality conditions for (P).

De�nition
We say that the consistent system τ = fft (x) � 0, t 2 T ; x 2 Cg) is
Farkas-Minkowski (FM, in brief) if K is closed.

Theorem
If τ is FM and consistent, then very linear consequence ha, xi � α is a cosequence
of τ if it is also consequence of a �nite subsystem

τS := fft (x) � 0, t 2 S ; x 2 Cg, with S � T and jS j < ∞.

The converse statement holds if τ is linear.

Theorem
For the linear SIP, if T is compact, the functions a(�) : T ! Rn and b(�) : T ! R

are continuous, and there exists a point bx (Slater point) satisfying
hat ,bxi < bt , 8t 2 T , then τ is FM.
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Example
The constraint system τ of the following problem is not FM as �x1 � 0 is a
consequence of τ but not of any �nite subsystem

(P) : Min x1
s.t. �x1 � t2x2 � �2t, t 2 T =]0,∞[.

Observe that v = 0 and S = ∅, and that the optimal value of any �nite
subproblem is v(S) = �∞.
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The following theorem (Dinh, Goberna, ML, Son�07) provides non-asymptotic
KKT-type optimality conditions for the problem

(P) Min g(x)
s.t. ft (x) � 0, t 2 T , x 2 C,

with a non-empty feasible set F.

Theorem (KKT�1)

Given the problem (P), assume that τ is FM and that one of the following
conditions holds:
a) g is continuous at some point of F,
b) (rint F) \ rint(dom g) 6= ∅.
Then x 2 F\ dom g is a global minimum of (P) if and only if there exists
λ 2 R

(T )
+ such that ∂ft (x) 6= ∅, 8t 2 supp λ, and the KKT conditions

0n 2 ∂g(x) + ∑
t2T

λt∂ft (x) +NC(x) and λt ft (x) = 0, 8t 2 T , (KKT�1)

hold.

Here R
(T )
+ is the convex cone of functions λ : T ! R+ which vanishes at every

point of T except at �nitely many.
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Proof.
[Proof of KKT�1 (sketch)] The point x 2 F\ dom g is a minimizer of (P) if and
only if

0n 2 ∂(g + IF)(x)
(�)
= ∂g(x) + ∂IF(x) = ∂g(x) +NF(x); (11)

i.e., if and only if there exists u 2 ∂g(x) such that h�u, xi � h�u, xi is
consequence of τ.
(�) Thanks to the assumption: a) or b) holds.
()) If x is a minimizer of (P), since τ is FM we have

�(u, hu, xi) 2 cl K = K = cone

( [
t2T

epi f �t

)
+ epi σC,

and 9 λ 2 R
(T )
+ , ut 2 dom f �t , αt � 0, 8t 2 T , v 2 dom σC, β � 0, satisfying

�(u, hu, xi) = ∑
t2T

λt (ut , f �t (ut ) + αt ) + (v , σC (v) + β) ,

leading to (KKT�1) by the relationship between the subdi¤erential and the
conjugate.
(() Straightforward (standard argument).
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KKT�2 optimality conditions - LFM property

Let us introduce a weaker CQ. Given z 2 F, the set of indices corresponding to the
active constraints at z is T (z) := ft 2 T : ft (z) = 0g. It is easily veri�ed that

NC(z) + cone
�[

t2T (z ) ∂ft (z)
�
� NF(z). (12)

De�nition
The consistent constraint system τ is locally Farkas-Minkowski (LFM, in short) at
z 2 F if

NF(z) � NC(z) + cone
�[

t2T (z ) ∂ft (z)
�
. (13)

τ is said to be LFM if it is LFM at every feasible point z 2 F.

In LSIP (C = Rn , ft (x) = hat , xi � bt , t 2 T ), (13) becomes
NF(z) � cone fat , t 2 T (z)g .

The LFM property is closely related to the so-called basic constraint quali�cation
at z . In fact, LFM and BCQ are equivalent under the continuity of the function
f := supt2T ft at the reference point z and z 2 int C.
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The following proposition is a LFM counterpart of a similar property for FM
systems.

Theorem
Let z 2 F. If τ is LFM at z and for certain a 2 Rn we have

ha, xi � ha, zi , for all x 2 F,

then ha, xi � ha, zi is also a consequence of a �nite subsystem of τ. The converse
statement holds provided that τ is linear.

For general convex systems, it can be proved that

τ is FM ) τ is LFM at any z 2 F.

Example

The constraint system �x1 � t2x2 � �2t, t 2 T =]0,∞[, of the example is LFM.
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The following theorem provides a second KKT-type optimality conditions for the
problem

(P) Min g(x) s.t. ft (x) � 0, t 2 T , x 2 C.

Theorem (KKT�2)

Given the problem (P) and x 2 F\ dom g , assume that τ is LFM at x, and that
g is continuous at some point of F. Then x is a global minimum of (P) if and
only if there exists λ 2 R

(T )
+ such that ∂ft (x) 6= ∅, 8t 2 supp λ, and the KKT

conditions hold

θ 2 ∂g(x) + ∑
t2T

λt∂ft (x) +NC(x) and λt ft (x) = 0, 8t 2 T . (KKT�2)

Proof.
According to Pshenichnyi-Rockafellar theorem (e.g. Zal�02 [Th. 2.9.1]),

x is optimal for (P) , ∂g(x) \ (�NF(x)) 6= ∅
, θ 2 ∂g(x) +NF(x)

LFM, θ 2 ∂g(x) + ∑
t2T (x )

λt∂ft (x) +NC(x).

(University of Alicante) Optimality theory in convex optimization.
One World Optimization Seminar (17-05-2021) 28

/ 36



KKT�3 asymptotic optimality conditions

Theorem (KKT�3)

Given the problem (P), assume that τ is FM and (rint F) \ dom g 6= ∅. Then,
x 2 (dom g) \F is optimal for (P) if and only if, for each �xed ε > 0, there

exists λε 2 R
(T )
+ such that supp λε � T (x) and the following condition holds:

θ 2 ∂εg(x) +∑supp λε λε
t∂ft (x) +NC(x) + εB, (14)

where B is the closed unite ball (centered at 0n).

Proof.
[Sketch of the proof] ()) Since (rint F) \ dom g 6= ∅, Th. 12 in Correa,
Hantoute, ML �16 yields

∂(g + IF)(x) =
\

ε>0
cl(∂gε(x) +NF(x)).

Then,
x is optimal for (P), 0n 2

\
ε>0

cl(∂gε(x) +NF(x)).
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Proof.
[Sketch of the proof - cont�d]
Thus,

x is optimal for (P), 0n 2 ∂gε(x) +NF(x) + ρB, for every positive ε and ρ.

If we take ρ = ε, for every ε > 0, there exists u�ε 2 NF(x) such that

0n 2 ∂gε(x) + u�ε + εB.

Since u�ε 2 NF(x) is equivalent to say that hu�ε , xi � hu�ε , xi is a consequence of
the FM system τ, we conclude the existence of λε 2 R

(T )
+ , supp λε � T (x), such

that
u�ε 2 ∑

supp λε

λε
t∂ft (x) +NC(x).

The necessity is proved.
(() Straightforward (standard arguments).
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KKT�4 conditions for SIP under compacity/continuity

Consider the convex SIP problem

(P) Min g(x) s.t. ft (x) � 0, t 2 T , x 2 C.

Theorem
Suppose that, for a given x 2 F, and some ε0 > 0
(i) Tε0 (x) is compact,
(ii) 8z 2 dom f , t ! ft (z) is usc on Tε0 (x),
(iii) 9 x0 2 D such that supt2T (x ) ft (x0) < 0 (Slater point),
then for some λ1, � � � ,λk > 0 and t1, � � � , tk 2 T (x)

0n 2 ∂g(x) +∑ki=1 λi ∂fti (x) +ND(x),

where D := C\dom g \ dom(supt2T ft ).

Proof Based on the equality (see Th. 3 in Correa, Hantoute, ML �19):

∂f (x) = co
�S

t2T (x ) ∂(ft + Idom f )(x)
�
.
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Bibliographic comments

The closedness of K was introduced in Charnes, Cooper, Kortanek�65 as a
general assumption for the duality theory in LSIP.

The FM property for convex systems was �rst studied in Jeyakumar, Lee,
Dinh�04 , with X being Banach and all the functions �nite valued, under the
name of closed cone constraint quali�cation. In the framework of optimality
conditions for the convex SIP was �rst considered in ML-Vercher�83.

The LFM property, under the name of basic constraint quali�cation (BCQ),
appeared in Hiriart-Urruty, Lemaréchal�93. It was extended in Puente, Vera
de Serio�99 to linear semi-in�nite systems. The consequences of its extension
to convex semi-in�nite systems were analyzed in Fajardo, López�99.

For a deep analysis of BCQ and related conditions see also Li, Nahak,
Singer�00 and Li, Ng�05. An extensive comparative analysis of constraints
quali�cations for (P) is also given in Li, Ng, Pong�08.
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Thank you for your attention
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