Hidden Convexity in Nonconvex Quadratic Optimization

Marc Teboulle
School of Mathematical Sciences

Tel Aviv University

One World Optimization Seminar April 20, 2020

Nonconvex Quadratic Optimization

Data: $\left[Q_{i} \in S_{n}, b_{i} \in \mathbb{R}^{n}, c_{i} \in \mathbb{R}\right], \quad i \in[0, m]$

$$
\begin{aligned}
& \inf x^{T} Q_{0} x+2 b_{0}^{T} x \\
& x^{T} Q_{i} x+2 b_{i}^{T} x+c_{i} \leq 0, i \in[1, p] \\
& x^{T} Q_{i} x+2 b_{i}^{T} x+c_{i}=0, i \in[p+1, m], x \in \mathbb{R}^{n}
\end{aligned}
$$

Nonconvex Quadratic Optimization

Data: $\left[Q_{i} \in S_{n}, b_{i} \in \mathbb{R}^{n}, c_{i} \in \mathbb{R}\right], \quad i \in[0, m]$

$$
\begin{aligned}
& \inf x^{T} Q_{0} x+2 b_{0}^{T} x \\
& x^{T} Q_{i} x+2 b_{i}^{T} x+c_{i} \leq 0, i \in[1, p] \\
& x^{T} Q_{i} x+2 b_{i}^{T} x+c_{i}=0, i \in[p+1, m], x \in \mathbb{R}^{n}
\end{aligned}
$$

Arise in many and disparate contexts.......

- III-posed problems/Regularization/Least Squares
- Eigenvalue perturbations
- Optimization algorithms: Trust Region Methods
- Polynomial Optimization problems
- Models for fundamentals Combinatorial/Graph Optimization problems (Max cut, stability number, max clique, etc..)
- Robust Optimization
- Spin Glasses....and much more....!

Nonconvex Quadratic Optimization

Data: $\left[Q_{i} \in S_{n}, b_{i} \in \mathbb{R}^{n}, c_{i} \in \mathbb{R}\right], \quad i \in[0, m]$

$$
\begin{aligned}
& \inf x^{T} Q_{0} x+2 b_{0}^{T} x \\
& x^{T} Q_{i} x+2 b_{i}^{T} x+c_{i} \leq 0, i \in[1, p] \\
& x^{T} Q_{i} x+2 b_{i}^{T} x+c_{i}=0, i \in[p+1, m], x \in \mathbb{R}^{n}
\end{aligned}
$$

Arise in many and disparate contexts.......

- III-posed problems/Regularization/Least Squares
- Eigenvalue perturbations
- Optimization algorithms: Trust Region Methods
- Polynomial Optimization problems
- Models for fundamentals Combinatorial/Graph Optimization problems (Max cut, stability number, max clique, etc..)
- Robust Optimization
- Spin Glasses....and much more....!

A BRIDGE between: Continuous and Discrete Optimization....

Thus, not surprisingly so "HARD" to analyze/solve.

Outline

- Nonconvex optimization are generally non-tractable (NP hard).
- However, some classes of nonconvex problems can be solved.
- Hidden convex problems are nonconvex problems which admit an equivalent convex reformulation.

Focus on detecting "Hidden Convexity" in Nonconvex QP

- Duality
- Lifting and Semidefinite Relaxation
- Exact solutions for some classes of QP
- Convexity of the Image of a Quadratic Map
- The S-Procedure

Duality: A Quick Review

Data [f,C]: $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty], C \subseteq \mathbb{R}^{n}$
Primal Problem

$$
\begin{equation*}
v(P)=\inf \{f(x): x \in C\} \equiv \inf _{x \in \mathbb{R}^{n}}\left\{f(x)+\delta_{C}(x)\right\} \tag{P}
\end{equation*}
$$

Dual Problem Uses the same data
(D) $\quad v(D)=\sup _{y}\left\{-f^{*}(y)-\delta_{C}^{*}(-y): y \in \operatorname{dom} f^{*} \cap \operatorname{dom} \delta_{C}^{*}\right\}$;
with $f^{*}(y):=\sup _{x}\{\langle x, y\rangle-f(x)\} ; \quad \delta_{C}:=$ indicator of C.

Properties of (P)-(D)

- Dual is always convex (sup-concave)
- Weak duality holds: $v(P) \geq v(D)$ for any feasible pair (P)-(D)

Duality:Key Questions

$$
v(P)=\inf \{f(x): x \in C\} ; \quad v(D)=\sup _{y}\left\{-f^{*}(y)-\delta_{C}^{*}(-y)\right\}
$$

- Zero Duality Gap: when $v(P)=v(D)$?
- Strong Duality: when inf / sup attained?
- Structure/Relations of Primal-Dual Optimal Sets/Solutions

Convex $[f, C]+$ some Regularity Cond. deliver the answers

Less Popular: The Bidual

$$
(P) \quad v(P)=\inf \{f(x): x \in C\} ; \quad(D) \quad v(D)=\sup _{y}\left\{-f^{*}(y)-\delta_{C}^{*}(-y)\right\}
$$

The dual (DD) of (D) is then in term of the bi-conjugate:
(DD)

$$
v(D D)=\inf _{z}\left\{f^{* *}(z)+\delta_{C}^{* *}(z)\right\}
$$

The dual (D) being always convex, one has (modulo some Reg. Cond.)

$$
v(P) \geq v(D)=v(D D)
$$

Less Popular: The Bidual

$(P) \quad v(P)=\inf \{f(x): x \in C\} ;$
$(D) \quad v(D)=\sup _{y}\left\{-f^{*}(y)-\delta_{C}^{*}(-y)\right\}$

The dual (DD) of (D) is then in term of the bi-conjugate:
$(D D)$

$$
v(D D)=\inf _{z}\left\{f^{* *}(z)+\delta_{C}^{* *}(z)\right\}
$$

The dual (D) being always convex, one has (modulo some Reg. Cond.)

$$
v(P) \geq v(D)=v(D D)
$$

- $v(D D)$ is another lower bound for $v(P)$
- $v(D D)$ natural convexification of $v(P) \Longleftarrow f^{* *} \leq f$
- $v(D D)$ often reveals hidden convexity - (or lack of) in (P).

A Prototype in CO: Trust Region is Hidden Convex

The nonconvex trust region suproblem $\left[Q \in S_{n}, g \in \mathbb{R}^{n}, r>0\right]$:
$(T R) \quad$ minimize $\left\{z^{T} Q z-2 g^{T} z:\|z\| \leq r z \in \mathbb{R}^{n}\right\}$
$Q \in S_{n}$ can be diagonalized, i.e., \exists an orthogonal C

$$
C^{t} Q C=D:=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right), d_{j} \in \mathbb{R}, j=1, \ldots, n ; c:=C g
$$

Theorem (Ben-Tal and T. (1996)). The nonconvex (TR) is equivalent to the convex problem

$$
(C T R) \quad \min \left\{\sum_{j=1}^{n} d_{j} y_{j}-2\left|c_{j}\right| \sqrt{y_{j}}: \sum_{j=1}^{n} y_{j} \leq r, y \in \mathbb{R}_{+}^{n}\right\} .
$$

More precisely, $\exists y^{*}$ of (CTR), and corresponding optimal solution of $(T R)$ given by $z^{*}=C x^{*}, x_{j}^{*}=\boldsymbol{\operatorname { s g n }} c_{j} \sqrt{y_{j}^{*}}, \forall j$ and $\inf (T R)=\min (C T R)$

Proof. See more general results (e.g., min. of indefinite quadratic subject to 2-sided indefinite constraints; min of concave quadratic over fnitely many convex quadratic) proven via biduality in (Ben Tal-Teboulle (96))

A Prototype in DO: The Max-Cut Problem

Data Input: A graph $G=(V, E), V=\{1,2, \ldots, n\}$ with weights $w_{i j}=w_{j i} \geq 0$ on the edges $(i, j) \in E$ and with $w_{i j}=0$ if $(i, j) \notin E$.
Problem: Find the set of vertices $S \subset V$ that maximizes the weight of the edges with one end point in S and the other in its complement \bar{S}, i.e., to maximize the total weight across the cut (S, \bar{S}).

A Prototype in DO: The Max-Cut Problem

Data Input: A graph $G=(V, E), V=\{1,2, \ldots, n\}$ with weights $w_{i j}=w_{j i} \geq 0$ on the edges $(i, j) \in E$ and with $w_{i j}=0$ if $(i, j) \notin E$.
Problem: Find the set of vertices $S \subset V$ that maximizes the weight of the edges with one end point in S and the other in its complement \bar{S}, i.e., to maximize the total weight across the cut (S, \bar{S}).

Max Cut as a Nonconvex QP

$$
(M C) \max \left\{\sum_{i<j} w_{i j} \frac{1-x_{i} x_{j}}{2}: x_{i}^{2}=1, i=1, \ldots, n\right\}
$$

Can be reformulated equivalently as

$$
(M C) \quad \max \left\{x^{\top} Q x: x_{i}^{2}=1, i=1, \ldots, n\right\}
$$

where $S_{n} \ni Q:=\frac{L}{4} \succeq 0, \quad q_{i j} \leq 0 \forall i \neq j ; L \equiv \operatorname{diag} W e-W$; $e=(1, \ldots, n)^{T}$

Dual Representations of MC-(Shor-87)

(MC) $\quad \max \left\{x^{\top} Q x: x_{i}^{2}=1, i=1, \ldots, n\right\}$

DUALITY IS "VERY FLEXIBLE"...

Marc Teboulle - Tel Aviv University

Dual Representations of MC-(Shor-87)

(MC)

$$
\max \left\{x^{\top} Q x: x_{i}^{2}=1, i=1, \ldots, n\right\}
$$

DUALITY IS "VERY FLEXIBLE"...

The following are "equal" upper bounds for (MC)

- $\min _{u \in \mathbb{R}^{n}}\left\{u^{T} e: \operatorname{Diag}(u) \succeq Q\right\}$
- $\min _{u \in \mathbb{R}^{n}}\left\{u^{T} e+n \lambda_{\max }(Q-\operatorname{Diag}(u))\right\}$
- $\min _{u \in \mathbb{R}^{n}}\left\{n \lambda_{\max }(Q+\operatorname{Diag}(u)): u^{T} e=0\right\}$
- $\min _{u \in \mathbb{R}^{n}}\left\{u^{T} e: \lambda_{\text {min }}(\operatorname{Diag}(u)-Q) \geq 0\right\}$

Notation:

For $u \in \mathbb{R}^{n}: \operatorname{Diag}(u):=\operatorname{Diag}\left(u_{1}, \ldots, u_{n}\right)$, Diagonal Matrix.
For $S^{n} \ni Z, \operatorname{diag}(Z)=\left(Z_{11}, \ldots, Z_{n n}\right)^{T} \in \mathbb{R}^{n}$.

One More Dual Bound...The Bidual

(MC)

$$
\max \left\{x^{\top} Q x: x_{i}^{2}=1, i=1, \ldots, n\right\}
$$

Using the (first) previous dual representation:

Take the dual of the above dual - The bidual:

$$
\text { (R) } \quad \max _{Z \in S^{n}}\{\operatorname{tr} Q Z: \operatorname{diag}(Z)=e, Z \succeq 0\}
$$

Here one has: $v(M C) \leq v(D M C)=v(R)$

The pair of convex problems (DMC)-(R) are "Semidefinite Optimization problems"

Semi-Definite Programming-SDP Relaxation

$$
\min _{x \in \mathbb{R}^{m}}\left\{c^{T} x: A(x) \succeq 0\right\} ; \max _{Z \in S^{n}}\left\{\operatorname{tr} A_{0} Z: \operatorname{tr} A_{i} Z=c_{i}, i \in[1, m] Z \succeq 0\right\}
$$

where $A(x):=A_{0}+\sum_{i=1}^{m} x_{i} A_{i}$

- SDP are special classes of convex optimization problems
- Computationally tractable: Can be approximately solved to a desired accuracy in polynomial time
- Naturally occurs in Relaxation of QP via Lifting

Semi-Definite Programming-SDP Relaxation

$$
\min _{x \in \mathbb{R}^{m}}\left\{c^{T} x: A(x) \succeq 0\right\} ; \max _{Z \in S^{n}}\left\{\operatorname{tr} A_{0} Z: \operatorname{tr} A_{i} Z=c_{i}, i \in[1, m] Z \succeq 0\right\}
$$

where $A(x):=A_{0}+\sum_{i=1}^{m} x_{i} A_{i}$

- SDP are special classes of convex optimization problems
- Computationally tractable: Can be approximately solved to a desired accuracy in polynomial time
- Naturally occurs in Relaxation of QP via Lifting

Back to MC: $\max \left\{x^{T} Q x: x_{i}^{2}=1, i=1, \ldots, n\right\}$

Semi-Definite Programming-SDP Relaxation

$$
\min _{x \in \mathbb{R}^{m}}\left\{c^{T} x: A(x) \succeq 0\right\} ; \max _{Z \in S^{n}}\left\{\operatorname{tr} A_{0} Z: \operatorname{tr} A_{i} Z=c_{i}, i \in[1, m] Z \succeq 0\right\}
$$

where $A(x):=A_{0}+\sum_{i=1}^{m} x_{i} A_{i}$

- SDP are special classes of convex optimization problems
- Computationally tractable: Can be approximately solved to a desired accuracy in polynomial time
- Naturally occurs in Relaxation of QP via Lifting

Back to MC: $\max \left\{x^{\top} Q x: x_{i}^{2}=1, i=1, \ldots, n\right\}$
$x^{T} Q x \equiv \operatorname{tr}\left(Q x x^{\top}\right)$. Set: $X=x x^{\top}$. Then (MC) can be reformulated as

Semi-Definite Programming-SDP Relaxation

$$
\min _{x \in \mathbb{R}^{m}}\left\{c^{T} x: A(x) \succeq 0\right\} ; \max _{Z \in S^{n}}\left\{\operatorname{tr} A_{0} Z: \operatorname{tr} A_{i} Z=c_{i}, i \in[1, m] Z \succeq 0\right\}
$$

where $A(x):=A_{0}+\sum_{i=1}^{m} x_{i} A_{i}$

- SDP are special classes of convex optimization problems
- Computationally tractable: Can be approximately solved to a desired accuracy in polynomial time
- Naturally occurs in Relaxation of QP via Lifting

Back to MC: $\max \left\{x^{T} Q x: x_{i}^{2}=1, i=1, \ldots, n\right\}$
$x^{T} Q x \equiv \operatorname{tr}\left(Q x x^{T}\right)$. Set: $X=x x^{T}$. Then (MC) can be reformulated as
$(M C) \quad \max _{X \in S^{n}}\{\operatorname{tr} Q X: \operatorname{diag}(X)=e, \operatorname{rank}(X)=1 ; X \succeq 0\}$

Semi-Definite Programming-SDP Relaxation

$$
\min _{x \in \mathbb{R}^{m}}\left\{c^{T} x: A(x) \succeq 0\right\} ; \max _{Z \in S^{n}}\left\{\operatorname{tr} A_{0} Z: \operatorname{tr} A_{i} Z=c_{i}, i \in[1, m] Z \succeq 0\right\}
$$

where $A(x):=A_{0}+\sum_{i=1}^{m} x_{i} A_{i}$

- SDP are special classes of convex optimization problems
- Computationally tractable: Can be approximately solved to a desired accuracy in polynomial time
- Naturally occurs in Relaxation of QP via Lifting Back to MC: $\max \left\{x^{T} Q x: x_{i}^{2}=1, i=1, \ldots, n\right\}$ $x^{T} Q x \equiv \operatorname{tr}\left(Q x x^{T}\right)$. Set: $X=x x^{T}$. Then $(M C)$ can be reformulated as

$$
(M C) \quad \max _{X \in S^{n}}\{\operatorname{tr} Q X: \operatorname{diag}(X)=e, \operatorname{rank}(X)=1 ; X \succeq 0\}
$$

DROP the Hard RANK ONE constraint=SDP RELAXATION

$$
(R) \equiv \text { BIDUAL OF MC } \equiv \text { SDP RELAXATION }
$$

Fundamental Question

A Fundamental Question in Nonconvex QP:
Tightness of the SDP relaxation (\equiv Bidual Bound for QP)?

Fundamental Question

A Fundamental Question in Nonconvex QP:
Tightness of the SDP relaxation (\equiv Bidual Bound for QP)?
A General Class of Nonconvex QP

$$
\begin{gathered}
(Q P) \quad v(Q P):=\max \left\{x^{T} Q x: x^{2} \in \mathcal{F}\right\} \\
x^{2} \equiv\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)^{T} ; Q \in S_{n} ; \quad \mathcal{F} \subseteq \mathbb{R}^{n}, \text { closed convex }
\end{gathered}
$$

Extends the special case: [Max-Cut when $\mathcal{F}=\{e\}]$.

A Trigonometric Representation of QP

Notation: $\forall X \in S_{n}, \arcsin X:=\arcsin \left(X_{i j}\right) ;\langle A, B\rangle=\operatorname{tr}(A B)$ $\operatorname{diag}(X):=\left(X_{11}, \ldots, X_{n n}\right)^{T} \in \mathbb{R}^{n}, D:=\operatorname{Diag}\left(d_{1}, \ldots, d_{n}\right)$ diag. matrix.

A Trigonometric Representation of QP

Notation: $\forall X \in S_{n}, \arcsin X:=\arcsin \left(X_{i j}\right) ;\langle A, B\rangle=\operatorname{tr}(A B)$ $\operatorname{diag}(X):=\left(X_{11}, \ldots, X_{n n}\right)^{T} \in \mathbb{R}^{n}, D:=\operatorname{Diag}\left(d_{1}, \ldots, d_{n}\right)$ diag. matrix.
$(T Q P) \max _{(d, X)}\left\{\frac{2}{\pi}\langle Q, D \arcsin (X) D\rangle: d \in \mathbb{R}_{+}^{n}, d^{2} \in \mathcal{F}, X \succeq 0, \operatorname{diag}(X)=e\right\}$

Theorem (Goemeans-Williamson 95, Nesterov 97, Ye 99)

$$
\mathbf{v}(\mathbf{Q P})=\mathbf{v}(\mathbf{T Q P})
$$

(TQP) is the key tool to derive (0,1] $\ni \rho$-approximate solutions to (QP) [$\rho=.878 \ldots$ for (MC); $\rho=2^{-1} \pi$ for $Q \succeq 0$]

$$
\rho v(R) \leq \mathbf{v}(\mathbf{T Q P})=\mathbf{v}(\mathbf{Q P}) \leq v(R)
$$

where (R) is a semidefinite relaxation of (QP) given by

$$
(R) \quad \max \left\{\langle Q, Z\rangle: \operatorname{diag}(Z) \in \mathcal{F}, S_{n} \ni Z \succeq 0\right\} .
$$

Nonconvex QP with Exact Solutions

QP with Exact Solutions through their Convex relaxation counterpart?

- (QP) $\quad v(Q P):=\max \left\{x^{\top} Q x: x^{2} \in \mathcal{F}\right\}$
- (R) $\quad \max \left\{\langle Q, Z\rangle: \operatorname{diag}(Z) \in \mathcal{F}, S^{n} \ni Z \succeq 0\right\}$

Are there (QP) for which $v(R)=V(Q P)$?

Nonconvex QP with Exact Solutions

QP with Exact Solutions through their Convex relaxation counterpart?

- (QP) $\quad v(Q P):=\max \left\{x^{\top} Q x: x^{2} \in \mathcal{F}\right\}$
- (R) $\quad \max \left\{\langle Q, Z\rangle: \operatorname{diag}(Z) \in \mathcal{F}, S^{n} \ni Z \succeq 0\right\}$

Are there (QP) for which $\mathbf{v}(\mathrm{R})=\mathrm{V}(\mathrm{QP})$?
Theorem (Zhang 2000) Let $S^{n} \ni Q$ with $q_{i j} \geq 0 \forall i \neq j$. Then,

$$
v(Q P)=v(T Q P)=v(R)
$$

If Z solves (R) then $\sqrt{\operatorname{diag} Z}$ solves (QP).
Proof based on the key (TQP) representation + some other approximation and penalty arguments.

Nonconvex QP with Exact Solutions

QP with Exact Solutions through their Convex relaxation counterpart?

- (QP) $\quad v(Q P):=\max \left\{x^{\top} Q x: x^{2} \in \mathcal{F}\right\}$
- (R) $\quad \max \left\{\langle Q, Z\rangle: \operatorname{diag}(Z) \in \mathcal{F}, S^{n} \ni Z \succeq 0\right\}$

Are there (QP) for which $\mathbf{v}(\mathrm{R})=\mathrm{V}(\mathrm{QP})$?
Theorem (Zhang 2000) Let $S^{n} \ni Q$ with $q_{i j} \geq 0 \forall i \neq j$. Then,

$$
v(Q P)=v(T Q P)=v(R)
$$

If Z solves (R) then $\sqrt{\operatorname{diag} Z}$ solves (QP).
Proof based on the key (TQP) representation + some other approximation and penalty arguments.

We will show that this can be proved directly via duality.

A Bidual Approach to Exact Solutions

(QP) $\quad \max \left\{x^{\top} Q x: x^{2} \in \mathcal{F}\right\} \Longleftrightarrow \max _{x, y}\left\{x^{\top} Q x: y=x^{2}, y \in \mathcal{F}\right\}$

- A dual of (QP) is (DQP)
$(D Q P) \min _{u \in \mathbb{R}^{n}}\left\{\max _{x \in \mathbb{R}^{n}} x^{T}(Q-U) x+\max _{y \in \mathcal{F}}\langle y, u\rangle\right\}=\min _{u \in \mathbb{R}^{n}}\left\{\sigma_{\mathcal{F}}(u): Q-U \preceq 0\right\}$
where $U:=\operatorname{Diag}\left(u_{1}, \ldots, u_{n}\right), \sigma_{\mathcal{F}}(u)=: \max \{\langle u, y\rangle: y \in \mathcal{F}\} \equiv \delta_{\mathcal{F}}^{*}(u)$.

A Bidual Approach to Exact Solutions

$(Q P) \quad \max \left\{x^{T} Q x: x^{2} \in \mathcal{F}\right\} \Longleftrightarrow \max _{x, y}\left\{x^{T} Q x: y=x^{2}, y \in \mathcal{F}\right\}$

- A dual of (QP) is (DQP)
$(D Q P) \min _{u \in \mathbb{R}^{n}}\left\{\max _{x \in \mathbb{R}^{n}} x^{T}(Q-U) x+\max _{y \in \mathcal{F}}\langle y, u\rangle\right\}=\min _{u \in \mathbb{R}^{n}}\left\{\sigma_{\mathcal{F}}(u): Q-U \preceq 0\right\}$ where $U:=\operatorname{Diag}\left(u_{1}, \ldots, u_{n}\right), \sigma_{\mathcal{F}}(u)=: \max \{\langle u, y\rangle: y \in \mathcal{F}\} \equiv \delta_{\mathcal{F}}^{*}(u)$.
- Bidual: Dual of the dual DQP
$\left(D^{2} Q P\right) \quad \max _{Z \succeq 0}\left\{\langle Q, Z\rangle+\min _{u \in \mathbb{R}^{n}}\left\{\delta_{\mathcal{F}}^{*}(u)-\langle Z, U\rangle\right\}=\max _{Z \succeq 0}\{\langle Q, Z\rangle: \operatorname{diag}(Z) \in \mathcal{F}\}\right.$ and $\left(D^{2} Q P\right)$ is nothing else but (R).
- Regularity Cond. holds for (DQP) $\Longrightarrow v(D Q P)=v\left(D^{2} Q P\right)$

A Simple Duality Proof (Pinar-T. (06))

- Weak duality: $v(Q P) \leq v(D Q P)$ for any feasible P-D.
- By Regularity: $v(D Q P)=v\left(D^{2} Q P\right)$, thus $v(Q P) \leq v\left(D^{2} Q P\right)$.
- Ask for equality, i.e. when $v(Q P) \geq v\left(D^{2} Q P\right)$?

A Simple Duality Proof (Pinar-T. (06))

- Weak duality: $v(Q P) \leq v(D Q P)$ for any feasible P-D.
- By Regularity: $v(D Q P)=v\left(D^{2} Q P\right)$, thus $v(Q P) \leq v\left(D^{2} Q P\right)$.
- Ask for equality, i.e. when $v(Q P) \geq v\left(D^{2} Q P\right)$?

For any Z optimal of ($D^{2} Q P$); $x=\sqrt{\operatorname{diag}(Z)}$ feas. for (QP) since

$$
\operatorname{diag}(Z) \in \mathcal{F} \Longrightarrow x^{2}=\operatorname{diag}(Z) \in \mathcal{F}
$$

A Simple Duality Proof (Pinar-T. (06))

- Weak duality: $v(Q P) \leq v(D Q P)$ for any feasible P-D.
- By Regularity: $v(D Q P)=v\left(D^{2} Q P\right)$, thus $v(Q P) \leq v\left(D^{2} Q P\right)$.
- Ask for equality, i.e. when $v(Q P) \geq v\left(D^{2} Q P\right)$?

For any Z optimal of ($D^{2} Q P$); $x=\sqrt{\operatorname{diag}(Z)}$ feas. for (QP) since

$$
\operatorname{diag}(Z) \in \mathcal{F} \Longrightarrow x^{2}=\operatorname{diag}(Z) \in \mathcal{F}
$$

Thus, with x feasible for (QP) and Z optimal for $\left(D^{2} Q P\right)$ we have:

$$
\begin{aligned}
& v(Q P) \geq \sum_{i, j} q_{i j} x_{i} x_{j}=\sum_{i} q_{i i} z_{i i}+2 \sum_{i<j} q_{i j} \sqrt{Z_{i i} z_{i j}} \text {, while } \\
& v\left(D^{2} Q P\right)=\sum_{i, j} q_{i j} z_{i j}=\sum_{i} q_{i i} z_{i j}+2 \sum_{i<j} q_{i j} z_{i j} \\
& \Longrightarrow v(Q P)-v\left(D^{2} Q P\right) \geq 0 \Longleftrightarrow \sum_{i \neq j} q_{i j}\left(\sqrt{Z_{i i} Z_{i j}}-Z_{i j}\right) \geq 0
\end{aligned}
$$

A Simple Duality Proof (Pinar-T. (06))

- Weak duality: $v(Q P) \leq v(D Q P)$ for any feasible P-D.
- By Regularity: $v(D Q P)=v\left(D^{2} Q P\right)$, thus $v(Q P) \leq v\left(D^{2} Q P\right)$.
- Ask for equality, i.e. when $v(Q P) \geq v\left(D^{2} Q P\right)$?

For any Z optimal of ($D^{2} Q P$); $x=\sqrt{\operatorname{diag}(Z)}$ feas. for (QP) since

$$
\operatorname{diag}(Z) \in \mathcal{F} \Longrightarrow x^{2}=\operatorname{diag}(Z) \in \mathcal{F}
$$

Thus, with x feasible for (QP) and Z optimal for $\left(D^{2} Q P\right)$ we have:

$$
\begin{aligned}
& v(Q P) \geq \sum_{i, j} q_{i j} x_{i} x_{j}=\sum_{i} q_{i i} z_{i i}+2 \sum_{i<j} q_{i j} \sqrt{Z_{i i} z_{i j}}, \text { while } \\
& v\left(D^{2} Q P\right)=\sum_{i, j} q_{i j} z_{i j}=\sum_{i} q_{i i} z_{i i}+2 \sum_{i<j} q_{i j} z_{i j} \\
& \Longrightarrow v(Q P)-v\left(D^{2} Q P\right) \geq 0 \Longleftrightarrow \sum_{i \neq j} q_{i j}\left(\sqrt{Z_{i i} z_{i j}}-Z_{i j}\right) \geq 0
\end{aligned}
$$

But $Z \succeq 0 \Longrightarrow Z_{i i} \geq 0, Z_{i i} z_{j j} \geq Z_{i j}^{2} \forall i \neq j$
Therefore since we assumed $q_{i j} \geq 0, \forall i \neq j$ we are done!

Quadratic Maps with Convex Images

An old and classical subject in Mathematics....
In the complex space goes back to:
Hausdorff-Toeplitz Theorem [1918]: The numerical range of a linear operator is closed and convex.

Explicitly, in finite dimension, with $A, B, n \times n$, Hermitian matrices one has: $\left\{\left(z^{*} A z, z^{*} B z\right):\|z\|=1, z \in \mathbb{C}^{n}\right\} \subseteq \mathbb{R}^{2}$, is closed convex.

Quadratic Maps with Convex Images

An old and classical subject in Mathematics....
In the complex space goes back to:
Hausdorff-Toeplitz Theorem [1918]: The numerical range of a linear operator is closed and convex.

Explicitly, in finite dimension, with $A, B, n \times n$, Hermitian matrices one has: $\left\{\left(z^{*} A z, z^{*} B z\right):\|z\|=1, z \in \mathbb{C}^{n}\right\} \subseteq \mathbb{R}^{2}$, is closed convex.

The Real Case - Let $A, B \in S^{n}$.
Dines Theorem (1940) $\left\{\left(x^{\top} A x, x^{\top} B x\right): x \in \mathbb{R}^{n}\right\} \subseteq \mathbb{R}^{2}$ is convex.

Quadratic Maps with Convex Images

An old and classical subject in Mathematics....
In the complex space goes back to:
Hausdorff-Toeplitz Theorem [1918]: The numerical range of a linear operator is closed and convex.

Explicitly, in finite dimension, with $A, B, n \times n$, Hermitian matrices one has: $\left\{\left(z^{*} A z, z^{*} B z\right):\|z\|=1, z \in \mathbb{C}^{n}\right\} \subseteq \mathbb{R}^{2}$, is closed convex.

The Real Case - Let $A, B \in S^{n}$.
Dines Theorem (1940) $\left\{\left(x^{T} A x, x^{T} B x\right): x \in \mathbb{R}^{n}\right\} \subseteq \mathbb{R}^{2}$ is convex.
A Key Result: Brickman's Theorem (1961). If $n \geq 3$ then

$$
B:=\left\{\left(x^{T} A x, x^{T} B x\right): \quad\|x\|=1, x \in \mathbb{R}^{n}\right\} \subseteq \mathbb{R}^{2} \text { is closed convex }
$$

A very good survey: Uhlig (1979).
Note: Brickman's Theorem fails for $n=2$

Convexity of Image of Quadratic Map: Extensions?

- Let $A_{i} \in S^{n}$ (indefinite)
- For $m \geq 3, q_{i}(x)=x^{T} A_{i} x, i \in[1, m]$; Quadratic forms
- For $q_{i}(x)=x^{T} A_{i} x-2 b_{i}^{T} x+c_{i}$; Quadratic functions
- $q: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, q(x) \equiv\left(q_{1}(x), \ldots, q_{m}(x)\right)^{T}$

Question: When is $q\left(\mathbb{R}^{n}\right)$ convex for quadratic forms/functions?

Why do we care about the convexity of $q\left(\mathbb{R}^{n}\right)$?

At the root of fundamental questions/answers for "Quadratic Problems"
A. Quadratic Optimization e.g., Duality, Optimality, SDP...
B. Matrix related questions e.g., Simultaneous diag.
C. The S-Procedure
D. Computational Tractability

Why do we care about the convexity of $q\left(\mathbb{R}^{n}\right)$?

At the root of fundamental questions/answers for "Quadratic Problems"
A. Quadratic Optimization e.g., Duality, Optimality, SDP...
B. Matrix related questions e.g., Simultaneous diag.
C. The S-Procedure
D. Computational Tractability

Example: $(Q) \min \left\{q_{0}(x): \quad q_{i}(x) \leq 0, i=1, \ldots, m, x \in \mathbb{R}^{n}\right\}$.
Let $W:=\left\{\left(q_{0}(x), \ldots, q_{m}(x)\right): x \in \mathbb{R}^{n}\right\}$.
Then (Q) equivalent to:

$$
\begin{aligned}
& \min \left\{s_{0}: s_{i} \leq 0, i=1, \ldots, m, s \in W\right\} \\
& (Q) \text { is convex iff the image } W \text { convex. }
\end{aligned}
$$

Quadratic Maps with Convex Images - Polyak (98)

- Homogeneous Quadratic Forms: m=3

$$
\text { Let } S^{n} \ni A_{i}, q_{i}(x)=x^{T} A_{i} x, i=1,2,3 .
$$

Quadratic Maps with Convex Images - Polyak (98)

- Homogeneous Quadratic Forms: m=3

$$
\text { Let } S^{n} \ni A_{i}, q_{i}(x)=x^{T} A_{i} x, i=1,2,3
$$

Theorem 1 Suppose $n \geq 3$ and there exists $\mu \in \mathbb{R}^{3}$ such that

$$
\mu_{1} A_{1}+\mu_{2} A_{2}+\mu_{3} A_{3} \succ 0 .
$$

Then $\left\{\left(q_{1}(x), q_{2}(x), q_{3}(x)\right): x \in \mathbb{R}^{n}\right\} \subseteq \mathbb{R}^{3}$ is closed convex.

Quadratic Maps with Convex Images - Polyak (98)

- Homogeneous Quadratic Forms: m=3

$$
\text { Let } S^{n} \ni A_{i}, q_{i}(x)=x^{T} A_{i} x, i=1,2,3
$$

Theorem 1 Suppose $n \geq 3$ and there exists $\mu \in \mathbb{R}^{3}$ such that

$$
\mu_{1} A_{1}+\mu_{2} A_{2}+\mu_{3} A_{3} \succ 0 .
$$

Then $\left\{\left(q_{1}(x), q_{2}(x), q_{3}(x)\right): x \in \mathbb{R}^{n}\right\} \subseteq \mathbb{R}^{3}$ is closed convex.

- Nonhomogeneous Case : $\mathbf{m}=\mathbf{2}$ Let q_{i} be quadratic functions, i.e.,

$$
q_{i}(x)=x^{T} A_{i} x-2 b_{i}^{T} x+c_{i}, \quad b_{i} \in \mathbb{R}^{n}, c_{i} \in \mathbb{R}, A_{i} \in S^{n}, i=1,2 .
$$

Quadratic Maps with Convex Images - Polyak (98)

- Homogeneous Quadratic Forms: m=3

$$
\text { Let } S^{n} \ni A_{i}, q_{i}(x)=x^{T} A_{i} x, i=1,2,3
$$

Theorem 1 Suppose $n \geq 3$ and there exists $\mu \in \mathbb{R}^{3}$ such that

$$
\mu_{1} A_{1}+\mu_{2} A_{2}+\mu_{3} A_{3} \succ 0 .
$$

Then $\left\{\left(q_{1}(x), q_{2}(x), q_{3}(x)\right): x \in \mathbb{R}^{n}\right\} \subseteq \mathbb{R}^{3}$ is closed convex.

- Nonhomogeneous Case : $\mathbf{m}=\mathbf{2}$ Let q_{i} be quadratic functions, i.e.,

$$
q_{i}(x)=x^{T} A_{i} x-2 b_{i}^{T} x+c_{i}, \quad b_{i} \in \mathbb{R}^{n}, c_{i} \in \mathbb{R}, A_{i} \in S^{n}, i=1,2 .
$$

Theorem 2 Suppose $n \geq 2$ and there exists $\mu \in \mathbb{R}^{2}$ such that

$$
\mu_{1} A_{1}+\mu_{2} A_{2} \succ 0 .
$$

Then $\left\{\left(q_{1}(x), q_{2}(x)\right): x \in \mathbb{R}^{n}\right\} \subseteq \mathbb{R}^{2}$ is closed convex.
The proofs rely on the nontrivial Brickman's theorem.
We will give a simple direct proof of Theorem 2.

Problem Reformulation

Given $q_{i}(x)=x^{T} A_{i} x-2 b_{i}^{T} x+c_{i}, \quad i=1,2, \quad q(x)=\left(q_{1}(x), q_{2}(x)\right)^{T}$ We want to prove that for all $n \geq 2$:

$$
(*) \exists \mu \in \mathbb{R}^{2} \text { s.t. } \mu_{1} A_{1}+\mu_{2} A_{2} \succ 0 \Longrightarrow q\left(\mathbb{R}^{n}\right) \text { convex }
$$

Under (${ }^{*}$) we can assume $A_{2} \succ 0$. Thus,

$$
q\left(\mathbb{R}^{n}\right):=\left\{\left(q_{1}(x),\|x\|^{2}\right)^{T}: x \in \mathbb{R}^{n}\right\}=\left\{(s, t): s=q_{1}(x), t=\|x\|^{2}\right\}
$$

For any $n \geq 2$, the sphere $S_{t}:=\left\{x:\|x\|^{2}=t\right\}$ is connected. Thus, ${ }^{1}$

$$
q\left(\mathbb{R}^{n}\right)=\left\{(s, t): \inf _{x \in S_{t}} q_{1}(x) \leq s \leq \sup _{x \in S_{t}} q_{1}(x), t \geq 0\right\}
$$

Therefore $q\left(\mathbb{R}^{n}\right)$ will be convex if we can show that

$$
I(t):=\inf _{x \in S_{t}} q_{1}(x) \text { convex in } t\left(u(t):=\sup _{x \in S_{t}} q_{1}(x) \text { concave in } t\right)
$$

[^0]
Direct Proof of Theorem 2

Lemma For $t \geq 0$ define the function

$$
\ell(t):=\min \left\{q_{1}(x): x \in S_{t}\right\} \equiv \min \left\{x^{T} A_{1} x-2 b_{1}^{T} x: x \in S_{t}\right\} .
$$

Then, $\ell(\cdot)$ is a convex function on \mathbb{R}_{+}.
Proof. via biduality!

Direct Proof of Theorem 2

Lemma For $t \geq 0$ define the function

$$
\ell(t):=\min \left\{q_{1}(x): x \in S_{t}\right\} \equiv \min \left\{x^{T} A_{1} x-2 b_{1}^{T} x: x \in S_{t}\right\} .
$$

Then, $\ell(\cdot)$ is a convex function on \mathbb{R}_{+}.
Proof. via biduality !

- Applying the Lemma implies that for all $n \geq 2$,

$$
\begin{aligned}
& q\left(\mathbb{R}^{n}\right)=\left\{(s, t): \inf _{x \in S_{t}} q_{1}(x) \leq s \leq \sup _{x \in S_{t}} q_{1}(x), t \geq 0\right\} \\
& q\left(\mathbb{R}^{n}\right)=\{(s, t): \ell(t) \leq s \leq u(t), t \geq 0\} \text { is convex in } \mathbb{R}^{2} .
\end{aligned}
$$

- Note: Importance of dimension. For $n=1$, Lemma remains true.. but the set $\left(S_{t}=\{x \in \mathbb{R}:|x|=1\}\right)$ is not connected!

A General Nonconvex Class: Ratio of QP

Minimizing ratio of indefinite quadratic functions over an Ellipsoid

$$
\begin{gathered}
(R Q) \quad f_{*}:=\inf \left\{\frac{f_{1}(\mathbf{x})}{f_{2}(\mathbf{x})}:\|\mathbf{L x}\|^{2} \leq \rho\right\} \\
f_{i}(\mathbf{x})=\mathbf{x}^{T} \mathbf{A}_{i} \mathbf{x}+2 \mathbf{b}_{i}^{T} \mathbf{x}+c_{i}, i=1,2 \\
\mathbf{A}_{i}=\mathbf{A}_{i}^{T} \in \mathbb{R}^{n \times n}, \mathbf{b}_{i} \in \mathbb{R}^{n}, c_{i} \in \mathbb{R}, \mathbf{L} \in \mathbb{R}^{r \times n}, \rho>0
\end{gathered}
$$

The feasible set

$$
\mathcal{F}:=\left\{\mathbf{x} \in \mathbb{R}^{n}:\|\mathbf{L} \mathbf{x}\|^{2} \leq \rho\right\}
$$

represents a (possibly degenerate) ellipsoid .
Assumption: Problem (RQ) is well defined, i.e., $f_{2}(\mathbf{x})>0$ for every $x \in \mathcal{F}$.

Motivation Arises in Estimation Problems: Regularized Total LS $A x \approx b$ with (A, b) noisy data.

- Regularized Total Least Squares Problem (RTLS):
$f_{1}(\mathbf{x})=\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}, f_{2}(\mathbf{x})=\|\mathbf{x}\|^{2}+1$ (both nice convex functions...but ratio is not!)

Attainment of the Minimum for RQ

Theorem The minimum of problem ($R Q$) is attained if either the feasible set is compact - or when $r<n$ if the following holds:

$$
[S C] \quad \lambda_{\min }\left(\mathbf{M}_{1}, \mathbf{M}_{2}\right)<\lambda_{\min }\left(\mathbf{F}^{\top} \mathbf{A}_{1} \mathbf{F}, \mathbf{F}^{\top} \mathbf{A}_{2} \mathbf{F}\right),
$$

where

$$
\mathbf{M}_{1}=\left(\begin{array}{cc}
\mathbf{F}^{T} \mathbf{A}_{1} \mathbf{F} & \mathbf{F}^{\top} \mathbf{b}_{1} \\
\mathbf{b}_{1}^{T} \mathbf{F} & c_{1}
\end{array}\right), \mathbf{M}_{2}=\left(\begin{array}{cc}
\mathbf{F}^{T} \mathbf{A}_{2} \mathbf{F} & \mathbf{F}^{\top} \mathbf{b}_{2} \\
\mathbf{b}_{2}^{T} \mathbf{F} & c_{2}
\end{array}\right)
$$

\mathbf{F} is an $n \times(n-r)$ matrix whose columns form an orthonormal basis for the null space of \mathbf{L}, and $\lambda_{\min }(\mathbf{A}, \mathbf{B}):=\max \{\lambda: \mathbf{A}-\lambda \mathbf{B} \succeq \mathbf{0}\}$
\& The proof relies on asymptotic tools for nonconvex functions.

Attainment of the Minimum for RQ

Theorem The minimum of problem ($R Q$) is attained if either the feasible set is compact - or when $r<n$ if the following holds:

$$
[S C] \quad \lambda_{\min }\left(\mathbf{M}_{1}, \mathbf{M}_{2}\right)<\lambda_{\min }\left(\mathbf{F}^{\top} \mathbf{A}_{1} \mathbf{F}, \mathbf{F}^{\top} \mathbf{A}_{2} \mathbf{F}\right),
$$

where

$$
\mathbf{M}_{1}=\left(\begin{array}{cc}
\mathbf{F}^{T} \mathbf{A}_{1} \mathbf{F} & \mathbf{F}^{T} \mathbf{b}_{1} \\
\mathbf{b}_{1}^{T} \mathbf{F} & c_{1}
\end{array}\right), \mathbf{M}_{2}=\left(\begin{array}{cc}
\mathbf{F}^{T} \mathbf{A}_{2} \mathbf{F} & \mathbf{F}^{\top} \mathbf{b}_{2} \\
\mathbf{b}_{2}^{T} \mathbf{F} & c_{2}
\end{array}\right)
$$

\mathbf{F} is an $n \times(n-r)$ matrix whose columns form an orthonormal basis for the null space of \mathbf{L}, and $\lambda_{\text {min }}(\mathbf{A}, \mathbf{B}):=\max \{\lambda: \mathbf{A}-\lambda \mathbf{B} \succeq \mathbf{0}\}$
\& The proof relies on asymptotic tools for nonconvex functions.
[SC] plays a key role for establishing results in two directions:

- \checkmark An Exact SDP Relaxation for (RQ).
- Convergence/complexity analysis of a fast algorithm for solving (RQ).
- Details in: A. Beck and M. Teboulle (2009).

An Exact SDP Relaxation of (RQ)- (Beck-T. (09))

Theorem Let $n \geq 2$ and suppose [SC] holds. Then,

$$
\begin{gathered}
\operatorname{val}(\mathrm{RQ})=\operatorname{val}(D) \text {, where (D) is given by } \\
\max _{\beta \geq 0, \alpha \in \mathbb{R}}\left\{\alpha:\left(\begin{array}{ll}
\mathbf{A}_{1} & \mathbf{b}_{1} \\
\mathbf{b}_{1}^{T} & c_{1}
\end{array}\right) \succeq \alpha\left(\begin{array}{cc}
\mathbf{A}_{2} & \mathbf{b}_{2} \\
\mathbf{b}_{2}^{T} & c_{2}
\end{array}\right)-\beta\left(\begin{array}{cc}
\mathbf{L}^{T} \mathbf{L} & \mathbf{0} \\
\mathbf{0} & -\rho
\end{array}\right)\right\}
\end{gathered}
$$

Proof relies on strong duality for homogeneous QP with two constraints + the attainability Condition [SC].

- The solution of (RQ) can be extracted from the solution of the semidefinite formulation.
- (RQ) belongs to the privileged class of Hidden Convex Problems...
- More results and details in Beck and Teboulle (2009, 2010).

The S-Procedure -(Yakubovitch-61)

$$
\begin{gathered}
q_{i}(x)=x^{T} Q_{i} x+2 b_{i}^{T} x+c_{i}, \quad Q_{i} \in S^{n}, i=0, \ldots, m \\
\mathcal{F}:=\left\{x \in \mathbb{R}^{n}: q_{i}(x) \geq 0, i=1, \ldots, m\right\}
\end{gathered}
$$

Consider the following statements:

$$
\begin{equation*}
q_{0}(x) \geq 0 \quad \forall x \in \mathcal{F} \tag{1}
\end{equation*}
$$

$\left(S_{2}\right)$

$$
\exists s \in \mathbb{R}_{+}^{m}: q_{0}(x)-\sum_{i=1}^{m} s_{i} q_{i}(x) \geq 0, \forall x \in \mathbb{R}^{n}
$$

- $\left(S_{2}\right) \Longrightarrow\left(S_{1}\right)$ is always true.
- The reverse is in general false.
- Under which condition (s) $\left(S_{1}\right) \Longrightarrow\left(S_{2}\right)$?

The Basic S-Lemma -(Yakubovitch-61, 73)

S-Lemma Let $m=1$ and suppose

$$
\exists \hat{x} \text { such that } q_{1}(\hat{x})>0 .
$$

Then, $\left(S_{1}\right) \Longleftrightarrow\left(S_{2}\right)$.

$$
\left(S_{2}\right) \Longleftrightarrow \exists s \in \mathbb{R}_{+}:\left(\begin{array}{cc}
Q_{0} & b_{0} \\
b_{0}^{T} & c_{0}
\end{array}\right)-s\left(\begin{array}{cc}
Q_{1} & b_{1} \\
b_{1}^{T} & c_{1}
\end{array}\right) \succeq 0
$$

An Instrumental Tool

- In Control Theory
- In LMI/SDP reformulations/analysis of QP
- In Robust Optimization Analysis

Extension for $m>1 ? ?$

Even for $m=2$ with q_{i} quadratic forms
$q_{i}(x)=x^{T} Q_{i} x, Q_{i} \in S^{n}, i \in[0,2]$ in general false. Need additional assumptions.

Extension for $m>1 ? ?$

Even for $m=2$ with q_{i} quadratic forms
$q_{i}(x)=x^{\top} Q_{i} x, Q_{i} \in S^{n}, i \in[0,2]$ in general false. Need additional assumptions.

Theorem-(Polyak 98) Let $m=2$. Suppose $n \geq 3$ and

- $\exists \mu \in \mathbb{R}^{2}: \mu_{1} Q_{1}+\mu_{2} Q_{2} \succ 0$
- $\exists \hat{x}$ such that $q_{1}(\hat{x})>0, q_{2}(\hat{x})>0$.

Then, $\left(S_{1}\right) \Longleftrightarrow\left(S_{2}\right)$ where

$$
\begin{equation*}
x^{T} Q_{0} x \geq 0 \quad \forall x \in \mathcal{F}=\left\{x: q_{1}(x) \geq 0, q_{2}(x) \geq 0\right\} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\exists s \in \mathbb{R}_{+}^{2}: Q_{0}-\sum_{i=1}^{2} s_{i} Q_{i} \succeq 0 \tag{2}
\end{equation*}
$$

Proof. Brickman's Theorem + apply "Separation of convex sets". \square

The S-Procedure, Duality and Images under QM

Data: Quadratic Functions $q_{i}(x)=x^{T} Q_{i} x+2 b_{i}^{T} x+c_{i}, \quad Q_{i} \in S^{n}$

$$
\begin{aligned}
& (P) \quad \inf \left\{q_{0}(x): q_{i}(x) \geq 0 i \in[1, m]\right\} \\
& (D) \quad \sup _{\lambda \in \mathbb{R}_{+}^{m}} \inf _{x}\left\{q_{0}(x)-\sum_{i=1}^{m} \lambda_{i} q_{i}(x)\right\}
\end{aligned}
$$

The S-procedure and Duality are not equivalent... But one can derive "simple" connections. The main tool is again the map

$$
\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{1+m} \quad \psi(x)=\left(q_{0}(x), q_{1}(x), \ldots, q_{m}(x)\right)^{T}
$$

The S-Procedure, Duality and Images under QM

Data: Quadratic Functions $q_{i}(x)=x^{T} Q_{i} x+2 b_{i}^{T} x+c_{i}, \quad Q_{i} \in S^{n}$

$$
\begin{aligned}
& (P) \quad \inf \left\{q_{0}(x): q_{i}(x) \geq 0 i \in[1, m]\right\} \\
& (D) \quad \sup _{\lambda \in \mathbb{R}_{+}^{m}} \inf _{x}\left\{q_{0}(x)-\sum_{i=1}^{m} \lambda_{i} q_{i}(x)\right\}
\end{aligned}
$$

The S-procedure and Duality are not equivalent... But one can derive "simple" connections. The main tool is again the map

$$
\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{1+m} \quad \psi(x)=\left(q_{0}(x), q_{1}(x), \ldots, q_{m}(x)\right)^{T}
$$

Proposition 1 Suppose $\exists \hat{x}$ such that $q_{i}(\hat{x})>0, \forall i=1, \ldots, m$. Then $\psi\left(\mathbb{R}^{n}\right)$ convex $\Longrightarrow\left\{\left[S_{1}\right] \Longleftrightarrow\left[S_{2}\right]\right\}$.

Proposition 2 If $v(P)=v(D)$ and $v(D)$ attained, then $\left\{\left(S_{1}\right) \Longleftrightarrow\left(S_{2}\right)\right\}$.
Note: Both results valid for any functions.

Extension of the Hausdorff-Toeplitz Theorem

Back to images under a quadratic map.
Question: For what values of m is the following claim valid?
Let A_{1}, \ldots, A_{m} be $n \times n$ Hermitian matrices. Then the set

$$
\left\{\left(z^{*} A_{1} z, \ldots, z^{*} A_{m} z\right):\|z\|=1, z \in \mathbb{C}^{n}\right\}
$$

is closed and convex.

- True for $m=2$ (This is Hausdorff-Toeplitz Theorem)
- Is it true for $\mathrm{m}=3$???

Answers...

From P. Halmos, "A Hilbert Space Problem Book", 1967:
"It is a pity that it is so very false. It is false for $m=3$ and dimension 2; counterexamples are easy to come by."

Answers...

From P. Halmos, "A Hilbert Space Problem Book", 1967:
"It is a pity that it is so very false. It is false for $m=3$ and dimension 2; counterexamples are easy to come by."

Well...Don't trust anyone..!!..

Answers...

From P. Halmos, "A Hilbert Space Problem Book", 1967:
"It is a pity that it is so very false. It is false for $m=3$ and dimension 2; counterexamples are easy to come by."

Well...Don't trust anyone..!!..

- The Hausdorff-Toeplitz theorem is valid for $m=3$ and $n \geq 2$.
- Proven by Au-Yeung and Poon, (1979), Binding (1985), Lyubich and Markus (1997).

Some Matrix Related Results

Finsler's Theorem (1936). Let $A, B \in S^{n}$.
Result 1

$$
\begin{gathered}
\left(F_{1}\right) d^{T} A d>0, \forall 0 \neq d \in Q_{B}:=\left\{d: d^{T} Q d=0\right\} \\
\left(F_{1}\right) \Longrightarrow \exists \mu \in \mathbb{R}: A+\mu B \succ 0(\text { trivial } \Longleftarrow)
\end{gathered}
$$

Result 2 Suppose $n \geq 3$. Then,

$$
\left\{x: x^{\top} A x=0, x^{\top} B x=0\right\}=\{0\} \Leftrightarrow \exists \mu \in \mathbb{R}^{2}: \mu_{1} A+\mu_{2} B \succ 0 .
$$

$R H S \Longrightarrow A, B$ simultaneously diagonalizable
Once again for 3 and more symmetric matrices???......

Theorem (Chen-Yuan (99))
If $\max \left\{x^{\top} A_{1} x, x^{\top} A_{2} x, x^{\top} A_{3} x\right\} \geq 0 \forall x \in \mathbb{R}^{n}$, then

$$
\exists \mu \in \mathbb{R}_{+}^{3} \sum_{i=1}^{3} \mu_{i}=1 \text { s.t. } \sum_{i=1}^{3} \mu_{i} A_{i} \text { has at most } 1 \text { negative eigenvalue. }
$$

Convexity of the image of $q\left(\mathbb{R}^{n}\right)$ beyond $m \geq 3$

Let $q: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be the quadratic map defined via:

$$
q(x)=\left(q_{1}(x), \ldots, q_{m}(x)\right) ; q_{i}(x)=x^{T} Q_{i} x, S_{++}^{n} \ni Q_{i}, i=1, \ldots, m
$$

The image $q\left(\mathbb{R}^{n}\right) \subset \mathbb{R}^{m}$ is always convex for $m=2$, and for $m=3$ if of some linear combination of Q_{1}, Q_{2}, Q_{3} is positive definite.

How "close" is the image of $q\left(\mathbb{R}^{n}\right)$ from its convex hull conv $q\left(\mathbb{R}^{n}\right)$?

Convexity of the image of $q\left(\mathbb{R}^{n}\right)$ beyond $m \geq 3$

Let $q: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be the quadratic map defined via:

$$
q(x)=\left(q_{1}(x), \ldots, q_{m}(x)\right) ; q_{i}(x)=x^{T} Q_{i} x, S_{++}^{n} \ni Q_{i}, i=1, \ldots, m
$$

The image $q\left(\mathbb{R}^{n}\right) \subset \mathbb{R}^{m}$ is always convex for $m=2$, and for $m=3$ if of some linear combination of Q_{1}, Q_{2}, Q_{3} is positive definite.

How "close" is the image of $q\left(\mathbb{R}^{n}\right)$ from its convex hull conv $q\left(\mathbb{R}^{n}\right)$?

Theorem (Barvinok (2014) The relative entropy distance from the convex hull of the image of q to the image of q is bounded above by an absolute constant. More precisely, for every $u \in \operatorname{conv} q\left(\mathbb{R}^{n}\right), u_{1}+\ldots+u_{m}=1$, there exists $v \in q\left(\mathbb{R}^{n}\right), v_{1}+\ldots v_{m}=1$ such that

$$
D_{K L}(u, v):=\sum_{i=1}^{m} u_{i} \ln \left(\frac{u_{i}}{v_{i}}\right) \leq \tau, \text { for some absolute ct. } \tau>0
$$

Replacing $q\left(\mathbb{R}^{n}\right)$ by its convex hull leads to a "constant" loss of information...

Summary

Nonconvex quadratic optimization remains a challenging area, and a source of interesting mathematical questions/problems.

- Failure of S-procedure for $m \geq 3 \simeq$ Intractability of QP...
- Convexity of $q\left(\mathbb{R}^{n}\right) \simeq$ Strong Duality and Computational Tractability...
- Identifying more classes of tractable hidden convex problems?

Summary

Nonconvex quadratic optimization remains a challenging area, and a source of interesting mathematical questions/problems.

- Failure of S-procedure for $m \geq 3 \simeq$ Intractability of QP...
- Convexity of $q\left(\mathbb{R}^{n}\right) \simeq$ Strong Duality and Computational Tractability...
- Identifying more classes of tractable hidden convex problems?

Thank you for "Zooming" !

[^0]: ${ }^{1}$ Let C be a connected subset of \mathbb{R}^{n}. Then any real valued function f defined and continuous on \mathbb{R}^{n} attains in C every value between $\inf _{x \in C} f(x)$ and $\sup _{x \in C} f(x)$.

