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Nonconvex Quadratic Optimization

Data: [Q, € S,, b € R", ¢; € R], i€ [0, m]

inf XTQ0X+2b0TX
xTQix+2b/x+¢ < 0,ic[l,p]
xTQix+2b/x+¢ = 0,ic[p+1,m], xcR"
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Nonconvex Quadratic Optimization
Data: [Q, € S,, b € R", ¢; € R], i€ [0, m]

inf XTQOX+2b0Tx
xTQx+2b/x+¢ < 0,i€ll,p]
xTQix+2b/x+¢ = 0,ic[p+1,m], xcR"

Arise in many and disparate contexts.......
@ lll-posed problems/Regularization/Least Squares
@ Eigenvalue perturbations
@ Optimization algorithms: Trust Region Methods
@ Polynomial Optimization problems
@ Models for fundamentals Combinatorial /Graph Optimization
problems (Max cut, stability number, max clique, etc..)

@ Robust Optimization

Spin Glasses....and much more....!
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Nonconvex Quadratic Optimization
Data: [Q, € S,, b € R", ¢; € R], i€ [0, m]

inf XTQOX+2b0TX
xTQx+2b/x+¢ < 0,i€ll,p]
xTQix+2b/x+¢ = 0,ic[p+1,m], xcR"

Arise in many and disparate contexts.......
@ lll-posed problems/Regularization/Least Squares
@ Eigenvalue perturbations
@ Optimization algorithms: Trust Region Methods
@ Polynomial Optimization problems
@ Models for fundamentals Combinatorial /Graph Optimization
problems (Max cut, stability number, max clique, etc..)
@ Robust Optimization
@ Spin Glasses....and much more....!

A BRIDGE between: Continuous and Discrete Optimization.... *
Thus, not surprisingly so "HARD"” to analyze/solve.
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QOutline

@ Nonconvex optimization are generally non-tractable (NP hard).
@ However, some classes of nonconvex problems can be solved.

@ Hidden convex problems are nonconvex problems which admit an
equivalent convex reformulation.

Focus on detecting " Hidden Convexity” in Nonconvex QP

@ Duality

Lifting and Semidefinite Relaxation

@ Exact solutions for some classes of QP

@ Convexity of the Image of a Quadratic Map
@ The S-Procedure
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Duality: A Quick Review

Data [f,C]: f : R" — (—o00,+], C CR”
Primal Problem
(P) v(P)=inf{f(x): xe C} = Xigﬂgn{f(x) +dc(x)}
Dual Problem Uses the same data
(D) v(D) :sgp{—f*(y)—éé(—y): y € dom " Ndomdc};
with *(y) :=sup, {(x,y) — f(x)}; déc := indicator of C.
Properties of (P)-(D)

e Dual is always convex (sup-concave)
e Weak duality holds: v(P) > v(D) for any feasible pair (P)-(D)
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Duality:Key Questions

(v(P)=inf{f(x): x€C}  v(D)=sup,{~F"(y) - 0c(-y)} |

e Zero Duality Gap: when v(P) = v(D)?
e Strong Duality: when inf /sup attained?
o Structure/Relations of Primal-Dual Optimal Sets/Solutions

Convex [f, C] + some Regularity Cond. deliver the answers
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Less Popular: The Bidual

(P) v(P) =inf{f(x) :xe C}; (D) v(D)= SL;P{*f*(y)*&‘&(*y)}
The dual (DD) of (D) is then in term of the bi-conjugate:
(DD) v(DD) = ir;f{f**(z) +c'(2)}

The dual (D) being always convex, one has (modulo some Reg. Cond.)

v(P) = v(D) = v(DD)
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Less Popular: The Bidual

(P) v(P) =inf{f(x) :xe C}; (D) v(D)= SL;P{*f*(y)*&E(*y)}
The dual (DD) of (D) is then in term of the bi-conjugate:
(DD) v(DD) = ir;f{f**(z) +c'(2)}

The dual (D) being always convex, one has (modulo some Reg. Cond.)

v(P) = v(D) = v(DD)

e v(DD) is another lower bound for v(P)
@ v(DD) natural convexification of v(P) <« f** <f
@ v(DD) often reveals hidden convexity — (or lack of) in (P).

W
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A Prototype in CO: Trust Region is Hidden Convex

The nonconvex trust region suproblem [Q € S,, g € R", r > 0]:
(TR) minimize {z"Qz—2g"z: |zl <rzeR"}
Q@ € S, can be diagonalized, i.e., 3 an orthogonal C
C'QC = D :=diag(d,...,dy), G €R, j=1,....,n c:=Cg

Theorem (Ben-Tal and T. (1996)). The nonconvex (TR) is equivalent
to the convex problem

n n
(CTR) min Zcfj)g—2|cj|\/)7j: ny <r, yeRl
j=1 j=1

More precisely, 3y* of (CTR), and corresponding optimal solution of
(TR) given by z* = Cx*, x/ =sgnc;\/y;, Vj and inf(TR) = min(CTR)

v

Proof. See more general results (e.g., min. of indefinite quadratic subject to
2-sided indefinite constraints; min of concave quadratic over fnitely many *
convex quadratic) proven via biduality in (Ben Tal-Teboulle (96)) O
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A Prototype in DO: The Max-Cut Problem

Data Input: A graph G = (V,E),V ={1,2,...,n} with weights
wjj = wj; > 0 on the edges (/,j) € E and with w;; =0 if (i,j) ¢ E.

Problem: Find the set of vertices S C V that maximizes the weight of
the edges with one end point in S and the other in its complement S,
i.e., to maximize the total weight across the cut (S, S).
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A Prototype in DO: The Max-Cut Problem
Data Input: A graph G = (V,E),V ={1,2,...,n} with weights
w;j = wj; > 0 on the edges (i,j) € E and with w; =0 if (i,)) ¢ E.

Problem: Find the set of vertices S C V that maximizes the weight of
the edges with one end point in S and the other in its complement S,
i.e., to maximize the total weight across the cut (S, S).

Max Cut as a Nonconvex QP

1l — s
(MC) max{Zw;j 2X'XJ cx*=1,i=1,...,n}

i<j

Can be reformulated equivalently as
(MC) max{x"Qx: x*=1,i=1,...,n}

where S, Q=% =0, q; <OVi#j; L=diagWe— W;
e=(1,...,n)7
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Dual Representations of MC—(Shor-87)

(MC) max{x"Qx: x*=1,i=1,...,n}

DUALITY IS "VERY FLEXIBLE"...
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Dual Representations of MC—(Shor—-87)
(MC) max{x"Qx: x*=1,i=1,...,n}

DUALITY IS "VERY FLEXIBLE"...
The following are " equal” upper bounds for (MC)

° rrel]ilgn{uTe: Diag(v) = Q}
) né]ilgn{UTe + nAmax(Q - Dlag(u))}
° ng}i}{mn{n/\max(Q + Diag(v)): u"e=0}

o min{u"e: A\nin(Diag(u) — Q) > 0}
ueR”
Notation:
For u € R" : Diag(u) := Diag(us, ..., u,), Diagonal Matrix.
For S" > Z, diag(Z) = (Zi1,- .-, Zn) | € R,
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One More Dual Bound...The Bidual

(MC) max{x"Qx: x*=1,i=1,...,n}

Using the (first) previous dual representation:

(DMC) né]ilgn{uTe . Diag(u) = Q}

Take the dual of the above dual — The bidual:

(R) Enea;g{tr QZ : diag(Z) =e, Z = 0}

Here one has: v(MC) < v(DMC) = v(R)

The pair of convex problems (DMC)-(R) are " Semidefinite
Optimization problems”
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Semi-Definite Programming—SDP Relaxation

. T .
t A(x) = 0}, trAgZ : trAiZ = ¢, 1,ml Z >
Xrgﬁ%r}n{c x : A(x) = 0}; Eneasé{ r Ao r ci, i €[1,m] 0}
where A(x) := Ao+ > xiA;

@ SDP are special classes of convex optimization problems

@ Computationally tractable: Can be approximately solved to a
desired accuracy in polynomial time

@ Naturally occurs in Relaxation of QP via Lifting
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t A(x) = 0}, trAgZ : trAiZ = ¢, 1,ml Z >
Xrgﬁ%r}n{c x : A(x) = 0}; Eneasé{ r Ao r ci, i €[1,m] 0}
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Semi-Definite Programming—SDP Relaxation

. T .
t A(x) = 0}, trAgZ : trAiZ = ¢, 1,ml Z >
Xrgﬁgn{c x : A(x) = 0}; Eneasé{ r Ao r ci, i €[1,m] 0}
where A(x) := Ao+ > xiA;

@ SDP are special classes of convex optimization problems

@ Computationally tractable: Can be approximately solved to a
desired accuracy in polynomial time

@ Naturally occurs in Relaxation of QP via Lifting
Back to MC: max{x"Qx: x*=1,i=1,...,n}

xTQx =tr(@xx"). Set: X = xx". Then (MC) can be reformulated as
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Semi-Definite Programming—SDP Relaxation

. T .
- A(x) = 0): trAZ: rAZ =, ic[l,m Z
Xrgﬁgn{c x : A(x) = 0}; Eneasé{ r Ao r ci, i €[1,m] 0}

where A(x) := Ao+ > xiA;
@ SDP are special classes of convex optimization problems

@ Computationally tractable: Can be approximately solved to a
desired accuracy in polynomial time

@ Naturally occurs in Relaxation of QP via Lifting
Back to MC: max{x"Qx: x*=1,i=1,...,n}

xTQx =tr(@xx"). Set: X = xx". Then (MC) can be reformulated as

(MC) Q1€a5><n{tr QX : diag(X) = e,rank(X) =1; X = 0}
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Semi-Definite Programming—SDP Relaxation

. T .
- A(x) = 0): trAZ: rAZ =, ic[l,m Z
Xrgﬁgn{c x : A(x) = 0}; Eneasé{ r Ao r ci, i €[1,m] 0}

where A(x) := Ao+ > xiA;
@ SDP are special classes of convex optimization problems

@ Computationally tractable: Can be approximately solved to a
desired accuracy in polynomial time

@ Naturally occurs in Relaxation of QP via Lifting
Back to MC: max{x"Qx: x*=1,i=1,...,n}

xTQx =tr(@xx"). Set: X = xx". Then (MC) can be reformulated as

(MC) Q1€a5><n{tr QX : diag(X) = e,rank(X) =1; X = 0}

DROP the Hard RANK ONE constraint=SDP RELAXATION

| (R) = BIDUAL OF MC = SDP RELAXATION | W
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Fundamental Question

A Fundamental Question in Nonconvex QP:

Tightness of the SDP relaxation (= Bidual Bound for QP)?
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Fundamental Question

A Fundamental Question in Nonconvex QP:
Tightness of the SDP relaxation (= Bidual Bound for QP)?

A General Class of Nonconvex QP

(QP) v(QP) == max{x"Qx : x* € F}
X = (X127 . X2)T; QReS,, FCR" closed convex

27N

Extends the special case: [Max-Cut when F = {e}].
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A Trigonometric Representation of QP

Notation: VX € S, arcsin X := arcsin(Xj;); (A, B) = tr(AB)
diag(X) := (Xi1, ..., Xan)" € R", D := Diag(dy, ..., d,) diag. matrix.
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A Trigonometric Representation of QP

Notation: VX € S, arcsin X := arcsin(Xj;); (A, B) = tr(AB)
diag(X) := (Xu1, ..., Xan)" € R", D := Diag(di, ..., d,) diag. matrix.

(TQP) (rpax{ (Q,Darcsin(X)D) : d e R", d*> € F, X = 0,diag(X) = e}

Theorem (Goemeans-Williamson 95, Nesterov 97, Ye 99)
v(QP) =v(TQP)

(TQP) is the key tool to derive (0,1] > p-approximate solutions to (QP)
[p = .878... for (MC); p=2"17 for Q = 0]

pv(R) < v(TQP) = v(QP) < v(R)

where (R) is a semidefinite relaxation of (QP) given by

(R) max{(Q, Z) : diag(Z) € F,S, > Z = 0}.
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Nonconvex QP with Exact Solutions

QP with Exact Solutions through their Convex relaxation counterpart?
° (QP) v(QP) == max{xT Qx : x> € F}
e (R) max{(Q, Z) : diag(Z) € 7,5"> Z = 0}

Are there (QP) for which v(R)=V(QP)?
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Nonconvex QP with Exact Solutions

QP with Exact Solutions through their Convex relaxation counterpart?
° (QP) v(QP) == max{xT Qx : x> € F}
e (R) max{(Q, Z) : diag(Z) € 7,5"> Z = 0}

Are there (QP) for which v(R)=V(QP)?

Theorem (Zhang 2000) Let S" 5 Q with g; > 0Vi # j. Then,
v(QP) = v(TQP) = v(R)
If Z solves (R) then /diag Z solves (QP).

Proof based on the key (TQP) representation + some other
approximation and penalty arguments.
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Nonconvex QP with Exact Solutions

QP with Exact Solutions through their Convex relaxation counterpart?
° (QP) v(QP) == max{xT Qx : x> € F}
e (R) max{(Q, Z) : diag(Z) € 7,5"> Z = 0}

Are there (QP) for which v(R)=V(QP)?

Theorem (Zhang 2000) Let S" 5 Q with g; > 0Vi # j. Then,
v(QP) = v(TQP) = v(R)
If Z solves (R) then /diag Z solves (QP).

Proof based on the key (TQP) representation + some other
approximation and penalty arguments.

We will show that this can be proved directly via duality.
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A Bidual Approach to Exact Solutions

(QP) max{x"@Qx: x> € F} <= max{x'Qx: y =x°y € F}
X,y
¢ A dual of (QP) is (DQP)

: . e o
(DQP) 52}[5"{2;%% (QU)X+ryn€a}<<y,U>}—urp€£3{af(u). Q-U =<0}

where U := Diag(u1, ..., un), or(u) = max{{u,y) : y € F} = 67(u).

Marc Teboulle — Tel Aviv University , Hidden Convexity in Nonconvex Quadratic Optimization



A Bidual Approach to Exact Solutions

(QP) max{x"@Qx: x> € F} <= max{x'Qx: y =x°y € F}
X,y
¢ A dual of (QP) is (DQP)

: T . A
(DQP) u"gﬁg{;gsx (QU)X+;n€a}<<y,U>}—ur2${af(u). Q-U =<0}

where U := Diag(u1, ..., un), or(u) = max{{u,y) : y € F} = 67(u).
o Bidual: Dual of the dual DQP

(D*QP)  max{(Q. 2)+ min {63(u)~(Z, U)} = max{(Q. 2) : diag(Z) € F)

and (D?QP) is nothing else but (R).
e Regularity Cond. holds for (DQP) = v(DQP) = v(D*QP)

W
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A Simple Duality Proof (Pinar-T. (06))

e Weak duality: v(QP) < v(DQP) for any feasible P-D.
e By Regularity: v(DQP) = v(D?QP), thus v(QP) < v(D?QP).
@ Ask for equality, i.e. when v(QP) > v(D?QP)?
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A Simple Duality Proof (Pinar-T. (06))
e Weak duality: v(QP) < v(DQP) for any feasible P-D.
e By Regularity: v(DQP) = v(D?QP), thus v(QP) < v(D?QP).
@ Ask for equality, i.e. when v(QP) > v(D?QP)?
For any Z optimal of (D?QP); x = +/diag(Z) feas. for (QP) since

diag(Z) € F = x* =diag(2) € F.

Marc Teboulle — Tel Aviv University , Hidden Convexity in Nonconvex Quadratic Optimization



A Simple Duality Proof (Pinar-T. (06))
e Weak duality: v(QP) < v(DQP) for any feasible P-D.

e By Regularity: v(DQP) = v(D?QP), thus v(QP) < v(D?QP).

@ Ask for equality, i.e. when v(QP) > v(D?QP)?
For any Z optimal of (D?QP); x = \/diag(Z) feas. for (QP) since

diag(Z) € F = x* =diag(2) € F.

Thus, with x feasible for (QP) and Z optimal for (D?>QP) we have:

v(QP) = ZqiniXJ ZQIIZ,,+2ZqU Z;iZij, while

i<j

Zqij unzu“l‘quu ijs
iJ

i<j

v(D?*QP)

v(QP) = v(D*QP) > 0 <= > q;(\/ZiZj — Z;) > 0

i
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A Simple Duality Proof (Pinar-T. (06))
e Weak duality: v(QP) < v(DQP) for any feasible P-D.

e By Regularity: v(DQP) = v(D?QP), thus v(QP) < v(D?QP).

@ Ask for equality, i.e. when v(QP) > v(D?QP)?
For any Z optimal of (D?QP); x = \/diag(Z) feas. for (QP) since

diag(Z) € F = x* =diag(2) € F.

Thus, with x feasible for (QP) and Z optimal for (D?>QP) we have:

v(QP) = ZqiniXJ ZQIIZ,,+2ZqU Z;iZij, while

i<j

Zqij unzu“l‘quu ijs
iJ

i<j

v(D?*QP)

v(QP) — v(D*QP) > 0 =Y q;(\/ZiZj — Z;) > 0
i#j
ButZ>0 — Z; >0, Z,,Z_UZZ,;VI#j
Therefore since we assumed g;; > 0, Vi # j we are done!
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Quadratic Maps with Convex Images

An old and classical subject in Mathematics....

In the complex space goes back to:

Hausdorff-Toeplitz Theorem [1918]: The numerical range of a linear
operator is closed and convex.

Explicitly, in finite dimension, with A, B, n x n, Hermitian matrices
one has: {(z*Az,z*Bz): ||z| =1,z € C"} CR?, is closed convex.

Marc Teboulle — Tel Aviv University , Hidden Convexity in Nonconvex Quadratic Optimization



Quadratic Maps with Convex Images

An old and classical subject in Mathematics....

In the complex space goes back to:

Hausdorff-Toeplitz Theorem [1918]: The numerical range of a linear
operator is closed and convex.

Explicitly, in finite dimension, with A, B, n x n, Hermitian matrices
one has: {(z*Az,z*Bz): ||z| =1,z € C"} CR?, is closed convex.

The Real Case — Let A,B € S".
Dines Theorem (1940) {(x” Ax,x"Bx) : x € R"} C R? is convex.
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Quadratic Maps with Convex Images

An old and classical subject in Mathematics....

In the complex space goes back to:

Hausdorff-Toeplitz Theorem [1918]: The numerical range of a linear
operator is closed and convex.

Explicitly, in finite dimension, with A, B, n x n, Hermitian matrices
one has: {(z*Az,z*Bz): ||z| =1,z € C"} CR?, is closed convex.

The Real Case — Let A,B € S".
Dines Theorem (1940) {(x” Ax,x"Bx) : x € R"} C R? is convex.
A Key Result: Brickman’s Theorem (1961). If n > 3 then

B:={(x"Ax,x"Bx): ||x|| =1, x € R"} C R?is closed convex

A very good survey: Uhlig (1979).
Note: Brickman’s Theorem fails for n = 2 *
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Convexity of Image of Quadratic Map: Extensions?

o Let A; € S” (indefinite)

e For m >3, qi(x) = x" Aix, i € [1, m]; Quadratic forms
@ For gi(x) = xTAix — 2b] x + ¢;; Quadratic functions

0 g:R" 5 R™ q(x)=(q1(x),.--,gm(x))"

Question: When is ¢(R") convex for quadratic
forms/functions?
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Why do we care about the convexity of g(R")?

At the root of fundamental questions/answers for " Quadratic Problems”

A. Quadratic Optimization e.g., Duality, Optimality, SDP...
B. Matrix related questions e.g., Simultaneous diag.

C. The S-Procedure

D. Computational Tractability
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Why do we care about the convexity of g(R")?

At the root of fundamental questions/answers for " Quadratic Problems”

A. Quadratic Optimization e.g., Duality, Optimality, SDP...
B. Matrix related questions e.g., Simultaneous diag.

C. The S-Procedure

D. Computational Tractability

Example: (Q) min{qgo(x): qi(x)<0,i=1,...,mx e R"}.
Let W:={(qo(x),.-.,qm(x)): x € R"}.
Then (Q) equivalent to:

min{sp:s5, <0,i=1,...,mse W}

(Q) is convex iff the image W convex.
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Quadratic Maps with Convex Images - Polyak (98)

@ Homogeneous Quadratic Forms: m=3

Let S" 3 A;, qi(x) =x"Aix, i =1,2,3.
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Quadratic Maps with Convex Images - Polyak (98)

@ Homogeneous Quadratic Forms: m=3
Let S" 3 A;, qi(x) =x"Aix, i =1,2,3.
Theorem 1 Suppose n > 3 and there exists i € R3 such that
p1AL + p2Az + pzAsz = 0.

Then {(q1(x), g2(x), g3(x)) : x € R"} C R3 is closed convex.
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Quadratic Maps with Convex Images - Polyak (98)

o Homogeneous Quadratic Forms: m=3
Let S" 3 A;, qi(x) =x"Aix, i =1,2,3.
Theorem 1 Suppose n > 3 and there exists i € R3 such that
p1AL + p2As + p3As = 0.

Then {(q1(x), g2(x), g3(x)) : x € R"} C R3 is closed convex.
@ Nonhomogeneous Case : m=2 Let g; be quadratic functions, i.e.,

qi(x) =x"Aix —2b] x4+ ¢, b ER"GERA S i=1,2.
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Quadratic Maps with Convex Images - Polyak (98)

o Homogeneous Quadratic Forms: m=3
Let S" 3 A;, qi(x) =x"Aix, i =1,2,3.
Theorem 1 Suppose n > 3 and there exists i € R3 such that
p1AL + p2As + p3As = 0.

Then {(q1(x), g2(x), g3(x)) : x € R"} C R3 is closed convex.
@ Nonhomogeneous Case : m=2 Let g; be quadratic functions, i.e.,

qi(x) =x"Aix —2b] x4+ ¢, b ER"GERA S i=1,2.
Theorem 2 Suppose n > 2 and there exists i € R? such that
H1A1 + ppAs > 0.

Then {(q1(x), g2(x)) : x € R"} C R? is closed convex.

The proofs rely on the nontrivial Brickman’s theorem.
We will give a simple direct proof of Theorem 2.
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Problem Reformulation

Given qi(x) = xTAix —=2b] x +¢;, i=1,2, q(x)=(qi(x),q2(x))T
We want to prove that for all n > 2:

(*) Jp € R? s.t. iy Ay + poAr = 0 = q(R") convex
Under (*) we can assume A > 0. Thus,
a(R™) = {(@a(x), X)) x € R} = {(s,8) : s = au(x), £ = IIxI?}.
For any n > 2, the sphere S; := {x : ||x||?> = t} is connected. Thus,!

g(R?) ={(s,t): inf qu(x) <s < sup qi(x), t = 0}

Therefore g(R") will be convex if we can show that

I(t) := inf g1(x) convex in t (u(t) := sup gi(x) concave in t)
XES; XES:

ILet C be a connected subset of R”. Then any real valued function f defined and *
continuous on R” attains in C every value between inf,cc f(x) and sup, ¢ f(x).
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Direct Proof of Theorem 2

Lemma For t > 0 define the function
0(t) :=min{qi(x) : x € S;} = min{x" A;x —2b/ x: x € S;}.

Then, 4(-) is a convex function on R, .

Proof. via biduality !
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Direct Proof of Theorem 2

Lemma For t > 0 define the function

o(t) == min{q(x) : x € S;} = min{xTAjx —2b/ x : x € 5;}.

Then, 4(-) is a convex function on R, .

Proof. via biduality !

@ Applying the Lemma implies that for all n > 2,

gR") = {(s,t): X'ggt q(x) <s< Sélg qi1(x), t >0}
g(R™) = {(s,t): £(t) <s <u(t),t >0} is convex in R?

@ Note: Importance of dimension. For n = 1, Lemma remains
true.. but the set (S; = {x € R: |x| = 1}) is not connected!
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A General Nonconvex Class: Ratio of QP

Minimizing ratio of indefinite quadratic functions over an Ellipsoid

(RQ) .= inf { 23 L < o}

fi(x) =x"Axx+2b/ x4+ ¢, i =1,2
A=A cR™ b;cR", ¢ eR,LER™" p>0

The feasible set
F={xeR":|Lx|]? < p}

represents a (possibly degenerate) ellipsoid .

Assumption: Problem (RQ) is well defined, i.e., (x) > 0 for every
xeF.

Motivation Arises in Estimation Problems: Regularized Total LS Ax ~ b
with (A, b) noisy data.

e Regularized Total Least Squares Problem (RTLS):

fi(x) = ||Ax — b||?, f(x) = ||x||* + 1 (both nice convex functions...but ratio is

not!) *

Marc Teboulle — Tel Aviv University , Hidden Convexity in Nonconvex Quadratic Optimization 23



Attainment of the Minimum for RQ

Theorem The minimum of problem (RQ) is attained if either the feasible
set is compact — or when r < n if the following holds:

[SC]  Amin(M1,M2) < Amin(FTA;F, FTA5F),

where

([ FTAJF FTby _( FTAF FTb,
Ml( b/F a Mz = bJF o

F is an n x (n — r) matrix whose columns form an orthonormal basis for the
null space of L, and Amin(A, B) := max{A : A — AB > 0}

& The proof relies on asymptotic tools for nonconvex functions.
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Attainment of the Minimum for RQ

Theorem The minimum of problem (RQ) is attained if either the feasible
set is compact — or when r < n if the following holds:

[SC]  Amin(M1,M2) < Amin(FTA;F, FTA5F),

where

([ FTAJF FTby _( FTAF FTb,
Ml( b/F a Mz = bJF o

F is an n x (n — r) matrix whose columns form an orthonormal basis for the
null space of L, and Amin(A, B) := max{A : A — AB > 0}
& The proof relies on asymptotic tools for nonconvex functions.

[SC] plays a key role for establishing results in two directions:
@ v An Exact SDP Relaxation for (RQ).
@ Convergence/complexity analysis of a fast algorithm for solving (RQ).

@ Details in: A. Beck and M. Teboulle (2009). *
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An Exact SDP Relaxation of (RQ)- (Beck-T. (09))

Theorem Let n > 2 and suppose [SC] holds. Then,

val (RQ) = val(D), where (D) is given by

A1 b1 A2 b2 LTL 0
. S —
,(3Zn37aaxe]1§ {Ot ’ <bz— Cl) = (b;— C2> B ( 0 P)}

Proof relies on strong duality for homogeneous QP with two constraints
+ the attainability Condition [SC].

<

@ The solution of (RQ) can be extracted from the solution of the
semidefinite formulation.

o (RQ) belongs to the privileged class of Hidden Convex
Problems...

@ More results and details in Beck and Teboulle (2009, 2010).
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The S-Procedure —(Yakubovitch-61)

gi(x) ZXTQ,'X—‘rzb,-TX—l—C,', QRieS", i=0,....m
F={xeR": qi(x)>0,i=1,...,m}
Consider the following statements:

(S51) qQo(x) >0 VxeF

(S2) ds € RT : qo(x) — Zs,-q,-(x) >0, Vx e R"
i=1

o (5) = (51) is always true.
@ The reverse is in general false.
@ Under which condition (s) ($1) = (S2) ?

Marc Teboulle — Tel Aviv University , Hidden Convexity in Nonconvex Quadratic Optimization

26



The Basic S-Lemma —(Yakubovitch-61, 73 )

S-Lemma Let m = 1 and suppose
3% such that gi(X) > 0.

Then, (51) <= (S2).

($2) <= FseR;: (§$ b0>_5<1?% bl)io
0

Co

An Instrumental Tool

e In Control Theory

e In LMI/SDP reformulations/analysis of QP
e In Robust Optimization Analysis
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Extension for m > 177?

Even for m = 2 with g; quadratic forms
qi(x) = xTQix, @ € S", i €0,2] in general false. Need additional
assumptions.
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Extension for m > 177?

Even for m = 2 with g; quadratic forms
qi(x) = xTQix, Q; € S", i €[0,2] in general false. Need additional
assumptions.
Theorem—(Polyak 98) Let m = 2. Suppose n > 3 and
e JpueR?: Q1+ @ =0
@ 3% such that g1(X) >0, g2(X) > 0.
Then, (51) <= (S2) where

(51) xTQux >0 Vx € F ={x:q(x)>0,q(x) >0}
2

(S2) JseR?: QO—ZSI'Q/EO-
i=1

Proof. Brickman's Theorem + apply "Separation of convex sets”. [
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The S-Procedure, Duality and Images under QM
Data: Quadratic Functions q;(x) = x" Qix +2b/x + ¢;, @ € S"

(P) inf{qo(x) : gi(x) > 0i € [1, m]}
(D) ;gﬂg’m";f{qo(x) - ZA;q;(X)}

The S-procedure and Duality are not equivalent... But one can derive
"simple" connections. The main tool is again the map

YR = R 4(x) = (qo(x), qu(x); -, gm(x)) "
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The S-Procedure, Duality and Images under QM
Data: Quadratic Functions q;(x) = x" Qix +2b/x + ¢;, @ € S"
(P) inf{go(x) : gi(x) > 07 € [1, m]}
D inf —3" a;
(D) sup inflaolx) ; ai(x)}

The S-procedure and Duality are not equivalent... But one can derive
"simple" connections. The main tool is again the map

YR = R 4(x) = (qo(x), qu(x); -, gm(x)) "

Proposition 1 Suppose 3% such that ¢;(%) > 0, Vi = 1,...,m. Then
P(R™) convex = {[S1] < [S:]}-

Proposition 2 If v(P) = v(D) and v(D) attained, then {(51) < (S2)}.

Note: Both results valid for any functions. *

29
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Extension of the Hausdorff-Toeplitz Theorem

Back to images under a quadratic map.

Question: For what values of m is the following claim valid?

Let Ay,..., A, be n x n Hermitian matrices. Then the set
{(z*A1z,...,z2*Anz) : ||z] = 1,z € C"}

is closed and convex.

@ True for m = 2 (This is Hausdorff-Toeplitz Theorem)
@ Is it true for m = 3777
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Answers...

From P. Halmos, " A Hilbert Space Problem Book”, 1967:

“It is a pity that it is so very false. It is false for m = 3 and
dimension 2; counterexamples are easy to come by.”
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From P. Halmos, " A Hilbert Space Problem Book”, 1967:

“It is a pity that it is so very false. It is false for m = 3 and
dimension 2; counterexamples are easy to come by.”

Marc Teboulle — Tel Aviv University , Hidden Convexity in Nonconvex Quadratic Optimization

31



Answers...

From P. Halmos, " A Hilbert Space Problem Book”, 1967:

“It is a pity that it is so very false. It is false for m = 3 and
dimension 2; counterexamples are easy to come by.”

@ The Hausdorff-Toeplitz theorem is valid for m =3 and n > 2.

@ Proven by Au-Yeung and Poon, (1979), Binding (1985), Lyubich
and Markus (1997).
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Some Matrix Related Results

Finsler’s Theorem (1936). Let A,B € 5".
Result 1

(F1) d"Ad >0, V0#de Qg:={d:d"Qd =0}
(F) = 3peR: A4+ uB >0 (trivial <)

Result 2 Suppose n > 3. Then,

{x:x"TAx=0,x"Bx =0} = {0} < FuecR*: uA+ 1B = 0.
RHS — A, B simultaneously diagonalizable

Once again for 3 and more symmetric matrices ....777......
Theorem (Chen-Yuan (99))
If max{x"Aix,x" Ax,x" Asx} > 0Vx € R", then

3 3
dp € ]Ri Zu; =1s.t. Zp,,-A,- has at most 1 negative eigenvalue.

i=1 i=1 *
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Convexity of the image of g(R") beyond m > 3
Let g : R” — R™ be the quadratic map defined via:
q(X) = (Q1(X), BERE) qm(X)); qi(X) = XTQI'X& 5—7—+ > Qia i = ]-a cee, M.

The image g(R") C R™ is always convex for m = 2, and for m = 3 if of
some linear combination of @1, Q,, Q3 is positive definite.

How "close” is the image of g(R") from its convex hull conv g(R")?
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Convexity of the image of g(R") beyond m > 3
Let g : R” — R™ be the quadratic map defined via:

9(x) = (1), Gm(¥)); @i(x) = xT Qix, SI, 3 @ i = 1., m.

The image g(R") C R™ is always convex for m = 2, and for m = 3 if of
some linear combination of @1, Q,, Q3 is positive definite.

How "close” is the image of g(R") from its convex hull conv g(R")?
Theorem (Barvinok (2014) The relative entropy distance from the convex
hull of the image of g to the image of g is bounded above by an absolute

constant. More precisely, for every u € conv g(R"), u;+...+u, = 1, there
exists v € g(R"), vi + ...V, = 1 such that

Dk (u,v) Z uiIn ( > < 7, for some absolute ct. 7 > 0.

Replacing g(R") by its convex hull leads to a "constant” loss of
information...

W
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Summary

Nonconvex quadratic optimization remains a challenging area, and a
source of interesting mathematical questions/problems.

o Failure of S-procedure for m > 3 ~ Intractability of QP...

o Convexity of g(R") ~ Strong Duality and Computational
Tractability...

o ldentifying more classes of tractable hidden convex problems?
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Summary

Nonconvex quadratic optimization remains a challenging area, and a
source of interesting mathematical questions/problems.

o Failure of S-procedure for m > 3 ~ Intractability of QP...

o Convexity of g(R") ~ Strong Duality and Computational
Tractability...

o ldentifying more classes of tractable hidden convex problems?

Thank you for “Zooming” !
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