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Nonconvex Quadratic Optimization

Data: [Qi ∈ Sn, bi ∈ Rn, ci ∈ R], i ∈ [0,m]

inf xTQ0x + 2bT0 x

xTQix + 2bTi x + ci ≤ 0, i ∈ [1, p]

xTQix + 2bTi x + ci = 0, i ∈ [p + 1,m], x ∈ Rn

Arise in many and disparate contexts.......

Ill-posed problems/Regularization/Least Squares

Eigenvalue perturbations

Optimization algorithms: Trust Region Methods

Polynomial Optimization problems

Models for fundamentals Combinatorial/Graph Optimization
problems (Max cut, stability number, max clique, etc..)

Robust Optimization

Spin Glasses....and much more....!

A BRIDGE between: Continuous and Discrete Optimization....
Thus, not surprisingly so ”HARD” to analyze/solve.
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Outline

Nonconvex optimization are generally non-tractable (NP hard).

However, some classes of nonconvex problems can be solved.

Hidden convex problems are nonconvex problems which admit an
equivalent convex reformulation.

Focus on detecting ”Hidden Convexity” in Nonconvex QP

Duality

Lifting and Semidefinite Relaxation

Exact solutions for some classes of QP

Convexity of the Image of a Quadratic Map

The S-Procedure
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Duality: A Quick Review

Data [f,C]: f : Rn → (−∞,+∞], C ⊆ Rn

Primal Problem

(P) v(P) = inf{f (x) : x ∈ C} ≡ inf
x∈Rn
{f (x) + δC (x)}

Dual Problem Uses the same data

(D) v(D) = sup
y
{−f ∗(y)− δ∗C (−y) : y ∈ dom f ∗ ∩ dom δ∗C};

with f ∗(y) := supx{〈x , y〉 − f (x)}; δC := indicator of C .

Properties of (P)-(D)
• Dual is always convex (sup-concave)
• Weak duality holds: v(P) ≥ v(D) for any feasible pair (P)-(D)
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Duality:Key Questions

v(P) = inf{f (x) : x ∈ C}; v(D) = supy{−f ∗(y)− δ∗C (−y)}

• Zero Duality Gap: when v(P) = v(D)?
• Strong Duality: when inf / sup attained?
• Structure/Relations of Primal-Dual Optimal Sets/Solutions

Convex [f ,C ] + some Regularity Cond. deliver the answers
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Less Popular: The Bidual

(P) v(P) = inf{f (x) : x ∈ C}; (D) v(D) = sup
y
{−f ∗(y)−δ∗C (−y)}

The dual (DD) of (D) is then in term of the bi-conjugate:

(DD) v(DD) = inf
z
{f ∗∗(z) + δ∗∗C (z)}

The dual (D) being always convex, one has (modulo some Reg. Cond.)

v(P) ≥ v(D) = v(DD)

v(DD) is another lower bound for v(P)

v(DD) natural convexification of v(P) ⇐= f ∗∗ ≤ f

v(DD) often reveals hidden convexity – (or lack of) in (P).
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A Prototype in CO: Trust Region is Hidden Convex

The nonconvex trust region suproblem [Q ∈ Sn, g ∈ Rn, r > 0]:

(TR) minimize {zTQz − 2gT z : ‖z‖ ≤ r z ∈ Rn}
Q ∈ Sn can be diagonalized, i.e., ∃ an orthogonal C

C tQC = D := diag(d1, . . . , dn), dj ∈ R, j = 1, . . . , n; c := Cg

Theorem (Ben-Tal and T. (1996)). The nonconvex (TR) is equivalent
to the convex problem

(CTR) min


n∑

j=1

djyj − 2|cj |
√
yj :

n∑
j=1

yj ≤ r , y ∈ Rn
+

 .

More precisely, ∃y∗ of (CTR), and corresponding optimal solution of
(TR) given by z∗ = Cx∗, x∗j = sgncj

√
y∗j , ∀j and inf(TR) = min(CTR)

.

Proof. See more general results (e.g., min. of indefinite quadratic subject to

2-sided indefinite constraints; min of concave quadratic over fnitely many

convex quadratic) proven via biduality in (Ben Tal-Teboulle (96))
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A Prototype in DO: The Max-Cut Problem

Data Input: A graph G = (V ,E ),V = {1, 2, . . . , n} with weights
wij = wji ≥ 0 on the edges (i , j) ∈ E and with wij = 0 if (i , j) /∈ E .

Problem: Find the set of vertices S ⊂ V that maximizes the weight of
the edges with one end point in S and the other in its complement S̄ ,
i.e., to maximize the total weight across the cut (S , S̄).

Max Cut as a Nonconvex QP

(MC ) max{
∑
i<j

wij
1− xixj

2
: x2

i = 1, i = 1, . . . , n}

Can be reformulated equivalently as

(MC ) max{xTQx : x2
i = 1, i = 1, . . . , n}

where Sn 3 Q := L
4 � 0, qij ≤ 0 ∀i 6= j ; L ≡ diagWe −W ;

e = (1, . . . , n)T
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Dual Representations of MC–(Shor–87)

(MC ) max{xTQx : x2
i = 1, i = 1, . . . , n}

DUALITY IS ”VERY FLEXIBLE”...

The following are ”equal” upper bounds for (MC)

min
u∈Rn
{uT e : Diag(u) � Q}

min
u∈Rn
{uT e + nλmax(Q − Diag(u))}

min
u∈Rn
{nλmax(Q + Diag(u)) : uT e = 0}

min
u∈Rn
{uT e : λmin(Diag(u)− Q) ≥ 0}

Notation:
For u ∈ Rn : Diag(u) := Diag(u1, . . . , un), Diagonal Matrix.
For Sn 3 Z , diag(Z ) = (Z11, . . . ,Znn)T ∈ Rn.
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One More Dual Bound...The Bidual

(MC ) max{xTQx : x2
i = 1, i = 1, . . . , n}

Using the (first) previous dual representation:

(DMC ) min
u∈Rn
{uT e : Diag(u) � Q}

Take the dual of the above dual – The bidual:

(R) max
Z∈Sn
{trQZ : diag(Z ) = e, Z � 0}

Here one has: v(MC ) ≤ v(DMC ) = v(R)

The pair of convex problems (DMC)-(R) are ”Semidefinite
Optimization problems”
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Semi-Definite Programming–SDP Relaxation

min
x∈Rm
{cT x : A(x) � 0}; max

Z∈Sn
{trA0Z : trAiZ = ci , i ∈ [1,m] Z � 0}

where A(x) := A0 +
∑m

i=1 xiAi

SDP are special classes of convex optimization problems

Computationally tractable: Can be approximately solved to a
desired accuracy in polynomial time

Naturally occurs in Relaxation of QP via Lifting

Back to MC: max{xTQx : x2
i = 1, i = 1, . . . , n}

xTQx ≡ tr(QxxT ). Set: X = xxT . Then (MC) can be reformulated as

(MC ) max
X∈Sn
{trQX : diag(X ) = e, rank(X ) = 1;X � 0}

DROP the Hard RANK ONE constraint=SDP RELAXATION

(R) ≡ BIDUAL OF MC ≡ SDP RELAXATION
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Fundamental Question

A Fundamental Question in Nonconvex QP:

Tightness of the SDP relaxation (≡ Bidual Bound for QP)?

A General Class of Nonconvex QP

(QP) v(QP) := max{xTQx : x2 ∈ F}

x2 ≡ (x2
1 , . . . , x

2
n )T ; Q ∈ Sn; F ⊆ Rn, closed convex

Extends the special case: [Max-Cut when F = {e}].
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A Trigonometric Representation of QP

Notation: ∀X ∈ Sn, arcsinX := arcsin(Xij); 〈A,B〉 = tr(AB)
diag(X ) := (X11, . . . ,Xnn)T ∈ Rn,D := Diag(d1, . . . , dn) diag. matrix.

(TQP) max
(d,X )
{ 2

π
〈Q,D arcsin(X )D〉 : d ∈ Rn

+, d
2 ∈ F , X � 0, diag(X ) = e}

Theorem (Goemeans-Williamson 95, Nesterov 97, Ye 99)

v(QP) = v(TQP)

(TQP) is the key tool to derive (0, 1] 3 ρ-approximate solutions to (QP)
[ρ = .878... for (MC); ρ = 2−1π for Q � 0]

ρv(R) ≤ v(TQP) = v(QP) ≤ v(R)

where (R) is a semidefinite relaxation of (QP) given by

(R) max{〈Q,Z 〉 : diag(Z ) ∈ F ,Sn 3 Z � 0}.
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Nonconvex QP with Exact Solutions

QP with Exact Solutions through their Convex relaxation counterpart?

(QP) v(QP) := max{xTQx : x2 ∈ F}
(R) max{〈Q,Z 〉 : diag(Z ) ∈ F ,Sn 3 Z � 0}

Are there (QP) for which v(R)=V(QP)?

Theorem (Zhang 2000) Let Sn 3 Q with qij ≥ 0 ∀i 6= j . Then,

v(QP) = v(TQP) = v(R)

If Z solves (R) then
√

diagZ solves (QP).

Proof based on the key (TQP) representation + some other
approximation and penalty arguments.

We will show that this can be proved directly via duality.
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A Bidual Approach to Exact Solutions

(QP) max{xTQx : x2 ∈ F} ⇐⇒ max
x,y
{xTQx : y = x2, y ∈ F}

• A dual of (QP) is (DQP)

(DQP) min
u∈Rn

{
max
x∈Rn

xT (Q − U)x + max
y∈F
〈y , u〉

}
= min

u∈Rn
{σF (u) : Q−U � 0}

where U := Diag(u1, . . . , un), σF (u) =: max{〈u, y〉 : y ∈ F} ≡ δ∗F (u).

• Bidual: Dual of the dual DQP

(D2QP) max
Z�0
{〈Q,Z 〉+ min

u∈Rn
{δ∗F (u)−〈Z ,U〉} = max

Z�0
{〈Q,Z 〉 : diag(Z ) ∈ F}

and (D2QP) is nothing else but (R).

• Regularity Cond. holds for (DQP) =⇒ v(DQP) = v(D2QP)

Marc Teboulle – Tel Aviv University , Hidden Convexity in Nonconvex Quadratic Optimization 15



A Bidual Approach to Exact Solutions

(QP) max{xTQx : x2 ∈ F} ⇐⇒ max
x,y
{xTQx : y = x2, y ∈ F}

• A dual of (QP) is (DQP)

(DQP) min
u∈Rn

{
max
x∈Rn

xT (Q − U)x + max
y∈F
〈y , u〉

}
= min

u∈Rn
{σF (u) : Q−U � 0}

where U := Diag(u1, . . . , un), σF (u) =: max{〈u, y〉 : y ∈ F} ≡ δ∗F (u).

• Bidual: Dual of the dual DQP

(D2QP) max
Z�0
{〈Q,Z 〉+ min

u∈Rn
{δ∗F (u)−〈Z ,U〉} = max

Z�0
{〈Q,Z 〉 : diag(Z ) ∈ F}

and (D2QP) is nothing else but (R).

• Regularity Cond. holds for (DQP) =⇒ v(DQP) = v(D2QP)

Marc Teboulle – Tel Aviv University , Hidden Convexity in Nonconvex Quadratic Optimization 15



A Simple Duality Proof (Pinar-T. (06))
Weak duality: v(QP) ≤ v(DQP) for any feasible P-D.

By Regularity: v(DQP) = v(D2QP), thus v(QP) ≤ v(D2QP).

Ask for equality, i.e. when v(QP) ≥ v(D2QP)?

For any Z optimal of (D2QP); x =
√

diag(Z ) feas. for (QP) since

diag(Z ) ∈ F =⇒ x2 = diag(Z ) ∈ F .

Thus, with x feasible for (QP) and Z optimal for (D2QP) we have:

v(QP) ≥
∑
i,j

qijxixj =
∑
i

qiiZii + 2
∑
i<j

qij
√

ZiiZij , while

v(D2QP) =
∑
i,j

qijZij =
∑
i

qiiZii + 2
∑
i<j

qijZij ,

=⇒ v(QP)− v(D2QP) ≥ 0 ⇐⇒
∑
i 6=j

qij(
√
ZiiZjj − Zij) ≥ 0

But Z � 0 =⇒ Zii ≥ 0, ZiiZjj ≥ Z 2
ij ∀i 6= j

Therefore since we assumed qij ≥ 0, ∀i 6= j we are done!
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A Simple Duality Proof (Pinar-T. (06))
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Quadratic Maps with Convex Images

An old and classical subject in Mathematics....
In the complex space goes back to:
Hausdorff-Toeplitz Theorem [1918]: The numerical range of a linear
operator is closed and convex.

Explicitly, in finite dimension, with A,B, n × n, Hermitian matrices
one has: {(z∗Az , z∗Bz) : ‖z‖ = 1, z ∈ Cn} ⊆ R2, is closed convex.

The Real Case – Let A,B ∈ Sn.

Dines Theorem (1940) {(xTAx , xTBx) : x ∈ Rn} ⊆ R2 is convex.

A Key Result: Brickman’s Theorem (1961). If n ≥ 3 then

B := {(xTAx , xTBx) : ‖x‖ = 1, x ∈ Rn} ⊆ R2 is closed convex

A very good survey: Uhlig (1979).
Note: Brickman’s Theorem fails for n = 2
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Convexity of Image of Quadratic Map: Extensions?

Let Ai ∈ Sn (indefinite)

For m ≥ 3, qi (x) = xTAix , i ∈ [1,m]; Quadratic forms

For qi (x) = xTAix − 2bTi x + ci ; Quadratic functions

q : Rn → Rm, q(x) ≡ (q1(x), . . . , qm(x))T

Question: When is q(Rn) convex for quadratic
forms/functions?
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Why do we care about the convexity of q(Rn)?

At the root of fundamental questions/answers for ”Quadratic Problems”

A. Quadratic Optimization e.g., Duality, Optimality, SDP...
B. Matrix related questions e.g., Simultaneous diag.
C. The S-Procedure
D. Computational Tractability

Example: (Q) min{q0(x) : qi (x) ≤ 0, i = 1, . . . ,m, x ∈ Rn}.

Let W := {(q0(x), . . . , qm(x)) : x ∈ Rn}.

Then (Q) equivalent to:

min{s0 : si ≤ 0, i = 1, . . . ,m, s ∈W }

(Q) is convex iff the image W convex.
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Quadratic Maps with Convex Images - Polyak (98)
Homogeneous Quadratic Forms: m=3

Let Sn 3 Ai , qi (x) = xTAix , i = 1, 2, 3.

Theorem 1 Suppose n ≥ 3 and there exists µ ∈ R3 such that

µ1A1 + µ2A2 + µ3A3 � 0.

Then {(q1(x), q2(x), q3(x)) : x ∈ Rn} ⊆ R3 is closed convex.

Nonhomogeneous Case : m=2 Let qi be quadratic functions, i.e.,

qi (x) = xTAix − 2bTi x + ci , bi ∈ Rn, ci ∈ R,Ai ∈ Sn, i = 1, 2.

Theorem 2 Suppose n ≥ 2 and there exists µ ∈ R2 such that

µ1A1 + µ2A2 � 0.

Then {(q1(x), q2(x)) : x ∈ Rn} ⊆ R2 is closed convex.

The proofs rely on the nontrivial Brickman’s theorem.
We will give a simple direct proof of Theorem 2.
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Problem Reformulation

Given qi (x) = xTAix − 2bTi x + ci , i = 1, 2, q(x) = (q1(x), q2(x))T

We want to prove that for all n ≥ 2:

(∗) ∃µ ∈ R2 s.t. µ1A1 + µ2A2 � 0 =⇒ q(Rn) convex

Under (*) we can assume A2 � 0. Thus,

q(Rn) := {(q1(x), ||x ||2)T : x ∈ Rn} = {(s, t) : s = q1(x), t = ||x ||2}.

For any n ≥ 2, the sphere St := {x : ||x ||2 = t} is connected. Thus,1

q(Rn) = {(s, t) : inf
x∈St

q1(x) ≤ s ≤ sup
x∈St

q1(x), t ≥ 0}

Therefore q(Rn) will be convex if we can show that

l(t) := inf
x∈St

q1(x) convex in t (u(t) := sup
x∈St

q1(x) concave in t)

1Let C be a connected subset of Rn. Then any real valued function f defined and
continuous on Rn attains in C every value between infx∈C f (x) and supx∈C f (x).
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Direct Proof of Theorem 2

Lemma For t ≥ 0 define the function

`(t) := min{q1(x) : x ∈ St} ≡ min{xTA1x − 2bT1 x : x ∈ St}.

Then, `(·) is a convex function on R+.

Proof. via biduality !

Applying the Lemma implies that for all n ≥ 2,

q(Rn) = {(s, t) : inf
x∈St

q1(x) ≤ s ≤ sup
x∈St

q1(x), t ≥ 0}

q(Rn) = {(s, t) : `(t) ≤ s ≤ u(t), t ≥ 0} is convex in R2.

Note: Importance of dimension. For n = 1, Lemma remains
true.. but the set (St = {x ∈ R : |x | = 1}) is not connected!
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A General Nonconvex Class: Ratio of QP
Minimizing ratio of indefinite quadratic functions over an Ellipsoid

(RQ) f∗ := inf

{
f1(x)

f2(x)
: ‖Lx‖2 ≤ ρ

}
fi (x) = xTAix + 2bT

i x + ci , i = 1, 2

Ai = AT
i ∈ Rn×n,bi ∈ Rn, ci ∈ R,L ∈ Rr×n, ρ > 0

The feasible set
F := {x ∈ Rn : ‖Lx‖2 ≤ ρ}

represents a (possibly degenerate) ellipsoid .

Assumption: Problem (RQ) is well defined, i.e., f2(x) > 0 for every
x ∈ F .

Motivation Arises in Estimation Problems: Regularized Total LS Ax ≈ b
with (A, b) noisy data.
• Regularized Total Least Squares Problem (RTLS):
f1(x) = ‖Ax− b‖2, f2(x) = ‖x‖2 + 1 (both nice convex functions...but ratio is
not!)
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Attainment of the Minimum for RQ

Theorem The minimum of problem (RQ) is attained if either the feasible
set is compact – or when r < n if the following holds:

[SC ] λmin(M1,M2) < λmin(FTA1F,FTA2F),

where

M1 =

(
FTA1F FTb1

bT
1 F c1

)
,M2 =

(
FTA2F FTb2

bT
2 F c2

)
F is an n × (n − r) matrix whose columns form an orthonormal basis for the

null space of L, and λmin(A,B) := max{λ : A− λB � 0}

♣ The proof relies on asymptotic tools for nonconvex functions.

[SC] plays a key role for establishing results in two directions:

X An Exact SDP Relaxation for (RQ).

Convergence/complexity analysis of a fast algorithm for solving (RQ).

Details in: A. Beck and M. Teboulle (2009).
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An Exact SDP Relaxation of (RQ)– (Beck-T. (09))

Theorem Let n ≥ 2 and suppose [SC] holds. Then,

val (RQ) = val(D), where (D) is given by

max
β≥0,α∈R

{
α :

(
A1 b1

bT
1 c1

)
� α

(
A2 b2

bT
2 c2

)
− β

(
LTL 0

0 −ρ

)}

Proof relies on strong duality for homogeneous QP with two constraints
+ the attainability Condition [SC].

The solution of (RQ) can be extracted from the solution of the
semidefinite formulation.

(RQ) belongs to the privileged class of Hidden Convex
Problems...

More results and details in Beck and Teboulle (2009, 2010).
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The S-Procedure –(Yakubovitch-61)

qi (x) = xTQix + 2bTi x + ci , Qi ∈ Sn, i = 0, . . . ,m.

F := {x ∈ Rn : qi (x) ≥ 0, i = 1, . . . ,m}

Consider the following statements:

(S1) q0(x) ≥ 0 ∀x ∈ F

(S2) ∃s ∈ Rm
+ : q0(x)−

m∑
i=1

siqi (x) ≥ 0, ∀x ∈ Rn

(S2) =⇒ (S1) is always true.

The reverse is in general false.

Under which condition (s) (S1) =⇒ (S2) ?
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The Basic S-Lemma –(Yakubovitch-61, 73 )

S-Lemma Let m = 1 and suppose

∃x̂ such that q1(x̂) > 0.

Then, (S1) ⇐⇒ (S2).

(S2) ⇐⇒ ∃s ∈ R+ :

(
Q0 b0

bT0 c0

)
− s

(
Q1 b1

bT1 c1

)
� 0

An Instrumental Tool
• In Control Theory
• In LMI/SDP reformulations/analysis of QP
• In Robust Optimization Analysis
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Extension for m > 1??

Even for m = 2 with qi quadratic forms
qi (x) = xTQix , Qi ∈ Sn, i ∈ [0, 2] in general false. Need additional
assumptions.

Theorem–(Polyak 98) Let m = 2. Suppose n ≥ 3 and

∃ µ ∈ R2 : µ1Q1 + µ2Q2 � 0

∃x̂ such that q1(x̂) > 0, q2(x̂) > 0.

Then, (S1) ⇐⇒ (S2) where

(S1) xTQ0x ≥ 0 ∀x ∈ F = {x : q1(x) ≥ 0, q2(x) ≥ 0}

(S2) ∃s ∈ R2
+ : Q0 −

2∑
i=1

siQi � 0.

Proof. Brickman’s Theorem + apply ”Separation of convex sets”. �
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The S-Procedure, Duality and Images under QM

Data: Quadratic Functions qi (x) = xTQix + 2bTi x + ci , Qi ∈ Sn

(P) inf{q0(x) : qi (x) ≥ 0 i ∈ [1,m]}

(D) sup
λ∈Rm

+

inf
x
{q0(x)−

m∑
i=1

λiqi (x)}

The S-procedure and Duality are not equivalent... But one can derive
”simple” connections. The main tool is again the map

ψ : Rn → R1+m ψ(x) = (q0(x), q1(x), . . . , qm(x))T

Proposition 1 Suppose ∃x̂ such that qi (x̂) > 0, ∀i = 1, . . . ,m. Then
ψ(Rn) convex =⇒ {[S1] ⇐⇒ [S2]}.

Proposition 2 If v(P) = v(D) and v(D) attained, then {(S1) ⇐⇒ (S2)}.

Note: Both results valid for any functions.
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Extension of the Hausdorff-Toeplitz Theorem

Back to images under a quadratic map.

Question: For what values of m is the following claim valid?

Let A1, . . . ,Am be n × n Hermitian matrices. Then the set

{(z∗A1z , . . . , z
∗Amz) : ‖z‖ = 1, z ∈ Cn}

is closed and convex.

True for m = 2 (This is Hausdorff-Toeplitz Theorem)

Is it true for m = 3???
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Answers...

From P. Halmos, ”A Hilbert Space Problem Book”, 1967:

“It is a pity that it is so very false. It is false for m = 3 and
dimension 2; counterexamples are easy to come by.”

Well...Don’t trust anyone..!!..

The Hausdorff-Toeplitz theorem is valid for m = 3 and n ≥ 2.

Proven by Au-Yeung and Poon, (1979), Binding (1985), Lyubich
and Markus (1997).
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Some Matrix Related Results
Finsler’s Theorem (1936). Let A,B ∈ Sn.
Result 1

(F1) dTAd > 0, ∀0 6= d ∈ QB := {d : dTQd = 0}
(F1) =⇒ ∃µ ∈ R : A + µB � 0 (trivial ⇐=)

Result 2 Suppose n ≥ 3. Then,

{x : xTAx = 0, xTBx = 0} = {0} ⇔ ∃µ ∈ R2 : µ1A + µ2B � 0.

RHS =⇒ A,B simultaneously diagonalizable

Once again for 3 and more symmetric matrices ....???......

Theorem (Chen-Yuan (99))
If max{xTA1x , x

TA2x , x
TA3x} ≥ 0 ∀x ∈ Rn, then

∃µ ∈ R3
+

3∑
i=1

µi = 1 s.t.
3∑

i=1

µiAi has at most 1 negative eigenvalue.
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Convexity of the image of q(Rn) beyond m ≥ 3

Let q : Rn → Rm be the quadratic map defined via:

q(x) = (q1(x), . . . , qm(x)); qi (x) = xTQix , S
n
++ 3 Qi , i = 1, . . . ,m.

The image q(Rn) ⊂ Rm is always convex for m = 2, and for m = 3 if of
some linear combination of Q1,Q2,Q3 is positive definite.

How ”close” is the image of q(Rn) from its convex hull conv q(Rn)?

Theorem (Barvinok (2014) The relative entropy distance from the convex
hull of the image of q to the image of q is bounded above by an absolute
constant. More precisely, for every u ∈ conv q(Rn), u1 + . . .+um = 1, there
exists v ∈ q(Rn), v1 + . . . vm = 1 such that

DKL(u, v) :=
m∑
i=1

ui ln

(
ui
vi

)
≤ τ, for some absolute ct. τ > 0.

Replacing q(Rn) by its convex hull leads to a ”constant” loss of
information...
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Summary

Nonconvex quadratic optimization remains a challenging area, and a
source of interesting mathematical questions/problems.

Failure of S-procedure for m ≥ 3 ' Intractability of QP...

Convexity of q(Rn) ' Strong Duality and Computational
Tractability...

Identifying more classes of tractable hidden convex problems?

Thank you for “Zooming” !
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