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Semidefinite program (SDP)

minimize tr(CX)
subjectto tr(A;X)=b;, i=1,...,m
X>0

X is a symmetric n X n matrix; X > 0 means X is positive semidefinite

Interior-point methods

e general-purpose implementations for dense problems do not scale well
e each iteration involves computations with complexity m?>, m?n?, mn>

e customization to exploit problem structure is difficult

Proximal splitting methods

e exploiting structure in linear equality constraints is easier

e require eigenvalue decompositions for projections on positive semidefinite cone



Sparse semidefinite programs

large SDPs often have sparse coefficient matrices C, Ay, ..., A,
e relaxations of combinatorial graph optimization problems

e semidefinite relaxations of polynomial optimization problems

Example: relaxation of maximum-cut problem

maximize tr(LX)
subjectto X;; =1, i=1,...,n
X >0

L is weighted graph Laplacian
e complexity of general-purpose interior-point solver: O(n4) per iteration

e customized interior-point solver: 0(n3) per iteration

e proximal splitting method: O (n?) per iteration (projection on p.s.d. cone)



Nonnegative trigonometric polynomials
n
Fy(w) = xo+ Z(xke_lkw + %) >0 forallw (i=V-1)
k=1

e coefficients x form a semidefinite-representable convex cone K

e dual cone K™ is cone of positive semidefinite Toeplitz matrices

Applications
e source of many SDP applications in signal processing since 1990s
e recent applications to superresolution, grid-free compressed sensing

e SDP formulations extend to matrix polynomials, rational (Popov) functions, ...

Complexity: convex optimization over K or K*
e general-purpose interior-point SDP solvers: O (n*) per iteration
e customized interior-point solvers: O (n>) per iteration

e proximal splitting methods: 0(n3) per iteration (for projection on p.s.d. cone)
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Proximal mapping
Proximal mapping: for closed convex function f
prox ;(y) = argmin (f(x) + 5llx - yIIy)
X
if £ is the indicator of a closed convex set C, this is the Euclidean projection on C

Proximal algorithms
e proximal point method: x4 = prox, ¢(x)

e proximal gradient method for minimizing f(x) + g(x), with g differentiable:

Xk+1 = ProxXpp(xg — tVg(xg))
_ 1
= argmin | f(x) +g(xe) + (Vg (xe), x = xp) + o[l = xll
X

e splitting methods: ADMM, Douglas—Rachford splitting, Spingarn’s method

e primal—-dual methods: primal—-dual hybrid gradient (Chambolle—Pock) method



Proximal algorithms with generalized distances

e use a generalized distance d(x, y) instead of %Hx — y||§

e for example, in proximal gradient method for minimizing f(x) + g(x):

v = argmin | £(3) + g(x) + (Vg (), x = x0) + —d (e, x0)

X

Potential benefits

1. “pre-conditioning”: use a more accurate model of g(x) around xy,

2. make the generalized proximal mapping (minimizer x) easier to compute

goal of 1 is to reduce number of iterations; goal of 2 is to reduce cost per iteration



Bregman distance

d(x,y) = ¢(x) —d(y) —(Vo(y), x — y)

e ¢ is the kernel function, convex and continuously differentiable on int (dom ¢)
e we define the domain of d as dom d = dom ¢ X int(dom ¢)
e domain of ¢ may include its boundary or a subset of its boundary

other properties of ¢ may be required
[Censor and Zenios 1997]



Generalized proximal mapping

e proximal mapping of f for Bregman distance d

proxsf(y, a) = argmin ( f(x) + (a,x) +d(x,y))

o ford(x,y) = %Hx — )’||§, this is the standard proximal mapping

, 1
prox{p(y,a) = argmin (f(x) +{a,x) +llx = ylly)

X

_ |
= argmin (f(x) + §||x -y+ Cl||§)
X

PTOXf(y —a)

Requirements
e minimizer x exists and is unique for all y € int (dom ¢) and all a
e minimizer x is in interior of dom ¢

e minimizer is inexpensive to compute



Example: relative entropy

n
d(x,y) = > (xilog(xi/y)) —xi+yi),  domd =R} xR},
i=1
e the Bregman distance for

n
d(x) = Zx,- log x;, dom ¢ = RY
i=1

e generalized projection (proximal operator for indicator) on H = {x | 1x = 1}

_al h

1 — yi¢€

argmin (a’x + d(x,y)) = -
17x=1 )y yje—aj | yne

J=1

_an

used in entropic proximal point method, exponential method of multipliers



Example: relative entropy
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= argmin (a’ x + d(x, y))
17x=1

10



Outline

1. Proximal methods with generalized (Bregman) distances
2. Itakura—Saito distance for nonnegative trigonometric polynomials

3. Logarithmic barrier distance for sparse p.s.d. completable matrices



Cone of nonnegative trigonometric polynomials

e [, is a trigonometric polynomial with coefficients x; (real for simplicity)

Fy(w) =xp+2x1cosw + - - -+ 2x, COS nw

e K is the convex cone

K={xeR" | F(w) >0V}

we consider optimization problems that include constraints
x €K, xp= 1

equality xo = 1 normalizes F:

1 2

— Fi(w)dw =1
27 0
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Semidefinite representation of K and dual cone K*

K={D(X)|XeS™ x>0,

K*={y eR"!|T(y) = 0}

e D :S™! — R™! maps symmetric matrix X to vector of diagonal sums

D(X) =

o T :R™! — §™1 maps vector (yo,. ..

T(y)

Yo
Y1
Yn-1
Yn

Xoo + X11+ -+ X
Xo1+ X2+ -+ Xy—1a

Xon-1+ X1n

Y1
Yo

Yn-2
Yn—1

, Yn) to the symmetric Toeplitz matrix

Yn—1 Yn
Yn-2 Yn-1
Yo 1
Y1 YO
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Kernel functions

kernels for Kullback—Leibler distance and ltakura—Saito distance

1 21 1 2

bu() = 5 | Filw) log Fu(w)do 6(0) = —5- | log Fr(w)do

27 Jo 27t Jo
Kullback—Leibler ltakura—Saito
0.5 Pk | | ] 056 ‘
S0 S0

-0.5¢ 1 0.5}

-0.5 0 0.5 -0.5 0 0.5

X1 X1

e plots show contour lines on section {x € K | xg = 1}

e ¢ is essentially smooth; ¢y is not

13



Semidefinite representation of entropy kernel ¢

minimize (over X) —log Xoo
subject to D(X)=x
X >0

forx € K \ {0}, optimal value is

2w

d(x) = —% Jo log F.(w)dw

optimal X has rank one:

X =bb",  ¢(x)=-2loghg

b is minimum-phase spectral factor (bg+ b1z~ + -+ bz " # 0 for |z] > 1)

b is efficiently computed by spectral factorization of x: solve quadratic equation

D(bb") = x
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Dual of semidefinite representation of ¢

maximize (over y) —y(y) — {(x,y) + 1

e convex function ¢ is defined as
W (y) =log(e'T(y)"'e),  domy ={y|T(y) >0}
where e = (1,0,...,0)
e by duality, optimal value is ¢(x)
e optimal y is y = —V¢(x), and related to primal solution X = bb! as
T(y)b=e

y can be computed from spectral factor b by reverse Levinson algorithm
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Itakura—Saito distance and projection

TR o Ew)
R Rw)

d(x,y) = — 1Ddw

e proposed in 1970s as spectral distance measure in speech processing

e generalized projection on hyperplane H = {x | xo = 1}:

proxng(y, a) = argmin ({a,x)+d(x,y))

xo=1
= argmin ({c,x) + ¢(x)) (where ¢ = a — V(y))

)C()Zl

e dual problem (scalar variable A is multiplier for constraint xg = 1)
maximize —log (e! (T'(c) + AD7le) = A

el (T(c) + AI)~ e is the 1st element of the inverse of Toeplitz matrix 7'(c) + A/

16



Computing Itakura—Saito projection

solve dual problem for A, for example, by Newton’s method
maximize h() = —log(e! (T(c) + A~ le) — 2

h' ()

~Amin(T (c))

e at each Newton step, factorize positive definite Toeplitz matrix T'(c) + A1
e complexity: O (n?) with Levinson algorithm, O (n(log n)?) with superfast solvers
e from optimal A, compute solution x = (1/bg)D(bbT) where b = (T (¢) +AI) e
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Covariance estimation

minimize (over y, s) ||T(y) + sl — R||% +vytr(T(y))
subject to T(y) =0
e estimate parameters in signal model v(r) = 3/_, cxe'*' + white noise
e fit covariance T'(y) + sI: low-rank p.s.d. Toeplitz plus multiple of identity

e R is sample covariance matrix (n + 1 = 30 in the example)

IGA applied to dual problem
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IGA: proximal gradient algorithm with Bregman distances

minimize  f(x)
subjectto x € C

C a convex set; f convex with Lipschitz continuous gradient

IVf(x) = Vil < Lllx =yl

Improved gradient algorithm (IGA) [Auslender and Teboulle 2006]

YVirl = (1 =0p)xp +60rvi
, 1
Vel = argmin ((Vf(yk+1),x) + —d(x,vi))
xeC Tk
Xk+1 = (1= 6p)xk +60xvisr

e Bregman extension version of Nesterov fast gradient projection method
e we assume Bregman kernel is strongly convex: d(x, y) > %Hx —y|I?

e 0y, 7, determined by line search; does not require knowledge of L
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Euclidean projection

n
minimize 3 (xx — ax)?
k=0
subjectto x € K, xp=1

10° 10% ¢

|- IGA

Time (seconds)

Time per iteration

-2 | |

N (N N)
s S 8
1

e |IPMis SDPT3/SeDuMi via CVX; IGA is Auslender—Teboulle algorithm
e number of IGA iterations is 100—200 to reach relative accuracy 10~*

e about 10 Newton steps per projection; Toeplitz solver is Levinson algorithm
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Sparse semidefinite program

minimize tr(CX)
subjectto tr(A;X)=b;, i=1,...,m
X >0

e C,Aq,...,A, are sparse with common sparsity pattern E
e without loss of generality, we assume E is chordal (a filled Cholesky pattern)

e optimal X is typically dense, even for sparse coefficients C, Ay, ..., Ay

Equivalent conic linear program

minimize tr(CX)
subjectto tr(A;X)=b;, i=1,...,m
X eK

e variable X is a sparse matrix with sparsity pattern £ (notation: S’]E)

e K is cone of matrices in S, that have a positive semidefinite completion
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Centering problem

Logarithmic barrier

d(X) = sup (—tr(XS)+logdetS)
Seint K*

e dual cone K* is cone of positive semidefinite matrices in St

e ¢ is conjugate barrier of log-det barrier ¢.(S) = —logdet S for K*

Centering problem

minimize tr(CX) + u¢(X)
subjectto tr(A;X)=b;, i=1,...,m

e solutions for u > 0 form the central path of the SDP

e optimal X is (un)-suboptimal for the SDP
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Bregman distance generated by barrier kernel

#(X)= sup (logdetS —tr(XS))
Seint K*

e optimal Sy is inverse of maximum determinant pos. definite completion of X

(X)) =logdetSy — n
e gradient V¢(X) = —Sx
e for chordal E: efficient algorithms for computing Sx given X

e complexity is comparable with sparse Cholesky factorization with pattern £

Distance

d(X,Y)

¢(X) —¢(Y) —tr (VoY) (X -Y))
= —log det(ﬁyﬁ)}l) + tr(ﬁyf)}l) +n

the relative entropy (Kullback—Leibler divergence) between Sy and Sx
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Bregman proximal operator for centering problem

minimize tr(CX) + u¢(X)
subjectto tr(A;X)=b;, i=1,...,m
trX =1
e centering objective, restricted to tr X = 1 (alternatively, tr X < 1):
f(X) =t(CX) + pgp(X) +ou(X), H={X|uX=1}

e Bregman proximal operator proxff(Y, D) for centering objective

X = argmin(f(X)+tr(DX) + %d(X, Y))
X

= argmin (tr(BX) + ¢(X)) where B =
tr X=1 1 +ur

((D +C) + Sy) € S”.
e dual problem (scalar variable A is multiplier for tr X = 1):

maximize logdet(B+ Al) — A
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Algorithm for Bregman proximal operator

minimize tr(BX) + ¢(X)
subjectto trX =1

e use Newton’s method to find unique solution A of the nonlinear equation
tr(B+A)"H =1 (with B+ Al > 0)

e from A, compute solution X as projection ITg ((B + A1)~") on S”.

e for chordal sparsity patterns E, efficient algorithms exist for computing
gD =w((B+A)T), g =-u(B+A)7?), X=Tp(B+a)7)
from sparse Cholesky factorization of B + A/

complexity ~ # Newton iterations X cost of sparse Cholesky factorization
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Maximum-cut problem

maximize tr(LX)
subjectto diag(X)=1, X >0

e compute approximate solution on central path (parameter u = 0.001/n)

e Bregman variant of primal—dual hybrid gradient algorithm [Chambolle & Pock 2016]

e four problems from SDPLIB, four graphs from SuiteSparse matrix collection

. time per Cholesky = Newton steps  time per PDHG PDHG
factorization per iteration iteration iterations
maxG51 1000 0.05 2.45 0.12 267
maxG32 2000 0.12 1.56 0.18 240
maxG55 5000 0.29 2.10 0.58 249
maxG60 7000 0.60 2.55 1.22 279
barth4 6019 0.42 3.57 1.55 346
tuma2 12992 0.48 4.36 1.89 375
biplane-9 21701 0.95 2.58 2.12 287
c-67 57975 0.76 3.58 3.56 378
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SDP relaxation of graph partitioning

minimize  tr(PTLPX)
subjectto diag(PXP') =1, X >0

e columns of P are sparse basis of {x | 1/x = 0}

e Bregman PDHG for centering problem (centering parameter u = 0.001/n)

e four problems from SDPLIB, four graphs from SuiteSparse

. time per Cholesky = Newton steps  time per PDHG PDHG
factorization per iteration iteration iterations
gpp100 100 0.01 2.43 0.02 305
gpp124-1 124 0.01 2.00 0.02 392
gpp250-1 250 0.01 2.65 0.03 365
gpp500-1 500 0.02 3.01 0.07 394
delaunay_n10 1024 0.37 4.36 1.76 403
delaunay_n11 2048 0.48 4.70 2.54 420
delaunay_n12 4096 0.60 4.43 3.05 367
delaunay_n13 8192 1.02 4.42 4.98 375
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Primal—-dual hybrid gradient (PDHG) method

minimize  f(x)
subjectto Ax =05

f is a closed convex function

Algorithm
Vil = 2k +0r(zZk = 2k-1)
Xie] = arg)rcnin (f(x)+ yLle + Tl—kd(x, Xk))
Zk+el = 2+ 0 (Axpe — D)

e Bregman variant of primal—dual hybrid gradient (Chambolle—Pock) method
[Chambolle & Pock 2016]

e parameters 6, o, T, can be determined by line search

e does not require knowledge of norm of A or strong convexity constant of ¢
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Summary

Bregman proximal methods for two classes of SDP-representable constraints

Nonnegative trigonometric polynomials

e |takura—Saito distance

e cost of generalized projection is roughly O (n?)

Positive semidefinite completable sparse matrices

e distance generated by logarithmic barrier
e prox-operator for centering objective

e cost roughly on the same order as sparse Cholesky factorization
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