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introduction

Unconstrained Optimization

Minimize f(x) : Rn → R

We will assume throughout that f is sufficiently smooth and
nonconvex, unless specified.

When f(x) is deterministic, standard methods are 1. line search,
2. trust region and 3. cubicly regularized Newton.

When f(x) is stochastic, standard method is stochastic gradient
descent and variants.

When f(x) has biased noise and/or no derivative information, we
use other methods (e.g. black box optimization).

How can adaptive deterministic methods be used and analyzed in
nondeterministic (possibly black box) settings?
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General framework for deterministic methods

Generic Adaptive Deterministic Method

0. Initialization
Choose constants η ∈ (0, 1), γ ∈ (1,∞), and α ∈ (0,∞). Choose an
initial iterate x0 ∈ Rn and stepsize parameter α0 ∈ (0, α].

1. Determine model and compute step
Choose a local model mk of f around xk. Compute a step sk(αk)
such that the model reduction mk(xk)−mk(xk + sk(αk)) ≥ 0 is
sufficiently large.

2. Check for sufficient reduction in f
Check if f(xk)− f(xk + sk(αk)) is sufficiently large relative to
mk(xk)−mk(xk + sk(αk)) using a condition parameterized by η.

3. Successful iteration
If true (along with other potential requirements), then set
xk+1 ← xk + sk(αk) and αk+1 ← min{γαk, α}.

4. Unsuccessful iteration
Otherwise, xk+1 ← xk and αk+1 ← γ−1αk.

5. Next iteration
Set k ← k + 1.
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General framework for deterministic methods

Particular Methods

For line search method

mk(xk + s) = f(xk) +∇f(xk)T s+ 1
2αk

sTHs, H � 0

sk(αk) = −αkH−1∇f(xk)

Sufficient reduction: f(xk)− f(xk + sk(αk)) ≥ −η∇f(xk)T sk(αk)

For trust region method

mk(xk + s) = f(xk) +∇f(xk)T s+ 1
2
sTHs, H ∼ ∇2f(xk)

sk(αk) = arg mins: ‖s‖≤αk mk(xk + s)

Sufficient reduction: f(xk)−f(xk+sk(αk))
mk(xk)−mk(xk+sk(αk))

≥ η
For cubicly regularized Newton method

mk(xk + s) = f(xk) +∇f(xk)T s+ 1
2
sT∇2f(xk)s+ 1

3αk
‖s‖3,

sk(αk) = arg minsmk(xk + s)

Sufficient reduction: f(xk)−f(xk+sk(αk))
mk(xk)−mk(xk+sk(αk))

≥ η
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General framework for deterministic methods

What can happen?

xk xk+sk xk xk+sk

Figure: Illustration of successful (left) and unsuccessful (right) steps in a trust
region method.
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General framework for deterministic methods

Why analyze adaptive methods in stochastic setting?

For gradient descent xk+1 = xk − αk∇f(xk) small enough step αk ≤ 1
L

always
works.

For inexact gradient descent xk+1 = xk − αkgk, gk ≈ ∇f(xk) bound on αk is
harder to determine.

Suppose a descent direction condition, e.g. ‖∇f(xk)− gk‖ ≤ θ‖∇f(xk)‖, holds
only w.p. 1− δ. What kind of convergence result we can guaranatee then?

It takes O( 1
ε2

) iterations until ‖∇f(xk)‖ ≤ ε. So if for each of the first O( 1
ε2

)
iterations gk is a descent direction, then the algorithm works!!

Thus convergence result holds with probability (1− δ)O( 1
ε2

)
.

But what happens if the descent condition is failed even once?
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Elements of the analysis

First and Second order model requirements

Use a model mk(xk + s) = fk + gTk s+ 1
2
sTHs.

First order model conditions

|f(xk)− fk| ≤ O‖s‖2

‖∇f(xk)− gk‖ ≤ O‖s‖1

‖∇2f(xk)−Hk‖ ≤ O‖s‖0

Second order model conditions

|f(xk)− fk| ≤ O‖s‖3

‖∇f(xk)− gk‖ ≤ O‖s‖2

‖∇2f(xk)−Hk‖ ≤ O‖s‖1

We consider three different cases:

Model conditions hold deterministically - this is already known and analyzed.

Conditions on f hold deterministically, and on g and H hold w.p. 1− δ.
Conditions on f , g and H hold w.p. 1− δ.

Analysis should consider what can happens when model conditions fail to hold.
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Elements of the analysis

Framework for Convergence Rate Analysis, Case 1

{Φk} ≥ 0 - a sequence whose role is to measure progress of the algorithm.

{Wk} is a sequence of indicators; specifically, for all k ∈ N, if iteration k is
successful, then Wk = 1, and Wk = −1 otherwise.

{αk} ≥ 0 - a sequence of step size values obeying αk+1 = γWkαk

Tε, the stopping time, is the index of the first iterate that satisfies a desired
ε-convergence criterion.

Condition 1

The following statements hold with respect to {(Φk, αk,Wk)} and Tε.

1 There exists a scalar αε ∈ (0,∞) such that for each k ∈ N, αk ≤ αε implies
Wk = 1. Therefore, αk ≥ αε for all k ∈ N.

2 There exists a nondecreasing function hε : [0,∞)→ (0,∞) such that, for all
k < Tε, if k is successful, then Φk − Φk+1 ≥ hε(αk).

Under Condition 1

Tε ≤ O
(

Φ0

hε(αε)

)
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Framework for adaptive stochastic methods

Generic Adaptive Stochastic Method

Initialization
Choose constants η ∈ (0, 1), γ ∈ (1,∞), and α ∈ (0,∞). Choose an
initial iterate x0 ∈ Rn and stepsize parameter α0 ∈ (0, α].

1. Determine model and compute step
Choose a random local model mk of f around xk. Compute a step
sk(αk) such that the model reduction mk(xk)−mk(xk + sk(αk)) ≥ 0
is sufficiently large.

2. Check for sufficient reduction in f
Compute estimates f0

k ∼ f(xk) and fsk ∼ f(xk + sk(αk)) and check if
f0
k − fsk is sufficiently large relative to mk(xk)−mk(xk + sk(αk))

using a condition parameterized by η.

3. Successful iteration
If true (along with other potential requirements), then set
xk+1 ← xk + sk(αk) and αk+1 ← min{γαk, α}.

4. Unsuccessful iteration
Otherwise, xk+1 ← xk and αk+1 ← γ−1αk.

5. Next iteration
Set k ← k + 1.
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Framework for adaptive stochastic methods

What can happen under random models (Case 2)?
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Framework for adaptive stochastic methods

Casting the Algorithm as a Stochastic Process, Case 2

{Φk} ≥ 0 - a random sequence whose role is to measure progress of the
algorithm.

{Wk} is a sequence of random indicators; specifically, for all k ∈ N, if iteration
k is successful, then Wk = 1, and Wk = −1 otherwise.

{αk} ≥ 0 - a random sequence of step size values that obeying αk+1 = γWkαk

Tε, the random stopping time, is the index of the first iterate that satisfies a
desired ε-convergence criterion.

{Φk, αk,Wk} is a stochastic process and Tε is its stopping time.

Recall Condition 1

The statement in red no longer hold with respect to {(Φk, αk,Wk)} and Tε.

1 There exists a scalar αε ∈ (0,∞) such that for each k ∈ N such that αk ≤ γαε,
the iteration is guaranteed to be successful, i.e., Wk = 1. Therefore, αk ≥ αε
for all k ∈ N.

2 There exists a nondecreasing function hε : [0,∞)→ (0,∞) such that, for all
k < Tε, if k is successful then Φk − Φk+1 ≥ hε(αk).
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Framework for adaptive stochastic methods

The αk Process

Modifying Condition 1

There exists a constant αε ∈ (0,∞) such that, for k < Tε

αk+1 ≥ γWkαk,

where P(Wk = 1|αk ≤ αε) ≥ 1− δ.
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Framework for adaptive stochastic methods

Bounding the total number of iterations

Main Ideas:

αk may become arbitrarily small, but it tends to increase up to αε.

Large steps imply large function decrease, i.e. each successful iteration with
accurate model and αk ≥ αε brings hε(αε) improvement, so their total number
is bounded.

The number of small upward steps is bounded by the small downward steps,
but downwards steps are bounded by upward steps (because of the new
Condition 1).

The number of successful iterations with accurate models and αk ≥ αε is
constant fraction of the total number of iterations.
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Framework for adaptive stochastic methods

Complexity bounds

{Φk, αk,Wk} is a stochastic process and Tε is its stopping time.

Condition 1

1 For all k < Tε such that αk ≤ αε, Wk = 1 w.p.1− δ.
2 There exists a nondecreasing function hε : [0,∞)→ (0,∞) such that, for all
k < Tε, if k is successful then Φk − Φk+1 ≥ hε(αk).

Theorem

Under Condition 1,

E[Tε] ≤ O
(

1

1− 2δ

Φ0

hε(αε)

)
Moreover,

P(Tε ≥ N) ≤ e(−
(δ−δ̂)2

2
N),∀N ≥ O

(
1

1− 2δ̂

Φ0

hε(αε)

)
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Framework for adaptive stochastic methods

Complexity bounds for particular cases

Line Search

For the line search algorithm with random first order models, accurate w.p 1− δ
applied to nonconvex f(x)

Tε ≈ O
(

1

1− 2δ

f(x0)− f∗)
ε2

)
, Tε = min{k : ‖∇f(xk)‖ ≤ ε}

applied to convex f(x)

Tε ≈ O
(

1

1− 2δ

f(x0)− f∗)
ε

)
, Tε = min{k : f(xk)− f∗ ≤ ε}

and strongly convex f(x)

Tε ≈ O
(

1

1− 2δ

f(x0)− f∗)
log(ε)

)
, Tε = min{k : f(xk)− f∗ ≤ ε}
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Framework for adaptive stochastic methods

Complexity bounds for particular cases

Trust region and Regularized Newton

For the trust region method with random first order models, accurate w.p.
1− δ

Tε ≈ O
(

1

1− 2δ

f(x0)− f∗)
ε2

)
, Tε = min{k : ‖∇f(xk)‖ ≤ ε}

with random second order models, accurate w.p. 1− δ

Tε ≈ O
(

1

1− 2δ

f(x0)− f∗)
ε3

)
, Tε = min{k : ‖∇f(xk)‖,−λmin(∇2f(xk)) ≤ ε}

For cubicly regularized Newton method with random first order models
accurate w.p. 1− δ

Tε ≈ O
(

1

1− 2δ

f(x0)− f∗)
ε

3
2

)
, Tε = min{k : ‖∇f(xk)‖ ≤ ε}
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General framework for stochastic functions

What can happen under random function estimates,
Case 3
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General framework for stochastic functions

Assumptions on Stochastic Process, Case 3

{Φk} ≥ 0 - a random sequence whose role is to measure progress of the
algorithm.

{Wk} is a sequence of random indicators; specifically, for all k ∈ N, if iteration
k is successful, then Wk = 1, and Wk = −1 otherwise.

{αk} ≥ 0 - a random sequence of step size values that obeying αk+1 = γWkαk

Tε, the random stopping time, is the index of the first iterate that satisfies a
desired ε-convergence criterion.

{Φk, αk,Wk} is a stochastic process and Tε is its stopping time.

Recall Condition 1

The statements in red no longer hold with respect to {(Φk, αk,Wk)} and Tε.

1 αε ∈ (0,∞) such that, for k < Tε for which αk ≤ αε,

αk+1 ≥ γWkαk, where Wk = 1 w.p.1− δ.

2 There exists a nondecreasing function hε : [0,∞)→ (0,∞) such that, for all
k < Tε, if k is successful, Φk − Φk+1 ≥ hε(αk).
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General framework for stochastic functions

Assumptions on Stochastic Process, Case 3

{Φk} ≥ 0 - a random sequence whose role is to measure progress of the
algorithm.

{Wk} is a sequence of random indicators; specifically, for all k ∈ N, if iteration
k is successful, then Wk = 1, and Wk = −1 otherwise.

{αk} ≥ 0 - a random sequence of step size values that obeying αk+1 = γWkαk

Tε, the random stopping time, is the index of the first iterate that satisfies a
desired ε-convergence criterion.

{Φk, αk,Wk} is a stochastic process and Tε is its stopping time.

New Condition 1

The statements in red no longer hold with respect to {(Φk, αk,Wk)} and Tε.

1 αε ∈ (0,∞) such that, for k < Tε for which αk ≤ αε,

αk+1 ≥ γWkαk, where Wk = 1 w.p.1− δ.

2 There exists a nondecreasing function h(·) : [0,∞)→ (0,∞) such that, until
the stopping time:

E(Φk+1| past) ≤ Φk − h(αk).
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General framework for stochastic functions

Bounding expected stopping time

Main Idea: This is a renewal-reward process and Φk is a
supermartingale - E[Φk+1| past] ≤ Φk − hε(αk) and, thus,

Φ0 ≥ E[
∑Tε

i=0 h(αi)].

Tε is a stopping time!

Applying Wald’s Identity we can bound the number of renewals
that will occur before Tε.

Multiply by the expected renewal time.

We have the following results

Theorem (Blanchet, Cartis, Menickelly, S. ’17)

Let Condition 1 hold. Then

E[Tε] ≤
1− δ
1− 2δ

· Φ0

h(αε)
+ 1.
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General framework for stochastic functions

Stochastic TR: First-order convergence rate.

αk is the trust region radius.

Φk = ν(f(xk)− fmin) + (1− ν)α2
k.

Tε = inf{k ≥ 0 : ‖∇f(xk)‖ ≤ ε}.

Theorem

(Blanchet-Cartis-Menickelly-S. ’17)

E[Tε] ≤ O
(

1− δ
1− 2δ

(
L

ε2

))
,
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General framework for stochastic functions

Stochastic TR: Second-order convergence rate

αk is the trust region radius.

Φk = ν(f(xk)− fmin) + (1− ν)α3
k.

Tε = inf{k ≥ 0 : max{‖∇f(xk)‖,−λmin(∇2f(xk))} ≤ ε}.

Theorem

(Blanchet-Cartis-Menickelly-S. ’17)

E[Tε] ≤ O
(

1− δ
1− 2δ

(
L

ε3

))
,
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General framework for stochastic functions

Stochastic line search: nonconvex case

αk - the step size parameter, δk additional parameter meant to
approximate αk ‖∇f(xk)‖2.

Φk = ν(f(xk)− fmin) + (1− ν)αk ‖∇f(xk)‖2 + (1− ν)θδ2
k.

Tε = inf{k ≥ 0 : ‖∇f(xk)‖ ≤ ε}.

Theorem

(Paquette-S. ’18)

E[Tε] ≤ O
(

1− δ
1− 2δ

(
L3

ε2

))
,
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General framework for stochastic functions

Stochastic line search: convex case

αk - the step size parameter, δk additional parameter meant to
approximate αk ‖∇f(xk)‖2.

Φk = ν(f(xk)− fmin) + (1− ν)αk ‖∇f(xk)‖2 + (1− ν)θδ2
k.

Tε = inf{k : f(xk)− f∗ < ε}.
Ψk = 1

νε −
1

Φk
.

Theorem

(Paquette-S. ’18)

E[Tε] ≤ O
(

1− δ
1− 2δ

(
L3

ε

))
,
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General framework for stochastic functions

Stochastic line search: strongly convex case

αk - the step size parameter, δk additional parameter meant to
approximate αk ‖∇f(xk)‖2.

Φk = ν(f(xk)− fmin) + (1− ν)αk ‖∇f(xk)‖2 + (1− ν)θδ2
k.

Tε = inf{k : f(xk)− f∗ < ε}.
Ψk = log(Φk)− log(νε).

Theorem

(Paquette-S. ’18)

E[Tε] ≤ O
(

1− δ
1− 2δ

log

(
L3

ε

))
,
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General framework for stochastic functions

Cubicly regularized Newton

Φk = ν(f(xk)− fmin) + (1− ν)αk ‖∇f(xk)‖3/2 +???.

Tε = inf{k : ‖∇f(xk+1)‖ < ε}.

Tε is NOT a stopping time.Need to modify Condition 1 again.
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General framework for stochastic functions

Conclusions and Remarks

We have a versatile framework based on bounding stoping time of
a martingale which can be used to derive expected complexity
bounds for adaptive stochastic methods.

Algorithms can converge even with constant (and quite large)
probability of ”iteration failure.”

To do: High probability results for stochastic case.

To do: Weaker conditions for stochastic case.

To do: Stochastic Cubicly regularized Newton and optimal Trust
Region method.
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General framework for stochastic functions

Thanks for listening!
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