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Compound stochastic optimization

Outline

• The setting: Compound stochastic programs

• Applications: Areas of risk measure minimization

• The SMM algorithm: Stochastic majorization minimization algorithm

• Convergence: Almost sure stationarity and probabilistic error bounds for stopping

• Extension: Risk-based robust statistical learning

• Numerical results: OCE-of-deviation optimization and robust statistical learning
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Compound stochastic optimization

The compound stochastic program

minimize
x∈X

Θ(x) ≜ ψ
!
E
"
ϕ(G(x, #ω), E [F (x, #ω) ])

$ %

• a random variable #ω : Ξ → Ω ⊆ Rm, independent of x

• a closed convex set X contained in an open set Y ⊆ Rn

• G : Y × Ω → RℓG and F : Y × Ω → RℓF are continuous, yet potentially nonconvex and
nondifferentiable functions

• ϕ : RℓG+ℓF → Rℓϕ and ψ : Rℓϕ → R are isotone; ψ and {ϕj} are convex;

• ℓF = 0 =⇒ composite stochastic program with a single expectation
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Compound stochastic optimization Application in risk-based classification

Application: elementary risk deviations

Deviation from the mean

• Expected squared deviation from the mean: E [Z − E[Z]]2 (variance)

• Expected absolute deviation from the mean: E |Z − E[Z]|

• Expected semi-deviation from the mean: E [(Z − E[Z])+] where (t)+ = max(0, t)
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Compound stochastic optimization Application in risk-based classification

Backgrounds: risk measures
Given a random variable Z with cumulative distribution function FZ(•).

• α-Value-at-Risk (VaR) with α ∈ (0, 1): VaRα(Z) ≜ min{z : FZ(z) ≥ α}

• τ -Probability Of Exceedance (POE) with τ ∈ R: POE(Z; τ) ≜ P(Z > τ) = 1− FZ(τ).

Informally, 1− POE (distribution function) is the inverse of VaR (quantile function).

• α-Conditional Value-at-Risk1 (CVaR) with α ∈ (0, 1)

CVaRα(Z) ≜ 1

1− α

&

z≥VaRα(Z)

zdFZ(z) = min
η∈R

'
η +

1

1− α
E [Z − η ]+

(

• τ -buffered Probability Of Exceedance2 (bPOE) with τ ∈ R and τ ≤ sup(Z),

bPOE(Z; τ) ≜ 1−min
)
α ∈ (0, 1) : CVaRα(Z) ≥ τ

*
= minimum

a≥0
E
"
a(Z − τ ) + 1

$
+

Informally, 1− bPOE (superdistribution function) is the inverse of CVaR (superquantile
function).

1Rockafellar RT, Uryasev S (2000) Optimization of conditional value-at-risk. Journal of Risk 2:2142.
2Rockafellar RT, Royset JO (2010) On buffered failure probability in design and optimization of structures.

Reliability Engrg. System Safety 95(5):499510.
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Compound stochastic optimization Application in risk-based classification

Backgrounds: risk measures

CVaR is a type of utility-based Optimized Certainty Equivalent1 (OCE)

Let u : R → [−∞,∞) be a proper closed concave and nondecreasing utility function with
u(0) = 0 and 1 ∈ ∂u(0).

Su(Z) ≜ sup
η∈R

)
η + E [u(Z − η) ]

*
= max

)
η + E [u(Z − η) ] | η ∈ [zmin, zmax]

*

where [ zmin, zmax ] is the support interval of Z.

1Ben-Tal A, Teboulle M (2007) An old-new concept of convex risk measures: The optimized certainty
equivalent. Math. Finance 17(3): 449476.
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Compound stochastic optimization Application in risk-based classification

Application: generalized deviation minimization
• OCE based: Given a loss function f(x,ω),

minimizex∈X − Su

+
f(x, #ω)− E[f(x, #ω)]

,

⇐⇒ minimizex∈X,η∈R − η − E
-
u
!
f(x, #ω)− E

"
f(x, #ω) + η

$%.

• bPOE based: with the same loss function

minimize
x∈X

bPOE
+
f(x, #ω)− E[f(x, #ω)]; τ

,

⇐⇒ minimize
x∈X,0≤a≤Ā

E
/
a
+
f(x, #ω)− E[f(x, #ω)]− τ

,
+ 1

0

+

Both involve compound expectations, an inner composition function ϕ, but without the outer
function ψ.

minimize
x∈X

Θ(x) ≜ ψ
!
E
"
ϕ(G(x, #ω), E [F (x, #ω) ])

$ %
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Compound stochastic optimization Application in risk-based classification

Application: cost-based multiclass classification

Example: medical diagnosis classification

Suppose
• 5 levels of disease condition: {1, 2, 3, 4, 5}, the higher number represents the worse condition.
• groups of errors based on the gap between the true level and the categorized level

Errors in each group can result in similar

costs, but the costs of errors among different

groups could be significantly different.
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Compound stochastic optimization Application in risk-based classification

Application: cost-based multiclass classification

Suppose

• attribute-class pairs: (X,Y ) with Y ∈ {1, . . . ,M}
• scoring function: h(X,µm) for m = 1, · · · ,M
• classifier: an input X is classified into the class j if

j ∈ argmax {h(X,µm) : m ∈ [M ] }.

• a set of misclassified label pairs: T ≜
)
(i, j) ∈ [M ]× [M ] | i ∕= j

*
.

a label pair (i, j) ∈ T means that a true label i is misclassified as j ∕= i.

• a partition of M × (M − 1) types of classification errors into S groups:

T =

S1

k=1

Tk, each Tk is associated an individual cost in learning the classification
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Compound stochastic optimization Application in risk-based classification

Application: cost-based multiclass classification

• probability of misclassifying label i into label j with tolerance τij ≥ 0:

P

2
h(X,µj)− max

m∈[M ]
h(X,µm) ≥ −τi,j | Y = i

3

the probability of exceedance (POE) can be approximated by buffered probability of exceedance
(bPOE) which considers the tail probability distribution.

• buffered cost-based classification problem

minimize
{µj}M

j=1

S4

s=1

λs

5
6

7 max
(i,j)∈Ts

bPOE

2
h(Xi, µj)− max

m∈[M ]
h(Xi, µm);−τi,j

38
9

: .
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Compound stochastic optimization Application in risk-based classification

Application: cost-based multiclass classification

By expressing each bPOE using its minimization formula in terms of an auxiliary variable, we
can obtain a compound SP.

minimize
{µj}M

j=1,{ai,j}≥0

S4

s=1

λs

5
;;;;;;6

;;;;;;7

max
(i,j)∈Ts

E

<

=====>
ai,j

2
h(Xi, µj)− max

m∈[M ]
h(Xi, µm) + τi,j

3
+ 1

? @A B
Fi,j({µj},ai,j ,Xi)

C

DDDDDE

+

8
;;;;;;9

;;;;;;:

.

Even when h(X, •) is a linear function, Fi,j(•, •, X) is a nonconvex nonsmooth function.
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Compound stochastic optimization Stochastic Majorization-Minimization (SMM) Algorithm

Compound Stochastic Program

minimize
x∈X

Θ(x) ≜ ψ
!
E
"
ϕ(G(x, #ω), E [F (x, #ω) ])

$ %

Current literature

• asymptotic and nonasymptotic statistical analysis of sample average approximation (SAA):
[Ermoliev & Norkin, 2013], [Dentcheva, Penev, & Ruszczynski, 2015], [Hu, Chen & He, 2020],

• stochastic gradient-based algorithms under the smooth condition for all functions: [Wang,
Liu, & Fang, 2016], [Wang, Fang, & Liu, 2017], [Ghadimi, Ruszczynski, & Wang, 2020]

• stochastic generalized subgradient-based algorithm for nonsmooth and nonconvex multi-level
composite optimization: [Ruszczyski, 2021]

Challenges:
• computational challenge due to the coupled nonsmooth and nonconvex feature of G and F
• sampling strategies due to the compound structure
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Compound stochastic optimization Stochastic Majorization-Minimization (SMM) Algorithm

Stochastic Majorization-Minimization (SMM) Algorithm
• Surrogation
for every x′ ∈ X and ω ∈ Ω, there exists a family G(x′, ξ) consisting of functions FG(•, ξ;x′)
satisfying the following conditions:

(1) FG(x ′,ω;x ′) = G(x ′,ω); (2) FG(x,ω;x ′) ≥ G(x,ω) for any x ∈ X;

(3) each FGi(•,ω;x ′) for i = 1, · · · , ℓG is convex on X;
(4) uniform outer semicontinuity: a technical assumption for the convergence

• Sampling
incrementally discretize the nested expectations with independent sample sets {ξt}Nt=1, {ηs}Ns=1

The sampling-based surrogate objective

FVN (x;x ′) ≜ ψ

G

HHI
1

N

N4

t=1

<

=>ϕ

G

IFGt(x, ξt;x ′),
1

N

N4

s=1

[ FF s(x, ηs;x ′) ]

J

K

C

DE

J

LLK.
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Compound stochastic optimization Stochastic Majorization-Minimization (SMM) Algorithm

Example of convex surrogation function

difference-of-convex functions

Suppose G(x,ω) = g(x,ω)− h(x,ω) with g(•,ω) and h(•,ω) being convex functions.

For any given x ′ ∈ X and ω ∈ Ω, we can construct the convex surrogate family G(x ′,ω):

G(x ′,ω) =

5
;;;6

;;;7

FG(•,ω;x ′) : FG(x,ω;x ′) ≜ g(x,ω)−
!
h(x ′,ω) + a(x ′,ω)⊤(x− x ′)

%

? @A B
linearization of h(•,ω) at x ′

with a(x ′,ω) ∈ ∂xh(x
′,ω)

8
;;;9

;;;:
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Compound stochastic optimization Stochastic Majorization-Minimization (SMM) Algorithm

Main iteration in SMM algorithm
For ν = 1, 2, . . . , do

given the current iterate xν , and the current sample sets {ξt}Nν−1

t=1 and {ηs}Nν−1

s=1

1. sample generation

generate i.i.d samples
M
ξNν−1+t

N∆ν

t=1
and

M
ηNν−1+s

N∆ν

s=1
, update Nν ≜ Nν−1 +∆ν ,

2. sampling-based convex surrogate function

!VNν (x;x
ν) ≜ ψ

"

#$
1

Nν

Nν%

t=1

ϕ

"

$ !G t(x, ξt;x ν),
1

Nν

Nν%

s=1

!F s(x, ηs;x ν)

&

'

&

('

3. the new iterate

xν+1 ≜ argmin
x∈X

)
!VNν (x;x

ν) +
1

2ρ
‖x− xν‖2

*
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Compound stochastic optimization Stochastic Majorization-Minimization (SMM) Algorithm

Subsequential convergence theorem of SMM

Theorem Under technical conditions and sample sizes Nν = ⌈ν α⌉ for some α > 1, for every
limit point x∞ of the sequence {xν} produced by the SMM algorithm, there exists
FG(•,ω;x∞) ∈ G(x∞,ω) and FF (•,ω;x∞) ∈ F(x∞,ω) exist such that with probability 1,

x∞ ∈ argmin
x∈X

ψ

G

IE

O
ϕ

P
FG(x, #ω;x∞), E

/
FF (x, #ω;x∞)

0QRJ

K ;

i.e., x∞ is a fixed point of the algorithmic map:

x ′ .→ argmin
x∈X

ψ

G

IE

O
ϕ

P
FG(x, #ω;x ′), E

/
FF (x, #ω;x ′)

0QRJ

K .

Key steps in proof:

• a descent property, with errors, of the sequence of objective values

• finiteness of the accumulated errors through a proper control of the sample sizes
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Compound stochastic optimization Stochastic Majorization-Minimization (SMM) Algorithm

Post-convergence: connections of fixed points to stationarity

• The smooth case. Fj(•,ω) and Gi(•,ω) are smooth functions with the Lipschitz gradient
modulus κ uniformly for all ω ∈ Ω,

FFj(x,ω;x
′) = Fj(x,ω) +

κ

2
‖x− x ′ ‖2

FGi(x,ω;x
′) = Gi(x,ω) +

κ

2
‖x− x ′ ‖2.

• The difference-of-convex case.

Gi(x,ω) = gGi (x,ω)− hG
i (x,ω), and Fj(x,ω) = gFj (x,ω)− hF

j (x,ω),

with gGi (•,ω), hG
i (•,ω), gFj (•,ω) and hF

j (•,ω) convex; moreover, hG
i (•,ω) and hF

j (•,ω) are
additionally differentiable with Lipschitz gradient moduli independent of ω.

fixed-point property =⇒ directional stationarity
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Compound stochastic optimization Post-convergence: stochastic error bound and stopping rule

Error bounds and stopping rules

• Existing approach assessing the solution quality in SP include bounding the optimality gap,
or testing the KarushKuhnTuckers conditions ([Higle and Sen, 1991], [ Bayraksan and Morton,
2006], [Shapiro et al., 2009])

• For a coupled nonconvex and nondifferentiable SP, we need an error bound of the kind: there
exists a constant C, for all test vectors of interest, with high probability,

distance to stationarity ≤ C· computable residual.

• with such error bound,

residual is small ⇒ distance to stationarity is small, (with high probability)
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Compound stochastic optimization Post-convergence: stochastic error bound and stopping rule

Stochastic error bound to the compound SP

• Let M!VN
(·) : x̄ #→ argmin

x∈X

!VN (x; x̄) +
1

2 ρ
‖x− x̄ ‖2 be an algorithmic map

• Let S C
X,Θ ≜ {x : 0 ∈ ∂C Θ(x̄) +N (x̄;X)}, the set of Clarke stationary points

Theorem. Assume: (1) SC
X,Θ ⊆ FIX(M!V ); (2) local error bound; (3) upper bound of the

surrogate functions. For any ε ∈ (0, ε̄) and α ∈ (0, 1), for all Fx ∈ X, provided that

N ≥ C1

ε2

2
n log

P
C2

ε

Q
+ log

P
1

α

Q3
,

P

G

HHHHI
dist

!
Fx;S C

X,Θ

%

? @A B
distance to stationarity

≤ Fη ‖ Fx−M!VN
(Fx) ‖

? @A B
sample-based residual

+ ε

J

LLLLK
≥ 1− α.
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Compound stochastic optimization Post-convergence: stochastic error bound and stopping rule

Extension: robust regression

• robust M-estimator1: min
N4

i=1

ρ(f(θ, Xi)− Y i) with the robust loss function ρ, such as

the ℓ1 loss, Huber’s loss, etc.

• Trimmed M-estimator2: minimize the average of h smallest losses.

computational challenges:

- a nonconvex and nonsmooth optimization problem, even for the linear regression model

- in heuristic algorithms 3, the size of the subproblems is in the order of the data size and
the property of the obtained solution is not guaranteed

- [Aravkin A, Davis D, 2020] proposes a stochastic proximal-gradient algorithm by
reformulating the problem as a nonconvex optimization problem with a simplex constraint
set, under the smooth condition of the loss function

1W. Li, and J. J. Swetits. The linear ℓ1 estimator and the Huber M-estimator. SIAM Journal on
Optimization, 1998

2PJ. Rousseeuw. Least median of squares regression. Journal of the American statistical association. 1984.
3PJ. Rousseeuw, K. Van Driessen. Computing LTS regression for large data sets. Data mining and

knowledge discovery. 2006 .
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Compound stochastic optimization Post-convergence: stochastic error bound and stopping rule

Interval CVaR (In-CVaR)1

for 0 ≤ α < β ≤ 1,

In-CVaRβ
α(Z) ≜ 1

β − α

&

VaRα(Z)>z≥VaRβ(Z)

zdFZ(z) =
1− α

β − α
CVaRα(Z)− 1− β

β − α
CVaRβ(Z)

1Tsyurmasto P, Uryasev S, Gotoh JY (2013) Support vector classification with positive homogeneous risk
functionals. Technical report.
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Compound stochastic optimization CVaR-based Robust Regression

Robust regression with In-CVaR

minimize
θ

ℓ(θ) ≜

G

I
λ In-CVaRβ1

α1
(max{f(θ, X)− Y, 0})

+(1− λ) In-CVaRβ2
α2
(max{−f(θ, X) + Y, 0})

J

K

Idea:

- excessively large residuals are excluded in model fitting

- excessively small residuals are excluded in model fitting

- over-estimation and under-estimation errors are evaluated with asymmetrical levels (α1,β1),
(α2,β2) and asymmetrical weights (λ, 1− λ).
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Compound stochastic optimization CVaR-based Robust Regression

Robust regression with In-CVaR

minimize
θ

ℓ(θ) ≜

G

I
λ In-CVaRβ1

α1
(max{f(θ, #X)− #Y , 0})

+(1− λ) In-CVaRβ2
α2
(max{−f(θ, #X) + #Y , 0})

J

K

• Assumption:

f(·, X) is a difference-of-convex function, f(θ, X) = g(θ, X)− h(θ, X) where g and h are
convex functions.

This class of regression functions includes

- linear regression: f(θ, X) = θ⊤X
- piecewise affine regression: f(θ, X) = max{θ⊤1,iX + θ0,i : i ∈ I}−max{θ⊤2,jX + θ0,j : j ∈ J }
- 2-layer neural network with ReLu: f((A, a, b,β), X) = max{b⊤ max{Ax+ a, 0}+ β, 0}
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Compound stochastic optimization CVaR-based Robust Regression

Robust classification with In-CVaR

In binary classification, the attribute X ∈ Rn, a binary response Y ∈ {1,−1}, a discriminant
function f(θ, X).

minimize
θ

In-CVaRβ
α(r(Y · f(θ, X))) +R(θ)

• The loss function r(·) could be:
the hinge loss function rhinge(u) = max{1− u, 0};
the logistic loss function rlogistic(u) = log(1 + exp(−u)).

• The discriminant function f(·, X) could be any difference-of-convex function.
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Compound stochastic optimization Difference-of-convex program: stochastic difference-of-convex algorithm

The parameter estimation problem: In-CVaR based robust regression

Reformulation of the loss function ℓ(θ)

Since In-CVaRβ
α(Z) =

1− α

β − α
CVaRα(Z)− 1− β

β − α
CVaRβ(Z), we reformulate the loss function

ℓ(θ) = κ1 CVaRα1(max{f(θ, #X)− #Y , 0})− κ2 CVaRβ1(max{f(θ, #X)− #Y , 0})

+κ3 CVaRα2(max{−f(θ, #X) + #Y , 0}− κ4 CVaRβ2(max{−f(θ, #X) + #Y , 0})

where κ1 =
λ(1− α1)

β1 − α1
,κ2 =

λ(1− β1)

β1 − α1
,κ3 =

λ(1− α2)

β2 − α2
,κ4 =

λ(1− β2)

β2 − α2
.
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Compound stochastic optimization Difference-of-convex program: stochastic difference-of-convex algorithm

The parameter estimation problem: In-CVaR based robust regression
Reformulation of the loss function ℓ(θ)

Since CVaRβ(Z) = min
η∈R

)
η +

1

1− β
E [Z − η ]+

*
, and f(θ, X) = g(θ, X)− h(θ, X),

with some algebraic operations, we can derive that

ℓ(θ) =

P
min
η1,η2

E
"

ϕ1(θ, η1, η2;X,Y )? @A B
jointly convex function

$Q
−
P

min
η3,η4

E
"

ϕ2(θ, η3, η4;X,Y )? @A B
jointly convex function

$Q

ϕ1(θ, η1, η2;X,Y ) ≜ κ1 η1 +
κ1

1− α1
max{g(θ, X)− Y − η1, h(θ, X)− η1, h(θ, X)}

+κ2 η2 +
κ2

1− α2
max{h(θ, X) + Y − η2, g(θ, X)− η2, g(θ, X)},

ϕ2(θ, η3, η4;X,Y ) ≜ κ3 η3 +
κ3

1− β1
max{g(θ, X)− Y − η3, h(θ, X)− η3, h(θ, X)}

+κ4 η4 +
κ4

1− β2
max{h(θ, X) + Y − η4, g(θ, X)− η4, g(θ, X)}.
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Compound stochastic optimization Difference-of-convex program: stochastic difference-of-convex algorithm

The parameter estimation problem: In-CVaR based robust regression

Lemma

Let v(•) : Θ ⊆ Rd → R with v(θ) ≜ min
η∈Γ

ψ(θ, η) where Γ is a convex set, ψ(θ, η) is a jointly

convex function on Θ× Γ. Then v(•) is a convex function. Furthermore, for any θ ∈ Θ, we

have conv

S
∂θψ(θ, η) : η ∈ argmin

η∈Γ
ψ(θ, η)

T
⊆ ∂ v(θ).

To compute the parameter θ, we aim to solve a difference-of-convex (DC) program

minimize
θ∈Θ

ℓ(θ) =

P
min
η1,η2

E
"
ϕ1(θ, η1, η2;X,Y )

$Q

? @A B
u(θ): a convex function of θ

−
P

min
η3,η4

E
"
ϕ2(θ, η3, η4;X,Y )

$Q

? @A B
v(θ): a convex function of θ

In principle we could solve such problem by the classical difference-of-convex algorithm 1

1S. Fujiwara, A. Takeda, T. Kanamori, DC Algorithm for Extended Robust Support Vector Machine, Neural
Computation, 29(5), 2017
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Compound stochastic optimization Difference-of-convex program: stochastic difference-of-convex algorithm

Stochastic difference-of-convex algorithm (SDCA)

minimize
θ∈Θ

ℓ(θ) =

+
min
η1,η2

E
,
ϕ1(θ, η1, η2;X,Y )

-.

/ 01 2
u(θ) : a convex function of θ

−
+

min
η3,η4

E
,
ϕ2(θ, η3, η4;X,Y )

-.

/ 01 2
v(θ) : a convex function of θ

Approximations of u and v:
• u is approximated by uν(θ), utilizing a random subset of samples of size Nν

uν(θ) = min
η1,η2

1

Nν

Nν%

s=1

ϕ1(θ, η1, η2;X
s, Y s)

• v is approximated by v̂ν(θ; θ
ν), the sampling-based linear approximation function

η ν
3 , η

ν
4 ∈ argmin

1

Nν

Nν%

s=1

ϕ2(θ
ν , η3, η4;X

s, Y s), and aν,s ∈ ∂ ϕ2(θ
ν , η ν

3 , η
ν
4 ;X

s, Y s)

v̂ν(θ; θ
ν) =

1

Nν

Nν%

s=1

ϕ2(θ
ν , η ν

3 , η
ν
4 ;X

s, Y s) + 〈 1

Nν

Nν%

s=1

aν,s, θ − θ ν〉

• accumulating sampling strategy with the appropriate control of the incremental sample sizes
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Compound stochastic optimization Difference-of-convex program: stochastic difference-of-convex algorithm

Stochastic Difference-of-Convex Algorithm (SDCA)

For ν = 1, 2, . . . , do

1. random sample generation

generate i.i.d. samples {(XNν−1+s, Y Nν−1+s)}∆ν
s=1, set Nν = Nν−1 +∆ν .

2. solve the second inner convex subproblem
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3. solve outer convex subproblem
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Convergence of SDCA

Theorem

Under some technical assumptions and {Nν} satisfying Nν = ⌈ν⌉γ for γ > 1, every
accumulation point of the sequence {θν} is a critical point almost surely.

SDCA is a convergent algorithm with a proper control of increasing rate of the sample size,
which is stronger than the sample size requirement Nν = Cν in [Le Thi et al. (2020)] because
of the value-function structure in the In-CVaR based robust regression model.
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Numerical experiment: OCE-of-Deviation optimization
With the exponential utility function,

minimize
x∈[0,8]

E
/
exp

M
−(x− ξ̃ )2 + E[ (x− ξ̃ )2 ]

N 0
.

Table: Comparisons between the SMM algorithm and NASA algorithm1

algorithm initialization
range

iteration
number

sample size mean std running time

SMM [ 0, 8 ]

5 16 1.0847 0.0932 0.3613
10 31 1.0635 0.0210 0.8009
15 54 1.0545 0.0083 1.5682

NASA
[ 0, 8 ]

50 50 1.6355 0.8684 0.0012
500 500 1.3131 0.2439 0.0120
5000 5000 1.2771 0.1140 0.1410

NASA [ 3, 5 ]

50 50 1.1522 0.0960 0.0013
500 500 1.0960 0.0556 0.0157
5000 5000 1.0890 0.0412 0.1142

1Ghadimi S, Ruszczynski A, Wang M (2020) A single timescale stochastic approximation method for nested stochastic
optimization. SIAM J. Optim. 30(1):960979.
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Numerical experiment: robust regression

ground truth model: φ(x1, x2) = max{x1 − 2x2,−2x1 + x2 + 1}−max{3x1 + 2x2, 2x1}

Table: Performance of OLS, Huber and In-CVaR based estimators

(p0, ε, ε) ∆ν iteration number sample size model MAE (%) MOE (%) MUE (%) running time (s)

(0.1, 3, 5)

10 30 325

In-CVaR 8.91 9.47 8.20 12.77

Huber 11.7 13.3 4.69 8.06

OLS 33.6 35.4 3.33 9.72

10 50 525

In-CVaR 7.32 9.51 4.82 18.03

Huber 12.1 12.7 8.00 15.53

OLS 33.7 34.1 2.58 11.53

⌈ν0.5⌉ 50 285

In-CVaR 5.95 5.34 6.39 14.57

Huber 7.26 5.64 9.04 13.4

OLS 9.30 11.3 5.75 9.95

k 30 490

In-CVaR 4.38 4.66 4.07 7.81

Huber 7.59 8.36 4.81 9.38

OLS 19.1 19.6 4.92 4.79
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Summary

Nonconvex and nonsmooth compound stochastic programs have many applications:
generalized deviation optimization, cost-based multi-class classfication, robust statistical
learning, etc. Extensions include multi-layer compound SP and conditional SP.

We develop the stochastic majorization minimization (SMM) algorithm based on the
surrogate family of functions for obtaining the fixed point of the algorithmic map.

We establish a stochastic error bound, which theoretically justifies the probabilistic
stopping rule for the SMM algorithm.

This talk is based on the following work:

[1] Liu J, Pang J-S, Cui Y (2022). Solving Nonsmooth Nonconvex Compound Stochastic
Programs with Applications to Risk Measure Minimization. Mathematics of Operations
Research.
[2] Liu J, Pang J-S (2022) Risk-based robust statistical learning by stochastic
difference-of-convex value-function optimization. Operations Research.
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Thank you!
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