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Some General Thoughts

addressing the negative impact of the field of machine learning
on the optimization field,

and raising an alarm
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e Convexity and/or differentiability have been the safe haven for optimization
and its applications for decades, particularly popular in the machine learning in
recent years

to the extent that
e modellers are routinely sacrificing realism for convenience,

e algorithm designers will do whatever to stay in this comfort zone, even at the
expense of potentially wrong approach,

e practitioners are content with the resulting models, algorithms, and
“solutions”,

resulting in
e tools being abused,
e advances in science being stalled, and

e future being built on soft ground.
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A little humor before the storm
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B: How to deal with non-convexity/non-smoothness?
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C2: Focus on stylized problems (and there are many interesting ones) and stop
at them
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D1: Employ heuristics, and potentially, leading to heuristics on heuristics when
complex models are being formulated



A

will not learn from this talk
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Live happily ever after <----------------

D2: The hard road:

Strive for rigor without sacrificing practice

advance fundamental knowledge, and prepare for the future




Features

Non-Problems

A
e ~

Non-Smooth A Non-Convex +  Non-Deterministic

Non-Separable

Non-Stylistic Non-Interbreeding

and many more non-topics - - -



Examples of Non-Problems

|. Structured Learning



Piecewise Affine Regression

extending classical affine regression

minimize %Z Ys — | max {(ai)—rﬂc5 —l—on} — max {(bi)Tac5 +5i}

a,a,b,f3 1<i<ky 1<i<ko

capturing all piecewise affine functions

illustrating coupled non-convexity and non-differentiability.

Estimate Change Points/Hyperplanes
in Linear Regression
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Comments

e This is a convex quadratic composed with a piecewise affine function, thus is
piecewise linear-quadratic.

e |t has the property that every directional stationary solution is a local
minimizer.

e |t has finitely many stationary values.

e A directional stationary solution can be computed by an iterative
convex-programming based algorithm.

e Leads to several classes of nonconvex nonsmooth functions; most general is a
difference-of-convex function composed with a difference-of-convex function, an
example of which is

wl( max ¥h(e) — max %i(x)) ¢2< max ¢%(z) - max zzéi(x))

1<i<kn 1<i<kis 1<i<ka 1<i<ks

where all functions are convex.



Logical Sparsity Learning

minimize /()

d
subject to Zaij|/8j|0 < b, i=1,---,m,
=1

1 ift#0
where |t ]g = )
0 otherwise.
o strong/weak hierarchy: e.g. |8 |0 < |Bk o
e cost-based variable selection: coefficients > 0 but not all equal

e hierarchical /group variable selection

n

n mR) B (ER
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Comments

e The £y function is discrete in nature; an ASC can be formulated either as
complementarity constraints, or by integer variables under boundedness of the
original variables (the big M-formulation), when A is nonnegative.



Comments

e The £y function is discrete in nature; an ASC can be formulated either as
complementarity constraints, or by integer variables under boundedness of the
original variables (the big M-formulation), when A is nonnegative.

e Soft formulation of ASCs is possible, leading to an objective of the kind:

m d
miﬁnirﬂggze f(B) + 'yz b; — Zaij |Bilo| , fora given~y > 0.
€
i=1 j=1

+

e When the matrix A has negative entries, the resulting ASC set may not closed;
its optimization formulation may not have a lower semi-continuous objective.

e When | e |y is approximated by a folded concave function, obtain some
nondifferentiable, difference-of-convex constraints.



Deep Neural Network with Feed-Forward Structure

leading to multi-composite, nonconvex, nonsmooth optimization problems

- LS~
az{n&l&r;;’r:g?:l} S;[ys fo(z®) ]

where fy is the L-fold composite function with the non-smooth max RelLU
activation:

fo(z) = (WL . +wL) o --- 0 max (0, W?e —|—w2> o max (O, Wha + w1>
—_———
Output Layer Second Layer Input Layer

output linear max linear max linear input
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Comments

e Problem can be treated by exact penalization, a theory that addresses
stationary solutions rather than minimizers.

e Note the ¢ penalization.

S L
inimi oy &L siL
minimize (,(z;u) = o > s ) +p D E

penalizing the components

e Rigorous algorithms with supporting convergence theory for computing a
directional stationary point can be developed.

e Framework allows the treatment of data perturbation.

e Leads to an advanced study of exact penalization and error bounds of
nondifferentiable optimization problems.



Examples of Non-Problems

II. Smart Planning



Power Systems Planning

w1: uncertain renewable energy generation
ws: uncertain demand of electricity

x: production from traditional thermal plants

y: production from backup fast-ramping generators

m"z‘iEmXize 80(1.) + ]EWI»WZ [1/)(5570-)1, w2)]

where the recourse function is

(x, wi,w2) £ minimum ch ([w2 —r— wl}-&-)
y

subject to A(w)x + Dy > &(w)

Unit cost of fast-ramping generators depends on
» observed renewable production & demand of electricity

» shortfall due to the first-stage thermal power decisions



Comments

e Leads to the study of the class of two-stage linearly bi-parameterized
stochastic program with quadratic recourse:

mini;nize C(x) = p(x) + E; {zﬂ(m,é)} subject to z € X C R™,

where the recourse function 9 (x, £) is the optimal objective value of the
quadratic program (QP): with @ being symmetric positive semidefinite:

(@) £ minimum  [£(6) +G©)r] v+ iy Qy
subject to y € Y(z,€) £ {y € R™ | A({)z + Dy > b(&)}.



Comments
e Leads to the study of the class of two-stage linearly bi-parameterized
stochastic program with quadratic recourse:
minimize ((z) £ o(z) + E; {zﬂ(m,é)} subject to z € X C R™,
xT

where the recourse function 9 (x, £) is the optimal objective value of the
quadratic program (QP): with @ being symmetric positive semidefinite:

(@) £ minimum  [£(6) +G©)r] v+ iy Qy
subject to y € Y(z,€) £ {y € R™ | A({)z + Dy > b(&)}.

e The recourse function (e, &) is of the implicit convex-concave kind.



Comments

e Leads to the study of the class of two-stage linearly bi-parameterized
stochastic program with quadratic recourse:

mini;nize C(x) = p(x) + E; {zﬂ(m,é)} subject to z € X C R™,

where the recourse function 9 (x, £) is the optimal objective value of the
quadratic program (QP): with @ being symmetric positive semidefinite:
. T
P(x, &) = mlmzr!num [f(ﬁ) + G(E)m] Y+ %yTQy
subject to y € Y(z,€) £ {y € R™ | A({)z + Dy > b(&)}.

e The recourse function (e, &) is of the implicit convex-concave kind.

e Developed a Regularization, Convexification, sampling combined method for
computing a generalized critical point with almost sure convergence guarantee.



(Simplified) Defender-Attacker Game with Costs

Underlying problem is: ‘minimize ¢'x subject to Az = b and z > 0‘

Defender's problem: Anticipating the attacker’s disruption § € A, the defender
undertakes the operation by solving the problem:

mir;izngize (c+6dc) z+p H [(A+6A)z—b— c?b]Jr H

oo

constraint residual

Attacker’s problem: Anticipating the defender’s activity z, the attacker aims
to disrupt the defender’s operations by solving the problem:

. T _ _ .
maximum M (c+6e) 'z + Ao H [(A+0A)r—b—db] Hoo C(9).
disrupt objective cost

disrupt constraints
e Many variations are possible.
e Offer alternative approaches to the convexity-based robust formulations.

e Adversarial Programming



Robustification of nonconvex problems
A general nonlinear program:

mir;iengize 0(z) + f(z)

subject to H(z) = 0, where

e S is a closed convex set in R™ not subject to alterations,

e 0 and f are real-valued functions defined on an open convex set O in R"
containing .S,

e H: (O — R™ is a vector-valued (nonsmooth) function that can be used to
model both inequality constraints g(x) < 0 and equality constraints h(x) = 0.



Robustification of nonconvex problems
A general nonlinear program:

mir;iengize 0(z) + f(z)

subject to H(z) = 0, where

e S is a closed convex set in R™ not subject to alterations,

e 0 and f are real-valued functions defined on an open convex set O in R"
containing .S,

e H: (O — R™ is a vector-valued (nonsmooth) function that can be used to
model both inequality constraints g(x) < 0 and equality constraints h(x) = 0.

Robust counterpart: with separate perturbations

minimize  6(z) + maximum f(z,9)
zes SeA in current way

subject to H(z,0) =0, Vdé € A of modeling

easily infeasible



New formulation

via a pessimistic value-function minimization: given v > 0,

minimize 0(z) + vy ()

where v.,(z) models constraint violation with cost of model attacks:

vy () £ maximum over § € A of
Oy(2,8) = f(z,0)+7 | |H(z,0)|x - C(6)
—_— ~—~—

constraint residual attack cost
with the novel features:
e combined perturbation & in joint uncertainty set A C RE:

e robustify constraint satisfaction via penalization
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Comments

e Related the VFOP to the two game formulations in terms of directional
solutions.

e Showed that the value function admits an explicit form under piecewise
structures of f(e,d) and H(e,d), a linear structure of C(§) with a set-up
component, and special simplex-type uncertainty set A.

e Introduced a Majorization-Minimization (MM) algorithm for solving a unified
formulation:

miniergize o(x) £ 0(x) +v(xr) with

A : . _ R\ T
v(z) = 11%35"52??%'? [g](x,é) W (x) 6 } :

e Implemented algorithm and reported computation results to demonstrate the
viability of the robust paradigm in the “non”-framework.



Examples of Non-Problems

lIl. Operations Research meets Statistics



Composite CVaR and bPOE minimization

for risk-based statistical estimation to control left and right-tail distributions
simultaneously

Interval Conditional Value-at-Risk of a random variable Z, at levels
0 < a < B <1, treating two-sided estimation errors,

=/
p—a VaRg(Z)>2z>VaRa(Z)
1

= 5= [(1 - a)CVaR,(Z) — (1 - B)CVaRg(Z)]

In-CVaR?(z) £ zdFy(2)




Composite CVaR and bPOE minimization

for risk-based statistical estimation to control left and right-tail distributions
simultaneously

Interval Conditional Value-at-Risk of a random variable Z, at levels
0 < a < B <1, treating two-sided estimation errors,

=/

B—a VaRg(Z)>z>VaR, (2)
1
= 5 a

Buffered probability of exceedance/deceedance at level 7 > 0

In-CVaR?(z) £ zdFy(2)

[(1—a)CVaRa(Z) — (1 — B)CVaRg(2) |

bPOE(Z;7) £ 1 —min{a € [0,1] : CVaR,(Z) > 7}

bPOD(Z; u) 2 min{ﬁ €0,1] : In-CVaR?(2) > u}.



Buffered probability of interval (7,u]

We have the following bound for an interval probability:
P(u> Z > 1) < bPOE(Z;7) + bPOD(Z;u) — 1 £ bPOI*(Z).

Two risk minimization problems of a composite random functional:

minimize In-CVaR’(Z(#)) and minimize bPOIY(Z(0))
00 0cO
a difference of two convex a stochastic program with
SP value functions a difference-of-convex objective
where
Z(0) £ co 9(0;Z) — h(0; Z) ,
—_—

g(e;2) — h(e;2) is difference of convex

with ¢ : R — R being a univariate piecewise affine function, Z is a
m-dimensional random vector, and for each z, g(e; z) and h(e; z) are both
convex functions.



Comments

e The In-CVaR minimization leads to the following stochastic program:

minimize over § € O of

minimum E; 0,11;@) | — minimum Eg 0,m0; @
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denoted vy () denoted vy (0)

Both functions v; and vy are (convex) value functions of a univariate
expectation minimization; thus overall objective is a difference-of-convex
objective.
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Comments

e The In-CVaR minimization leads to the following stochastic program:

minimize over § € O of

minimum E; 0,11;@) | — minimum Eg 0,m0; @
inimu [p1(0,m1;@) ] inimu [2(0,m2;@) |

denoted vy () denoted vy (0)

Both functions v; and vy are (convex) value functions of a univariate
expectation minimization; thus overall objective is a difference-of-convex
objective.

e Developed a convex programming based sampling method for computing a
critical point of the objective

e Numerical results demonstrated superior performance in the handling of
outliers in regression and classification problems.



A touch of mathematics

bridging computations with theory



First of All, What Can be Computed?

directional stat.
(for dd fncs.) limiting stat.

Relationship between the stationary points.

» Stationarity:
- smooth case: VV (z) =0
- nonsmooth case: 0 € 9V (z) [subdifferential: many calculus rules fail]

e.g. OVi(z)+ dVa(z) # O(V1 + Va2)(z)
unless one of them is continuously differentiable

» directional stationarity: V'(x;d) > 0 for all the directions d.

e The sharper the concept, the harder to compute.



Computational Tools

» Built on a theory of surrogation, supplemented by exact
penalization of stationary solutions

» A fusion of first-order and second-order algorithms
— Dealing with non-convexity: majorization-minimization algorithm

— Dealing with non-smoothness: nonsmooth Newton algorithm

— Dealing with pathological constraints: (exact) penalty method
» An integration of sampling and deterministic methods

— Dealing with population optimization: in statistics
— Dealing with stochastic programming: in operations research

— Dealing with risk minimization: in financial management and tail control



Classes of Nonsmooth Functions

Pervasive in applications

Progressively broader:

e Piecewise smooth™: e.g. piecewise linear-quadratic

e Difference-of convex: facilitates algorithmic design via convex majorization
e Semismooth: enables fast algorithms of the Newton-type

e Bouligand differentiable: locally Lipschitz 4 directionally differentiable

e Sub-analytic and semi-analytic

* and many more.



4.4. CLASSES OF Nt

(o]

on convex
open | domain

INSMOOTH F 'TIONS

231

local Lip

+
dir. diff

+ open || convex
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locally
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Completed Monograph:
Modern Nonconvex Nondifferentiable Optimization

Ying Cui and Jong-Shi Pang
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