USCViterbi

School of Engineering

The Era of "Non"-Optimization Problems

Jong-Shi Pang

Daniel J. Epstein Department of Industrial and Systems Engineering

University of Southern California

presented at

OneWorld Optimization Seminar Series

3:30-4:30 PM CEST Monday September 14 2020

Based on joint work with Dr. Ying Cui at the University of Minnesota and many collaborators.

• Some general thoughts of the state of the field

- Some general thoughts of the state of the field
- A readiness test (a light-hearted humor)

- Some general thoughts of the state of the field
- A readiness test (a light-hearted humor)
- Some key "non"-features

- Some general thoughts of the state of the field
- A readiness test (a light-hearted humor)
- Some key "non"-features
- Some novel "non"-optimization problems

- Some general thoughts of the state of the field
- A readiness test (a light-hearted humor)
- Some key "non"-features
- Some novel "non"-optimization problems
- A gentle touch of mathematics

- Some general thoughts of the state of the field
- A readiness test (a light-hearted humor)
- Some key "non"-features
- Some novel "non"-optimization problems
- A gentle touch of mathematics
- The monograph

Some General Thoughts

addressing the negative impact of the field of machine learning

on the optimization field,

and raising an alarm

• Convexity and/or differentiability have been the safe haven for optimization and its applications for decades, particularly popular in the machine learning in recent years • **Convexity and/or differentiability** have been the safe haven for optimization and its applications for decades, particularly popular in the machine learning in recent years

to the extent that

- modellers are routinely sacrificing realism for convenience,
- algorithm designers will do whatever to stay in this comfort zone, even at the expense of potentially wrong approach,
- \bullet practitioners are content with the resulting models, algorithms, and "solutions",

• **Convexity and/or differentiability** have been the safe haven for optimization and its applications for decades, particularly popular in the machine learning in recent years

to the extent that

- modellers are routinely sacrificing realism for convenience,
- algorithm designers will do whatever to stay in this comfort zone, even at the expense of potentially wrong approach,
- \bullet practitioners are content with the resulting models, algorithms, and "solutions",

resulting in

- tools being abused,
- advances in science being stalled, and
- future being built on soft ground.

This talk

Benefits, yes or No? Ready for the "non"-era, yes or no?

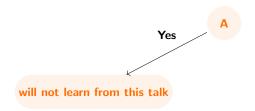
This talk

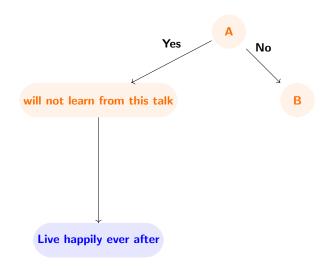
Benefits, yes or No? Ready for the "non"-era, yes or no?

A little humor before the storm

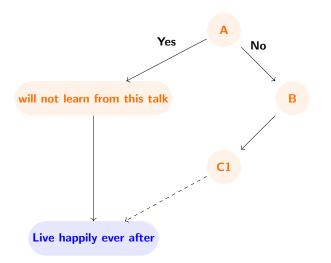
Α

A: Are you satisfied with the comfort zone of convexity and differentiability?

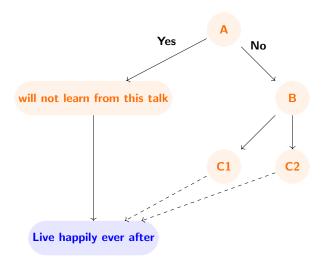




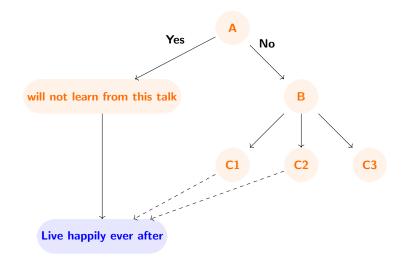
B: How to deal with non-convexity/non-smoothness?



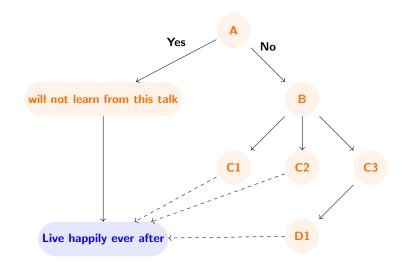
C1: Ignore these properties or give them minimal or even wrong treatment



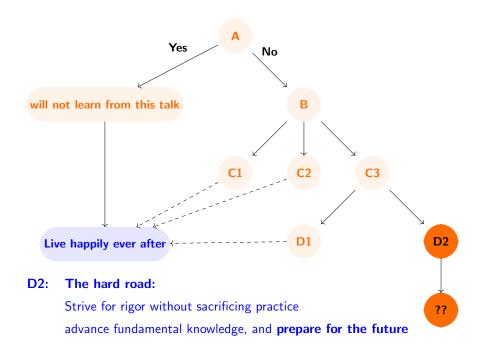
 $\ensuremath{\textbf{C2:}}$ Focus on stylized problems (and there are many interesting ones) and stop at them



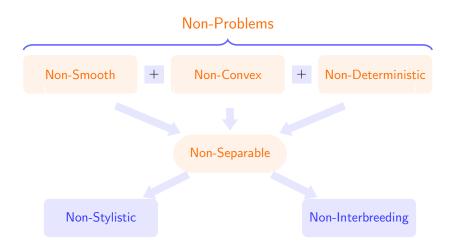
C3: Faithfully treat these non-properties



D1: Employ heuristics, and potentially, leading to heuristics on heuristics when complex models are being formulated



Features



and many more non-topics ····

Examples of Non-Problems

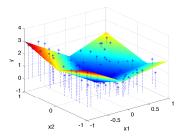
I. Structured Learning

Piecewise Affine Regression

extending classical affine regression

$$\underset{a,\alpha,b,\beta}{\text{minimize}} \frac{1}{N} \sum_{s=1}^{N} \left(y_s - \left[\underbrace{\max_{1 \le i \le k_1} \left\{ (a^i)^\top x^s + \alpha_i \right\} - \max_{1 \le i \le k_2} \left\{ (b^i)^\top x^s + \beta_i \right\}}_{\text{capturing all piecewise affine functions}} \right] \right)^2$$

illustrating coupled non-convexity and non-differentiability.



Estimate Change Points/Hyperplanes in Linear Regression

• This is a convex quadratic composed with a piecewise affine function, thus is piecewise linear-quadratic.

• This is a convex quadratic composed with a piecewise affine function, thus is piecewise linear-quadratic.

• It has the property that every directional stationary solution is a local minimizer.

- This is a convex quadratic composed with a piecewise affine function, thus is piecewise linear-quadratic.
- It has the property that every directional stationary solution is a local minimizer.
- It has finitely many stationary values.

- This is a convex quadratic composed with a piecewise affine function, thus is piecewise linear-quadratic.
- It has the property that every directional stationary solution is a local minimizer.
- It has finitely many stationary values.
- A directional stationary solution can be computed by an iterative convex-programming based algorithm.

- This is a convex quadratic composed with a piecewise affine function, thus is piecewise linear-quadratic.
- It has the property that every directional stationary solution is a local minimizer.
- It has finitely many stationary values.
- A directional stationary solution can be computed by an iterative convex-programming based algorithm.

• Leads to several classes of nonconvex nonsmooth functions; most general is a difference-of-convex function composed with a difference-of-convex function, an example of which is

$$\varphi_1\left(\max_{1\le i\le k_{11}}\psi_{1i}^1(x) - \max_{1\le i\le k_{12}}\psi_{2i}^1(x)\right) - \varphi_2\left(\max_{1\le i\le k_{21}}\psi_{1i}^2(x) - \max_{1\le i\le k_2}\psi_{2i}^2(x)\right)$$

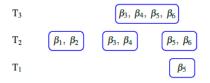
where all functions are convex.

Logical Sparsity Learning

 $\begin{array}{ll} \underset{\beta \in \mathbb{R}^d}{\text{minimize}} & f(\beta) \\ \text{subject to} & \displaystyle \sum_{j=1}^d a_{ij} \, | \, \beta_j \, |_0 \, \leq \, b_i, \quad i \, = \, 1, \cdots, m, \end{array}$

where $|t|_0 \triangleq \begin{cases} 1 & \text{if } t \neq 0 \\ 0 & \text{otherwise.} \end{cases}$

- strong/weak hierarchy: e.g. $|\beta_j|_0 \le |\beta_k|_0$
- \bullet cost-based variable selection: coefficients ≥ 0 but not all equal
- hierarchical/group variable selection



• The ℓ_0 function is discrete in nature; an ASC can be formulated either as complementarity constraints, or by integer variables under boundedness of the original variables (the big M-formulation), when A is nonnegative.

• The ℓ_0 function is discrete in nature; an ASC can be formulated either as complementarity constraints, or by integer variables under boundedness of the original variables (the big M-formulation), when A is nonnegative.

• Soft formulation of ASCs is possible, leading to an objective of the kind:

$$\underset{\beta \, \in \, \mathbb{R}^d}{\text{minimize}} \, f(\beta) + \gamma \sum_{i=1}^m \; \left[\left. b_i - \sum_{j=1}^d a_{ij} \, | \, \beta_j \, |_0 \right. \right]_+, \quad \text{for a given } \gamma > 0.$$

 \bullet When the matrix A has negative entries, the resulting ASC set may not closed; its optimization formulation may not have a lower semi-continuous objective.

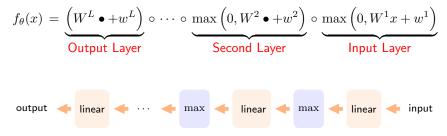
 \bullet When $|\bullet|_0$ is approximated by a folded concave function, obtain some nondifferentiable, difference-of-convex constraints.

Deep Neural Network with Feed-Forward Structure

leading to multi-composite, nonconvex, nonsmooth optimization problems

$$\underset{\theta = \left\{ \left(W^{\ell}, w^{\ell} \right)_{\ell=1}^{L} \right\}}{\text{minimize}} \quad \frac{1}{S} \sum_{s=1}^{S} \left[y_{s} - f_{\theta}(x^{s}) \right]^{2}$$

where f_{θ} is the *L*-fold composite function with the non-smooth max ReLU activation:



• Problem can be treated by exact penalization, a theory that addresses stationary solutions rather than minimizers.

• Problem can be treated by exact penalization, a theory that addresses stationary solutions rather than minimizers.

• Note the ℓ_1 penalization.

$$\underset{z \in \mathcal{Z}; \, u}{\text{minimize } \zeta_{\rho}(z; u) \triangleq \frac{1}{S} \sum_{s=1}^{S} \left[\varphi_{s}(u^{s;L}) + \rho \underbrace{\sum_{\ell=1}^{L} \sum_{j=1}^{N_{\ell}} \left| u_{j}^{s;\ell} - \psi_{j}^{\ell}(z^{\ell}, u^{s;\ell-1}) \right|}_{\text{penalizing the components}} \right]$$

• Problem can be treated by exact penalization, a theory that addresses stationary solutions rather than minimizers.

• Note the ℓ_1 penalization.

$$\underset{z \in \mathcal{Z}; u}{\text{minimize } \zeta_{\rho}(z; u) \triangleq \frac{1}{S} \sum_{s=1}^{S} \left[\varphi_{s}(u^{s;L}) + \rho \underbrace{\sum_{\ell=1}^{L} \sum_{j=1}^{N_{\ell}} \left| u_{j}^{s;\ell} - \psi_{j}^{\ell}(z^{\ell}, u^{s;\ell-1}) \right|}_{\text{penalizing the components}} \right]$$

• Rigorous algorithms with supporting convergence theory for computing a directional stationary point can be developed.

• Problem can be treated by exact penalization, a theory that addresses stationary solutions rather than minimizers.

• Note the ℓ_1 penalization.

$$\underset{z \in \mathcal{Z}; u}{\text{minimize } \zeta_{\rho}(z; u) \triangleq \frac{1}{S} \sum_{s=1}^{S} \left[\varphi_{s}(u^{s;L}) + \rho \underbrace{\sum_{\ell=1}^{L} \sum_{j=1}^{N_{\ell}} \left| u_{j}^{s;\ell} - \psi_{j}^{\ell}(z^{\ell}, u^{s;\ell-1}) \right|}_{\text{penalizing the components}} \right]$$

- Rigorous algorithms with supporting convergence theory for computing a directional stationary point can be developed.
- Framework allows the treatment of data perturbation.

• Problem can be treated by exact penalization, a theory that addresses stationary solutions rather than minimizers.

• Note the ℓ_1 penalization.

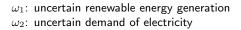
$$\underset{z \in \mathcal{Z}; \, u}{\text{minimize}} \, \zeta_{\rho}(z; u) \, \triangleq \, \frac{1}{S} \sum_{s=1}^{S} \left[\varphi_{s}(u^{s;L}) + \rho \underbrace{\sum_{\ell=1}^{L} \sum_{j=1}^{N_{\ell}} \left| u_{j}^{s;\ell} - \psi_{j}^{\ell}(z^{\ell}, u^{s;\ell-1}) \right|}_{\text{penalizing the components}} \right]$$

- Rigorous algorithms with supporting convergence theory for computing a directional stationary point can be developed.
- Framework allows the treatment of data perturbation.
- Leads to an advanced study of exact penalization and error bounds of nondifferentiable optimization problems.

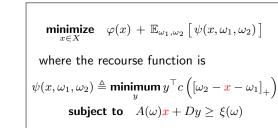
Examples of Non-Problems

II. Smart Planning

Power Systems Planning

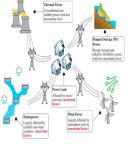


- x: production from traditional thermal plants
- y: production from backup fast-ramping generators



Unit cost of fast-ramping generators depends on

- observed renewable production & demand of electricity
- shortfall due to the first-stage thermal power decisions



• Leads to the study of the class of two-stage linearly bi-parameterized stochastic program with quadratic recourse:

$$\underset{x}{\mathsf{minimize}} \quad \zeta(x) \, \triangleq \, \varphi(x) + \mathsf{E}_{\tilde{\xi}} \left[\, \psi(x, \tilde{\xi}) \, \right] \quad \text{subject to} \quad x \, \in \, X \, \subseteq \, \mathbb{R}^{n_1},$$

where the recourse function $\psi(x,\xi)$ is the optimal objective value of the quadratic program (QP): with Q being symmetric positive semidefinite:

$$\begin{split} \psi(x,\xi) &\triangleq \min_{y} & \left[f(\xi) + G(\xi) \mathbf{x} \right]^{\top} y + \frac{1}{2} y^{\top} Q y \\ \text{subject to} \quad y \in Y(x,\xi) \triangleq \left\{ y \in \mathbb{R}^{n_2} \mid A(\xi) \mathbf{x} + D y \geq b(\xi) \right\}. \end{split}$$

• Leads to the study of the class of two-stage linearly bi-parameterized stochastic program with quadratic recourse:

$$\underset{x}{\text{minimize}} \quad \zeta(x) \, \triangleq \, \varphi(x) + \mathsf{E}_{\tilde{\xi}} \left[\, \psi(x, \tilde{\xi}) \, \right] \quad \text{subject to} \quad x \, \in \, X \, \subseteq \, \mathbb{R}^{n_1},$$

where the recourse function $\psi(x,\xi)$ is the optimal objective value of the quadratic program (QP): with Q being symmetric positive semidefinite:

$$\begin{split} \psi(x,\xi) &\triangleq \min_{y} \min_{y} \left[f(\xi) + G(\xi) \mathbf{x} \right]^{\top} y + \frac{1}{2} y^{\top} Q y \\ \text{subject to} \quad y \in Y(x,\xi) \triangleq \left\{ y \in \mathbb{R}^{n_2} \mid A(\xi) \mathbf{x} + D y \ge b(\xi) \right\}. \end{split}$$

• The recourse function $\psi(\bullet,\xi)$ is of the implicit convex-concave kind.

• Leads to the study of the class of two-stage linearly bi-parameterized stochastic program with quadratic recourse:

$$\underset{x}{\text{minimize}} \quad \zeta(x) \, \triangleq \, \varphi(x) + \mathsf{E}_{\tilde{\xi}} \left[\, \psi(x, \tilde{\xi}) \, \right] \quad \text{subject to} \quad x \, \in \, X \, \subseteq \, \mathbb{R}^{n_1},$$

where the recourse function $\psi(x,\xi)$ is the optimal objective value of the quadratic program (QP): with Q being symmetric positive semidefinite:

$$\begin{split} \psi(x,\xi) &\triangleq \min_{y} \min_{y} \left[f(\xi) + G(\xi) \mathbf{x} \right]^{\top} y + \frac{1}{2} y^{\top} Qy \\ \text{subject to} \quad y \in Y(x,\xi) \triangleq \left\{ y \in \mathbb{R}^{n_2} \mid A(\xi) \mathbf{x} + Dy \ge b(\xi) \right\}. \end{split}$$

• The recourse function $\psi(\bullet, \xi)$ is of the implicit convex-concave kind.

• Developed a Regularization, Convexification, sampling combined method for computing a *generalized critical point* with almost sure convergence guarantee.

(Simplified) Defender-Attacker Game with Costs

Underlying problem is: **minimize** $c^{\top}x$ subject to Ax = b and $x \ge 0$

Defender's problem: Anticipating the attacker's disruption $\delta \in \Delta$, the defender undertakes the operation by solving the problem:

$$\underset{x \ge 0}{\text{minimize}} \quad (c + \delta c)^{\top} x + \underbrace{\rho \left\| \left[(A + \delta A) x - b - \delta b \right]_{+} \right\|_{\infty}}_{\text{constraint residual}}$$

Attacker's problem: Anticipating the defender's activity x, the attacker aims to disrupt the defender's operations by solving the problem:

$$\underset{\delta \in \Delta}{\text{maximum}} \quad \underbrace{\lambda_1 \left(c + \delta c \right)^\top x}_{\text{disrupt objective}} + \underbrace{\lambda_2 \left\| \left[\left(A + \delta A \right) x - b - \delta b \right]_+ \right\|_\infty}_{\text{disrupt constraints}} - \underbrace{C(\delta)}_{\text{cost}}.$$

- Many variations are possible.
- Offer alternative approaches to the convexity-based robust formulations.
- Adversarial Programming

Robustification of nonconvex problems

A general nonlinear program:

 $\label{eq:eq:subject} \begin{array}{ll} \underset{x \in S}{\text{minimize}} & \theta(x) + f(x) \\ \text{subject to} & H(x) = 0, \quad \text{where} \end{array}$

- $\bullet~S$ is a closed convex set in \mathbb{R}^n not subject to alterations,
- θ and f are real-valued functions defined on an open convex set $\mathcal O$ in $\mathbb R^n$ containing S,

• $H: \mathcal{O} \to \mathbb{R}^m$ is a vector-valued (nonsmooth) function that can be used to model both inequality constraints $g(x) \leq 0$ and equality constraints h(x) = 0.

Robustification of nonconvex problems

A general nonlinear program:

 $\label{eq:eq:subject} \begin{array}{ll} \underset{x \in S}{\text{minimize}} & \theta(x) + f(x) \\ \text{subject to} & H(x) = 0, \quad \text{where} \end{array}$

- $\bullet~S$ is a closed convex set in \mathbb{R}^n not subject to alterations,
- θ and f are real-valued functions defined on an open convex set $\mathcal O$ in $\mathbb R^n$ containing S,
- $H: \mathcal{O} \to \mathbb{R}^m$ is a vector-valued (nonsmooth) function that can be used to model both inequality constraints $g(x) \leq 0$ and equality constraints h(x) = 0.

Robust counterpart: with separate perturbations

$$\begin{array}{ccc} \underset{x \in S}{\text{minimize}} & \theta(x) + \underset{\widehat{\delta} \in \widehat{\Delta}}{\text{maximum}} f(x, \widehat{\delta}) \\ \text{subject to} & \underbrace{H(x, \widetilde{\delta}) = 0, \quad \forall \widetilde{\delta} \in \widetilde{\Delta}}_{\text{easily infeasible}} \end{array} \right\} & \text{in current way} \\ \end{array}$$

New formulation

via a pessimistic value-function minimization: given $\gamma > 0$,

$$\underset{x \in S}{\text{minimize}} \quad \theta(x) + v_{\gamma}(x)$$

where $v_{\gamma}(x)$ models constraint violation with cost of model attacks:

$$v_{\gamma}(x) \triangleq$$
maximum over $\delta \in \Delta$ of
 $\phi_{\gamma}(x, \delta) \triangleq f(x, \delta) + \gamma \left[\underbrace{\| H(x, \delta) \|_{\infty}}_{\text{constraint residual}} - \underbrace{C(\delta)}_{\text{attack cost}} \right]$

with the novel features:

- ullet combined perturbation $oldsymbol{\delta}$ in joint uncertainty set $oldsymbol{\Delta} \subseteq \mathbb{R}^L$;
- robustify constraint satisfaction via penalization

 \bullet Related the VFOP to the two game formulations in terms of directional solutions.

• Related the VFOP to the two game formulations in terms of directional solutions.

• Showed that the value function admits an explicit form under piecewise structures of $f(\bullet, \delta)$ and $H(\bullet, \delta)$, a linear structure of $C(\delta)$ with a set-up component, and special simplex-type uncertainty set Δ .

• Related the VFOP to the two game formulations in terms of directional solutions.

• Showed that the value function admits an explicit form under piecewise structures of $f(\bullet, \delta)$ and $H(\bullet, \delta)$, a linear structure of $C(\delta)$ with a set-up component, and special simplex-type uncertainty set Δ .

• Introduced a Majorization-Minimization (MM) algorithm for solving a unified formulation:

$$\begin{array}{l} \underset{x \in S}{\operatorname{minimize}} \ \varphi(x) \ \triangleq \ \theta(x) + v(x) \quad \text{with} \\ \\ v(x) \ \triangleq \ \underset{1 \leq j \leq J}{\operatorname{maximum}} \ \left[g_j(x, \boldsymbol{\delta}) - \ h^j(x)^\top \boldsymbol{\delta} \right], \end{array}$$

• Related the VFOP to the two game formulations in terms of directional solutions.

• Showed that the value function admits an explicit form under piecewise structures of $f(\bullet, \delta)$ and $H(\bullet, \delta)$, a linear structure of $C(\delta)$ with a set-up component, and special simplex-type uncertainty set Δ .

• Introduced a Majorization-Minimization (MM) algorithm for solving a unified formulation:

$$\begin{split} \underset{x \in S}{\text{minimize }} \varphi(x) &\triangleq \theta(x) + v(x) \quad \text{with} \\ v(x) &\triangleq \max_{1 \leq j \leq J} \max_{\delta \in \Delta \cap \mathbb{R}_{+}^{L}} \left[g_{j}(x, \delta) - h^{j}(x)^{\top} \delta \right], \end{split}$$

• Implemented algorithm and reported computation results to demonstrate the viability of the robust paradigm in the "non"-framework.

Examples of Non-Problems

III. Operations Research meets Statistics

Composite CVaR and bPOE minimization

for risk-based statistical estimation to control left and right-tail distributions simultaneously

Interval Conditional Value-at-Risk of a random variable Z, at levels $0\leq\alpha<\beta\leq1,$ treating two-sided estimation errors,

In-CVaR^{$$\beta$$} _{α} (Z) $\triangleq \frac{1}{\beta - \alpha} \int_{\operatorname{VaR}_{\beta}(Z) > z \ge \operatorname{VaR}_{\alpha}(Z)} z \, dF_Z(z)$
$$= \frac{1}{\beta - \alpha} \left[(1 - \alpha) \operatorname{CVaR}_{\alpha}(Z) - (1 - \beta) \operatorname{CVaR}_{\beta}(Z) \right]$$

Composite CVaR and bPOE minimization

for risk-based statistical estimation to control left and right-tail distributions simultaneously

Interval Conditional Value-at-Risk of a random variable Z, at levels $0\leq\alpha<\beta\leq1,$ treating two-sided estimation errors,

$$\begin{aligned} \mathsf{In-CVaR}^{\beta}_{\alpha}(Z) &\triangleq \frac{1}{\beta - \alpha} \int_{\operatorname{VaR}_{\beta}(Z) > z \ge \operatorname{VaR}_{\alpha}(Z)} z \, dF_{Z}(z) \\ &= \frac{1}{\beta - \alpha} \left[(1 - \alpha) \operatorname{CVaR}_{\alpha}(Z) - (1 - \beta) \operatorname{CVaR}_{\beta}(Z) \right] \end{aligned}$$

Buffered probability of exceedance/deceedance at level $\tau>0$

$$\begin{split} \mathsf{bPOE}(Z;\tau) &\triangleq 1 - \min\left\{\alpha \in [0,1] : \mathsf{CVaR}_{\alpha}(Z) \geq \tau\right\} \\ \mathsf{bPOD}(Z;u) &\triangleq \min\left\{\beta \in [0,1] : \mathsf{In-CVaR}_{0}^{\beta}(Z) \geq u\right\}. \end{split}$$

Buffered probability of interval $(\tau, u]$

w

We have the following bound for an interval probability:

$$\mathbb{P}(u \ge Z > \tau) \le \mathsf{bPOE}(Z; \tau) + \mathsf{bPOD}(Z; u) - 1 \triangleq \mathsf{bPOI}_{\tau}^{u}(Z).$$

,

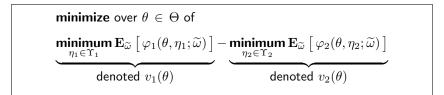
Two risk minimization problems of a composite random functional:

$$\underbrace{\underset{\theta \in \Theta}{\text{minimize In-CVaR}_{\alpha}^{\beta}(\mathcal{Z}(\theta))}}_{\text{a difference of two convex SP value functions}} \text{ and } \underbrace{\underset{\theta \in \Theta}{\text{minimize bPOI}_{\tau}^{u}(\mathcal{Z}(\theta))}}_{\text{a stochastic program with a difference-of-convex objective}}$$

$$\frac{\mathcal{Z}(\theta) \triangleq c \circ \left[\underbrace{g(\theta; Z) - h(\theta; Z)}_{g(\bullet; Z) - h(\bullet; Z) \text{ is difference of convex}} \right],$$
with $c : \mathbb{R} \to \mathbb{R}$ being a univariate piecewise affine function Z is a

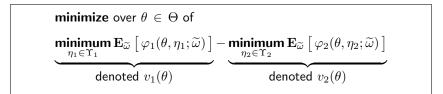
with $c : \mathbb{R} \to \mathbb{R}$ being a univariate piecewise affine function, Z is a *m*-dimensional random vector, and for each z, $g(\bullet; z)$ and $h(\bullet; z)$ are both convex functions.

• The In-CVaR minimization leads to the following stochastic program:



Both functions v_1 and v_2 are (convex) value functions of a univariate expectation minimization; thus overall objective is a difference-of-convex objective.

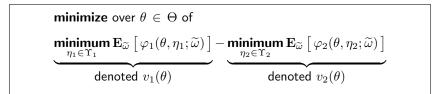
• The In-CVaR minimization leads to the following stochastic program:



Both functions v_1 and v_2 are (convex) value functions of a univariate expectation minimization; thus overall objective is a difference-of-convex objective.

• Developed a convex programming based sampling method for computing a critical point of the objective

• The In-CVaR minimization leads to the following stochastic program:



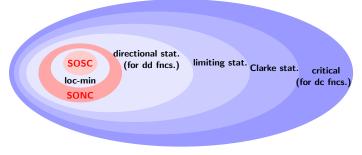
Both functions v_1 and v_2 are (convex) value functions of a univariate expectation minimization; thus overall objective is a difference-of-convex objective.

- Developed a convex programming based sampling method for computing a critical point of the objective
- Numerical results demonstrated superior performance in the handling of outliers in regression and classification problems.

A touch of mathematics

bridging computations with theory

First of All, What Can be Computed?



Relationship between the stationary points.

- Stationarity:
 - <u>smooth case</u>: $\nabla V(x) = 0$
 - nonsmooth case: $0 \in \partial V(x)$ [subdifferential: many calculus rules fail]

e.g. $\partial V_1(x)+\partial V_2(x)\neq \partial (V_1+V_2)(x)$ unless one of them is continuously differentiable

- directional stationarity: $V'(x; d) \ge 0$ for all the directions d.
- The sharper the concept, the harder to compute.

Computational Tools

- Built on a theory of surrogation, supplemented by exact penalization of stationary solutions
- ► A fusion of first-order and second-order algorithms
 - Dealing with non-convexity: majorization-minimization algorithm
 - Dealing with non-smoothness: nonsmooth Newton algorithm
 - Dealing with pathological constraints: (exact) penalty method

An integration of sampling and deterministic methods

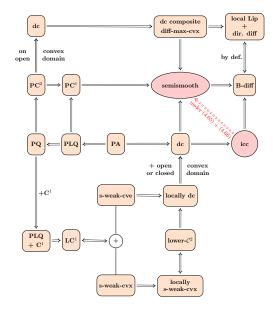
- Dealing with population optimization: in statistics
- Dealing with stochastic programming: in operations research
- Dealing with risk minimization: in financial management and tail control

Classes of Nonsmooth Functions Pervasive in applications

Progressively broader:

- Piecewise smooth*: e.g. piecewise linear-quadratic
- Difference-of convex: facilitates algorithmic design via convex majorization
- Semismooth: enables fast algorithms of the Newton-type
- Bouligand differentiable: locally Lipschitz + directionally differentiable
- Sub-analytic and semi-analytic

* and many more.



Completed Monograph:

Modern Nonconvex Nondifferentiable Optimization

Ying Cui and Jong-Shi Pang

submitted to publisher (Friday September 11, 2020)

Table of Contents

Preface	i
Acronyms	i
Glossary of Notation	i
Index	i
1 Primer of Mathematical Prerequisites	1
1.1 Smooth Calculus	1
1.1.1 Differentiability of functions of several variables	$\overline{7}$
1.1.2 Mean-value theorems for vector-valued functions	12
1.1.3 Fixed-point theorems and contraction	16
1.1.4 Implicit-function theorems	18
1.2 Matrices and Linear Equations	23
1.2.1 Matrix factorizations, eigenvalues, and singular values	29
1.2.2 Selected matrix classes	36
1.3 Matrix Splitting Methods for Linear Equations	47
1.4 The Conjugate Gradient Method.	50
1.5 Elements of Set-Valued Analysis	54

2 Optimization Background	59				
2.1 Polyhedral Theory	59				
2.1.1 The Fourier-Motzkin elimination in linear inequalities	60				
2.1.2 Properties of polyhedra	63				
2.2 Convex Sets and Functions	67				
2.2.1 Euclidean projection and proximality	71				
2.3 Convex Quadratic and Nonlinear Programs	79				
2.3.1 The KKT conditions and CQs	81				
2.4 The Minmax Theory of von Neumann	85				
2.5 Basic Descent Methods for Smooth Problems	86				
2.5.1 Unconstrained problems: Armijo line search	87				
2.5.2 The PGM for convex programs	91				
2.5.3 The proximal Newton method	95				
2.6 Nonlinear Programming Methods: A Survey	103				
3 Structured Learning via Statistics and Ontimization					
3 Structured Learning via Statistics and Optimization	109				
3 Structured Learning via Statistics and Optimization 3.1 A Composite View of Statistical Estimation	109 111				
3.1 A Composite View of Statistical Estimation					
3.1 A Composite View of Statistical Estimation	111				
3.1 A Composite View of Statistical Estimation	111 113				
3.1 A Composite View of Statistical Estimation 3.1.1 The optimization problems. 3.1.2 Learning classes 3.1.3 Loss functions	111 113 115				
3.1 A Composite View of Statistical Estimation 3.1.1 The optimization problems. 3.1.2 Learning classes 3.1.3 Loss functions 3.1.4 Regularizers for sparsity	111 113 115 122				
3.1 A Composite View of Statistical Estimation 3.1.1 The optimization problems. 3.1.2 Learning classes 3.1.3 Loss functions 3.1.4 Regularizers for sparsity 3.2 Low Rankness in Matrix Optimization	111 113 115 122 123				
3.1 A Composite View of Statistical Estimation 3.1.1 The optimization problems. 3.1.2 Learning classes 3.1.3 Loss functions 3.1.4 Regularizers for sparsity	111 113 115 122 123 128				
3.1 A Composite View of Statistical Estimation 3.1.1 The optimization problems. 3.1.2 Learning classes 3.1.3 Loss functions 3.1.4 Regularizers for sparsity 3.2 Low Rankness in Matrix Optimization 3.2.1 Rank constraints: Hard and soft formulations 3.2.2 Shape constrained index models.	111 113 115 122 123 128 128				
3.1 A Composite View of Statistical Estimation 3.1.1 The optimization problems. 3.1.2 Learning classes 3.1.3 Loss functions. 3.1.4 Regularizers for sparsity. 3.2 Low Rankness in Matrix Optimization 3.2.1 Rank constraints: Hard and soft formulations 3.2.2 Shape constrained index models. 3.3 Affine Sparsity Constraints	111 113 115 122 123 128 128 131 137				
3.1 A Composite View of Statistical Estimation 3.1.1 The optimization problems. 3.1.2 Learning classes 3.1.3 Loss functions 3.1.4 Regularizers for sparsity 3.1.4 Regularizers for sparsity 3.2 Low Rankness in Matrix Optimization 3.2.1 Rank constraints: Hard and soft formulations 3.2.2 Shape constrained index models 3.3 Affine Sparsity Constraints 4 Nonsmooth Analysis	111 113 115 122 123 128 128 131 137 143				
3.1 A Composite View of Statistical Estimation 3.1.1 The optimization problems. 3.1.2 Learning classes 3.1.3 Loss functions 3.1.4 Regularizers for sparsity 3.2 Low Rankness in Matrix Optimization 3.2.1 Rank constraints: Hard and soft formulations 3.2.2 Shape constrained index models 3.3 Affine Sparsity Constraints	111 113 115 122 123 128 128 131 137				

	4.2	Second-order Directional Derivatives	156
	4.3	Subdifferentials and Regularity $\hfill .$	162
	4.4	Classes of Nonsmooth Functions	176
		4.4.1 Piecewise affine functions \hdots	177
		4.4.2 Piecewise linear-quadratic functions \hdots	190
		4.4.3 Weakly convex functions	205
		4.4.4 Difference-of-convex functions	214
		4.4.5 Semismooth functions	221
		4.4.6 Implicit convex-concave functions	229
		4.4.7 A summary	240
5	Va	lue Functions	243
	5.1	Nonlinear Programming based Value Functions	244
		5.1.1 Interdiction versus enhancement	247
	5.2	Value Functions of Quadratic Programs	251
	5.3	Value Functions Associated with Convex Functions	258
	5.4	Robustification of Optimization Problems	261
		5.4.1 Attacks without set-up costs	264
		5.4.2 Attacks with set-up costs	267
	5.5	The Danskin Property	271
	5.6	Gap Functions	278
	5.7	Some Nonconvex Stochastic Value Functions	282
	5.8	Understanding Robust Optimization	289
		5.8.1 Uncertainty in data realizations	290
		5.8.2 Uncertainty in the probabilities of realizations	304
в	St	ationarity Theory	311
3		First-order Theory	313
	0.1	6.1.1 The convex constrained case	314
		6.1.2 Composite ε -strong stationarity	320

6.1.3 Subdifferential based stationarity	1
6.2 Directional Saddle-Point Theory	2
6.3 Difference-of-Convex Constraints	7
6.3.1 Extension to piecewise dd-convex programs	5
6.4 Second-order Theory	3
6.5 Piecewise Linear-Quadratic Programs)
6.5.1 Review of nonconvex QPs)
6.5.2 Return to PLQ programs	2
6.5.3 Finiteness of stationary values	2
$6.5.4$ Testing copositivity: One negative eigenvalue $\ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	7
7 Computational Algorithms by Surrogation 37	1
7.1 Basic Surrogation	2
7.1.1 A broad family of upper surrogation functions	9
7.1.2 Examples of surrogation families	L
7.1.3 Surrogation algorithms for several problem classes	1
7.2 Refinements and Extensions	2
7.2.1 Moreau surrogation	2
7.2.2 Combined BCD and ADMM for coupled constraints)
7.2.3 Surrogation with line searches	8
7.2.4 Dinkelbach's algorithm with surrogation	1
7.2.5 Randomized choice of subproblems	2
7.2.6 Inexact surrogation	5
8 Theory of Error Bounds 44	1
8.1 An Introduction to Error Bounds	2
8.1.1 The stationarity inclusions	1
8.2 The Piecewise Polyhedral Inclusion)
8.3 Error Bounds for Subdifferential-Based Stationarity	1

8.4 Sequential Convergence Under Sufficient Descent	462				
8.4.1 Using the local error bound (8.19)	462				
8.4.2 The Kurdyka-Lojaziewicz theory	467				
8.4.3 Connections between Theorems $8.4.1$ and $8.4.4$	475				
8.5 Error Bounds and Linear Regularity	476				
8.5.1 Piecewise systems	483				
8.5.2 Stationarity for convex composite dc optimization	488				
8.5.3 dd-convex systems	491				
8.5.4 Linear regularity and directional Slater	497				
9 Theory of Exact Penalization	501				
9.1 Exact Penalization of Optimal Solutions	503				
9.2 Exact Penalization of Stationary Solutions	506				
9.3 Pulled-out Penalization of Composite Functions	511				
9.4 Two Applications of Pull-out Penalization	517				
9.4.1 B-stationarity of dc composite diff-max programs	518				
9.4.2 Local optimality of composite twice semidiff. programs	521				
9.5 Exact Penalization of Affine Sparsity Constraints	527				
9.6 A Special Class of Cardinality Constrained Problems	531				
9.7 Penalized Surrogation for Composite Programs	533				
9.7.1 Solving the convex penalized subproblems	539				
9.7.2 Semismooth Newton methods	543				
10 Nonconvex Stochastic Programs 547					
10.1 Expectation Functions	548				
10.1.1 Sample average approximations	555				
10.2 Basic Stochastic Surrogation	560				
10.2.1 Expectation constraints	567				
10.3 Two-stage SPs with Quadratic Recourse	568				
10.3.1 The positive definite case	569				

10.3.2 The positive semidefinite case	571
10.4 Probabilisitic Error Bounds \hdots	588
10.5 Consistency of Directional Stationary Solutions $\ . \ . \ . \ . \ . \ .$	591
10.5.1 Convergence of stationary solutions	592
10.5.2 Asymptotic distribution of the stationary values	605
10.5.3 Convergence rate of the stationary points $\ . \ . \ . \ . \ . \ . \ .$	609
10.6 Noisy Amplitude-based Phase Retrieval $\hfill .$	613
11 Nonconvex Game Problems	625
11.1 Definitions and Preliminaries	627
11.1.1 Applications	631
11.1.2 Related models	637
11.2 Existence of a QNE	640
11.3 Computational Algorithms	648
11.3.1 A Gauss-Seidel best-response algorithm	649
11.4 The Role of Potential	658
11.4.1 Existence of a potential	665
11.5 Double-Loop Algorithms	669
11.6 The Nikaido-Isoda Optimization Formulations	678
11.6.1 Surrogation applied to the NI function ϕ_c	681
11.6.2 Difference-of-convexity and surrogation of $\widehat{\phi}_c$	683
Bibliography	691
Index	721