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Some General Thoughts
addressing the negative impact of the field of machine learning

on the optimization field,

and raising an alarm



• Convexity and/or differentiability have been the safe haven for optimization
and its applications for decades, particularly popular in the machine learning in
recent years

to the extent that

• modellers are routinely sacrificing realism for convenience,

• algorithm designers will do whatever to stay in this comfort zone, even at the
expense of potentially wrong approach,

• practitioners are content with the resulting models, algorithms, and
“solutions”,

resulting in

• tools being abused,

• advances in science being stalled, and

• future being built on soft ground.
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A: Are you satisfied with the comfort zone of convexity and differentiability?
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Yes No

B: How to deal with non-convexity/non-smoothness?
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Yes No

C2: Focus on stylized problems (and there are many interesting ones) and stop
at them
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D1

Yes No

D1: Employ heuristics, and potentially, leading to heuristics on heuristics when
complex models are being formulated



A

will not learn from this talk

Live happily ever after

B

C1 C2 C3

D1 D2

??

Yes No

D2: The hard road:

Strive for rigor without sacrificing practice

advance fundamental knowledge, and prepare for the future



Features

Non-Smooth Non-Convex Non-Deterministic+ +

Non-Problems

Non-Separable

Non-Stylistic Non-Interbreeding

and many more non-topics · · ·



Examples of Non-Problems

I. Structured Learning



Piecewise Affine Regression

extending classical affine regression

minimize
a,α,b,β

1

N

N∑
s=1

 ys −

 max
1≤i≤k1

{
(ai)>xs + αi

}
− max

1≤i≤k2

{
(bi)>xs + βi

}
︸ ︷︷ ︸

capturing all piecewise affine functions




2

illustrating coupled non-convexity and non-differentiability.

Estimate Change Points/Hyperplanes

in Linear Regression



Comments

• This is a convex quadratic composed with a piecewise affine function, thus is
piecewise linear-quadratic.

• It has the property that every directional stationary solution is a local
minimizer.

• It has finitely many stationary values.

• A directional stationary solution can be computed by an iterative
convex-programming based algorithm.

• Leads to several classes of nonconvex nonsmooth functions; most general is a
difference-of-convex function composed with a difference-of-convex function, an
example of which is

ϕ1

(
max

1≤i≤k11
ψ1

1i(x)− max
1≤i≤k12

ψ1
2i(x)

)
− ϕ2

(
max

1≤i≤k21
ψ2

1i(x)− max
1≤i≤k2

ψ2
2i(x)

)
where all functions are convex.
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Logical Sparsity Learning

minimize
β ∈Rd

f(β)

subject to
d∑
j=1

aij |βj |0 ≤ bi, i = 1, · · · ,m,

where | t |0 ,

{
1 if t 6= 0

0 otherwise.

• strong/weak hierarchy: e.g. |βj |0 ≤ |βk |0

• cost-based variable selection: coefficients ≥ 0 but not all equal

• hierarchical/group variable selection



Comments

• The `0 function is discrete in nature; an ASC can be formulated either as
complementarity constraints, or by integer variables under boundedness of the
original variables (the big M-formulation), when A is nonnegative.

• Soft formulation of ASCs is possible, leading to an objective of the kind:

minimize
β ∈Rd

f(β) + γ

m∑
i=1

 bi − d∑
j=1

aij |βj |0


+

, for a given γ > 0.

• When the matrix A has negative entries, the resulting ASC set may not closed;
its optimization formulation may not have a lower semi-continuous objective.

• When | • |0 is approximated by a folded concave function, obtain some
nondifferentiable, difference-of-convex constraints.
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Deep Neural Network with Feed-Forward Structure

leading to multi-composite, nonconvex, nonsmooth optimization problems

minimize
θ=

{
(W `,w`)

L

`=1

} 1

S

S∑
s=1

[
ys − fθ(xs)

]2
where fθ is the L-fold composite function with the non-smooth max ReLU
activation:

fθ(x) =
(
WL •+wL

)
︸ ︷︷ ︸
Output Layer

◦ · · · ◦ max
(

0,W 2 •+w2
)

︸ ︷︷ ︸
Second Layer

◦ max
(

0,W 1x+ w1
)

︸ ︷︷ ︸
Input Layer

linearoutput · · · max linear max linear input



Comments

• Problem can be treated by exact penalization, a theory that addresses
stationary solutions rather than minimizers.

• Note the `1 penalization.

minimize
z∈Z;u

ζρ(z;u) ,
1

S

S∑
s=1


ϕs(u

s;L) + ρ

L∑
`=1

N∑̀
j=1

∣∣∣us;`j − ψ`j(z`, us;`−1)
∣∣∣︸ ︷︷ ︸

penalizing the components



• Rigorous algorithms with supporting convergence theory for computing a
directional stationary point can be developed.

• Framework allows the treatment of data perturbation.

• Leads to an advanced study of exact penalization and error bounds of
nondifferentiable optimization problems.
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Examples of Non-Problems

II. Smart Planning



Power Systems Planning

ω1: uncertain renewable energy generation
ω2: uncertain demand of electricity

x: production from traditional thermal plants

y: production from backup fast-ramping generators

minimize
x∈X

ϕ(x) + Eω1,ω2

[
ψ(x, ω1, ω2)

]
where the recourse function is

ψ(x, ω1, ω2) , minimum
y

y>c
(
[ω2 − x− ω1]+

)
subject to A(ω)x+Dy ≥ ξ(ω)

Unit cost of fast-ramping generators depends on

I observed renewable production & demand of electricity

I shortfall due to the first-stage thermal power decisions



Comments

• Leads to the study of the class of two-stage linearly bi-parameterized
stochastic program with quadratic recourse:

minimize
x

ζ(x) , ϕ(x) + Eξ̃

[
ψ(x, ξ̃)

]
subject to x ∈ X ⊆ Rn1 ,

where the recourse function ψ(x, ξ) is the optimal objective value of the
quadratic program (QP): with Q being symmetric positive semidefinite:

ψ(x, ξ) , minimum
y

[
f(ξ) +G(ξ)x

]>
y + 1

2 y
>Qy

subject to y ∈ Y (x, ξ) ,
{
y ∈ Rn2 | A(ξ)x+Dy ≥ b(ξ)

}
.

• The recourse function ψ(•, ξ) is of the implicit convex-concave kind.

• Developed a Regularization, Convexification, sampling combined method for
computing a generalized critical point with almost sure convergence guarantee.
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(Simplified) Defender-Attacker Game with Costs

Underlying problem is: minimize c>x subject to Ax = b and x ≥ 0

Defender’s problem: Anticipating the attacker’s disruption δ ∈ ∆, the defender
undertakes the operation by solving the problem:

minimize
x≥0

(c+ δc)>x+ ρ
∥∥∥ [ (A+ δA)x− b− δb

]
+

∥∥∥
∞︸ ︷︷ ︸

constraint residual

Attacker’s problem: Anticipating the defender’s activity x, the attacker aims
to disrupt the defender’s operations by solving the problem:

maximum
δ ∈∆

λ1 (c+ δc)>x︸ ︷︷ ︸
disrupt objective

+λ2

∥∥∥ [ (A+ δA)x− b− δb
]
+

∥∥∥
∞︸ ︷︷ ︸

disrupt constraints

−C(δ)︸︷︷︸
cost

.

• Many variations are possible.

• Offer alternative approaches to the convexity-based robust formulations.

• Adversarial Programming



Robustification of nonconvex problems

A general nonlinear program:

minimize
x∈S

θ(x) + f(x)

subject to H(x) = 0, where

• S is a closed convex set in Rn not subject to alterations,
• θ and f are real-valued functions defined on an open convex set O in Rn
containing S,
• H : O → Rm is a vector-valued (nonsmooth) function that can be used to
model both inequality constraints g(x) ≤ 0 and equality constraints h(x) = 0.

Robust counterpart: with separate perturbations

minimize
x∈S

θ(x) + maximum
δ̂ ∈ ∆̂

f(x, δ̂)

subject to H(x, δ̃) = 0, ∀ δ̃ ∈ ∆̃︸ ︷︷ ︸
easily infeasible


in current way

of modeling
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New formulation

via a pessimistic value-function minimization: given γ > 0,

minimize
x∈S

θ(x) + vγ(x)

where vγ(x) models constraint violation with cost of model attacks:

vγ(x) , maximum over δ ∈ ∆ of

φγ(x, δ) , f(x, δ) + γ

 ‖H(x, δ) ‖∞︸ ︷︷ ︸
constraint residual

− C(δ)︸ ︷︷ ︸
attack cost


with the novel features:

• combined perturbation δ in joint uncertainty set ∆ ⊆ RL;

• robustify constraint satisfaction via penalization



Comments

• Related the VFOP to the two game formulations in terms of directional
solutions.

• Showed that the value function admits an explicit form under piecewise
structures of f(•, δ) and H(•, δ), a linear structure of C(δ) with a set-up
component, and special simplex-type uncertainty set ∆.

• Introduced a Majorization-Minimization (MM) algorithm for solving a unified
formulation:

minimize
x∈S

ϕ(x) , θ(x) + v(x) with

v(x) , max
1≤j≤J

maximum
δ∈∆∩RL+

[
gj(x, δ)− hj(x)>δ

]
,

• Implemented algorithm and reported computation results to demonstrate the
viability of the robust paradigm in the “non”-framework.
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Examples of Non-Problems

III. Operations Research meets Statistics



Composite CVaR and bPOE minimization

for risk-based statistical estimation to control left and right-tail distributions
simultaneously

Interval Conditional Value-at-Risk of a random variable Z, at levels
0 ≤ α < β ≤ 1, treating two-sided estimation errors,

In-CVaR β
α (Z) ,

1

β − α

∫
VaRβ(Z)>z≥VaRα(Z)

z dFZ(z)

=
1

β − α
[

(1− α)CVaRα(Z)− (1− β)CVaRβ(Z)
]

Buffered probability of exceedance/deceedance at level τ > 0

bPOE(Z; τ) , 1−min
{
α ∈ [0, 1] : CVaRα(Z) ≥ τ

}
bPOD(Z;u) , min

{
β ∈ [0, 1] : In-CVaR β

0 (Z) ≥ u
}
.



Composite CVaR and bPOE minimization

for risk-based statistical estimation to control left and right-tail distributions
simultaneously

Interval Conditional Value-at-Risk of a random variable Z, at levels
0 ≤ α < β ≤ 1, treating two-sided estimation errors,

In-CVaR β
α (Z) ,

1

β − α

∫
VaRβ(Z)>z≥VaRα(Z)

z dFZ(z)

=
1

β − α
[

(1− α)CVaRα(Z)− (1− β)CVaRβ(Z)
]

Buffered probability of exceedance/deceedance at level τ > 0

bPOE(Z; τ) , 1−min
{
α ∈ [0, 1] : CVaRα(Z) ≥ τ

}
bPOD(Z;u) , min

{
β ∈ [0, 1] : In-CVaR β

0 (Z) ≥ u
}
.



Buffered probability of interval (τ, u]

We have the following bound for an interval probability:

P(u ≥ Z > τ) ≤ bPOE(Z; τ) + bPOD(Z;u)− 1 , bPOIuτ (Z).

Two risk minimization problems of a composite random functional:

minimize
θ∈Θ

In-CVaR β
α (Z(θ))︸ ︷︷ ︸

a difference of two convex
SP value functions

and minimize
θ∈Θ

bPOIuτ (Z(θ))︸ ︷︷ ︸
a stochastic program with
a difference-of-convex objective

,

where

Z(θ) , c ◦

 g(θ;Z)− h(θ;Z)︸ ︷︷ ︸
g(•; z)− h(•; z) is difference of convex

 ,
with c : R→ R being a univariate piecewise affine function, Z is a
m-dimensional random vector, and for each z, g(•; z) and h(•; z) are both
convex functions.



Comments

• The In-CVaR minimization leads to the following stochastic program:

minimize over θ ∈ Θ of

minimum
η1∈Υ1

Eω̃

[
ϕ1(θ, η1; ω̃)

]
︸ ︷︷ ︸

denoted v1(θ)

−minimum
η2∈Υ2

Eω̃

[
ϕ2(θ, η2; ω̃)

]
︸ ︷︷ ︸

denoted v2(θ)

Both functions v1 and v2 are (convex) value functions of a univariate
expectation minimization; thus overall objective is a difference-of-convex
objective.

• Developed a convex programming based sampling method for computing a
critical point of the objective

• Numerical results demonstrated superior performance in the handling of
outliers in regression and classification problems.
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A touch of mathematics
bridging computations with theory



First of All, What Can be Computed?

critical
(for dc fncs.)

Clarke stat.
limiting stat.

directional stat.
(for dd fncs.)

SONC

loc-min

SOSC

Relationship between the stationary points.

I Stationarity:
- smooth case: ∇V (x) = 0
- nonsmooth case: 0 ∈ ∂V (x) [subdifferential: many calculus rules fail]

e.g. ∂V1(x) + ∂V2(x) 6= ∂(V1 + V2)(x)
unless one of them is continuously differentiable

I directional stationarity: V ′(x; d) ≥ 0 for all the directions d.

• The sharper the concept, the harder to compute.



Computational Tools

I Built on a theory of surrogation, supplemented by exact
penalization of stationary solutions

I A fusion of first-order and second-order algorithms

– Dealing with non-convexity: majorization-minimization algorithm

– Dealing with non-smoothness: nonsmooth Newton algorithm

– Dealing with pathological constraints: (exact) penalty method

I An integration of sampling and deterministic methods

– Dealing with population optimization: in statistics

– Dealing with stochastic programming: in operations research

– Dealing with risk minimization: in financial management and tail control



Classes of Nonsmooth Functions

Pervasive in applications

Progressively broader:

• Piecewise smooth∗: e.g. piecewise linear-quadratic

• Difference-of convex: facilitates algorithmic design via convex majorization

• Semismooth: enables fast algorithms of the Newton-type

• Bouligand differentiable: locally Lipschitz + directionally differentiable

• Sub-analytic and semi-analytic

∗ and many more.



4.4. CLASSES OF NONSMOOTH FUNCTIONS 231

dc
dc composite

diff-max-cvx

local Lip
+

dir. diff

PC2 PC1 semismooth B-diff

PQ PLQ PA dc icc

s-weak-cve locally dc

PLQ

+ C1
LC1 + lower-C2

s-weak-cvx
locally

s-weak-cvx

on
open

convex
domain by def.

under
(4.65) +

(4.66)

+C1

+ open
or closed

convex
domain
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