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Typical ADMM and Operator Splitting Applications 

• The most prominent applications of operator splitting and 
ADMM-class algorithms are in machine learning and image 
processing 

• There has not been much operator splitting work on “OR-style” 
optimization problems 

• With one exception: 

Stochastic Programming 

• Solving LP etc. models on an unfolding tree of random future 
scenarios 

• Rockafellar and Wet’s progressive hedging algorithm (1991) 
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Progressive Hedging 

• Working paper in late 1987, published in Mathematics of 
Operations Research in 1991 

• Rockafellar and Wets knew that their method was a form of DR 
splitting / ADMM algorithm 

• But proved its convergence from first principles 

• After all, monotone operators and the ADMM were not much 
known in the OR community at the time 
 

• I will present the method from an ADMM point of view, then 
switch to projective splitting 
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The Scenario Tree 

• Consider a standard stochastic programming scenario tree: 

 
• iπ  is the probability of last-stage scenario i  = 1, … , n 

• Will use “scenario” as a shorthand for “last-stage scenario” 

• Typically a discrete-time and sampled approximation of some 
infinite or much larger model 

Last-stage scenarios i = 1, … , n 

Stages 
s = 1,…,T 
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Stochastic Programming 

 
• System walks randomly from the root to some leaf 

• At each node there are decision variables, for example 

o How much of an investment to buy or sell 

o How much to run a power generator, etc...  

• ... and constraints that depend on earlier decisions 

• Model alternates decisions and uncertainty resolution 

Stages 
s = 1,…,T 
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Problem Formulation and Notation 

• Replicate decision variables: n copies at every stage 
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Problem Formulation and Notation 

• Replicate decision variables: n copies at every stage 

 
• isx  is the vector of decision variables for scenario i  at stage s 
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Problem Formulation and Notation 

• Replicate decision variables: n copies at every stage 

 
• isx  is the vector of decision variables for scenario i  at stage s 

• i  is the space of all variables pertaining to scenario i ; 
elements are 1( , , )i i iTx x x=   
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Problem Formulation and Notation 

• Replicate decision variables: n copies at every stage 

 
• isx  is the vector of decision variables for scenario i  at stage s 

• i  is the space of all variables for scenario i; elements are 
   1( , , )i i iTx x x=   

• 1 n= × ×    is space of all decision variables; elements are 
   ( )1 11 1 1( , , ) ( , , ), , ( , , )n T n nTx x x x x x x= =     
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Problem Formulation and Notation 

 
• i  is i  without the last stage; elements 1 , 1( , , )i i i Tz z z −=   

• 1 n= × ×   is the space of all variables except the last 
stage: elements ( )1 11 1, 1 1 , 1( , , ) ( , , ), , ( , , )n T n n Tz z z z z z z− −= =      

 

i iz ∈  
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Nonanticipativity Subspace 

• ⊂   is the subspace of   meeting the nonanticipativity 
constraints that is jsz z=  whenever scenarios i and j are 
indistinguishable at stage s 
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Projecting onto the Nonanticipativity Space 

• Following Rockafeller and Wets (1991), we use the following 
probability-weighted inner product on  : 

1 1 1
( , , ), ( , , ) ,n

n n i i ii
z z q q z qπ

=
=∑   

• With this inner product, the projection map proj : →    is 
given by 

( )
1 1

( , )
( , )

proj ( ) ,
1 1, , , 1, , 1

  where

k k
is j js

j S i sjj S i s

q z

z q i n s Tπ
π

+ +

∈
∈

=

= = = −∑
∑



 

 

and ( , )S i s  is the set of scenarios indistinguishable from 
scenario i at time s. 
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Now Let’s Apply the ADMM 

• So far, I have just shown the formulation of Rockafellar & Wets 
(1991) with some minor notation adjustments 

• But now will derive PH using the ADMM instead of first 
principles 
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ADMM Notation 

• Suppose : { }f → ∪ +∞   is a convex function 

• Suppose : { }g → ∪ +∞   is a convex function 

• Suppose M is linear map →    

min ( ) ( )f x g Mx+    

• Equivalent formulation:  
min ( ) ( )
ST

f x g z
Mx z

+
=

 

• The ADMM, for some fixed constant 0ρ >  : 

{ }
{ }

21
2

21 1
2

1 1 1

Arg min ( ) ,

Arg min ( ) ,

( )

n

m

k k k

x

k k k

z

k k k k

x f x w Mx Mx z

z g z w z Mx z

w w Mx z

ρ

ρ

ρ

+

∈

+ +

∈

+ + +

∈ + + −

∈ − + −

= + −




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Setting Up the ADMM Formulation for Stochastic Programming 

For each i = 1, … , n, let 

• : { }i if → ∪ +∞   be given by ( ) ( )i i i i if x h xπ= , where ( )ih ⋅  is the 
cost function for scenario i and +∞ if any constraint within 
scenario i is violated 

• :i i iM →   be the map that just drops the last-stage variables 
from scenario i 

ih  encapsulates all the costs and constraints across all stages in 
the (hypothetical) situation that you know the final outcome will 
be scenario i 

Then our stochastic program is equivalent to 

1

1 1

min ( )

ST ( , , )

p

i i
i

n n

f x

M x M x
=

∈

∑

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Applying the ADMM 

1 1 1
1

0,
( ) ( ) ( ) : ( , , ) ( , , )

,

n

i i n n n
i

z
f x f x g z M x x M x M x

z=

∈
= = +∞ ∉
∑




    

Then the problem is equivalent to min ( ) ( )f x g Mx+  

Applying the ADMM (and thus DR), we obtain  

{ }
( )

21
2

1 1
1

1 1 1

arg min ( ) , 1, ,

proj

( ) 1, ,

i i

k k k
i i i i i i i i i

x
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k k k k
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+

∈

+ +
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

 

• Note that we always have 1( , , )k k k
pw w w ⊥= ∈ .  Why? 

o Projection means that Mx z ⊥− ∈   

o Or, note that in ADMM/DR we always have ( )k kw g z∈∂   

• Aside: applying DR to subspace indicator functions like g is 
equivalent to Spingarn’s method of partial inverses 
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Progressive Hedging 

• Writing the z and w operations out in detail, we obtain PH: 

( )

( )

1 21
2

1

1 1

( , )
( , )

1 1 1

arg min ( ) , 1, ,

1, ,1
1, , 1
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

 

• The kw ⊥∈  condition can be written as 
( , )

0k
j jsj S i s
wπ

∈
=∑  for 

all i and s 

• By using canonical, non-probability-weighted inner products, 
we can also obtain an alternative version in which simple 
averages replace the weighted averages and the iπ  appear in 
the xi minimizations instead 
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Decomposition Methods 

• PH is a form of decomposition method 

• General form of decomposition methods: 

 
• In any decomposition method, the subproblem computations can 

be operated in parallel 

• But the coordination steps potentially pose a serial bottleneck 

Subproblem 

Subproblem 

Subproblem 

Subproblem 

Subproblem 

Coordination 

Subproblem 

Subproblem 

Subproblem 

Subproblem 

Subproblem 

Coordination Etc… 
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Noteworthy Properties of PH 

• The coordination computations in PH just consist of sums / 
averages and simple vector operations 

o These are faster than the “master” optimization problems 
other decomposition methods typically use… 

o … and can easily be implemented in a distributed manner 
(efficient parallel algorithms for sums etc.) 

• PH handles multi-stage problems cleanly 

o Applying other decomposition methods to problems with 3 
or more stages can require unwieldy “nested” versions 

• The theory does not require linearity, only convexity 

• Superficially, the algorithm is easily adapted to integer 
variables and nonconvex objectives or constraints 

o Although you lose the standard convergence theory and the 
method can become heuristic 
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Adoption of PH in Practice 

• Progressive hedging did not “catch on” initially 

• Convergence speed on practical problems was not spectacular 

• However, its relative simplicity made it start to gain adherents 
with the advent of 

o Ever-larger problem isntances 

o Interest in problems with many stages 

o Wider availability of highly parallel computing 

• So, 20+ years after initial publication, PH started getting used 
in practice 

• The PySP system (Watson, Woodruff, Hart 2018) provides an 
accessible version of PH coupled with a flexible modeling 
environment (Pyomo – embedded in Python) 

• There has been recent work on making its application with 
integer variables more rigorous 
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But Classic PH is Totally Synchronous 

• In theory, you must solve every subproblem at every iteration 

• The coordination step must wait for the slowest subproblem 

 
Some possible remedies: 

• Pack subproblems in processors and load balance 
(limits parallelism) 

• Advanced bundle method variants 

• Use projective splitting instead of ADMM / DR (this talk) 
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Projective Splitting: General Problem Setting 

*

1
0 ( )

n

i i i
i

G T G x
=

∈∑  

where 

• 0, , n   are real Hilbert spaces 

• :i i iT    are maximal monotone operators, 1, ,i n=    

• 0:i iG →   are bounded linear maps, 1, ,i n=   
 

Kuhn-Tucker set / primal-dual solution set 

{ }*
1 1

( , , , ) ( 1, ) ( ), 0n
n i i i i ii

z w w i n w T G z G w
=

= ∀ = ∈ =∑    

• This is a closed convex set (not immediate; various proofs) 
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Valid Inequalities for    

• Take some ,i i ix y ∈  such that ( )i i iy T x∈  for 1, ,i n=  , 
that is, ( , ) graphi i ix y T∈  

• If 1( , ) ( , , , )nz z w w= ∈w , then ( )i i iw T G z∈  for 1, ,i n=    

• So, , 0i i i ix G z y w− − ≥  for 1, ,i n=   by monotonicity of Ti 

• Negate and add up: 
1

( , ) , 0 ( , )
n

i i i i
i

z G z x y w zϕ
=

= − − ≤ ∀ ∈∑ w w  

 

 
{ }( ) 0

( ) 0

H p p

p p

ϕ

ϕ

= =

≤ ∀ ∈
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Making Sure these Inequalities are Affine 

• Superficially, these inequalities are quadratic 

• But with a little care we can make them affine 

• One of several possible techniques: 

o Restrict the space to 

*
0 1 1

1
( , , ) 0

n

n n i i
i

w w G w
=

 
= × ⊃ = = ∈ × × = 

 
∑       , where w  

o Within this subspace, ϕ  is affine since the quadratic terms 
are  

* *

1 1 1
, , , , 0 0

n n n

i i i i i i
i i i

G z w z G w z G w z
= = =

− = − = − = − =∑ ∑ ∑  

• Once we know ϕ  is affine, projection onto the halfspace 
{ }( ) 0H p V pϕ= ∈ ≤  is fairly straightforward  
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Generic Projection Method to Converge to a Point in a 
Closed Convex Set   in any Hilbert Space    

Apply the following general template: 

• Given kp ∈ , choose some affine function kϕ  with 
( ) 0k p pϕ ≤ ∀ ∈  

• Project kp  onto { }( ) 0k kH p pϕ= ≤ , possibly with an 
overrelaxation factor [ ,2 ]kν ε ε∈ − , yielding 1kp + , and repeat… 
 

 

{ }
 is affine

( ) 0

( ) 0
( ) 0

k

k k

k

k k

H p p

p p
p

ϕ

ϕ

ϕ
ϕ

= =

≤ ∀ ∈

>



1kp +

kp

 
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Projection Process in the Case of Projective Splitting 

• Here, 1( , ) ( , , , )k k k k k k
np z z w w= =w   and we find kϕ  by picking 

some ( , ) graph ( )k k
i i ix y T i∈ ∀  and using the construction above 

*
1

1
2 2

1

1 1

( , , )

max 0

proj

,,

(done if 0)

n
k k k k k

n i i
i

k k
k

n
k k k kk

k i i i i
ik

k k k k k kk

k

k

u x x v G y

u v

G z x y w

z z v w w u

τ

νθ
τ

γ

θ
γ

τ

θ

=

=

+ +

= … =

= +

 
= − − 

 

= − = −

≈

∑

∑



 

• There are alternative approaches if proj  is difficult 

• 0γ >  is an optional primal-dual scaling factor 

• More complicated than ADMM/PH coordination step, but still 
just simple vector and sum operations (so could be distributed) 
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How to Pick the ,k k
i ix y  — Basics 

• If you pick ( , ) graphk k
i i ix y T∈  completely arbitrarily, you may 

just orbit around   and not converge to it 

• A workable choice: the “prox” operation for some scalar 0ikc >   

( , ) Prox ( )ik

i

ck k k k
i i T i ik ix y G z c w= +  

That is, 

( )1 1( ) ( )k k k k
i ik i ik

k k
i ik i i

i
i

k
i ix I c T y x

c
G z c w G z c w− ++ = −+=  

• Then ( )k k k k
ik i i i ic y w G z x− = −   

• So 
2 21, 0k k k k k k k k

i i i i ik i i ik i iG z x y w c G z x c y w−− − = − = − ≥  

• Sum over i and get ( , ) 0k k
k zϕ >w  (cuts of current iterate) 

• Can prove that this guarantees (weak) convergence to   if the 
ikc  are bounded away from zero and infinity 
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How to Pick the ,k k
i ix y  — “Block Iterativity” 

• Variation:  do not have to activate every operator at every 
iteration (Combettes & E 2018) 

o For the rest, just recycle the previous ,k k
i ix y  

• Let 0M ≥  be an integer 

• Let { }0 1 2, , , 1, ,I I I n⊆   be such that  

( ) { }0 1, ,
i M

j
j i

i I n
+

=

∀ ≥ = 



  

• At iteration k, only activate the operators in kI  : 

{ }1 1

( )

( , ) ( , ) 1

, ) Pr x

, \

o (ik

i k

k k k k
i i i i k

ck k k k
i i T i ik i i I

x

x y G z

i

c

y I

w

y x n− −

∀ ∈

= ∀ ∈

= +



 

• Convergence proof adapts ideas from successive projection 
methods for set intersection problems 
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How to Pick the ,k k
i ix y  — “Lags” 

• Also from Combettes & E (2018) 

• Let 0K ≥  be another integer 

• Each prox operation may use data from up to K iterations ago 

• Otherwise same as above 
 

• So, for some ( , )d i k  with ( , )k d i k k K≥ ≥ − , 

( )
{ }

( , ) ( , )

1 1

( , ) Prox

( , ) ( , ) 1, \

ik

i

ck k
i i T i ik i k

k k k k
i i i i k

d i k d i kx y G z c w i I

x y x y i n I− −

= + ∀ ∈

= ∀ ∈ 
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Asynchrony (Sloppy Notation) 

• Combining block iterativity and lags lets one drop strict 
coupling of coordination and subproblem processing 

• For each i, suppose that a new ( , ) Prox ( )
i

c
i i T i ix y G z cw← +  

appears at least every 1t  time units, based on ( , )iz w  that are at 
most 2t  time units old 

• A projection step occurs at least every 3t  time units, based on 
( , ) graph , 1, ,i i ix y T i n∈ =   that are most 4t  time units old 

• Then ( , )z w  converges (weakly) to a point in    

 

1 
2 
3 
4 
5 
6 
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Applying Projective Splitting to Stochastic Programming 

Problem setup for stochastic programming 

• 0 =   (run algorithm in nonanticipativity subspace) 

• i i=  , but with its inner product multiplied by iπ   

• :i iG →   selects the subvector relevant to scenario i 

• ( ){ }( ) min ( , )
iT

i i i i i iTx
f x h x xπ=   minimizes scenario i’s cost over the 

last-stage variables 

o Remember, scenario-infeasible points have ( )i ih x = +∞ 

Then our stochastic program is just 

0
1

min ( )n
i iix

f G x
=∈ ∑

 

So apply the method from earlier in the talk for *

1
0 ( )

n

i i i
i

G f G x
=

∈ ∂∑  
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Some Technicalities 

• This choice of fi is convex for convex hi 

• But it is not generally guaranteed to be closed unless hi has 
compact effective domain 

• We need such an assumption to guarantee that fi is closed and 
thus that i iT f= ∂  is maximal 
 

• We also need some constraint-qualification-like conditions to 
be sure that the sufficient condition *

1
0 ( )n

i i ii
G f G x

=
∈ ∂∑  is also 

necessary for optimality 

o Should not be a major concern in practice 
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Subproblem Processing 

Subproblem:  (many operating in parallel, asynchronously) 

Let min max0 ρ ρ< ≤ < ∞ be fixed  

Parameters for subproblem i: 

• 1 , 1( , , )i i i Tz z z −=   : scenario i “target” values, except last stage 

• iw      : multipliers (same dimensions as iz ) 

min max

2

, ,
[ , ]

Arg min ( ) ,
2

( )
, ,

Get recent  from coordination process
Select some 

Let 

and 
Make  available to coordination process

i

i i i

i i i i i i i i i
x

i i i i i

i i i i

z w

x h x M x z M x z

y w M x z
i x M x y

ρ ρ ρ
ρ

ρ

∈

∈

 ∈ + + − 
 

= + −






 

Looks like PH subproblem + part of multiplier update 
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Coordination Process Variables 

The coordination process maintains working variables: 
• 1( , , )nz z z= ∈   

• 1( , , )nw w w ⊥= ∈  

• 1( , , )nx x x= ∈  
   (the tildes mean no last-stage variables) 

• 1( , , )ny y y= ∈  

At each iteration we also compute step direction vectors: 
• 1( , , )nu u u ⊥= ∈  

• 1( , , )nv v v= ∈  

Scalar parameters: 
• Primal-dual scaling factor 0γ >  (fixed?) 
• Overrelaxation factor limits min max0 2ν ν< ≤ <   (varying) 
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Coordination Process 

repeat 
 for 1, ,i n=    
         let ,i i ix y ∈  be recent values from subproblem i 
 and let 1( , , )nx x x=  

  and 1( , , )ny y y=   
 proj ( )u x x← −     
 proj ( )v y←   
 2 22 2

1 1

n n
i i i ii i

u v u vτ γ π γ π
= =

← + = +∑ ∑  

 ( ) ( )1
, n

i i i i ii
z x w y z x w yφ π

=
← − − = − −∑ T

    
 if 0φ >  then 
  Choose some min max[ , ]ν ν ν∈  
  ( / )z z vνφ τγ← +   
  ( / )w w uνφ τ← +  
until termination detected 

• Note: this is not necessarily a central “master” process; it can  
be distributed 



February 2021        36 of 53 

Asynchrony 

Same conditions for convergence as in abstract asynchronous 
case above: 

• Each subproblem is recomputed least every 1t  time units, 
based on ( , )iz w  that are at most 2t  time units old 

• A coordination step completes at least once every 3t  time 
units, based subproblem results that are at most 4t  time units 
old 

• Then ( , )z w  converges to a primal-dual solution, as in PH 

 

1 
2 
3 
4 
5 
6 
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Asynchronous Projective Hedging 

• We call the resulting class of algorithms asynchronous 
projective hedging (APH) 

Partial Resemblance to PH 

• Subproblem has some recognizable pieces of the PH 
subproblem optimization step and multiplier update 

o Essentially the same minimization step for subproblems 

o proj  and simple vector operations 

• The control process is somewhat more complicated than PH, 
but consists of the same fundamental operations 

o Nothing more complicated than proj   

o May still be implemented in a distributed way 
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But Now It’s Asynchronous 

• Full synchronization has been replaced by loose timing bounds 

• The subproblem and coordination processes can run at 
different speeds 

o No longer “locked in” to one coordination for every n 
subproblem solves 

o Now possible to have  

t n
t

<
# subproblem solves initiated by time 

# coordination steps by time 
  



February 2021        39 of 53 

Application 

• Problem: SSN telecommunication design problem 
(Sen et al. 1994) 

o Standard test problem class in stochastic programming 

o For this exercise, we generated instances with up to 610  
sample scenarios 

o Underlying number of scenarios finite but 7010≈   

• Hardware: “Quartz” supercomputer at Lawrence Livermore 

• Software platform:  mpi-sppy (Kneuven et al. 2020) 
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Standard Modern Supercomputer 
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• CPU cores share memory within each node 

• Nodes communicate by messages through an interconnect 
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Quartz 

 
• 32 CPU cores/node 

• 128 GB RAM/node 

• About 3,000 nodes 

• Omni-Path interconnect (channel speed 100 G bits/second) 

 
• Our biggest job so far used 250 nodes / 8,000 cores 



February 2021        42 of 53 

mpi-sppy 

• Sandia/Livermore package for stochastic programming 

• Built on Pyomo optimization modeling environment that 
embeds in Python 

• Coded in Python, but 

o Most CPU time spent solving subproblems (Gurobi etc.) 

o Or within numpy linear algebra kernels (calling BLAS) 

• Has a “hub and spoke” architecture 

o But not in the classic “master-slave” sense 

• “MPI” is how messages get sent between groups of processors 
(Gropp et al. 2014) 
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Lower Bounds 

• Neither PH nor APH immediately provide pre-termination 
lower bounds on the optimal solutions value 

• PH never fully minimizes the augmented Lagrangian, so it does 
not automatically provide a Lagrangian bound 

• APH is similar 

• But one can obtain one by doing an extra minimization of the 
ordinary Lagrangian (separable) – since kw ⊥∈ , compute 

{ }
1

( ) min ( ) ,
i

n
k k

i i i i ixi
L w f x M x w

=

= +∑  

• And there may be other, application-specific lower bounds 

• There is also a bound (E 2020) that one can derive directly 
from the PH process, but it requires estimation of a potentially 
large constant and may not be readily applicable 
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Upper Bounds 

• Neither PH nor APH provide pre-termination feasible solutions 

• Nonanticipativity is only satisfied in the limit 

• Various strategies for deriving these feasible solutions from z 
 

mpi-sppy Processor Organization 

• A “hub” grouping of processors (possibly very large) runs the 
principal optimization algorithm (PH or APH) 

• “Spoke” groupings of processors run auxiliary processes like 
upper and lower bounding (possibly several of each) 

• The spoke operations are seeded from the principle ( , )z w  
iterates from the hub 

• The spokes do not need to communicate directly with one 
another 
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The mpi-sppy Picture 

 
• A rank is a single shared memory space 

o Typically ~4 CPU cores (the most Gurobi efficiently can use 
for QPs) 

o Pack multiple ranks onto a node 

o Runs multiple threads and typically has multiple CPU cores 

• Ranks are organized into cylinders and strata 
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The mpi-sppy Picture 

 
• Each rank stores the data for one or more scenarios 

• Within a cylinder, each scenario is stored on only one rank 

• Each cylinder has the same number of ranks 

• The corresponding ranks in each cylinder (a stratum) each 
store data for the same scenarios (redundantly) 
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Within the Hub Cylinder 

• Ranks may store more than one 
scenario 

• Each rank only solves one scenario 
subproblem at a time 

o But Gurobi and numpy may employ 
multiple cores when doing so 

• In PH, synchronous communication 
once every scenario has been solved  

o Subproblems stop during the 
communication 

• In APH, an “listener” thread decides 
when “enough” scenarios have been 
solved (globally), then performs the 
communication needed for coordination 

o All in parallel with subproblem 
solves 
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Subproblem Subproblem
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Subproblem Subproblem

Subproblem Subproblem

Subproblem Subproblem

Subproblem Subproblem

Listener

Listener

Listener

Listener



February 2021        48 of 53 

Hub and Spoke 
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• The spokes are organized similarly to the hub 

• Hub periodically sends z and/or w information to spokes 

• Each rank sends or receives data only for the subproblems it 
owns 

• Messages in different strata move in parallel 
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A Few More Points – Bundling and Subproblem Dispatch 

• For large-scale problems, it is common to use a “bundling” 
strategy 

• Single-scenario subproblems are replaced by bundles of 
multiple scenarios 

• Within a bundle/subproblem, scenarios are linked by explicit 
constraints (a “mini extensive form”) 

• But the logic of nonanticipativity contraints (now between 
bundles) and PH / APH remain essentially the same 
 

• In APH, we have a heuristic for selecting the most promising 
subproblem i to solve next within each rank 

o Based on value of ( ) ( )i i i i iz x w yπ − −T
  
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Preliminary Results: 20,000 Scenarios 
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● APH run in synchronous mode
● 1000 scenarios/bundle
● 4 cores/rank, 1 bundle/rank
● 2 cylinders of 20 ranks (no lower bounder)
● 160 cores total (5 nodes)

Vertical axis cut off for early iterations
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Preliminary Results: 1,000,000 Scenarios 
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● APH  in synchronous mode
● 1000 scenarios/bundle
● 4 cores/rank, 1 bundle/rank
● 2 cylinders of 4,000 ranks
● 8,000 cores total (250 nodes)
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Size of the 1,000,000 Scenario Problem 

The equivalent extensive-form LP would have about 

• 795 million variables  

• 265 million constraints (not counting simple variable bounds) 

• 2.64 billion nonzero matrix entries 
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Much More to Do 

• Dual instead of primal derivation of the APH method? 

o Would be more like classic derivation of ADMM from DR 

o Might eliminate annoying assumptions like a compact 
domain for the hi 

• Investigate making projective scaling methods in general more 
robust to problem scaling etc. 

• The real problems the energy labs want to solve have 
nonconvexities and integer variables 

o Related to operating electric power grids  

o How can we help address such problems… 

 Rigorously? 

 Heuristically? 

o Asynchrony is an especially nice feature when the 
subproblems have integer variables 
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