
February 2021 1 of 53

Progressive Hedging and
Asynchronous Projective

Hedging for Convex Stochastic
Programming

February 22, 2021

Portions of this work joint with

Patrick Combettes, North Carolina State University
Jean-Paul Watson, Lawrence Livermore National Lab

David L. Woodruff, University of California, Davis

February 2021 2 of 53

Typical ADMM and Operator Splitting Applications

• The most prominent applications of operator splitting and
ADMM-class algorithms are in machine learning and image
processing

• There has not been much operator splitting work on “OR-style”
optimization problems

• With one exception:

Stochastic Programming

• Solving LP etc. models on an unfolding tree of random future
scenarios

• Rockafellar and Wet’s progressive hedging algorithm (1991)

February 2021 3 of 53

Progressive Hedging

• Working paper in late 1987, published in Mathematics of
Operations Research in 1991

• Rockafellar and Wets knew that their method was a form of DR
splitting / ADMM algorithm

• But proved its convergence from first principles

• After all, monotone operators and the ADMM were not much
known in the OR community at the time

• I will present the method from an ADMM point of view, then
switch to projective splitting

February 2021 4 of 53

The Scenario Tree

• Consider a standard stochastic programming scenario tree:

• iπ is the probability of last-stage scenario i = 1, … , n

• Will use “scenario” as a shorthand for “last-stage scenario”

• Typically a discrete-time and sampled approximation of some
infinite or much larger model

Last-stage scenarios i = 1, … , n

Stages
s = 1,…,T

February 2021 5 of 53

Stochastic Programming

• System walks randomly from the root to some leaf

• At each node there are decision variables, for example

o How much of an investment to buy or sell

o How much to run a power generator, etc...

• ... and constraints that depend on earlier decisions

• Model alternates decisions and uncertainty resolution

Stages
s = 1,…,T

February 2021 6 of 53

Problem Formulation and Notation

• Replicate decision variables: n copies at every stage

February 2021 7 of 53

Problem Formulation and Notation

• Replicate decision variables: n copies at every stage

• isx is the vector of decision variables for scenario i at stage s

February 2021 8 of 53

Problem Formulation and Notation

• Replicate decision variables: n copies at every stage

• isx is the vector of decision variables for scenario i at stage s

• i is the space of all variables pertaining to scenario i ;
elements are 1(, ,)i i iTx x x= 

February 2021 9 of 53

Problem Formulation and Notation

• Replicate decision variables: n copies at every stage

• isx is the vector of decision variables for scenario i at stage s

• i is the space of all variables for scenario i; elements are
 1(, ,)i i iTx x x= 

• 1 n= × ×   is space of all decision variables; elements are
 ()1 11 1 1(, ,) (, ,), , (, ,)n T n nTx x x x x x x= =   

February 2021 10 of 53

Problem Formulation and Notation

• i is i without the last stage; elements 1 , 1(, ,)i i i Tz z z −= 

• 1 n= × ×  is the space of all variables except the last
stage: elements ()1 11 1, 1 1 , 1(, ,) (, ,), , (, ,)n T n n Tz z z z z z z− −= =   

i iz ∈

February 2021 11 of 53

Nonanticipativity Subspace

• ⊂  is the subspace of  meeting the nonanticipativity
constraints that is jsz z= whenever scenarios i and j are
indistinguishable at stage s

February 2021 12 of 53

Projecting onto the Nonanticipativity Space

• Following Rockafeller and Wets (1991), we use the following
probability-weighted inner product on  :

1 1 1
(, ,), (, ,) ,n

n n i i ii
z z q q z qπ

=
=∑ 

• With this inner product, the projection map proj : →   is
given by

()
1 1

(,)
(,)

proj () ,
1 1, , , 1, , 1

 where

k k
is j js

j S i sjj S i s

q z

z q i n s Tπ
π

+ +

∈
∈

=

= = = −∑
∑



 

and (,)S i s is the set of scenarios indistinguishable from
scenario i at time s.

February 2021 13 of 53

Now Let’s Apply the ADMM

• So far, I have just shown the formulation of Rockafellar & Wets
(1991) with some minor notation adjustments

• But now will derive PH using the ADMM instead of first
principles

February 2021 14 of 53

ADMM Notation

• Suppose : { }f → ∪ +∞  is a convex function

• Suppose : { }g → ∪ +∞  is a convex function

• Suppose M is linear map → 

min () ()f x g Mx+

• Equivalent formulation:
min () ()
ST

f x g z
Mx z

+
=

• The ADMM, for some fixed constant 0ρ > :

{ }
{ }

21
2

21 1
2

1 1 1

Arg min () ,

Arg min () ,

()

n

m

k k k

x

k k k

z

k k k k

x f x w Mx Mx z

z g z w z Mx z

w w Mx z

ρ

ρ

ρ

+

∈

+ +

∈

+ + +

∈ + + −

∈ − + −

= + −





February 2021 15 of 53

Setting Up the ADMM Formulation for Stochastic Programming

For each i = 1, … , n, let

• : { }i if → ∪ +∞  be given by () ()i i i i if x h xπ= , where ()ih ⋅ is the
cost function for scenario i and +∞ if any constraint within
scenario i is violated

• :i i iM →  be the map that just drops the last-stage variables
from scenario i

ih encapsulates all the costs and constraints across all stages in
the (hypothetical) situation that you know the final outcome will
be scenario i

Then our stochastic program is equivalent to

1

1 1

min ()

ST (, ,)

p

i i
i

n n

f x

M x M x
=

∈

∑


February 2021 16 of 53

Applying the ADMM

1 1 1
1

0,
() () () : (, ,) (, ,)

,

n

i i n n n
i

z
f x f x g z M x x M x M x

z=

∈
= = +∞ ∉
∑




  

Then the problem is equivalent to min () ()f x g Mx+

Applying the ADMM (and thus DR), we obtain

{ }
()

21
2

1 1
1

1 1 1

arg min () , 1, ,

proj

() 1, ,

i i

k k k
i i i i i i i i i

x

k k

k k k k

x f x M x w M x z i n

z Mx

w w Mx z i n

ρ

ρ

+

∈

+ +

+ + +

= + + − =

=

= + − =









• Note that we always have 1(, ,)k k k
pw w w ⊥= ∈ . Why?

o Projection means that Mx z ⊥− ∈

o Or, note that in ADMM/DR we always have ()k kw g z∈∂

• Aside: applying DR to subspace indicator functions like g is
equivalent to Spingarn’s method of partial inverses

February 2021 17 of 53

Progressive Hedging

• Writing the z and w operations out in detail, we obtain PH:

()

()

1 21
2

1

1 1

(,)
(,)

1 1 1

arg min () , 1, ,

1, ,1
1, , 1

1, ,
()

1, , 1

i i

T
k k k
i i i is is is is

x s

k k
is j js

j S i sjj S i s

k k k k
is is is is

x h x x w x z i n

i n
z x

s S

i n
w w x z

s S

ρ

π
π

ρ

−
+

∈ =

+ +

∈
∈

+ + +

 
= + + − = 

 
=

=
= −

=
= + −

= −

∑

∑
∑












• The kw ⊥∈ condition can be written as
(,)

0k
j jsj S i s
wπ

∈
=∑ for

all i and s

• By using canonical, non-probability-weighted inner products,
we can also obtain an alternative version in which simple
averages replace the weighted averages and the iπ appear in
the xi minimizations instead

February 2021 18 of 53

Decomposition Methods

• PH is a form of decomposition method

• General form of decomposition methods:

• In any decomposition method, the subproblem computations can

be operated in parallel

• But the coordination steps potentially pose a serial bottleneck

Subproblem

Subproblem

Subproblem

Subproblem

Subproblem

Coordination

Subproblem

Subproblem

Subproblem

Subproblem

Subproblem

Coordination Etc…

February 2021 19 of 53

Noteworthy Properties of PH

• The coordination computations in PH just consist of sums /
averages and simple vector operations

o These are faster than the “master” optimization problems
other decomposition methods typically use…

o … and can easily be implemented in a distributed manner
(efficient parallel algorithms for sums etc.)

• PH handles multi-stage problems cleanly

o Applying other decomposition methods to problems with 3
or more stages can require unwieldy “nested” versions

• The theory does not require linearity, only convexity

• Superficially, the algorithm is easily adapted to integer
variables and nonconvex objectives or constraints

o Although you lose the standard convergence theory and the
method can become heuristic

February 2021 20 of 53

Adoption of PH in Practice

• Progressive hedging did not “catch on” initially

• Convergence speed on practical problems was not spectacular

• However, its relative simplicity made it start to gain adherents
with the advent of

o Ever-larger problem isntances

o Interest in problems with many stages

o Wider availability of highly parallel computing

• So, 20+ years after initial publication, PH started getting used
in practice

• The PySP system (Watson, Woodruff, Hart 2018) provides an
accessible version of PH coupled with a flexible modeling
environment (Pyomo – embedded in Python)

• There has been recent work on making its application with
integer variables more rigorous

February 2021 21 of 53

But Classic PH is Totally Synchronous

• In theory, you must solve every subproblem at every iteration

• The coordination step must wait for the slowest subproblem

Some possible remedies:

• Pack subproblems in processors and load balance
(limits parallelism)

• Advanced bundle method variants

• Use projective splitting instead of ADMM / DR (this talk)

Subpr

Subproblem

Subprob

Subproblem

Subprobl

Co
or

di
na

ti
on

Subproblem

Subpro

Subproblem

Subprobl

Subpr

Idle

Idl

I

Id

Idle

Id

I

Idle

Subproblem

Subpro

Subprob

Subproblem

Sub

Idle

Idl

I

Idle
Co

or
di

na
ti

on

Co
or

di
na

ti
on

Subpr

Subprob

Subproblem

Subproblem

Subproblem

Idle

Idl

I

Co
or

di
na

ti
on

Etc…

February 2021 22 of 53

Projective Splitting: General Problem Setting

*

1
0 ()

n

i i i
i

G T G x
=

∈∑

where

• 0, , n  are real Hilbert spaces

• :i i iT   are maximal monotone operators, 1, ,i n= 

• 0:i iG →  are bounded linear maps, 1, ,i n= 

Kuhn-Tucker set / primal-dual solution set

{ }*
1 1

(, , ,) (1,) (), 0n
n i i i i ii

z w w i n w T G z G w
=

= ∀ = ∈ =∑  

• This is a closed convex set (not immediate; various proofs)

February 2021 23 of 53

Valid Inequalities for 

• Take some ,i i ix y ∈ such that ()i i iy T x∈ for 1, ,i n=  ,
that is, (,) graphi i ix y T∈

• If 1(,) (, , ,)nz z w w= ∈w , then ()i i iw T G z∈ for 1, ,i n= 

• So, , 0i i i ix G z y w− − ≥ for 1, ,i n=  by monotonicity of Ti

• Negate and add up:
1

(,) , 0 (,)
n

i i i i
i

z G z x y w zϕ
=

= − − ≤ ∀ ∈∑ w w


{ }() 0

() 0

H p p

p p

ϕ

ϕ

= =

≤ ∀ ∈

February 2021 24 of 53

Making Sure these Inequalities are Affine

• Superficially, these inequalities are quadratic

• But with a little care we can make them affine

• One of several possible techniques:

o Restrict the space to

*
0 1 1

1
(, ,) 0

n

n n i i
i

w w G w
=

 
= × ⊃ = = ∈ × × = 

 
∑       , where w

o Within this subspace, ϕ is affine since the quadratic terms
are

* *

1 1 1
, , , , 0 0

n n n

i i i i i i
i i i

G z w z G w z G w z
= = =

− = − = − = − =∑ ∑ ∑

• Once we know ϕ is affine, projection onto the halfspace
{ }() 0H p V pϕ= ∈ ≤ is fairly straightforward

February 2021 25 of 53

Generic Projection Method to Converge to a Point in a
Closed Convex Set  in any Hilbert Space 

Apply the following general template:

• Given kp ∈ , choose some affine function kϕ with
() 0k p pϕ ≤ ∀ ∈

• Project kp onto { }() 0k kH p pϕ= ≤ , possibly with an
overrelaxation factor [,2]kν ε ε∈ − , yielding 1kp + , and repeat…

{ }
 is affine

() 0

() 0
() 0

k

k k

k

k k

H p p

p p
p

ϕ

ϕ

ϕ
ϕ

= =

≤ ∀ ∈

>



1kp +

kp



February 2021 26 of 53

Projection Process in the Case of Projective Splitting

• Here, 1(,) (, , ,)k k k k k k
np z z w w= =w  and we find kϕ by picking

some (,) graph ()k k
i i ix y T i∈ ∀ and using the construction above

*
1

1
2 2

1

1 1

(, ,)

max 0

proj

,,

(done if 0)

n
k k k k k

n i i
i

k k
k

n
k k k kk

k i i i i
ik

k k k k k kk

k

k

u x x v G y

u v

G z x y w

z z v w w u

τ

νθ
τ

γ

θ
γ

τ

θ

=

=

+ +

= … =

= +

 
= − − 

 

= − = −

≈

∑

∑



• There are alternative approaches if proj is difficult

• 0γ > is an optional primal-dual scaling factor

• More complicated than ADMM/PH coordination step, but still
just simple vector and sum operations (so could be distributed)

February 2021 27 of 53

How to Pick the ,k k
i ix y — Basics

• If you pick (,) graphk k
i i ix y T∈ completely arbitrarily, you may

just orbit around  and not converge to it

• A workable choice: the “prox” operation for some scalar 0ikc >

(,) Prox ()ik

i

ck k k k
i i T i ik ix y G z c w= +

That is,

()1 1() ()k k k k
i ik i ik

k k
i ik i i

i
i

k
i ix I c T y x

c
G z c w G z c w− ++ = −+=

• Then ()k k k k
ik i i i ic y w G z x− = −

• So
2 21, 0k k k k k k k k

i i i i ik i i ik i iG z x y w c G z x c y w−− − = − = − ≥

• Sum over i and get (,) 0k k
k zϕ >w (cuts of current iterate)

• Can prove that this guarantees (weak) convergence to  if the
ikc are bounded away from zero and infinity

February 2021 28 of 53

How to Pick the ,k k
i ix y — “Block Iterativity”

• Variation: do not have to activate every operator at every
iteration (Combettes & E 2018)

o For the rest, just recycle the previous ,k k
i ix y

• Let 0M ≥ be an integer

• Let { }0 1 2, , , 1, ,I I I n⊆  be such that

() { }0 1, ,
i M

j
j i

i I n
+

=

∀ ≥ = 



• At iteration k, only activate the operators in kI :

{ }1 1

()

(,) (,) 1

,) Pr x

, \

o (ik

i k

k k k k
i i i i k

ck k k k
i i T i ik i i I

x

x y G z

i

c

y I

w

y x n− −

∀ ∈

= ∀ ∈

= +



• Convergence proof adapts ideas from successive projection
methods for set intersection problems

February 2021 29 of 53

How to Pick the ,k k
i ix y — “Lags”

• Also from Combettes & E (2018)

• Let 0K ≥ be another integer

• Each prox operation may use data from up to K iterations ago

• Otherwise same as above

• So, for some (,)d i k with (,)k d i k k K≥ ≥ − ,

()
{ }

(,) (,)

1 1

(,) Prox

(,) (,) 1, \

ik

i

ck k
i i T i ik i k

k k k k
i i i i k

d i k d i kx y G z c w i I

x y x y i n I− −

= + ∀ ∈

= ∀ ∈ 

February 2021 30 of 53

Asynchrony (Sloppy Notation)

• Combining block iterativity and lags lets one drop strict
coupling of coordination and subproblem processing

• For each i, suppose that a new (,) Prox ()
i

c
i i T i ix y G z cw← +

appears at least every 1t time units, based on (,)iz w that are at
most 2t time units old

• A projection step occurs at least every 3t time units, based on
(,) graph , 1, ,i i ix y T i n∈ =  that are most 4t time units old

• Then (,)z w converges (weakly) to a point in 

1
2
3
4
5
6

February 2021 31 of 53

Applying Projective Splitting to Stochastic Programming

Problem setup for stochastic programming

• 0 =  (run algorithm in nonanticipativity subspace)

• i i=  , but with its inner product multiplied by iπ

• :i iG →  selects the subvector relevant to scenario i

• (){ }() min (,)
iT

i i i i i iTx
f x h x xπ=  minimizes scenario i’s cost over the

last-stage variables

o Remember, scenario-infeasible points have ()i ih x = +∞

Then our stochastic program is just

0
1

min ()n
i iix

f G x
=∈ ∑

So apply the method from earlier in the talk for *

1
0 ()

n

i i i
i

G f G x
=

∈ ∂∑

February 2021 32 of 53

Some Technicalities

• This choice of fi is convex for convex hi

• But it is not generally guaranteed to be closed unless hi has
compact effective domain

• We need such an assumption to guarantee that fi is closed and
thus that i iT f= ∂ is maximal

• We also need some constraint-qualification-like conditions to
be sure that the sufficient condition *

1
0 ()n

i i ii
G f G x

=
∈ ∂∑ is also

necessary for optimality

o Should not be a major concern in practice

February 2021 33 of 53

Subproblem Processing

Subproblem: (many operating in parallel, asynchronously)

Let min max0 ρ ρ< ≤ < ∞ be fixed

Parameters for subproblem i:

• 1 , 1(, ,)i i i Tz z z −=  : scenario i “target” values, except last stage

• iw : multipliers (same dimensions as iz)

min max

2

, ,
[,]

Arg min () ,
2

()
, ,

Get recent from coordination process
Select some

Let

and
Make available to coordination process

i

i i i

i i i i i i i i i
x

i i i i i

i i i i

z w

x h x M x z M x z

y w M x z
i x M x y

ρ ρ ρ
ρ

ρ

∈

∈

 ∈ + + − 
 

= + −






Looks like PH subproblem + part of multiplier update

February 2021 34 of 53

Coordination Process Variables

The coordination process maintains working variables:
• 1(, ,)nz z z= ∈

• 1(, ,)nw w w ⊥= ∈

• 1(, ,)nx x x= ∈  
 (the tildes mean no last-stage variables)

• 1(, ,)ny y y= ∈

At each iteration we also compute step direction vectors:
• 1(, ,)nu u u ⊥= ∈

• 1(, ,)nv v v= ∈

Scalar parameters:
• Primal-dual scaling factor 0γ > (fixed?)
• Overrelaxation factor limits min max0 2ν ν< ≤ < (varying)

February 2021 35 of 53

Coordination Process

repeat
 for 1, ,i n= 
 let ,i i ix y ∈ be recent values from subproblem i
 and let 1(, ,)nx x x=  

 and 1(, ,)ny y y= 
 proj ()u x x← −  
 proj ()v y← 
 2 22 2

1 1

n n
i i i ii i

u v u vτ γ π γ π
= =

← + = +∑ ∑

 () ()1
, n

i i i i ii
z x w y z x w yφ π

=
← − − = − −∑ T

 
 if 0φ > then
 Choose some min max[,]ν ν ν∈
 (/)z z vνφ τγ← +
 (/)w w uνφ τ← +
until termination detected

• Note: this is not necessarily a central “master” process; it can
be distributed

February 2021 36 of 53

Asynchrony

Same conditions for convergence as in abstract asynchronous
case above:

• Each subproblem is recomputed least every 1t time units,
based on (,)iz w that are at most 2t time units old

• A coordination step completes at least once every 3t time
units, based subproblem results that are at most 4t time units
old

• Then (,)z w converges to a primal-dual solution, as in PH

1
2
3
4
5
6

February 2021 37 of 53

Asynchronous Projective Hedging

• We call the resulting class of algorithms asynchronous
projective hedging (APH)

Partial Resemblance to PH

• Subproblem has some recognizable pieces of the PH
subproblem optimization step and multiplier update

o Essentially the same minimization step for subproblems

o proj and simple vector operations

• The control process is somewhat more complicated than PH,
but consists of the same fundamental operations

o Nothing more complicated than proj

o May still be implemented in a distributed way

February 2021 38 of 53

But Now It’s Asynchronous

• Full synchronization has been replaced by loose timing bounds

• The subproblem and coordination processes can run at
different speeds

o No longer “locked in” to one coordination for every n
subproblem solves

o Now possible to have

t n
t

<
subproblem solves initiated by time

coordination steps by time

February 2021 39 of 53

Application

• Problem: SSN telecommunication design problem
(Sen et al. 1994)

o Standard test problem class in stochastic programming

o For this exercise, we generated instances with up to 610
sample scenarios

o Underlying number of scenarios finite but 7010≈

• Hardware: “Quartz” supercomputer at Lawrence Livermore

• Software platform: mpi-sppy (Kneuven et al. 2020)

February 2021 40 of 53

Standard Modern Supercomputer

Core Core Core

Core Core Core

Core Core Core

CPU Chip

Core Core Core

Core Core Core

Core Core Core

CPU Chip

RAM

RAM

RAM

Node

Core Core Core

Core Core Core

Core Core Core

CPU Chip

Core Core Core

Core Core Core

Core Core Core

CPU Chip

RAM

RAM

RAM

Node

Core Core Core

Core Core Core

Core Core Core

CPU Chip

Core Core Core

Core Core Core

Core Core Core

CPU Chip

RAM

RAM

RAM

Node

Core Core Core

Core Core Core

Core Core Core

CPU Chip

Core Core Core

Core Core Core

Core Core Core

CPU Chip

RAM

RAM

RAM

Node

Core Core Core

Core Core Core

Core Core Core

CPU Chip

Core Core Core

Core Core Core

Core Core Core

CPU Chip

RAM

RAM

RAM

Node

Core Core Core

Core Core Core

Core Core Core

CPU Chip

Core Core Core

Core Core Core

Core Core Core

CPU Chip

RAM

RAM

RAM

Node

Interconnect

• CPU cores share memory within each node

• Nodes communicate by messages through an interconnect

February 2021 41 of 53

Quartz

• 32 CPU cores/node

• 128 GB RAM/node

• About 3,000 nodes

• Omni-Path interconnect (channel speed 100 G bits/second)

• Our biggest job so far used 250 nodes / 8,000 cores

February 2021 42 of 53

mpi-sppy

• Sandia/Livermore package for stochastic programming

• Built on Pyomo optimization modeling environment that
embeds in Python

• Coded in Python, but

o Most CPU time spent solving subproblems (Gurobi etc.)

o Or within numpy linear algebra kernels (calling BLAS)

• Has a “hub and spoke” architecture

o But not in the classic “master-slave” sense

• “MPI” is how messages get sent between groups of processors
(Gropp et al. 2014)

February 2021 43 of 53

Lower Bounds

• Neither PH nor APH immediately provide pre-termination
lower bounds on the optimal solutions value

• PH never fully minimizes the augmented Lagrangian, so it does
not automatically provide a Lagrangian bound

• APH is similar

• But one can obtain one by doing an extra minimization of the
ordinary Lagrangian (separable) – since kw ⊥∈ , compute

{ }
1

() min () ,
i

n
k k

i i i i ixi
L w f x M x w

=

= +∑

• And there may be other, application-specific lower bounds

• There is also a bound (E 2020) that one can derive directly
from the PH process, but it requires estimation of a potentially
large constant and may not be readily applicable

February 2021 44 of 53

Upper Bounds

• Neither PH nor APH provide pre-termination feasible solutions

• Nonanticipativity is only satisfied in the limit

• Various strategies for deriving these feasible solutions from z

mpi-sppy Processor Organization

• A “hub” grouping of processors (possibly very large) runs the
principal optimization algorithm (PH or APH)

• “Spoke” groupings of processors run auxiliary processes like
upper and lower bounding (possibly several of each)

• The spoke operations are seeded from the principle (,)z w
iterates from the hub

• The spokes do not need to communicate directly with one
another

February 2021 45 of 53

The mpi-sppy Picture

• A rank is a single shared memory space

o Typically ~4 CPU cores (the most Gurobi efficiently can use
for QPs)

o Pack multiple ranks onto a node

o Runs multiple threads and typically has multiple CPU cores

• Ranks are organized into cylinders and strata

February 2021 46 of 53

The mpi-sppy Picture

• Each rank stores the data for one or more scenarios

• Within a cylinder, each scenario is stored on only one rank

• Each cylinder has the same number of ranks

• The corresponding ranks in each cylinder (a stratum) each
store data for the same scenarios (redundantly)

February 2021 47 of 53

Within the Hub Cylinder

• Ranks may store more than one
scenario

• Each rank only solves one scenario
subproblem at a time

o But Gurobi and numpy may employ
multiple cores when doing so

• In PH, synchronous communication
once every scenario has been solved

o Subproblems stop during the
communication

• In APH, an “listener” thread decides
when “enough” scenarios have been
solved (globally), then performs the
communication needed for coordination

o All in parallel with subproblem
solves

Subproblem Subproblem

Subproblem Subproblem

Subproblem Subproblem

Subproblem Subproblem

Subproblem Subproblem

Subproblem Subproblem

Subproblem Subproblem

Subproblem Subproblem

Listener

Listener

Listener

Listener

February 2021 48 of 53

Hub and Spoke

SubproblemSubproblem

SubproblemSubproblem

SubproblemSubproblem

SubproblemSubproblem

SubproblemSubproblem

SubproblemSubproblem

SubproblemSubproblem

SubproblemSubproblem

Subproblem Subproblem

Subproblem Subproblem

Subproblem Subproblem

Subproblem Subproblem

Subproblem Subproblem

Subproblem Subproblem

Subproblem Subproblem

Subproblem Subproblem

Hub: PH or APHLower Bounder Upper Bounder

Subproblem Subproblem

Subproblem Subproblem

Subproblem Subproblem

Subproblem Subproblem

Subproblem Subproblem

Subproblem Subproblem

Subproblem Subproblem

Subproblem Subproblem

Listener

Listener

Listener

Listener

• The spokes are organized similarly to the hub

• Hub periodically sends z and/or w information to spokes

• Each rank sends or receives data only for the subproblems it
owns

• Messages in different strata move in parallel

February 2021 49 of 53

A Few More Points – Bundling and Subproblem Dispatch

• For large-scale problems, it is common to use a “bundling”
strategy

• Single-scenario subproblems are replaced by bundles of
multiple scenarios

• Within a bundle/subproblem, scenarios are linked by explicit
constraints (a “mini extensive form”)

• But the logic of nonanticipativity contraints (now between
bundles) and PH / APH remain essentially the same

• In APH, we have a heuristic for selecting the most promising
subproblem i to solve next within each rank

o Based on value of () ()i i i i iz x w yπ − −T


February 2021 50 of 53

Preliminary Results: 20,000 Scenarios

0.86%

0.88%

0.90%

0.92%

0.94%

0.96%

0.98%

1.00%

1.02%

1.04%

0 100 200 300 400 500 600 700

Ga
p

Time (seconds)

Gap relative to known optimal (instance 1134)

PH Gap (%) APH Gap (%)

● APH run in synchronous mode
● 1000 scenarios/bundle
● 4 cores/rank, 1 bundle/rank
● 2 cylinders of 20 ranks (no lower bounder)
● 160 cores total (5 nodes)

Vertical axis cut off for early iterations

February 2021 51 of 53

Preliminary Results: 1,000,000 Scenarios

0.000%

0.020%

0.040%

0.060%

0.080%

0.100%

0.120%

0.140%

0.160%

0.180%

0 50 100 150 200 250 300 350 400 450
Time (Sec)

Gap to best known solution, 1M Scenarios

PH Gap % APH Gap %

● APH in synchronous mode
● 1000 scenarios/bundle
● 4 cores/rank, 1 bundle/rank
● 2 cylinders of 4,000 ranks
● 8,000 cores total (250 nodes)

February 2021 52 of 53

Size of the 1,000,000 Scenario Problem

The equivalent extensive-form LP would have about

• 795 million variables

• 265 million constraints (not counting simple variable bounds)

• 2.64 billion nonzero matrix entries

February 2021 53 of 53

Much More to Do

• Dual instead of primal derivation of the APH method?

o Would be more like classic derivation of ADMM from DR

o Might eliminate annoying assumptions like a compact
domain for the hi

• Investigate making projective scaling methods in general more
robust to problem scaling etc.

• The real problems the energy labs want to solve have
nonconvexities and integer variables

o Related to operating electric power grids

o How can we help address such problems…

 Rigorously?

 Heuristically?

o Asynchrony is an especially nice feature when the
subproblems have integer variables

	Progressive Hedging and Asynchronous Projective Hedging for Convex Stochastic Programming

