Progressive Hedging and
Asynchronous Projective
Hedging for Convex Stochastic

Programming
February 22, 2021

[LLLLCES

i

e

RUTGERS

Portions of this work joint with

Patrick Combettes, North Carolina State University
Jean-Paul Watson, Lawrence Livermore National Lab
David L. Woodruff, University of California, Davis

February 2021 1 of 53

Typical ADMM and Operator Splitting Applications

e The most prominent applications of operator splitting and
ADMM-class algorithms are in machine learning and image
processing

e There has not been much operator splitting work on “OR-style”
optimization problems

e With one exception:

Stochastic Programming

e Solving LP etc. models on an unfolding tree of random future
scenarios

e Rockafellar and Wet’s progressive hedging algorithm (1991)

February 2021 2 of 53

Progressive Hedging

e Working paper in late 1987, published in Mathematics of
Operations Research in 1991

e Rockafellar and Wets knew that their method was a form of DR
splitting / ADMM algorithm

e But proved its convergence from first principles

e After all, monotone operators and the ADMM were not much
known in the OR community at the time

e | will present the method from an ADMM point of view, then
switch to projective splitting

February 2021 3 0of 53

The Scenario Tree

e Consider a standard stochastic programming scenario tree:

T

Stages

<— Last-stage scenariosi=1, ..., n —>

e 1, is the probability of last-stage scenarioi =1,...,n
e Will use “scenario” as a shorthand for “last-stage scenario”

e Typically a discrete-time and sampled approximation of some
infinite or much larger model

February 2021 4 of 53

Stochastic Programming

Stages

e System walks randomly from the root to some leaf

e At each node there are decision variables, for example
o How much of an investment to buy or sell

o How much to run a power generator, etc...
e ... and constraints that depend on earlier decisions

e Model alternates decisions and uncertainty resolution

February 2021 5 of 53

Problem Formulation and Notation

e Replicate decision variables: n copies at every stage

O
O

O
O

O
O

O
O

O
O

O O O O O O

O
O

Problem Formulation and Notation

e Replicate decision variables: n copies at every stage

Q O

C

) O

O

O"
O OO O O O

O
O

O
O

O
O

e x,_is the vector of decision variables for scenario i at stage s

Problem Formulation and Notation

e Replicate decision variables: n copies at every stage

O
O
O

O
O
O

x, eX

O
O
O

O
O
O

O
O
O

e x,_is the vector of decision variables for scenario i at stage s

e X is the space of all variables pertaining to scenario i ;

elements are x, = (x;,...,x;;)

February 2021

8 of 53

Problem Formulation and Notation

e Replicate decision variables: n copies at every stage

0 O(0)0 O O
O Ol OO0 O O

O OO0 O O
_ T)

e x,_is the vector of decision variables for scenario i at stage s

e X is the space of all variables for scenario i; elements are
X = (X505 Xi)
e ¥ =X x---xX is space of all decision variables; elements are

X = (xl,...,xn) :((-xlla-°°9x1T)9°"9(xn19“'9an))

February 2021 9 of 53

Problem Formulation and Notation

- SeZ N
O O O O O

) Ol 0|0 O O
J

O O O O O O

e Z is X, without the last stage; elements z, =(z,,...,z,,,)

ze Z

A~
4
_

o Z=2 x---xZ is the space of all variables except the last
stage: elements z=(z,,...,2,) = (21,272)5 (Zy1o 2,70

Nonanticipativity Subspace

e N c Z is the subspace of Z meeting the nonanticipativity
constraints that z, =z, whenever scenarios i and ; are

indistinguishable at stage s

o ©©©
©e©® ©©® ©®

February 2021 11 of 53

Projecting onto the Nonanticipativity Space

e Following Rockafeller and Wets (1991), we use the following
probability-weighted inner product on Z:

<(Zla'°°9Zn)a(%o'”aqn)>:Z;ﬂi <Ziaqz'>

e With this inner product, the projection map proj,, : Z > N is
given by

proj, (q) =z, where

|
= Z 72'].qu+1 i=1....n, s=1,....T -1

IAY
(ZjeS(i,S) T,) Jes(iss)

and S(i,s) is the set of scenarios indistinguishable from
scenario i at time s.

09090

February 2021 12 of 53

Now Let’s Apply the ADMM

e 50 far, | have just shown the formulation of Rockafellar & Wets
(1991) with some minor notation adjustments

e But now will derive PH using the ADMM instead of first
principles

February 2021 13 of 53

ADMM Notation
e Suppose 1 : X —»> R u{+x} is a convex function
e Suppose g: Z — Ru{+wo} is a convex function

e Suppose M is linear map X —» Z

min f(x)+ g(Mx)

min f(x)+g(z)

e Equivalent formulation:
ST Mx=z

e The ADMM, for some fixed constant p >0 :

X e Argmin{f(x) +<wk,Mx> +§HMX_ZkH2}

xeR"

e eArgmin{g(z)—<wk,z>+§HMxk“ _ZH2}

zeR"™

Wk+1 _ Wk + ,O(Mxk+1 . Zk+1)

February 2021

14 of 53

Setting Up the ADMM Formulation for Stochastic Programming

Foreachi=1, ..., n, let

e 1:X —> Ru{+w} be given by f,(x,) =7,k (x,), where h(-) is the
cost function for scenario i and +e if any constraint within
scenario i is violated

o M;: X, > Z be the map that just drops the last-stage variables
from scenario i

h, encapsulates all the costs and constraints across all stages in
the (hypothetical) situation that you know the final outcome will
be scenario i

Then our stochastic program is equivalent to

P
min > £(x,)
i=1
ST (M,x,,...M x)eN

February 2021 15 of 53

Applying the ADMM
e N
zg N

Then the problem is equivalent to min f(x)+ g(Mx)
Applying the ADMM (and thus DR), we obtain

n 0,
(=3 (x) g<z>={+oo M :(xeosx,) > (M5 M)

2
kel _ - K\ , p k .
X; —argmm{fl.(xl.)+<Mixl.,wi >+7HMl.xl.—zl. } i=1,...,n
x;ekX;
Zk+1 :prOjN(Mxlkﬂ)
W =W+ p(Mx* =2 i=1,...,n

e Note that we always have w* =(w},...,w))e N". Why?

o Projection means that Mx—ze N*
o Or, note that in ADMM/DR we always have w" € dg(z")

e Aside: applying DR to subspace indicator functions like g is
equivalent to Spingarn’s method of partial inverses

February 2021 16 of 53

Progressive Hedging

e Writing the z and w operations out in detail, we obtain PH:

_argmln{h (x)+2(< X oW >+§‘xl.s—zi’; 2)} i=1,...,n
x;eX
i=1,....,n
Ziﬂ _ 1 Z ﬂjxf:l | o
[,s S=1...,0—
(Z]ES(ZS)jZ-)] S(5)
K+l _ kel _ kel i=1,....n
w. -I— X
N L, » s=1,...,5-1
e The w" € N'* condition can be written as Z]e s m,wh =0 for
all i and s

e By using canonical, non-probability-weighted inner products,
we can also obtain an alternative version in which simple
averages replace the weighted averages and the z, appear in

the x; minimizations instead

February 2021 17 of 53

Decomposition Methods
e PH is a form of decomposition method

e General form of decomposition methods:

Subproblem —>| Subproblem —>
Subproblem —> Subproblem —>
Subproblem Coordination > Subproblem Coordination > Etc...
Subproblem —> Subproblem —>
Subproblem —>{ Subproblem —>

e In any decomposition method, the subproblem computations can
be operated in parallel

e But the coordination steps potentially pose a serial bottleneck

February 2021 18 of 53

Noteworthy Properties of PH

e The coordination computations in PH just consist of sums /
averages and simple vector operations

o These are faster than the “master” optimization problems
other decomposition methods typically use...

o... and can easily be implemented in a distributed manner
(efficient parallel algorithms for sums etc.)

e PH handles multi-stage problems cleanly

o Applying other decomposition methods to problems with 3
or more stages can require unwieldy “nested” versions

e The theory does not require linearity, only convexity

e Superficially, the algorithm is easily adapted to integer
variables and nonconvex objectives or constraints

o Although you lose the standard convergence theory and the
method can become heuristic

February 2021 19 of 53

Adoption of PH in Practice
e Progressive hedging did not “catch on” initially
e Convergence speed on practical problems was not spectacular

e However, its relative simplicity made it start to gain adherents
with the advent of

o Ever-larger problem isntances
o Interest in problems with many stages
o Wider availability of highly parallel computing

e 50, 20+ years after initial publication, PH started getting used
in practice

e The PySP system (Watson, Woodruff, Hart 2018) provides an
accessible version of PH coupled with a flexible modeling
environment (Pyomo - embedded in Python)

e There has been recent work on making its application with
integer variables more rigorous

February 2021 20 of 53

But Classic PH is Totally Synchronous
¢ I[n theory, you must solve every subproblem at every iteration

e The coordination step must wait for the slowest subproblem

Subprl Idle Subproblem Subproblen | Subpr] Idle
Subproblem E Subpro| Idle .5 Subpro| Idle .5 Subprob| Idl E
© © © ©
Subprob| Idl | -5 | Subproblen] I| -5 | Subprob| Idl | := | Subproblem = | Etc.
= = = =
Subproblem] I| © | Subprobl| Id | © | Subproblem | © | Subproblem | ©
Subprobl | Id Subpr| Idle Subl Idle Subproblem |

Some possible remedies:

e Pack subproblems in processors and load balance
(limits parallelism)

e Advanced bundle method variants
e Use projective splitting instead of ADMM / DR (this talk)

February 2021 21 of 53

Projective Splitting: General Problem Setting
0> GT(Gx)
i=1

where
e H,,...,H are real Hilbert spaces
e 7' :'H, = 'H; are maximal monotone operators, i=1,...,n

e G, :'Hy—H; are bounded linear maps, i=1,...,n

Kuhn-Tucker set / primal-dual solution set

(Vi=L...n)w,eT(Gz), Y. G

i=1 !

Sz{(z,wl,...,wn)

w, 20}

e This is a closed convex set (not immediate; various proofs)

February 2021 22 of 53

Valid Inequalities for S

e Take some x,,y. € H, such that y, e T (x,) fori=1,...,n,
that is, (x,,y,) e graph T,

o If (z,w)=(z,w,...,w)eS, then w eT(G,z) fori=1,...,n

e So, <xl. -Gz, —wl.> >(for i =1,...,n by monotonicity of 7;

e Negate and add up: ¢(z,w) =Z<Gi2—xl- , Y, _Wi> <0 V(z,w)eS
i=1

February 2021 23 of 53

Making Sure these Inequalities are Affine
e Superficially, these inequalities are quadratic
e But with a little care we can make them affine

e One of several possible techniques:

o Restrict the space to

V=HxW>S, where Wz{w=(w1,...,wn)e7-[1x---x7-(n

zn: G'w, = o}
i=1

o Within this subspace, ¢ is affine since the quadratic terms
are

n

> (Gz,-w,) = Zn:<z,—Gi*wi> =<z,—izn; Gl.*wl.> =(z,-0)=0

i=l1 i=l1

e Once we know ¢ is affine, projection onto the halfspace
H ={peV|p(p)<0} is fairly straightforward

February 2021 24 of 53

Generic Projection Method to Converge to a Point in a
Closed Convex Set S in any Hilbert Space V

Apply the following general template:

e Given p* €V, choose some affine function ¢, with
¢ (p)<0VpeS

e Project p* onto H, ={ p| ¢,(p) <0}, possibly with an
overrelaxation factor v, e[g,2—-¢], yielding p,.,, and repeat...

P
@, 1s affine
- Hk:{p|¢k(p):()}
¢, (p)=0 VpeS
@, (P) >0

February 2021 25 of 53

Projection Process in the Case of Projective Splitting

e Here, p* =(z",w")=(z"wf,...,w") and we find ¢_ by picking
some (x',y")egraphT (Vi) and using the construction above

n
ks ook k k_ “ k
u" =proj,,(x ,...,x,) V= E G,y
i=1

2 (done if 7, =0)

2
(R k
o=+

0, = V—kmaX{O,Zn:<Gizk —xl.k,yl.k —Wl.k >}
i=1

Tk
v _ kO g ek K
"=z Ly W =w—0u
/4

e There are alternative approaches if proj,, is difficult
e v >(is an optional primal-dual scaling factor

e More complicated than ADMM/PH coordination step, but still
just simple vector and sum operations (so could be distributed)

February 2021 26 of 53

How to Pick the x,)" — Basics

e If you pick (x!,y’) e graph T, completely arbitrarily, you may
just orbit around S and not converge to it

e A workable choice: the “prox” operation for some scalar ¢, >0
ik

(xF, yF) = Prox (G 2" +¢,w))

That is,
XX =(I+c,T) (Gz"+c, W) yf= Ci(Gl.zk INA —xi)
ik
e Then ¢, (y/ —w)=Gz" —x!
e SO <Gizk _xikayik _Wik>:Cik Gizk _'xik 2 :C; yik _Wik 2 =

e Sum over i and get ¢, (z*,w") >0 (cuts of current iterate)

e Can prove that this guarantees (weak) convergence to S if the
c, are bounded away from zero and infinity

February 2021 27 of 53

How to Pick the x,y — “Block Iterativity”

e Variation: do not have to activate every operator at every
iteration (Combettes & E 2018)

o For the rest, just recycle the previous x!, y*
e Let M >0 be an integer
e let /,1,,1,,...c{l,...,n} be such that

i+M
(Vi=0) (JI,={1,....n}
J=i
e At iteration £, only activate the operators in /, :
(x5, p5) = Prox;! (GZ"+c,w') Viel,
(x5, yH) =", vy Vie{l,...n}\lk

e Convergence proof adapts ideas from successive projection
methods for set intersection problems

February 2021 28 of 53

How to Pick the x',)" — “Lags”
e Also from Combettes & E (2018)
e Let K >0 be another integer
e Each prox operation may use data from up to K iterations ago

e Otherwise same as above

e S0, for some d(i,k) with k>d(i,k)>k—-K,
(x*,y5) = Prox;! (Gl.zd(i’k) + cikwf(i’k)) Viel,

(x5,)=,y Vie{l,...nj\1,

February 2021 29 of 53

Asynchrony (Sloppy Notation)

e Combining block iterativity and lags lets one drop strict
coupling of coordination and subproblem processing

e For each i, suppose that a new (x,,y,) < Prox; (G,z +cw;)

appears at least every ¢, time units, based on (z,w,) that are at
most ¢, time units old

e A projection step occurs at least every ¢, time units, based on
(x,,y,)egraphT,i=1,...,n that are most ¢, time units old

e Then (z,w) converges (weakly) to a point in S

N DN W=

February 2021 30 of 53

Applying Projective Splitting to Stochastic Programming
Problem setup for stochastic programming
e H, =N (run algorithm in nonanticipativity subspace)
e H = Z , but with its inner product multiplied by r,
e G.: N — Z selects the subvector relevant to scenario i
o fi(X)= min{ﬂihl. (()"él.,xl.T))} minimizes scenario i’s cost over the
last-stagz variables
o Remember, scenario-infeasible points have #,(x,) = +o

Then our stochastic program is just

min Z; 1.(Gx)

xe'H,

So apply the method from earlier in the talk for 0 ZGi*c’?ﬁ(Gix)
i=1

February 2021 31 of 53

Some Technicalities
e This choice of f; is convex for convex #;

e But it is not generally guaranteed to be closed unless #; has
compact effective domain

e We need such an assumption to guarantee that f; is closed and
thus that 7' =¢f, is maximal

e We also need some constraint-qualification-like conditions to
be sure that the sufficient condition 0e)" G of,(G.x) is also
necessary for optimality

o Should not be a major concern in practice

February 2021 32 of 53

Subproblem Processing
Subproblem: (many operating in parallel, asynchronously)
Let 0<p_ . <p <oo be fixed
Parameters for subproblem i:
e z. =(z,,...,2,;;) - Scenario i “target” values, except last stage

°w : multipliers (same dimensions as z,)

Get recent z,,w, € Z from coordination process,
Select some pe[p.. ,p...]

Let x, € Arg min{hl. (x,)+ <Ml.xl-,zl.>+§||Mix,- — Z,-||2}

andy, =w, + p(M x, —z,)

Make i, x, =M x;, y, available to coordination process

Looks like PH subproblem + part of multiplier update

February 2021 33 of 53

Coordination Process Variables
The coordination process maintains working variables:
® z=(z,...,2)eN
e w=(w,...,w)eN"
e Xx=(x,....,Xx,) € Z (the tildes mean no last-stage variables)
* y=y--Y,)€EZ
At each iteration we also compute step direction vectors:
o u=u,..,u)eN"
e v=>",...,v)eN
Scalar parameters:

e Primal-dual scaling factor y >0 (fixed?)
e Overrelaxation factor limits O<v_. <v__ <2 (varying)

February 2021 34 of 53

Coordination Process

repeat
fori=1,...,n
let x,,y, € Z be recent values from subproblem i
and let x=(x,...,x,) and y=(y,,...,»,)
U <— X —proj,(x)
v < proj, (1)

Al TS A U IEDIRA T RO WA T |

¢ (z=Tw-y)=2" 7(z-%) (-
if >0 then
Choose some v [v
z—z+(Vo/ty)v
w«w+(vo/1)u
until termination detected

u.

l

min max]

e Note: this is not necessarily a central “master” process; it can
be distributed

February 2021 35 of 53

Asynchrony

Same conditions for convergence as in abstract asynchronous
case above:

e Each subproblem is recomputed least every ¢, time units,
based on (z,w,) that are at most ¢, time units old

e A coordination step completes at least once every ¢, time

units, based subproblem results that are at most ¢, time units
old

e Then (z,w) converges to a primal-dual solution, as in PH

SN DN BN W

February 2021 36 of 53

Asynchronous Projective Hedging
e We call the resulting class of algorithms asynchronous
projective hedging (APH)
Partial Resemblance to PH

e Subproblem has some recognizable pieces of the PH
subproblem optimization step and multiplier update

o Essentially the same minimization step for subproblems

o proj,, and simple vector operations

e The control process is somewhat more complicated than PH,
but consists of the same fundamental operations

o Nothing more complicated than proj,,

o May still be implemented in a distributed way

February 2021 37 of 53

But Now It’s Asynchronous
e Full synchronization has been replaced by loose timing bounds

e The subproblem and coordination processes can run at
different speeds

o No longer “locked in” to one coordination for every n
subproblem solves

o Now possible to have

subproblem solves initiated by time ¢
coordination steps by time ¢

< n

February 2021 38 of 53

Application

e Problem: SSN telecommunication design problem
(Sen et al. 1994)

o Standard test problem class in stochastic programming

o For this exercise, we generated instances with up to 10°
sample scenarios

o Underlying number of scenarios finite but ~10"
e Hardware: “Quartz” supercomputer at Lawrence Livermore

e Software platform: mpi-sppy (Kneuven et al. 2020)

February 2021 39 of 53

Standard Modern Supercomputer

Node

CPU Chip

RAM RAM RAM
RAM RAM RAM
RAM RAM RAM
\& 2 A\ =/
Interconnect
/ RAM \ / RAM \ / RAM \
RAM RAM RAM
RAM RAM RAM

CPU Chip CPU Chip

Node Node Node

e CPU cores share memory within each node

e Nodes communicate by messages through an interconnect

February 2021 40 of 53

e 32 CPU cores/node
e 128 GB RAM/node
e About 3,000 nodes

e Omni-Path interconnect (channel speed 100 G bits/second)

e Our biggest job so far used 250 nodes / 8,000 cores

February 2021 41 of 53

mpi-sppy
e Sandia/Livermore package for stochastic programming

e Built on Pyomo optimization modeling environment that
embeds in Python

e Coded in Python, but
o Most CPU time spent solving subproblems (Gurobi etc.)
o Or within numpy linear algebra kernels (calling BLAS)
e Has a “hub and spoke” architecture
o But not in the classic “master-slave” sense

e “MPI” is how messages get sent between groups of processors
(Gropp et al. 2014)

February 2021 42 of 53

Lower Bounds

e Neither PH nor APH immediately provide pre-termination
lower bounds on the optimal solutions value

e PH never fully minimizes the augmented Lagrangian, so it does
not automatically provide a Lagrangian bound

e APH is similar

e But one can obtain one by doing an extra minimization of the
ordinary Lagrangian (separable) - since w* € N/, compute

L) = Y min{ 1,5+ (Mot)

e And there may be other, application-specific lower bounds

e There is also a bound (E 2020) that one can derive directly
from the PH process, but it requires estimation of a potentially
large constant and may not be readily applicable

February 2021 43 of 53

Upper Bounds
e Neither PH nor APH provide pre-termination feasible solutions
e Nonanticipativity is only satisfied in the limit

e Various strategies for deriving these feasible solutions from z

mpi-sppy Processor Organization

e A “hub” grouping of processors (possibly very large) runs the
principal optimization algorithm (PH or APH)

e “Spoke” groupings of processors run auxiliary processes like
upper and lower bounding (possibly several of each)

e The spoke operations are seeded from the principle (z,w)
iterates from the hub

e The spokes do not need to communicate directly with one
another

February 2021 44 of 53

The mpi-sppy Picture

Spoke Hub Spoke
TN T
~ e N e S~ Strata
)) g (light gray)
Intracomm — >\—//< >¥/
N N N

|
,,(‘,
‘,(,,

< Intercomm Aﬁ)

@ Cylinder
<::I Rank (dark gray)

e A rank is a single shared memory space

o Typically ~4 CPU cores (the most Gurobi efficiently can use
for QPs)

o Pack multiple ranks onto a node
o Runs multiple threads and typically has multiple CPU cores

e Ranks are organized into cylinders and strata

February 2021 45 of 53

Intracomm

A

A A A

h 4

Hub

Intercomm

(i:
A A A

Y h 4 h 4

\(:: Y

The mpi-sppy Picture

Spoke

\(:: Y

@ =

e Each rank stores the data for one or more scenarios

A&—»

Cylinder
(dark gray)

Strata
(light gray)

e Within a cylinder, each scenario is stored on only one rank

e Each cylinder has the same number of ranks

e The corresponding ranks in each cylinder (a stratum) each
store data for the same scenarios (redundantly)

February 2021

46 of 53

Within the Hub Cylinder

Listener

Subproblém | { Subproblem
Subproblem | { Subproblem

Listener

\

Subproblem™){ Subproblem
Subproblem J{ Subproblem

Listener

Subproblem){ Subproblem
Subproblem }{ Subproblem

Subproblém }{ Subproblem
Subproblem J{ Subproblem

February 2021

e Ranks may store more than one

scenario

Each rank only solves one scenario
subproblem at a time

o But Gurobi and numpy may employ
multiple cores when doing so

In PH, synchronous communication
once every scenario has been solved

o Subproblems stop during the
communication

In APH, an “listener” thread decides
when “enough” scenarios have been
solved (globally), then performs the
communication needed for coordination

o All in parallel with subproblem
solves

47 of 53

Hub and Spoke

0) Subproblem Subproblem pr p
Subprob Subproblem Subproblem
List
Subproblem Subproblem
Subproblem Subproblem
E List E
Subproblem Subproblem
Subproblem
p <:> Subproblem Stibproblem <:> p 0

Lower Bounder Hub: PH or APH

Upper Bounder
e The spokes are organized similarly to the hub
e Hub periodically sends z and/or w information to spokes

e Each rank sends or receives data only for the subproblems it
owns

e Messages in different strata move in parallel

February 2021 48 of 53

A Few More Points - Bundling and Subproblem Dispatch

e For large-scale problems, it is common to use a “bundling”
strategy

¢ Single-scenario subproblems are replaced by bundles of
multiple scenarios

e Within a bundle/subproblem, scenarios are linked by explicit
constraints (a “mini extensive form”)

e But the logic of nonanticipativity contraints (now between
bundles) and PH / APH remain essentially the same

e In APH, we have a heuristic for selecting the most promising
subproblem i to solve next within each rank

oBased on value of 7,(z,-%)" (w —,)

February 2021 49 of 53

Gap

February 2021

1.04%

1.02%

1.00%

0.98%

0.96%

0.94%

0.92%

0.90%

0.88%

0.86%

Preliminary Results: 20,000 Scenarios

Gap relative to known optimal (instance 1134)

Vertical axis cut off for early iterations

APH run in synchronous mode

1000 scenarios/bundle

4 cores/rank, 1 bundle/rank
2 cylinders of 20 ranks (no lower bounder)
160 cores total (5 nodes)

100

200

300

400

Time (seconds)

PH Gap (%)

APH Gap (%)

500

600

700

50 of 53

Preliminary Results: 1,000,000 Scenarios

Gap to best known solution, 1M Scenarios

0.180%
0.160%
0.140%
0.120%

® APH in synchronous mode
0.100% @ 1000 scenarios/bundle

e 4 cores/rank, 1 bundle/rank
0.080% @ 2 cylindersof 4,000 ranks

e 8,000 cores total (250 nodes)
0.060%
0.040%
0.020%
0.000%

0 50 100 150 200 250 300 350 400 450

Time (Sec)

PH Gap % APH Gap %

February 2021 51 of 53

Size of the 1,000,000 Scenario Problem

The equivalent extensive-form LP would have about
e 795 million variables
e 265 million constraints (not counting simple variable bounds)

e 2.64 billion nonzero matrix entries

February 2021 52 of 53

Much More to Do
e Dual instead of primal derivation of the APH method?
o Would be more like classic derivation of ADMM from DR

o Might eliminate annoying assumptions like a compact
domain for the #;

e [nvestigate making projective scaling methods in general more
robust to problem scaling etc.

e The real problems the energy labs want to solve have
nonconvexities and integer variables

o Related to operating electric power grids
o How can we help address such problems...
= Rigorously?
= Heuristically?

o Asynchrony is an especially nice feature when the
subproblems have integer variables

February 2021 53 of 53

	Progressive Hedging and Asynchronous Projective Hedging for Convex Stochastic Programming

