Progressive Hedging and Asynchronous Projective Hedging for Convex Stochastic Programming

February 22, 2021

Portions of this work joint with

Patrick Combettes, North Carolina State University Jean-Paul Watson, Lawrence Livermore National Lab David L. Woodruff, University of California, Davis

Typical ADMM and Operator Splitting Applications

- The most prominent applications of operator splitting and ADMM-class algorithms are in machine learning and image processing
- There has not been much operator splitting work on "OR-style" optimization problems
- With one exception:

Stochastic Programming

- Solving LP etc. models on an unfolding tree of random future scenarios
- Rockafellar and Wet's *progressive hedging* algorithm (1991)

Progressive Hedging

- Working paper in late 1987, published in *Mathematics of Operations Research* in 1991
- Rockafellar and Wets knew that their method was a form of DR splitting / ADMM algorithm
- But proved its convergence from first principles
- After all, monotone operators and the ADMM were not much known in the OR community at the time
- I will present the method from an ADMM point of view, then switch to projective splitting

The Scenario Tree

• Consider a standard stochastic programming scenario tree:

- π_i is the probability of last-stage scenario i = 1, ..., n
- Will use "scenario" as a shorthand for "last-stage scenario"
- Typically a discrete-time and sampled approximation of some infinite or much larger model

Stochastic Programming

- System walks randomly from the root to some leaf
- At each node there are decision variables, for example

 How much of an investment to buy or sell
 How much to run a power generator, etc...
- ... and constraints that depend on earlier decisions
- Model alternates decisions and uncertainty resolution

• Replicate decision variables: *n* copies at every stage

• Replicate decision variables: *n* copies at every stage

• x_{is} is the vector of decision variables for scenario *i* at stage *s*

• Replicate decision variables: *n* copies at every stage

- x_{is} is the vector of decision variables for scenario *i* at stage *s*
- \mathcal{X}_i is the space of all variables pertaining to scenario *i*; elements are $x_i = (x_{i1}, \dots, x_{iT})$

• Replicate decision variables: *n* copies at every stage

- x_{is} is the vector of decision variables for scenario *i* at stage *s*
- X_i is the space of all variables for scenario *i*; elements are $x_i = (x_{i1}, ..., x_{iT})$
- $\mathcal{X} = \mathcal{X}_1 \times \cdots \times \mathcal{X}_n$ is space of all decision variables; elements are $x = (x_1, \dots, x_n) = ((x_{11}, \dots, x_{1T}), \dots, (x_{n1}, \dots, x_{nT}))$

- \mathcal{Z}_i is \mathcal{X}_i without the last stage; elements $z_i = (z_{i1}, \dots, z_{i,T-1})$
- $\mathcal{Z} = \mathcal{Z}_1 \times \cdots \times \mathcal{Z}_n$ is the space of all variables except the last stage: elements $z = (z_1, \dots, z_n) = ((z_{11}, \dots, z_{1,T-1}), \dots, (z_{n1}, \dots, z_{n,T-1}))$

Nonanticipativity Subspace

• $\mathcal{N} \subset \mathcal{Z}$ is the subspace of \mathcal{Z} meeting the *nonanticipativity* constraints that $z_{is} = z_{js}$ whenever scenarios *i* and *j* are indistinguishable at stage *s*

Projecting onto the Nonanticipativity Space

• Following Rockafeller and Wets (1991), we use the following probability-weighted inner product on \mathcal{Z} :

$$\langle (z_1,\ldots,z_n),(q_1,\ldots,q_n)\rangle = \sum_{i=1}^n \pi_i \langle z_i,q_i\rangle$$

• With this inner product, the projection map $\operatorname{proj}_{\mathcal{N}} : \mathcal{Z} \to \mathcal{N}$ is given by

$$\operatorname{proj}_{\mathcal{N}}(q) = z, \text{ where}$$

$$z_{is}^{k+1} = \frac{1}{\left(\sum_{j \in S(i,s)} \pi_{j}\right)} \sum_{j \in S(i,s)} \pi_{j} q_{js}^{k+1} \qquad i = 1, \dots, n, \ s = 1, \dots, T-1$$

and S(i,s) is the set of scenarios indistinguishable from scenario *i* at time *s*.

Now Let's Apply the ADMM

- So far, I have just shown the formulation of Rockafellar & Wets (1991) with some minor notation adjustments
- But now will derive PH using the ADMM instead of first principles

ADMM Notation

- Suppose $f: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ is a convex function
- Suppose $g: \mathbb{Z} \to \mathbb{R} \cup \{+\infty\}$ is a convex function
- Suppose *M* is linear map $\mathcal{X} \to \mathcal{Z}$

$$\min f(x) + g(Mx)$$

• Equivalent formulation:

$$\begin{array}{ll} \min & f(x) + g(z) \\ \mathrm{ST} & Mx = z \end{array}$$

• The ADMM, for some fixed constant $\rho > 0$:

$$x^{k+1} \in \operatorname{Arg\,min}_{x \in \mathbb{R}^n} \left\{ f(x) + \left\langle w^k, Mx \right\rangle + \frac{\rho}{2} \left\| Mx - z^k \right\|^2 \right\}$$
$$z^{k+1} \in \operatorname{Arg\,min}_{z \in \mathbb{R}^m} \left\{ g(z) - \left\langle w^k, z \right\rangle + \frac{\rho}{2} \left\| Mx^{k+1} - z \right\|^2 \right\}$$
$$w^{k+1} = w^k + \rho(Mx^{k+1} - z^{k+1})$$

Setting Up the ADMM Formulation for Stochastic Programming

For each $i = 1, \ldots, n$, let

- $f_i : \mathcal{X}_i \to \mathbb{R} \cup \{+\infty\}$ be given by $f_i(x_i) = \pi_i h_i(x_i)$, where $h_i(\cdot)$ is the cost function for scenario *i* and $+\infty$ if any constraint within scenario *i* is violated
- $M_i: \mathcal{X}_i \to \mathcal{Z}_i$ be the map that just drops the last-stage variables from scenario *i*

 h_i encapsulates all the costs and constraints across all stages in the (hypothetical) situation that you know the final outcome will be scenario i

Then our stochastic program is equivalent to

min
$$\sum_{i=1}^{p} f_i(x_i)$$

ST $(M_1 x_1, \dots, M_n x_n) \in \mathcal{N}$

Applying the ADMM

$$f(x) = \sum_{i=1}^{n} f_i(x_i) \quad g(z) = \begin{cases} 0, & z \in \mathcal{N} \\ +\infty, & z \notin \mathcal{N} \end{cases} \quad M : (x_1, \dots, x_n) \mapsto (M_1 x_1, \dots, M_n x_n) \end{cases}$$

Then the problem is equivalent to $\min f(x) + g(Mx)$

Applying the ADMM (and thus DR), we obtain

$$\begin{aligned} x_{i}^{k+1} &= \arg\min_{x_{i} \in \mathcal{X}_{i}} \left\{ f_{i}(x_{i}) + \left\langle M_{i}x_{i}, w_{i}^{k} \right\rangle + \frac{\rho}{2} \left\| M_{i}x_{i} - z_{i}^{k} \right\|^{2} \right\} \quad i = 1, \dots, n \\ z^{k+1} &= \operatorname{proj}_{\mathcal{N}} \left(Mx_{1}^{k+1} \right) \\ w^{k+1} &= w^{k} + \rho(Mx^{k+1} - z^{k+1}) \qquad \qquad i = 1, \dots, n \end{aligned}$$

• Note that we always have $w^k = (w_1^k, \dots, w_p^k) \in \mathcal{N}^{\perp}$. Why?

 \circ Projection means that $Mx - z \in \mathcal{N}^{\perp}$

 \circ Or, note that in ADMM/DR we always have $w^k \in \partial g(z^k)$

• Aside: applying DR to subspace indicator functions like g is equivalent to Spingarn's method of partial inverses

Progressive Hedging

• Writing the *z* and *w* operations out in detail, we obtain PH:

$$\begin{aligned} x_{i}^{k+1} &= \operatorname*{argmin}_{x_{i} \in \mathcal{X}_{i}} \left\{ h_{i}(x_{i}) + \sum_{s=1}^{T-1} \left(\left\langle x_{is}, w_{is}^{k} \right\rangle + \frac{\rho}{2} \left\| x_{is} - z_{is}^{k} \right\|^{2} \right) \right\} \quad i = 1, \dots, n \\ z_{is}^{k+1} &= \frac{1}{\left(\sum_{j \in S(i,s)} \pi_{j} \right)} \sum_{j \in S(i,s)} \pi_{j} x_{js}^{k+1} \qquad \qquad i = 1, \dots, n \\ s = 1, \dots, S - 1 \\ w_{is}^{k+1} &= w_{is}^{k} + \rho(x_{is}^{k+1} - z_{is}^{k+1}) \qquad \qquad i = 1, \dots, N \\ s = 1, \dots, S - 1 \end{aligned}$$

- The $w^k \in \mathcal{N}^{\perp}$ condition can be written as $\sum_{j \in S(i,s)} \pi_j w_{js}^k = 0$ for all i and s
- By using canonical, non-probability-weighted inner products, we can also obtain an alternative version in which simple averages replace the weighted averages and the π_i appear in the x_i minimizations instead

Decomposition Methods

- PH is a form of *decomposition method*
- General form of decomposition methods:

- In any decomposition method, the subproblem computations can be operated in parallel
- But the coordination steps potentially pose a serial bottleneck

Noteworthy Properties of PH

- The coordination computations in PH just consist of sums / averages and simple vector operations
 - These are faster than the "master" optimization problems other decomposition methods typically use...
 - \circ ... and can easily be implemented in a distributed manner (efficient parallel algorithms for sums etc.)
- PH handles multi-stage problems cleanly
 - Applying other decomposition methods to problems with 3 or more stages can require unwieldy "nested" versions
- The theory does not require linearity, only convexity
- Superficially, the algorithm is easily adapted to integer variables and nonconvex objectives or constraints

 $_{\odot}$ Although you lose the standard convergence theory and the method can become heuristic

Adoption of PH in Practice

- Progressive hedging did not "catch on" initially
- Convergence speed on practical problems was not spectacular
- However, its relative simplicity made it start to gain adherents with the advent of
 - Ever-larger problem isntances

 $_{\odot}$ Interest in problems with many stages

• Wider availability of highly parallel computing

- So, 20+ years after initial publication, PH started getting used in practice
- The PySP system (Watson, Woodruff, Hart 2018) provides an accessible version of PH coupled with a flexible modeling environment (Pyomo embedded in Python)
- There has been recent work on making its application with integer variables more rigorous

But Classic PH is Totally Synchronous

- In theory, you must solve every subproblem at every iteration
- The coordination step must wait for the slowest subproblem

Some possible remedies:

- Pack subproblems in processors and load balance (limits parallelism)
- Advanced bundle method variants
- Use projective splitting instead of ADMM / DR (this talk)

Projective Splitting: General Problem Setting

$$0 \in \sum_{i=1}^{n} G_i^* T_i(G_i x)$$

where

- $\mathcal{H}_0, \ldots, \mathcal{H}_n$ are real Hilbert spaces
- $T_i: \mathcal{H}_i \rightrightarrows \mathcal{H}_i$ are maximal monotone operators, i = 1, ..., n
- $G_i: \mathcal{H}_0 \rightarrow \mathcal{H}_i$ are bounded linear maps, i = 1, ..., n

Kuhn-Tucker set / primal-dual solution set

$$S = \left\{ (z, w_1, \dots, w_n) \, \middle| \, (\forall i = 1, \dots, n) \, w_i \in T_i(G_i z), \, \sum_{i=1}^n G_i^* w_i = 0 \right\}$$

• This is a closed convex set (not immediate; various proofs)

Valid Inequalities for ${\mathcal S}$

- Take some $x_i, y_i \in \mathcal{H}_i$ such that $y_i \in T_i(x_i)$ for i = 1, ..., n, that is, $(x_i, y_i) \in \operatorname{graph} T_i$
- If $(z, w) = (z, w_1, ..., w_n) \in S$, then $w_i \in T_i(G_i z)$ for i = 1, ..., n
- So, $\langle x_i G_i z, y_i w_i \rangle \ge 0$ for i = 1, ..., n by monotonicity of T_i
- Negate and add up: $\varphi(z, w) = \sum_{i=1}^{n} \langle G_i z x_i, y_i w_i \rangle \leq 0 \quad \forall (z, w) \in S$

Making Sure these Inequalities are Affine

- Superficially, these inequalities are quadratic
- But with a little care we can make them affine
- One of several possible techniques:

 \circ Restrict the space to

$$\mathcal{V} = \mathcal{H}_0 \times \mathcal{W} \supset \mathcal{S}$$
, where $\mathcal{W} = \left\{ w = (w_1, \dots, w_n) \in \mathcal{H}_1 \times \dots \times \mathcal{H}_n \middle| \sum_{i=1}^n G_i^* w_i = 0 \right\}$

 $_{\odot}$ Within this subspace, φ is affine since the quadratic terms are

$$\sum_{i=1}^{n} \left\langle G_i z, -w_i \right\rangle = \sum_{i=1}^{n} \left\langle z, -G_i^* w_i \right\rangle = \left\langle z, -\sum_{i=1}^{n} G_i^* w_i \right\rangle = \left\langle z, -0 \right\rangle = 0$$

• Once we know φ is affine, projection onto the halfspace $H = \{ p \in V \mid \varphi(p) \le 0 \}$ is fairly straightforward

Generic Projection Method to Converge to a Point in a Closed Convex Set S in any Hilbert Space V

Apply the following general template:

- Given $p^k \in \mathcal{V}$, choose some affine function φ_k with $\varphi_k(p) \le 0 \ \forall p \in \mathcal{S}$
- Project p^k onto $H_k = \{ p \mid \varphi_k(p) \le 0 \}$, possibly with an overrelaxation factor $v_k \in [\varepsilon, 2-\varepsilon]$, yielding p_{k+1} , and repeat...

Projection Process in the Case of Projective Splitting

• Here, $p^k = (z^k, w^k) = (z^k, w_1^k, ..., w_n^k)$ and we find φ_k by picking some $(x_i^k, y_i^k) \in \operatorname{graph} T_i (\forall i)$ and using the construction above

$$u^{k} = \operatorname{proj}_{\mathcal{W}}(x_{1}^{k}, \dots, x_{n}^{k}) \qquad v^{k} = \sum_{i=1}^{n} G_{i}^{*} y_{i}^{k}$$

$$\tau_{k} = \left\| u^{k} \right\|^{2} + \gamma \left\| v^{k} \right\|^{2} \quad \text{(done if } \tau_{k} \approx 0\text{)}$$

$$\theta_{k} = \frac{v_{k}}{\tau_{k}} \max\left\{ 0, \sum_{i=1}^{n} \left\langle G_{i} z^{k} - x_{i}^{k}, y_{i}^{k} - w_{i}^{k} \right\rangle \right\}$$

$$z^{k+1} = z^{k} - \frac{\theta_{k}}{\gamma} v^{k} \qquad w^{k+1} = w^{k} - \theta_{k} u^{k}$$

- \bullet There are alternative approaches if $\operatorname{proj}_{\mathcal{W}}$ is difficult
- $\gamma > 0$ is an optional primal-dual scaling factor
- More complicated than ADMM/PH coordination step, but still just simple vector and sum operations (so could be distributed)

How to Pick the x_i^k, y_i^k – Basics

- If you pick $(x_i^k, y_i^k) \in \operatorname{graph} T_i$ completely arbitrarily, you may just orbit around S and not converge to it
- A workable choice: the "prox" operation for some scalar $c_{ik} > 0$

$$|(x_i^k, y_i^k) = \operatorname{Prox}_{T_i}^{c_{ik}} (G_i z^k + c_{ik} w_i^k)|$$

That is,

$$x_{i}^{k} = (I + c_{ik}T_{i})^{-1}(G_{i}z^{k} + c_{ik}w_{i}^{k}) \qquad y_{i}^{k} = \frac{1}{c_{ik}}(G_{i}z^{k} + c_{ik}w_{i}^{k} - x_{i})$$

- Then $c_{ik}(y_i^k w_i^k) = G_i z^k x_i^k$
- So $\langle G_i z^k x_i^k, y_i^k w_i^k \rangle = c_{ik} \left\| G_i z^k x_i^k \right\|^2 = c_{ik}^{-1} \left\| y_i^k w_i^k \right\|^2 \ge 0$
- Sum over *i* and get $\varphi_k(z^k, w^k) > 0$ (cuts of current iterate)
- Can prove that this guarantees (weak) convergence to S if the c_{ik} are bounded away from zero and infinity

How to Pick the x_i^k, y_i^k – "Block Iterativity"

• Variation: do not have to activate every operator at every iteration (Combettes & E 2018)

 \circ For the rest, just recycle the previous x_i^k, y_i^k

- Let $M \ge 0$ be an integer
- Let $I_0, I_1, I_2, \ldots \subseteq \{1, \ldots, n\}$ be such that

$$(\forall i \ge 0) \quad \bigcup_{j=i}^{i+M} I_j = \{1,\ldots,n\}$$

• At iteration k, only activate the operators in I_k :

$$(x_{i}^{k}, y_{i}^{k}) = \operatorname{Prox}_{T_{i}}^{c_{ik}} (G_{i} z^{k} + c_{ik} w_{i}^{k}) \quad \forall i \in I_{k}$$
$$(x_{i}^{k}, y_{i}^{k}) = (x_{i}^{k-1}, y_{i}^{k-1}) \qquad \forall i \in \{1, \dots, n\} \setminus I_{k}$$

• Convergence proof adapts ideas from successive projection methods for set intersection problems

How to Pick the x_i^k, y_i^k – "Lags"

- Also from Combettes & E (2018)
- Let $K \ge 0$ be another integer
- Each prox operation may use data from up to K iterations ago
- Otherwise same as above
- So, for some d(i,k) with $k \ge d(i,k) \ge k K$,

$$(x_{i}^{k}, y_{i}^{k}) = \operatorname{Prox}_{T_{i}}^{c_{ik}} \left(G_{i} z^{d(i,k)} + c_{ik} w_{i}^{d(i,k)} \right) \quad \forall i \in I_{k}$$

$$(x_{i}^{k}, y_{i}^{k}) = (x_{i}^{k-1}, y_{i}^{k-1}) \qquad \forall i \in \{1, \dots, n\} \setminus I_{k}$$

Asynchrony (Sloppy Notation)

- Combining block iterativity and lags lets one drop strict coupling of coordination and subproblem processing
- For each *i*, suppose that a new $(x_i, y_i) \leftarrow \operatorname{Prox}_{T_i}^c(G_i z + cw_i)$ appears at least every t_1 time units, based on (z, w_i) that are at most t_2 time units old
- A projection step occurs at least every t_3 time units, based on $(x_i, y_i) \in \operatorname{graph} T_i, i = 1, ..., n$ that are most t_4 time units old
- Then (z, w) converges (weakly) to a point in S

Applying Projective Splitting to Stochastic Programming

Problem setup for stochastic programming

- $\mathcal{H}_0 = \mathcal{N}$ (run algorithm in nonanticipativity subspace)
- $\mathcal{H}_i = \mathcal{Z}_i$, but with its inner product multiplied by π_i
- $G_i: \mathcal{N} \to \mathcal{Z}_i$ selects the subvector relevant to scenario *i*
- $f_i(\tilde{x}_i) = \min_{x_{iT}} \{\pi_i h_i((\tilde{x}_i, x_{iT}))\}$ minimizes scenario *i*'s cost over the last-stage variables

 \circ Remember, scenario-infeasible points have $h_i(x_i) = +\infty$

Then our stochastic program is just

$$\min_{x\in\mathcal{H}_0}\sum_{i=1}^n f_i(G_ix)$$

So apply the method from earlier in the talk for $0 \in \sum_{i=1}^{n} G_{i}^{*} \partial f_{i}(G_{i}x)$

Some Technicalities

- This choice of f_i is convex for convex h_i
- But it is not generally guaranteed to be closed unless *h_i* has compact effective domain
- We need such an assumption to guarantee that f_i is closed and thus that $T_i = \partial f_i$ is maximal
- We also need some constraint-qualification-like conditions to be sure that the sufficient condition $0 \in \sum_{i=1}^{n} G_{i}^{*} \partial f_{i}(G_{i}x)$ is also necessary for optimality

 $_{\odot}$ Should not be a major concern in practice

Subproblem Processing

Subproblem: (many operating in parallel, asynchronously) Let $0 < \rho_{\min} \le \rho_{\max} < \infty$ be fixed Parameters for subproblem *i*:

• $z_i = (z_{i1}, \dots, z_{i,T-1})$: scenario *i* "target" values, except last stage

• w_i : multipliers (same dimensions as z_i)

Get recent $z_i, w_i \in \mathcal{Z}_i$ from coordination process, Select some $\rho \in [\rho_{\min}, \rho_{\max}]$ Let $x_i \in \operatorname{Argmin}_{x_i} \left\{ h_i(x_i) + \langle M_i x_i, z_i \rangle + \frac{\rho}{2} \| M_i x_i - z_i \|^2 \right\}$ and $y_i = w_i + \rho(M_i x_i - z_i)$ Make $i, \ \tilde{x}_i \doteq M_i x_i, \ y_i$ available to coordination process

Looks like PH subproblem + part of multiplier update

Coordination Process Variables

The coordination process maintains working variables:

- $z = (z_1, \ldots, z_n) \in \mathcal{N}$
- $W = (W_1, \ldots, W_n) \in \mathcal{N}^{\perp}$
- $\tilde{x} = (\tilde{x}_1, \dots, \tilde{x}_n) \in \mathcal{Z}$ (the tildes mean no last-stage variables)
- $y = (y_1, \dots, y_n) \in \mathcal{Z}$

At each iteration we also compute step direction vectors:

- $u = (u_1, \ldots, u_n) \in \mathcal{N}^{\perp}$
- $v = (v_1, \ldots, v_n) \in \mathcal{N}$

Scalar parameters:

- Primal-dual scaling factor $\gamma > 0$ (fixed?)
- Overrelaxation factor limits $0 < v_{min} \le v_{max} < 2$ (varying)

Coordination Process

repeat
for
$$i = 1,...,n$$

let $\tilde{x}_i, y_i \in Z_i$ be recent values from subproblem i
and let $\tilde{x} = (\tilde{x}_1,...,\tilde{x}_n)$ and $y = (y_1,...,y_n)$
 $u \leftarrow \tilde{x} - \operatorname{proj}_{\mathcal{N}}(\tilde{x})$
 $v \leftarrow \operatorname{proj}_{\mathcal{N}}(y)$
 $\tau \leftarrow ||u||^2 + \gamma ||v||^2 = \sum_{i=1}^n \pi_i ||u_i||^2 + \gamma \sum_{i=1}^n \pi_i ||v_i||^2$
 $\phi \leftarrow \langle z - \tilde{x}, w - y \rangle = \sum_{i=1}^n \pi_i (z_i - \tilde{x}_i)^T (w_i - y_i)$
if $\phi > 0$ then
Choose some $v \in [v_{\min}, v_{\max}]$
 $z \leftarrow z + (v\phi / \tau\gamma)v$
 $w \leftarrow w + (v\phi / \tau)u$
until termination detected

• Note: this is not necessarily a central "master" process; it can be distributed

Asynchrony

Same conditions for convergence as in abstract asynchronous case above:

- Each subproblem is recomputed least every t_1 time units, based on (z, w_i) that are at most t_2 time units old
- A coordination step completes at least once every t_3 time units, based subproblem results that are at most t_4 time units old
- Then (z, w) converges to a primal-dual solution, as in PH

Asynchronous Projective Hedging

• We call the resulting class of algorithms *asynchronous projective hedging* (APH)

Partial Resemblance to PH

• Subproblem has some recognizable pieces of the PH subproblem optimization step and multiplier update

 $_{\odot}$ Essentially the same minimization step for subproblems

 $\circ \operatorname{proj}_{\mathcal{N}}$ and simple vector operations

• The control process is somewhat more complicated than PH, but consists of the same fundamental operations

 \circ Nothing more complicated than $\text{proj}_{\mathcal{N}}$

• May still be implemented in a distributed way

But Now It's Asynchronous

- Full synchronization has been replaced by loose timing bounds
- The subproblem and coordination processes can run at different speeds
 - \odot No longer "locked in" to one coordination for every n subproblem solves
 - \circ Now possible to have

subproblem solves initiated by time t < n

coordination steps by time t

Application

• **Problem:** SSN telecommunication design problem (Sen et al. 1994)

• Standard test problem class in stochastic programming

 $_{\odot}$ For this exercise, we generated instances with up to 10^6 sample scenarios

 \circ Underlying number of scenarios finite but $\approx 10^{70}$

- Hardware: "Quartz" supercomputer at Lawrence Livermore
- Software platform: mpi-sppy (Kneuven et al. 2020)

Standard Modern Supercomputer

- CPU cores share memory within each node
- Nodes communicate by messages through an interconnect

Quartz

- 32 CPU cores/node
- 128 GB RAM/node
- About 3,000 nodes
- Omni-Path interconnect (channel speed 100 G bits/second)

• Our biggest job so far used 250 nodes / 8,000 cores

mpi-sppy

- Sandia/Livermore package for stochastic programming
- Built on Pyomo optimization modeling environment that embeds in Python
- Coded in Python, but

 \circ Most CPU time spent solving subproblems (Gurobi etc.)

 \circ Or within numpy linear algebra kernels (calling BLAS)

• Has a "hub and spoke" architecture

• But not in the classic "master-slave" sense

• "MPI" is how messages get sent between groups of processors (Gropp et al. 2014)

Lower Bounds

- Neither PH nor APH immediately provide pre-termination lower bounds on the optimal solutions value
- PH never fully minimizes the augmented Lagrangian, so it does not automatically provide a Lagrangian bound
- APH is similar
- But one can obtain one by doing an extra minimization of the ordinary Lagrangian (separable) since $w^k \in \mathcal{N}^{\perp}$, compute

$$L(w^k) = \sum_{i=1}^n \min_{x_i} \left\{ f_i(x_i) + \left\langle M_i x_i, w_i^k \right\rangle \right\}$$

- And there may be other, application-specific lower bounds
- There is also a bound (E 2020) that one can derive directly from the PH process, but it requires estimation of a potentially large constant and may not be readily applicable

Upper Bounds

- Neither PH nor APH provide pre-termination feasible solutions
- Nonanticipativity is only satisfied in the limit
- \bullet Various strategies for deriving these feasible solutions from z

mpi-sppy Processor Organization

- A "hub" grouping of processors (possibly very large) runs the principal optimization algorithm (PH or APH)
- "Spoke" groupings of processors run auxiliary processes like upper and lower bounding (possibly several of each)
- The spoke operations are seeded from the principle (*z*, *w*) iterates from the hub
- The spokes do not need to communicate directly with one another

The mpi-sppy Picture

- A rank is a single shared memory space
 - Typically ~4 CPU cores (the most Gurobi efficiently can use for QPs)
 - Pack multiple ranks onto a node

 $_{\odot}$ Runs multiple threads and typically has multiple CPU cores

• Ranks are organized into cylinders and strata

The mpi-sppy Picture

- Each rank stores the data for one or more scenarios
- Within a cylinder, each scenario is stored on only one rank
- Each cylinder has the same number of ranks
- The corresponding ranks in each cylinder (a stratum) each store data for the same scenarios (redundantly)

Within the Hub Cylinder

- Ranks may store more than one scenario
- Each rank only solves one scenario subproblem at a time
 - But Gurobi and numpy may employ multiple cores when doing so
- In PH, synchronous communication once every scenario has been solved
 - Subproblems stop during the communication
- In APH, an "listener" thread decides when "enough" scenarios have been solved (globally), then performs the communication needed for coordination
 - All in parallel with subproblem solves

Hub and Spoke

Lower Bounder

Hub: PH or APH

Upper Bounder

- The spokes are organized similarly to the hub
- Hub periodically sends z and/or w information to spokes
- Each rank sends or receives data only for the subproblems it owns
- Messages in different strata move in parallel

A Few More Points - Bundling and Subproblem Dispatch

- For large-scale problems, it is common to use a "bundling" strategy
- Single-scenario subproblems are replaced by *bundles* of multiple scenarios
- Within a bundle/subproblem, scenarios are linked by explicit constraints (a "mini extensive form")
- But the logic of nonanticipativity contraints (now between bundles) and PH / APH remain essentially the same
- In APH, we have a heuristic for selecting the most promising subproblem *i* to solve next within each rank

 \circ Based on value of $\pi_i (z_i - \tilde{x}_i)^T (w_i - y_i)$

Preliminary Results: 20,000 Scenarios

Gap relative to known optimal (instance 1134)

• PH Gap (%) • APH Gap (%)

Gap

Preliminary Results: 1,000,000 Scenarios

Gap to best known solution, 1M Scenarios

• PH Gap % • APH Gap %

Size of the 1,000,000 Scenario Problem

The equivalent extensive-form LP would have about

- 795 million variables
- 265 million constraints (not counting simple variable bounds)
- 2.64 billion nonzero matrix entries

Much More to Do

• Dual instead of primal derivation of the APH method?

Would be more like classic derivation of ADMM from DR
 Might eliminate annoying assumptions like a compact domain for the *h_i*

- Investigate making projective scaling methods in general more robust to problem scaling etc.
- The real problems the energy labs want to solve have nonconvexities and integer variables

 \circ Related to operating electric power grids

- $_{\odot}$ How can we help address such problems...
 - Rigorously?
 - Heuristically?
- Asynchrony is an especially nice feature when the subproblems have integer variables