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Three parts

Our question somehow concerns formal Clarke subdifferentiation:

What does the chain rule output out of its validity domain?
Do we obtain a Jacobian of some sort?

I) Observational informal part (model/motivational case: training
feedforward neural networks).

[I) Theoretical answers: the zero circulation idea and conservative fields

[11) Asymptotics & vanishing stepsizes algorithms
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L Observational part

Our starting point: neural nets training

N Prediction function
o1
Minimize > oWl .. (0(Wao(Wix; + by) + b2)) ...) + b)) —yi]|?
i=1

fi(W)

with
> Wiy, by, ..., W), by variable matrices/vectors, aggregated into W
> (xi,¥i)ien (training) data,

> o;: R — R, acts entrywise on vectors (V) = [a(\/j)]j

> Ex. ‘ o(t) = max(0, t) := relu(t) ‘

Write minyy, % vazl fi(W). Use stochastic “gradient” descent

Wkt — wk — ll: [gradient £ (Wk) + ... + gradient f;b(Wk)]

where
{i,...,ip} is drawn uniformly at random within {1,..., N}

v« — 0
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Our starting point: neural nets training
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> Wiy, by, ..., W), by variable matrices/vectors, aggregated into W
> (xi,¥i)ien (training) data,

> o;: R — R, acts entrywise on vectors (V) = [a(\/j)]j

> Ex. ‘ o(t) = max(0, t) := relu(t) ‘

Write minyy, % vazl fi(W). Use stochastic “gradient” descent

Wkt — wk — l; [backprop f,-l(Wk) + ...+ backprop f,-b(Wk)]

where
{i,...,ip} is drawn uniformly at random within {1,..., N}

v« — 0
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L Observational part

What is backprop as a mathematical object?

> backprop (Rumelhart et al.) is obtained by “using formal
differentiation”:

1. Apply the chain rule
2. Use (Clarke) subgradients when you hit a nonsmooth part

In practice, TensorFlow, PyTorch etc... use this principle.

> Fast and efficient way to obtain very sharp numerical derivatives: an
instance automatic/algorithmic differentiation:

» But we only focus on the theoretical premises: 1. and 2.
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L Observational part

Ingredient 1: Clarke Jacobians

Functions are (locally) Lipschitz continuous.
Notation: f'(x) ~ Jac f(x) when f is differentiable.

» f:RP — RY loc. Lipschitz. Rademacher theorem: “f is
differentiable almost everywhere”

Jac “f(x)
=conv {M € RP*9: xk — x, f differentiable at x, Jac f(x*) — M}

qg =1, then Jacf = 0°f

» So
Jacf = Jacf a.e.
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L Observational part

Ingredient 2: chain rule
» Consider f with a compositional representation
f=g10...08m
(recall ||O'/(W/(. .. (U(WQU(WlXi + b1) + bz)) .. ) + b/) — y,'||2)
> For each i, x, choose D (x) € Jac “gi(x)
» Example in Deep Learning:

1 ifs>0
Dren(s) = { 0 ifs<o0

In short relu’(0) = 0 (TensorFlow, PyTorch).
» Chain-rule the D,’s
Ds(x)
=Dy, (&2(. .- (gm(x)) - )) X Dea(83(- - (gn(x)) - )) - X Dy ()
When the g; are differentiable
D¢ = Jac f. Otherwise ?
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L Observational part

Exploitation of ingredients 1 and 2

> Exploit Df(x) to devise algorithms, as
XKL = XK — ~) De(x*) with v, — 0.
» Example:

W = wk — %k [backprop f, (W) + ... + backprop f;, (W*)]
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LObservationaI part

Automatic differentiation

> A long history, numerous results, many implementations (our focus
was on TensorFlow).
Many application domains: design optimization, computational
fluid dynamics, physical modeling, optimal control, structural
mechanics, atmospheric sciences, and computational finance

> The algorithmic and numerical aspects are delicate:
Griewank and Walther (2008), Evaluating Derivatives.

» QOur focus: understand the practice of using chain rule out of
his obvious validity domain.
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L Observational part

Meaning of D;? The result of a dangerous cocktail...

1. Start with f=gyio0...gn
2. Build Df(x) := Dg,(g2(. .. (gm(x))...)) x ... X Dg, (x)

» Non uniqueness. Compositional representation
f=gio...0g,is NOT UNIQUE
» Absence of qualification conditions. In general
Dg (g2 0...08m(x)) 0 Dg(g30...08m(x))...0Dg, (x) ¢ Jac “f(x)

unless “transversality conditions/QC" are present

Let’s stick to practice — accept the two above imperfections and
investigate the consequences

All remarks we make are observable using TensorFlow.
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L Observational part

Issue |: outputs are partly unpredictible

» relu(t) = max{0, t}, with relu’(0) = 0 (implemented on TensorFlow
or PyTorch)

1
relup: t — relu(—t) + t, relug: t — E(relu(t) + relup(t)).

relu = relu, = relus
» Formal differentiation gives
reluy(0) = 1 and reluz(0) = 1/2.
The absurd behavior results both from non uniqueness and the

abscence of QC
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L Observational part

Issue Il: artificial critical points

» zero = relu, — relu is the null function but

zero'(0) =1

> |x — zero(x) = x has a zero derivative at 0 (17) |

» Unexpected derivatives and artificial critical points

1.00 . 10

0.75 1 —— zero 05

0.50 1 0.0

0.25 4 -0.5

0.00 1 -1.0
-2 -1 [ 1 2

Figure: At the center : artificial critical points
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L Observational part

Issue Il: non-differentiability zones are not generally activated

> Belief: “When we compute Jacgi((g20...08gm)(x))o...0Jacgm(x) we do
not see the singularities of the g; in general”

, & :RP = R, g1 0 g2 = |g2| the non differentiability zone is

Wrong: gi1(x) = |x
—1
g (0)
» Nonsmooth zones of neural net can be significantly activated

nLayer

FIgU €. Estimation of the probability of applying relu to 0 in a feedforward network the weights of the
linear term are sampled uniformly at random between -1 and 1. Variations in size and number of layers are

also considered.

» A question is do we even have Df = Vf almost everywhere?
Works in these directions: Griewank, Nesterov, Kakade-Lee...
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L Observational part

Issue IV: Impossibility “theorem”

Can we build a larger “Jacobian operator ” Jac” on Lipschitz functions
satisfying

(a) JacAf D Jaccf for all f Lipschitz from RP to R9, p,q >0
(b) the chain rule
Theorem (Automatic differentiation does not induce an operator on

functions)

There is no nontrivial operator on functions satisfying (a) and (b).
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LObservationaI part

What does formal subdifferentiation compute?

Observations

» Spurious outputs and artificial critical points
» Nonsmooth parts are significantly activated

» Formal subdifferentiation/automatic differentiation does not yield a
differential operator

Questions

» Variational meaning of the Df's without using operators?
> Impact of artificial values?

» Behavior of first order methods
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LA model for compositional calculus: conservative fields (g = 1)

A model for compositional calculus: conservative fields (g = 1)
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LA model for compositional calculus: conservative fields (g = 1)

An “operator-free” approach?

> V :RP” — RP a continuous vector field.
Circulation along a differentiable loop v : [0,1] — R” (v(0) = v(1)):

1
| v e
> If V = Vf the circulation is always 0

Lemma (Poincaré)

1
/ (V((8)),4(t) = 0V Joop y <= 3f : R" — R C such that V = Vf
0
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LA model for compositional calculus: conservative fields (g = 1)

An “operator-free” approach: The zero circulation idea

D : RP = R” nonempty compact values, closed graph,

i.e., D(x) # 0 is compact and {(x,y) : y € D(x)} is closed.
» Zero circulation a la Poincaré:
1
| @642 de = (0},

for all loop absolutely continuous  : [0, 1] — RP.

Meaning. For any measurable selection v: [0,1] — R?, v(t) € D(v(t))
for all t, we have [ (v(t),%(t)) dt = 0.

» D is called a conservative set-valued field.

Similar def for the Jacobian situation.
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LA model for compositional calculus: conservative fields (g = 1)

Potential functions of conservative fields

» D: RP = RP a conservative field.
It corresponds to a “unique”’ potential function f:

1
00 = O+ [ (0.0 de (1)
= O+ [ max (5(e). ) de 2)
= FO)+ [ min (5(0). ) de 3)

with v AC with v(0) = 0 and (1) = x.

> fis a potential function for D or D admits f as a potential, or D is a
conservative field for f.
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LA model for compositional calculus: conservative fields (g = 1)

Fundamental properties

Theorem (Conservative fields and gradients)
If f : R" — R is locally Lipschitz and Ds is conservative for f then

Dr(x) = {VF(x)} a.e.

Corollary (The Clarke subdifferential as a minimal conservative field)

If D¢ is a conservative field for f, then
convDr(x) D 0°f(x), Vx € R?

and O°f is conservative.
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LA model for compositional calculus: conservative fields (g = 1)

Fundamental examples with the Clarke subdifferential

If fis locally Lipschitz

(i) f is regular: semi-convex (or semi-concave), i.e., for all compact set
f + al|x||? is convex, prox regular etc...

(ii) f semi-algebraic (or definable)
then 9°f is conservative (for f)
Actually
O°f conservative <= f has a chain rule for the Clarke

Proof The first case is classical. The last one uses stratification theory
B-Daniilidis-Lewis-Shiota and Davis-Drusvyatskiy-Kakade-Lee
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LA model for compositional calculus: conservative fields (g = 1)

An operatorless calculus

We do not have an operator, but we have a convenient calculus!
Proposition

The linear combination of conservative fields is a conservative field.

If Df and Dg have the zero circulation property then AD¢ + D, has the
zero circulation property and it is attached to Af + pug whenever A\, € R.

Proposition

The composition of conservative Jacobians is a conservative Jacobian
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LA model for compositional calculus: conservative fields (g = 1)

The semi-algebraic/definable case
f=gi0...0gn, with all the g; SA
Theorem (The meaning of chain-ruled operators)

> For each gi the “user” provides a semi-algebraic selection D, € Jac“g;
> Set

Dr(x) = Dy (2(- - (gm(x)) ) X - X Do ()
Then Ds is a conservative field for f, thus

d .

7 (0(1)) = (3(t), Dr((2))
for all AC curve ~.

Proof. Relies on Whitney stratifications and a projection formula

We answered our initial question with backprop!!!
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LA model for compositional calculus: conservative fields (g = 1)

Conservative fields in a nutshell: zero circulation set-valued maps

» Conservative=gradient a.e.
> Major examples. The Clarke subdifferential of

» semi-convex or other regular classes
> semi-algebraic

» The formal derivation principle
Df :=Dg o...0D,,

is conservative whenever the D, are conservative

» Backpropagation in deep learning: backprop is a conservative field
(generated, by e.g. TensorFlow), thus the first-order mapping

N
W — Z backprop f;(W) is a conservative field.

i=1
More generally nonsmooth automatic differentiation process
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|—Asym ptotics and algorithms

Asymptotics and algorithms
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|—Asym ptotics and algorithms

Questionning: asymptotic and algorithms with conservative fields

New model “conservative set-valued fields” (applies to backprop)

Major questions
» Optimizing dynamics

» Impact of spurious points and artificial points
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LAsym ptotics and algorithms

Artificial critical points & asymptotics
Given f : R? — R and Dr, with D conservative for f
» D-critical points Df — crit = {x € R” : D¢(x) 3 0} C R?
> D critical values f(Ds — crit) C R
> Artificial critical points: art Dr = {x € RP : 0 € D¢(x) and 0 ¢ 9°f(x)}

1.0

0.5

0.0

-0.5

-1.0

Figure: 7 = sin. The chosen conservative field in blue Dg;, yields many
artificial critical points

» In DL backprop fi(W) + ...+ backprop fn(W) ¢ 0°(A + ...+ fxy)(W) in
general

28 /34



LAsymptotics and algorithms

Artificial critical points & asymptotics

Assume Df has convex values

» Model dynamics “conservative gradient descent”
x(t) + Df(x(t)) 0 a.e. on [0,+00)

where x : [0, +00) — RP is AC is such that x(0) = xo.

» Ds-critical points are stationary

» Theorem (B-Pauwels)

If (f, Df) are SA, bounded trajectories converges to Ds critical points.

Proof: “Conservative versions” of the projection formula, Sard’s
theorem, KL inequalities, as in Bolte-Daniilidis-Lewis and
Bolte-Daniilidis-Lewis-Shiota.
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LAsym ptotics and algorithms

Stochastic gradient with mini-batch

» Nonsmooth nonconvex: Davies-Drusvyatskiy-Kakade-Lee,
Majewski-Miasojedow-Moulines, Adil's PhD thesis,
Bianchi-Hachem-Schechtman, Chizat-Bach...

> Consider
L
min f(x) = ; fi(x),
with conservative fields Dg: R?P — R, i=1,..., N.

> xo € RP, step sizes v, > 0 and a sequence of iid indices (/x)ken
taken uniformly in the nonempty subsets of {0,..., N},

1
Xk4+1 = Xk — Yk m Z D, (xk),

i€l

IkC{].,...,N}.
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LAsymptotics and algorithms
Stochastic gradient with mini-batch Il

1
Xk+1:Xk_'YkaDﬁ(Xk)7 Ic{1,...,n} (4)
i€l
N

Theorem (Convergence)

Assume vy, = o(1/log k) and f semi-algebraic. For all xy such that xy is
almost surely bounded, then almost surely,

> f(xx) converges as k tends to infinity to a Dr critical value.
> all accumulation points, X, of (xx)ken are Dg-critical points:

0e Df()_().

Proof. Use theory of Benaim-Hofbauer-Sorin on differential inclusions and
ideas from Davies et al. which proved a similar result with 9°f
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LAsym ptotics and algorithms

Artificial critical points are never seen

» Deep learning problem

mln J(W) =N ZHO‘/(W/ (6(W20(W1ix; + b1) + bz))...) +by) —yi||2

fi(W)

with e.g.,

1 ifs>0

(*) Vi, oi = relu, Dg(s):{ 0 ifs<0

Many other choices are possible .

» Optimization phase
Wk+1 Wk b |: (W )+ +Df,b(Wk)]
where

> ii,...,ip is drawn uniformly at random within {1,... N}
» Dy comes from the choice (x) and chain rule
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LAsymptotics and algorithms

Artificial critical points are never seen

Theorem (B-Pauwels)
There exist

> a finite subset of steps F C (0, +00) & zero measure, meager N C R?
such that for any

> positive sequence vk = o(1/ log k) avoiding values in F

> initialization xo € RP \ N,
we have

> J(W¥) converges towards a Clarke critical value almost surely,

> the cluster points of W* are Clarke critical point almost surely,
whenever the sequence is almost surely bounded.

More precise results: B-Pauwels-Rios-Zertuche oscillation analysis. Long term
dynamics of the subgradient method for Lipschitz path differentiable functions
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LAsym ptotics and algorithms
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