A variational model for nonsmooth automatic differentiation

Jérôme Bolte, Joint work with Edouard Pauwels

Toulouse School of Economics Université Toulouse Capitole & ANITI, France

Pibrac, July 6th, 2020

Three parts

Our question somehow concerns formal Clarke subdifferentiation:

What does the chain rule output out of its validity domain? Do we obtain a Jacobian of some sort?

- Observational informal part (model/motivational case: training feedforward neural networks).
- II) Theoretical answers: the zero circulation idea and conservative fields
- III) Asymptotics & vanishing stepsizes algorithms

Observational part

A model for compositional calculus: conservative fields $\left(q=1
ight)$

Asymptotics and algorithms

Our starting point: neural nets training

Minimize
$$\frac{1}{N} \sum_{i=1}^{N} \underbrace{\| \sigma_i(\mathbf{W}_i(\dots(\sigma(\mathbf{W}_2\sigma(\mathbf{W}_1x_i + \mathbf{b}_1) + \mathbf{b}_2))\dots) + \mathbf{b}_i) - y_i \|^2}_{f_i(\mathbf{W})}$$

with

 $\blacktriangleright~W_1, b_1, \ldots, W_l, b_l$ variable matrices/vectors, aggregated into W

- $\sigma_i : \mathbb{R} \to \mathbb{R}$, acts entrywise on vectors $\sigma(V) = [\sigma(V_j)]_i$
- Ex. $\sigma(t) = \max(0, t) := \operatorname{relu}(t)$

Write min_W $\frac{1}{N} \sum_{i=1}^{N} f_i(W)$. Use stochastic "gradient" descent

$$W^{k+1} = W^k - rac{\gamma_k}{b} \left[ext{gradient } f_{i_1}(W^k) + \ldots + ext{gradient } f_{i_b}(W^k)
ight]$$

where

$$\left\{ \begin{array}{l} \{i_1,\ldots,i_b\} \text{ is drawn uniformly at random within } \{1,\ldots,N\} \\ \\ \gamma_k \to 0 \end{array} \right.$$

Our starting point: neural nets training

Minimize
$$\frac{1}{N} \sum_{i=1}^{N} \underbrace{\| \sigma_i(\mathbf{W}_i(\dots(\sigma(\mathbf{W}_2\sigma(\mathbf{W}_1x_i + \mathbf{b}_1) + \mathbf{b}_2))\dots) + \mathbf{b}_i) - y_i \|^2}_{f_i(\mathbf{W})}$$

with

 $\blacktriangleright~W_1, b_1, \ldots, W_l, b_l$ variable matrices/vectors, aggregated into W

- $\sigma_i : \mathbb{R} \to \mathbb{R}$, acts entrywise on vectors $\sigma(V) = [\sigma(V_j)]_i$
- Ex. $\sigma(t) = \max(0, t) := \operatorname{relu}(t)$

Write min_W $\frac{1}{N} \sum_{i=1}^{N} f_i(W)$. Use stochastic "gradient" descent

$$W^{k+1} = W^k - \frac{\gamma_k}{b} \left[\operatorname{backprop} f_{i_1}(W^k) + \ldots + \operatorname{backprop} f_{i_b}(W^k) \right]$$

where

$$\left\{ \begin{array}{l} \{i_1,\ldots,i_b\} \text{ is drawn uniformly at random within } \{1,\ldots,N\} \\ \\ \gamma_k \to 0 \end{array} \right.$$

What is backprop as a mathematical object?

- backprop (Rumelhart et al.) is obtained by "using formal differentiation":
 - 1. Apply the chain rule
 - 2. Use (Clarke) subgradients when you hit a nonsmooth part

In practice, TensorFlow, PyTorch etc... use this principle.

- Fast and efficient way to obtain very sharp numerical derivatives: an instance automatic/algorithmic differentiation:
- But we only focus on the theoretical premises: 1. and 2.

Ingredient 1: Clarke Jacobians

Functions are (locally) Lipschitz continuous. Notation: $f'(x) \simeq \text{Jac} f(x)$ when f is differentiable.

f : ℝ^p → ℝ^q loc. Lipschitz. Rademacher theorem: "*f* is differentiable almost everywhere"

$$\begin{aligned} \operatorname{Jac}^{c} f(x) \\ = \operatorname{conv} \left\{ M \in \mathbb{R}^{p \times q} : x^{k} \to x, f \text{ differentiable at } x_{k}, \operatorname{Jac} f(x^{k}) \to M \right\} \\ q = 1, \text{ then } \operatorname{Jac}^{c} f = \partial^{c} f \end{aligned}$$

$$\operatorname{Jac}^{c} f = \operatorname{Jac} f$$
 a.e.

Ingredient 2: chain rule

Consider f with a compositional representation

$$f = g_1 \circ \ldots \circ g_m$$

(recall $\|\sigma_l(\mathbf{W}_l(\ldots(\sigma(\mathbf{W}_2\sigma(\mathbf{W}_1x_i+\mathbf{b}_1)+\mathbf{b}_2))\ldots)+\mathbf{b}_l)-y_i\|^2)$

- For each i, x, choose $D_{g_i}(x) \in \operatorname{Jac}^c g_i(x)$
- Example in Deep Learning:

$$D_{
m relu}(s) = \left\{egin{array}{cc} 1 & ext{if } s > 0 \ 0 & ext{if } s \leq 0 \end{array}
ight.$$

In short relu'(0) = 0 (TensorFlow, PyTorch).

Chain-rule the D_{gi}'s

 $D_f(x)$:= $D_{g_1}(g_2(\ldots(g_m(x))\ldots)) \times D_{g_2}(g_3(\ldots(g_m(x))\ldots))\ldots \times D_{g_m}(x)$

When the g_i are differentiable

$$D_f = \operatorname{Jac} f$$
. Otherwise ?

Exploitation of ingredients 1 and 2 $\,$

$$x^{k+1} = x^k - \gamma_k D_f(x^k)$$
 with $\gamma_k \to 0$.

Example:

$$W^{k+1} = W^k - \frac{\gamma_k}{q} \left[\operatorname{backprop} f_{i_1}(W^k) + \ldots + \operatorname{backprop} f_{i_q}(W^k) \right]$$

Automatic differentiation

- A long history, numerous results, many implementations (our focus was on TensorFlow).
 Many application domains: design optimization, computational fluid dynamics, physical modeling, optimal control, structural mechanics, atmospheric sciences, and computational finance
- The algorithmic and numerical aspects are delicate: Griewank and Walther (2008), Evaluating Derivatives.
- Our focus: understand the practice of using chain rule out of his obvious validity domain.

Meaning of D_f ? The result of a dangerous cocktail...

1. Start with
$$f = g_1 \circ \ldots g_m$$

2. Build $D_f(x) := D_{g_1}(g_2(\ldots(g_m(x))\ldots)) \times \ldots \times D_{g_m}(x)$

Non uniqueness. Compositional representation

 $f = g_1 \circ \ldots \circ g_m$ is NOT UNIQUE

▶ Absence of qualification conditions. In general $D_{g_1}(g_2 \circ \ldots \circ g_m(x)) \circ D_{g_2}(g_3 \circ \ldots \circ g_m(x)) \ldots \circ D_{g_m}(x) \notin \text{Jac}^c f(x)$

unless "transversality conditions/QC" are present

Let's stick to practice \rightarrow accept the two above imperfections and investigate the consequences

All remarks we make are observable using TensorFlow.

Issue I: outputs are partly unpredictible

relu(t) = max{0, t}, with relu'(0) = 0 (implemented on TensorFlow or PyTorch)

$$\operatorname{relu}_2 : t \mapsto \operatorname{relu}(-t) + t, \qquad \operatorname{relu}_3 : t \mapsto \frac{1}{2}(\operatorname{relu}(t) + \operatorname{relu}_2(t)).$$

 $\operatorname{relu} = \operatorname{relu}_2 = \operatorname{relu}_3$

Formal differentiation gives

$$relu'_2(0) = 1$$
 and $relu'_3(0) = 1/2$.

The absurd behavior results both from non uniqueness and the abscence of QC

Issue II: artificial critical points

▶ $zero = relu_2 - relu$ is the null function but

$$\operatorname{zero}'(0) = 1$$

• $x - \operatorname{zero}(x) = x$ has a zero derivative at 0 (!?)

Unexpected derivatives and artificial critical points

Figure: At the center : artificial critical points

Issue III: non-differentiability zones are not generally activated

▶ Belief: "When we compute Jac^cg₁((g₂ ◦ ... ◦ g_m)(x)) ◦ ... ◦ Jac^cg_m(x) we do not see the singularities of the g_i in general"

Wrong: $g_1(x) = |x|, g_2 : \mathbb{R}^p \to \mathbb{R}, g_1 \circ g_2 = |g_2|$ the non differentiability zone is $g_2^{-1}(0)$

Nonsmooth zones of neural net can be significantly activated

Figure: Estimation of the probability of applying relu to 0 in a feedforward network the weights of the linear term are sampled uniformly at random between -1 and 1. Variations in size and number of layers are also considered.

A question is do we even have D_f = ∇f almost everywhere? Works in these directions: Griewank, Nesterov, Kakade-Lee...

Issue IV: Impossibility "theorem"

Can we build a larger "Jacobian operator " $\operatorname{Jac}\nolimits^A$ on Lipschitz functions satisfying

(a)
$$\operatorname{Jac}^{A} f \supset \operatorname{Jac}^{c} f$$
 for all f Lipschitz from \mathbb{R}^{p} to \mathbb{R}^{q} , $p, q \ge 0$

(b) the chain rule

Theorem (Automatic differentiation does not induce an operator on functions)

There is no nontrivial operator on functions satisfying (a) and (b).

What does formal subdifferentiation compute?

Observations

- Spurious outputs and artificial critical points
- Nonsmooth parts are significantly activated
- Formal subdifferentiation/automatic differentiation does not yield a differential operator

Questions

- Variational meaning of the D_f's without using operators?
- Impact of artificial values?
- Behavior of first order methods

 \Box A model for compositional calculus: conservative fields (q = 1)

Observational part

A model for compositional calculus: conservative fields (q = 1)

Asymptotics and algorithms

 \square A model for compositional calculus: conservative fields (q = 1)

An "operator-free" approach?

▶ $V : \mathbb{R}^{\rho} \to \mathbb{R}^{\rho}$ a continuous vector field. Circulation along a differentiable loop $\gamma : [0,1] \to \mathbb{R}^{n}$ ($\gamma(0) = \gamma(1)$):

$$\int_0^1 \langle V(\gamma(t)), \dot{\gamma}(t) \rangle dt$$

• If $V = \nabla f$ the circulation is always 0

Lemma (Poincaré)

$$\int_0^1 \langle V(\gamma(t)), \dot{\gamma}(t) \rangle = 0 \,\,\forall \,\, \textit{loop} \,\,\gamma \iff \exists f: \mathbb{R}^n \to \mathbb{R} \,\, \textit{C}^1 \,\, \textit{such that} \,\, \textit{V} = \nabla f$$

 \square A model for compositional calculus: conservative fields (q = 1)

An "operator-free" approach: The zero circulation idea

Assumptions $D : \mathbb{R}^{p} \Rightarrow \mathbb{R}^{p}$ nonempty compact values, closed graph, i.e., $D(x) \neq \emptyset$ is compact and $\{(x, y) : y \in D(x)\}$ is closed.

Zero circulation à la Poincaré:

$$\int_0^1 \langle D(\gamma(t)), \dot{\gamma}(t) \rangle \, dt = \{0\},$$

for all loop absolutely continuous $\gamma : [0, 1] \to \mathbb{R}^{p}$.

Meaning. For any measurable selection $v: [0,1] \to \mathbb{R}^p$, $v(t) \in D(\gamma(t))$ for all t, we have $\int_0^1 \langle v(t), \dot{\gamma}(t) \rangle dt = 0$.

D is called a conservative set-valued field.

Similar def for the Jacobian situation.

Potential functions of conservative fields

D: ℝ^p ⇒ ℝ^p a conservative field.
 It corresponds to a "unique" potential function f:

$$f(x) = f(0) + \int_0^1 \langle \dot{\gamma}(t), D(\gamma(t)) \rangle dt \qquad (1)$$

$$= f(0) + \int_0^1 \max_{v \in D(\gamma(t))} \langle \dot{\gamma}(t), v \rangle dt$$
 (2)

$$= f(0) + \int_0^1 \min_{v \in D(\gamma(t))} \langle \dot{\gamma}(t), v \rangle dt$$
 (3)

with γ AC with $\gamma(0) = 0$ and $\gamma(1) = x$.

f is a potential function for D or D admits f as a potential, or D is a conservative field for f.

Fundamental properties

Theorem (Conservative fields and gradients) If $f : \mathbb{R}^n \to \mathbb{R}$ is locally Lipschitz and D_f is conservative for f then $D_f(x) = \{\nabla f(x)\}$ a.e.

Corollary (The Clarke subdifferential as a minimal conservative field)

If D_f is a conservative field for f, then

 $\operatorname{conv} D_f(x) \supset \partial^c f(x), \ \forall x \in \mathbb{R}^p$

and $\partial^c f$ is conservative.

Fundamental examples with the Clarke subdifferential

If f is locally Lipschitz

- (i) f is regular: semi-convex (or semi-concave), i.e., for all compact set $f + \alpha ||x||^2$ is convex, prox regular etc...
- (ii) f semi-algebraic (or definable)

then $\partial^c f$ is conservative (for f)

Actually

 $\partial^{c} f$ conservative $\iff f$ has a chain rule for the Clarke

Proof The first case is classical. The last one uses stratification theory B-Daniilidis-Lewis-Shiota and Davis-Drusvyatskiy-Kakade-Lee

An operatorless calculus

We do not have an operator, but we have a convenient calculus!

Proposition

The linear combination of conservative fields is a conservative field.

If D_f and D_g have the zero circulation property then $\lambda D_f + \mu D_g$ has the zero circulation property and it is attached to $\lambda f + \mu g$ whenever $\lambda, \mu \in \mathbb{R}$.

Proposition

The composition of conservative Jacobians is a conservative Jacobian

 \square A model for compositional calculus: conservative fields (q = 1)

The semi-algebraic/definable case

 $f = g_1 \circ \ldots \circ g_m$ with all the g_i SA

Theorem (The meaning of chain-ruled operators)

For each g_i the "user" provides a semi-algebraic selection D_{g_i} ∈ Jac ^cg_i
 Set

$$D_f(x) = D_{g_1}(g_2(\ldots(g_m(x))\ldots)) \times \ldots \times D_{g_m}(x)$$

Then D_f is a conservative field for f, thus

$$rac{d}{dt}f(\gamma(t))=\langle\dot{\gamma}(t),D_f(\gamma(t))
angle$$

for all AC curve γ .

Proof. Relies on Whitney stratifications and a projection formula

We answered our initial question with backprop!!!

A model for compositional calculus: conservative fields (q = 1)

Conservative fields in a nutshell: zero circulation set-valued maps

- Conservative=gradient a.e.
- Major examples. The Clarke subdifferential of
 - semi-convex or other regular classes
 - semi-algebraic
- The formal derivation principle

$$D_f := D_{g_1} \circ \ldots \circ D_{g_m}$$

is conservative whenever the D_{g_i} are conservative

Backpropagation in deep learning: backprop is a conservative field (generated, by e.g. TensorFlow), thus the first-order mapping

$$W o \sum_{i=1}^{N} \operatorname{backprop} f_i(W)$$
 is a conservative field

More generally nonsmooth automatic differentiation process

Observational part

A model for compositional calculus: conservative fields $\left(q=1 ight)$

Asymptotics and algorithms

Questionning: asymptotic and algorithms with conservative fields

New model "conservative set-valued fields" (applies to backprop)

Major questions

- Optimizing dynamics
- Impact of spurious points and artificial points

Artificial critical points & asymptotics

Given $f : \mathbb{R}^{p} \to \mathbb{R}$ and D_{f} , with D_{f} conservative for f

- ▶ D-critical points $D_f crit = \{x \in \mathbb{R}^p : D_f(x) \ni 0\} \subset \mathbb{R}^p$
- D critical values $f(D_f \operatorname{crit}) \subset \mathbb{R}$
- Artificial critical points: art $D_f = \{x \in \mathbb{R}^p : 0 \in D_f(x) \text{ and } 0 \notin \partial^c f(x)\}$

Figure: $f = \sin$. The chosen conservative field in blue D_{\sin} yields many artificial critical points

▶ In DL backprop $f_1(W) + ... + \text{backprop } f_N(W) \notin \partial^c (f_1 + ... + f_N)(W)$ in general

Artificial critical points & asymptotics

Assume D_f has convex values

Model dynamics "conservative gradient descent"

$$\dot{x}(t) + D_f(x(t)) \ni 0$$
 a.e. on $[0, +\infty)$

where $x : [0, +\infty) \to \mathbb{R}^p$ is AC is such that $x(0) = x_0$.

- D_f-critical points are stationary
- Theorem (B-Pauwels)

If (f, D_f) are SA, bounded trajectories converges to D_f critical points.

Proof: "Conservative versions" of the projection formula, Sard's theorem, KL inequalities, as in Bolte-Daniilidis-Lewis and Bolte-Daniilidis-Lewis-Shiota.

Stochastic gradient with mini-batch

- Nonsmooth nonconvex: Davies-Drusvyatskiy-Kakade-Lee, Majewski-Miasojedow-Moulines, Adil's PhD thesis, Bianchi-Hachem-Schechtman, Chizat-Bach...
- Consider

$$\min_{x\in\mathbb{R}^p}f(x)=\frac{1}{N}\sum_{i=1}^Nf_i(x),$$

with conservative fields $D_{f_i} \colon \mathbb{R}^p \mapsto \mathbb{R}, i = 1, \dots, N$.

x₀ ∈ ℝ^p, step sizes γ_k > 0 and a sequence of *iid* indices (I_k)_{k∈ℕ} taken uniformly in the nonempty subsets of {0,..., N},

$$\begin{aligned} x_{k+1} &= x_k - \gamma_k \ \frac{1}{|I_k|} \sum_{i \in I_k} D_{f_i}(x_k) \\ I_k &\subset \{1, \dots, N\}. \end{aligned}$$

Stochastic gradient with mini-batch II

$$x_{k+1} = x_k - \gamma_k \frac{1}{|I_k|} \sum_{i \in I_k} D_{f_i}(x_k), \ I \subset \{1, \dots, n\}.$$

$$Set \ D_f = \frac{1}{N} \operatorname{conv} \sum_{i=1}^N D_{f_i}$$
(4)

Theorem (Convergence)

Assume $\gamma_k = o(1/\log k)$ and f semi-algebraic. For all x_0 such that x_k is almost surely bounded, then almost surely,

- $f(x_k)$ converges as k tends to infinity to a D_f critical value.
- ▶ all accumulation points, \bar{x} , of $(x_k)_{k \in \mathbb{N}}$ are D_f -critical points: $0 \in D_f(\bar{x})$.

Proof. Use theory of Benaim-Hofbauer-Sorin on differential inclusions and ideas from Davies et al. which proved a similar result with $\partial^c f$

Artificial critical points are never seen

Deep learning problem

$$\min_{W} J(W) := \frac{1}{N} \sum_{i=1}^{N} \underbrace{\left\| \sigma_{i}(\mathsf{W}_{i}(\ldots(\sigma(\mathsf{W}_{2}\sigma(\mathsf{W}_{1}x_{i}+\mathbf{b}_{1})+\mathbf{b}_{2}))\ldots)+\mathbf{b}_{i})-y_{i}\right\|^{2}}_{f_{i}(\mathsf{W})}$$

with e.g.,

(*)
$$\forall i, \sigma_i = \text{relu}, D_{\sigma}(s) = \begin{cases} 1 & \text{if } s > 0 \\ 0 & \text{if } s \le 0 \end{cases}$$

Many other choices are possible .

Optimization phase

$$W^{k+1} = W^k - \frac{\gamma_k}{b} \left[D_{f_{i_1}}(W^k) + \ldots + D_{f_{i_b}}(W^k) \right]$$

where

- i_1, \ldots, i_b is drawn uniformly at random within $\{1, \ldots, N\}$
- D_{f_i} comes from the choice (*) and chain rule

Artificial critical points are never seen

Theorem (B-Pauwels)

There exist

 \blacktriangleright a finite subset of steps $F \subset (0,+\infty)$ & zero measure, meager $N \subset \mathbb{R}^p$ such that for any

- positive sequence $\gamma_k = o(1/\log k)$ avoiding values in F
- initialization $x_0 \in \mathbb{R}^p \setminus N$,

we have

- ► J(W^k) converges towards a Clarke critical value almost surely,
- ► the cluster points of W^k are Clarke critical point almost surely,

whenever the sequence is almost surely bounded.

More precise results: B-Pauwels-Rios-Zertuche oscillation analysis. Long term dynamics of the subgradient method for Lipschitz path differentiable functions

References

For this work

- Bolte, J., Pauwels, E. (2020). Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning. Math. Prog.
- Bolte, J., Pauwels, E. (2020). A mathematical model for automatic differentiation in machine learning. arXiv:2006.02080.
- Castera C., Bolte J., Févotte C., Pauwels E., An Inertial Newton Algorithm for Deep Learning

On automatic differentiation

- Griewank, A., Walther, A. (2008). Evaluating derivatives: principles and techniques of algorithmic differentiation. SIAM
- Griewank, A. (2013). On stable piecewise linearization and generalized algorithmic differentiation. Optim. Meth. and Software, 28(6).

Vanishing stepsizes method in nonsmooth analysis

- Benaim, M., Hofbauer, J., Sorin, S. (2005). Stochastic approximations and differential inclusions. SIAM J. on Control and Optimization, 44(1).
- Davis, D., Drusvyatskiy, D., Kakade, S., Lee, J. (2020). Stochastic subgradient method converges on tame functions. Found. of comput. math., 20(1).
- Bianchi, P., Hachem, W., Schechtman, S. (2020). Convergence of constant step stochastic gradient descent for non-smooth non-convex functions. arXiv:2005.08513.