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Three parts

Our question somehow concerns formal Clarke subdifferentiation:

What does the chain rule output out of its validity domain?
Do we obtain a Jacobian of some sort?

I) Observational informal part (model/motivational case: training
feedforward neural networks).

II) Theoretical answers: the zero circulation idea and conservative fields

III) Asymptotics & vanishing stepsizes algorithms
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Observational part

A model for compositional calculus: conservative fields (q = 1)

Asymptotics and algorithms
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Observational part

Our starting point: neural nets training

Minimize
1

N

N∑
i=1

‖

Prediction function︷ ︸︸ ︷
σl (Wl (. . . (σ(W2σ(W1xi + b1) + b2)) . . .) + bl )−yi‖2︸ ︷︷ ︸

fi (W)

with

I W1, b1, . . . ,Wl, bl variable matrices/vectors, aggregated into W

I (xi , yi )i∈N (training) data,

I σi : R→ R, acts entrywise on vectors σ(V ) =
[
σ(Vj )

]
j

I Ex. σ(t) = max(0, t) := relu(t)

Write minW
1
N

∑N
i=1 fi (W ). Use stochastic “gradient” descent

W k+1 = W k −
γk

b

[
gradient fi1 (W k ) + . . .+ gradient fib (W k )

]
where  {i1, . . . , ib} is drawn uniformly at random within {1, . . . ,N}

γk → 0
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Our starting point: neural nets training
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fi (W)

with

I W1, b1, . . . ,Wl, bl variable matrices/vectors, aggregated into W

I (xi , yi )i∈N (training) data,

I σi : R→ R, acts entrywise on vectors σ(V ) =
[
σ(Vj )

]
j

I Ex. σ(t) = max(0, t) := relu(t)

Write minW
1
N

∑N
i=1 fi (W ). Use stochastic “gradient” descent

W k+1 = W k −
γk

b

[
backprop fi1 (W k ) + . . .+ backprop fib (W k )

]
where  {i1, . . . , ib} is drawn uniformly at random within {1, . . . ,N}

γk → 0
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Observational part

What is backprop as a mathematical object?

I backprop (Rumelhart et al.) is obtained by “using formal
differentiation”:

1. Apply the chain rule
2. Use (Clarke) subgradients when you hit a nonsmooth part

In practice, TensorFlow, PyTorch etc... use this principle.

I Fast and efficient way to obtain very sharp numerical derivatives: an
instance automatic/algorithmic differentiation:

I But we only focus on the theoretical premises: 1. and 2.
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Observational part

Ingredient 1: Clarke Jacobians

Functions are (locally) Lipschitz continuous.

Notation: f ′(x) ' Jac f (x) when f is differentiable.

I f : Rp → Rq loc. Lipschitz. Rademacher theorem: “f is
differentiable almost everywhere”

Jac c f (x)

= conv
{
M ∈ Rp×q : xk → x , f differentiable at xk , Jac f (xk)→ M

}
q = 1, then Jac c f = ∂c f

I So
Jac c f = Jac f a.e.
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Observational part

Ingredient 2: chain rule

I Consider f with a compositional representation

f = g1 ◦ . . . ◦ gm

(recall ‖σl(Wl(. . . (σ(W2σ(W1xi + b1) + b2)) . . .) + bl)− yi‖2)

I For each i , x , choose Dgi (x) ∈ Jac cgi (x)

I Example in Deep Learning:

Drelu(s) =

{
1 if s > 0
0 if s ≤ 0

In short relu′(0) = 0 (TensorFlow, PyTorch).

I Chain-rule the Dgi ’s

Df (x)

:=Dg1 (g2(. . . (gm(x)) . . .))× Dg2 (g3(. . . (gm(x)) . . .)) . . .× Dgm (x)

When the gi are differentiable

Df = Jac f . Otherwise ?
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Observational part

Exploitation of ingredients 1 and 2

I Exploit Df (x) to devise algorithms, as

xk+1 = xk − γkDf (xk) with γk → 0.

I Example:

W k+1 = W k − γk
q

[
backprop fi1 (W k) + . . .+ backprop fiq (W k)

]
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Observational part

Automatic differentiation

I A long history, numerous results, many implementations (our focus
was on TensorFlow).
Many application domains: design optimization, computational
fluid dynamics, physical modeling, optimal control, structural
mechanics, atmospheric sciences, and computational finance

I The algorithmic and numerical aspects are delicate:
Griewank and Walther (2008), Evaluating Derivatives.

I Our focus: understand the practice of using chain rule out of
his obvious validity domain.
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Observational part

Meaning of Df ? The result of a dangerous cocktail...

1. Start with f = g1 ◦ . . . gm
2. Build Df (x) := Dg1 (g2(. . . (gm(x)) . . .))× . . .× Dgm(x)

I Non uniqueness. Compositional representation

f = g1 ◦ . . . ◦ gm is NOT UNIQUE

I Absence of qualification conditions. In general

Dg1 (g2 ◦ . . . ◦ gm(x)) ◦Dg2 (g3 ◦ . . . ◦ gm(x)) . . . ◦Dgm(x) /∈ Jac c f (x)

unless “transversality conditions/QC” are present

Let’s stick to practice → accept the two above imperfections and
investigate the consequences

All remarks we make are observable using TensorFlow.
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Observational part

Issue I: outputs are partly unpredictible

I relu(t) = max{0, t}, with relu′(0) = 0 (implemented on TensorFlow
or PyTorch)

relu2 : t 7→ relu(−t) + t, relu3 : t 7→ 1

2
(relu(t) + relu2(t)).

relu = relu2 = relu3

I Formal differentiation gives

relu′2(0) = 1 and relu′3(0) = 1/2.

The absurd behavior results both from non uniqueness and the
abscence of QC
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Observational part

Issue II: artificial critical points

I zero = relu2 − relu is the null function but

zero′(0) = 1

I x − zero(x) = x has a zero derivative at 0 (!?)

I Unexpected derivatives and artificial critical points
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Figure: At the center : artificial critical points
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Observational part

Issue III: non-differentiability zones are not generally activated

I Belief: “When we compute Jac cg1((g2 ◦ . . . ◦ gm)(x)) ◦ . . . ◦ Jac cgm(x) we do
not see the singularities of the gi in general”

Wrong: g1(x) = |x |, g2 : Rp → R, g1 ◦ g2 = |g2| the non differentiability zone is

g−1
2 (0)

I Nonsmooth zones of neural net can be significantly activated
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Figure: Estimation of the probability of applying relu to 0 in a feedforward network the weights of the
linear term are sampled uniformly at random between -1 and 1. Variations in size and number of layers are
also considered.

I A question is do we even have Df = ∇f almost everywhere?
Works in these directions: Griewank, Nesterov, Kakade-Lee...
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Observational part

Issue IV: Impossibility “theorem”

Can we build a larger “Jacobian operator ” Jac A on Lipschitz functions
satisfying

(a) Jac Af ⊃ Jac c f for all f Lipschitz from Rp to Rq, p, q ≥ 0

(b) the chain rule

Theorem (Automatic differentiation does not induce an operator on
functions)

There is no nontrivial operator on functions satisfying (a) and (b).
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Observational part

What does formal subdifferentiation compute?

Observations

I Spurious outputs and artificial critical points

I Nonsmooth parts are significantly activated

I Formal subdifferentiation/automatic differentiation does not yield a
differential operator

Questions

I Variational meaning of the Df ’s without using operators?

I Impact of artificial values?

I Behavior of first order methods
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A model for compositional calculus: conservative fields (q = 1)
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A model for compositional calculus: conservative fields (q = 1)

An “operator-free” approach?

I V : Rp → Rp a continuous vector field.
Circulation along a differentiable loop γ : [0, 1]→ Rn (γ(0) = γ(1)):∫ 1

0

〈V (γ(t)), γ̇(t)〉dt

I If V = ∇f the circulation is always 0

Lemma (Poincaré)

∫ 1

0

〈V (γ(t)), γ̇(t)〉 = 0 ∀ loop γ ⇐⇒ ∃f : Rn → R C 1 such that V = ∇f
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A model for compositional calculus: conservative fields (q = 1)

An “operator-free” approach: The zero circulation idea

Assumptions D : Rp ⇒ Rp nonempty compact values, closed graph,

i.e., D(x) 6= ∅ is compact and {(x , y) : y ∈ D(x)} is closed.

I Zero circulation à la Poincaré:∫ 1

0

〈D(γ(t)), γ̇(t)〉 dt = {0},

for all loop absolutely continuous γ : [0, 1]→ Rp.

Meaning. For any measurable selection v : [0, 1]→ Rp, v(t) ∈ D(γ(t))
for all t, we have

∫ 1

0
〈v(t), γ̇(t)〉 dt = 0.

I D is called a conservative set-valued field.

Similar def for the Jacobian situation.
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A model for compositional calculus: conservative fields (q = 1)

Potential functions of conservative fields

I D : Rp ⇒ Rp a conservative field.
It corresponds to a “unique” potential function f :

f (x) = f (0) +

∫ 1

0

〈γ̇(t),D(γ(t))〉 dt (1)

= f (0) +

∫ 1

0

max
v∈D(γ(t))

〈γ̇(t), v〉 dt (2)

= f (0) +

∫ 1

0

min
v∈D(γ(t))

〈γ̇(t), v〉 dt (3)

with γ AC with γ(0) = 0 and γ(1) = x .

I f is a potential function for D or D admits f as a potential, or D is a
conservative field for f .
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A model for compositional calculus: conservative fields (q = 1)

Fundamental properties

Theorem (Conservative fields and gradients)

If f : Rn → R is locally Lipschitz and Df is conservative for f then

Df (x) = {∇f (x)} a.e.

Corollary (The Clarke subdifferential as a minimal conservative field)

If Df is a conservative field for f , then

convDf (x) ⊃ ∂c f (x), ∀x ∈ Rp

and ∂c f is conservative.
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A model for compositional calculus: conservative fields (q = 1)

Fundamental examples with the Clarke subdifferential

If f is locally Lipschitz

(i) f is regular: semi-convex (or semi-concave), i.e., for all compact set
f + α‖x‖2 is convex, prox regular etc...

(ii) f semi-algebraic (or definable)

then ∂c f is conservative (for f )

Actually

∂c f conservative ⇐⇒ f has a chain rule for the Clarke

Proof The first case is classical. The last one uses stratification theory
B-Daniilidis-Lewis-Shiota and Davis-Drusvyatskiy-Kakade-Lee
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A model for compositional calculus: conservative fields (q = 1)

An operatorless calculus

We do not have an operator, but we have a convenient calculus!

Proposition

The linear combination of conservative fields is a conservative field.

If Df and Dg have the zero circulation property then λDf + µDg has the
zero circulation property and it is attached to λf + µg whenever λ, µ ∈ R.

Proposition

The composition of conservative Jacobians is a conservative Jacobian
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A model for compositional calculus: conservative fields (q = 1)

The semi-algebraic/definable case

f = g1 ◦ . . . ◦ gm with all the gi SA

Theorem (The meaning of chain-ruled operators)

I For each gi the “user” provides a semi-algebraic selection Dgi ∈ Jac cgi

I Set

Df (x) = Dg1 (g2(. . . (gm(x)) . . .))× . . .× Dgm (x)

Then Df is a conservative field for f , thus

d

dt
f (γ(t)) = 〈γ̇(t),Df (γ(t))

for all AC curve γ.

Proof. Relies on Whitney stratifications and a projection formula

We answered our initial question with backprop!!!
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A model for compositional calculus: conservative fields (q = 1)

Conservative fields in a nutshell: zero circulation set-valued maps

I Conservative=gradient a.e.

I Major examples. The Clarke subdifferential of

I semi-convex or other regular classes
I semi-algebraic

I The formal derivation principle

Df := Dg1 ◦ . . . ◦ Dgm

is conservative whenever the Dgi are conservative

I Backpropagation in deep learning: backprop is a conservative field
(generated, by e.g. TensorFlow), thus the first-order mapping

W →
N∑
i=1

backprop fi (W ) is a conservative field.

More generally nonsmooth automatic differentiation process
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Asymptotics and algorithms

Observational part
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Asymptotics and algorithms

Questionning: asymptotic and algorithms with conservative fields

New model “conservative set-valued fields” (applies to backprop)

Major questions

I Optimizing dynamics

I Impact of spurious points and artificial points
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Asymptotics and algorithms

Artificial critical points & asymptotics
Given f : Rp → R and Df , with Df conservative for f

I D-critical points Df − crit = {x ∈ Rp : Df (x) 3 0} ⊂ Rp

I D critical values f (Df − crit ) ⊂ R
I Artificial critical points: artDf = {x ∈ Rp : 0 ∈ Df (x) and 0 /∈ ∂c f (x)}

Figure: f = sin. The chosen conservative field in blue Dsin yields many
artificial critical points

I In DL backprop f1(W ) + . . .+ backprop fN(W ) /∈ ∂c(f1 + . . .+ fN)(W ) in
general
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Asymptotics and algorithms

Artificial critical points & asymptotics

Assume Df has convex values

I Model dynamics “conservative gradient descent”

ẋ(t) + Df (x(t)) 3 0 a.e. on [0,+∞)

where x : [0,+∞)→ Rp is AC is such that x(0) = x0.

I Df -critical points are stationary

I Theorem (B-Pauwels)

If (f ,Df ) are SA, bounded trajectories converges to Df critical points.

Proof: “Conservative versions” of the projection formula, Sard’s
theorem, KL inequalities, as in Bolte-Daniilidis-Lewis and
Bolte-Daniilidis-Lewis-Shiota.
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Asymptotics and algorithms

Stochastic gradient with mini-batch

I Nonsmooth nonconvex: Davies-Drusvyatskiy-Kakade-Lee,
Majewski-Miasojedow-Moulines, Adil’s PhD thesis,
Bianchi-Hachem-Schechtman, Chizat-Bach...

I Consider

min
x∈Rp

f (x) =
1

N

N∑
i=1

fi (x),

with conservative fields Dfi : Rp 7→ R, i = 1, . . . ,N.

I x0 ∈ Rp, step sizes γk > 0 and a sequence of iid indices (Ik)k∈N
taken uniformly in the nonempty subsets of {0, . . . ,N},

xk+1 = xk − γk
1

|Ik |
∑
i∈Ik

Dfi (xk),

Ik ⊂ {1, . . . ,N}.
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Asymptotics and algorithms

Stochastic gradient with mini-batch II

xk+1 = xk − γk
1

|Ik |
∑
i∈Ik

Dfi (xk), I ⊂ {1, . . . , n}. (4)

Set Df =
1

N
conv

N∑
i=1

Dfi

Theorem (Convergence)

Assume γk = o(1/ log k) and f semi-algebraic. For all x0 such that xk is
almost surely bounded, then almost surely,

I f (xk) converges as k tends to infinity to a Df critical value.

I all accumulation points, x̄ , of (xk)k∈N are Df -critical points:
0 ∈ Df (x̄).

Proof. Use theory of Benaim-Hofbauer-Sorin on differential inclusions and
ideas from Davies et al. which proved a similar result with ∂c f 31 / 34



Asymptotics and algorithms

Artificial critical points are never seen

I Deep learning problem

min
W

J(W ) :=
1

N

N∑
i=1

‖σl(Wl(. . . (σ(W2σ(W1xi + b1) + b2)) . . .) + bl)− yi‖2︸ ︷︷ ︸
fi (W)

with e.g.,

(?) ∀i , σi = relu, Dσ(s) =

{
1 if s > 0
0 if s ≤ 0

Many other choices are possible .

I Optimization phase

W k+1 = W k − γk
b

[
Dfi1

(W k) + . . .+ Dfib
(W k)

]
where

I i1, . . . , ib is drawn uniformly at random within {1, . . . ,N}
I Dfi comes from the choice (?) and chain rule
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Asymptotics and algorithms

Artificial critical points are never seen

Theorem (B-Pauwels)

There exist

I a finite subset of steps F ⊂ (0,+∞) & zero measure, meager N ⊂ Rp

such that for any

I positive sequence γk = o(1/ log k) avoiding values in F

I initialization x0 ∈ Rp \ N,

we have

I J(W k) converges towards a Clarke critical value almost surely,

I the cluster points of W k are Clarke critical point almost surely,

whenever the sequence is almost surely bounded.

More precise results: B-Pauwels-Rios-Zertuche oscillation analysis. Long term
dynamics of the subgradient method for Lipschitz path differentiable functions
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Asymptotics and algorithms
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