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Bilevel programs

(BP) min
x ,y

F (x , y)

s.t. y ∈ S(x)

where S(x) denotes the set of solutions of the lower level problem:

(Px) min
y∈Y (x)

f (x , y)

For simplicity we have omitted upper level constraints.

Usually
Y (x) := {y |g(x , y) ≤ 0},

and all functions F and g are smooth.
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Bilevel Programs

Suppose that for each x , the lower level problem (Px) has a unique
solution y(x). Then by substituting y(x) into the upper level, the
bilevel program becomes an one-level optimization problem

min
x

F (x , y(x)).

If y(x) is a “nice” function of x , then perhaps the above problem
can be solved.
But if the lower level problem has multiple solutions, then there are
two versions of the bilevel program: optimistic and pessimistic.

• Optimistic: min
x ,y
{F (x , y) : y ∈ S(x)}.

• Pessimistic: min
x

max
y∈S(x)

F (x , y).

In this talk we only deal with the optimistic case.
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Applications in economics

The first formulation of a simplier case of the bilevel program
was introduced by Stackelberg (1934). Hence it is known as a
Stackelberg game in economic game theory.

The classical principal-agent/moral hazard problem in
economics is a bilevel program: This is the situation where the
principal can only observe the outcome of the agent’s action
but not the action itself. How can the principal design a
contract in order to maximize the expected utility subject to
the optimizing behavior of the agent?

Nobel prize has been awarded twice for study of the moral
hazard problem. Vickrey and Mirrlees shared the 1996 Nobel
prize in economics which was awarded for their fundamental
contributions to the economic theory of incentives under
asymmetric information. Holmström and Hart shared the
2016 Nobel prize in economics which was awarded for their
fundamental contributions to contract theory.
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Applications in machine learning

The bilevel program was first introduced to the optimization
community by Bracken and McGill (1973).

It was first introduced to the model selection in machine
learning by Bennett, Hu, Ji, Kunapuli and Pang in 2006.

Recently there are more and more work on hyper-parameter
learning via bilevel optimization:

min
θ,λ

F (θ)

s.t. θ ∈ arg min
θ′

f (θ′) +
r∑

i=1

λiPi (θ
′)︸ ︷︷ ︸

lower level training problem

,

where Pi (θ) are penalty functions.
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Model selection

Let x ∈ Rp and y ∈ R be predictor and the response variables,
respectively. Suppose we have a data set containing n
observations Ω := {(x1, y1), . . . , (xn, yn)}. We try to fit a
statistical model to study the relationship between x and y .
If p ≥ n, i.e., the number of predictor variables are larger than
the number of samples, the classical linear regression problem
is ill-post. Some irrelevant variables may be included in the
fitted model.
Using lasso (Tibshirani 1996), for given λ > 0 the regularized
problem is solved:

min
θ

∑
(xj ,yj )∈Ω

(xTj θ − yj)
2 + λ‖θ‖1.

Bigger λ encourage sparser optimal solution θ̂. But how to
select λ so that the model is correct?
Since n ≤ p, we can not afford to leave out some observations
for testing the results.
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K-fold cross validation

Given a data set: Ω = {(xi , yi )}ni=1 ⊂ Rp+1.
Step 1: Randomly split the data set into K disjoint blocks with
approximately equal size:

Ω = Ω1 ∪ · · · ∪ ΩK .

Step 2: For k = 1, . . . ,K , use Ωk as the test set and the rest
(K − 1) blocks as the training set Ωk

trn, and compute the fitted
values θk .
Step 3, Compute the mean-squared-error on the observations in
Ωk , i.e., MSE(θk) =

∑
(xj ,yj )∈Ωk

(xTj θk − yj)
2, and compute the

cross validation error

CV (θ1, . . . , θK ) =
1

K

K∑
k=1

MSE(θk).

Step 4. Repeat Steps 2 and 3 for various values of λ > 0.
Step 5. Find λ∗ that minimize the cross validation error and in the
mean time θ∗ the best fitted value.
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Cross validation as a bilevel program

In statistics, either a grid search or a path following algorithm
is performed on λ values to select the value of λ for which the
cross-validation error is smallest. But these approaches do not
scale well and have a lot of limitations.

In essence the cross validation in lasso is the following bilevel
program:

min
λ,θ1,...,θK

CV (θ1, . . . , θK )

λ > 0 and for each k = 1, . . . ,K

θk ∈ arg min
θ

∑
(xj ,yj )∈Ωk

trn

(xTj θ − yj)
2 + λ‖θ‖1

If the above bilevel program can be solved, then we can
obtain the optimal penalty parameter λ∗ and the best fitted
value θ∗ at once!
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The first order approach (FOA, KKT/MPEC Approach)

Basic features of FOA:

replace the lower level problem by its KKT conditions;

minimize over the original variables as well as multipliers;

the resulting problem is the mathematical program with
complementarity/equilibrium constraints (MPCC/MPEC)

min
x ,y ,u

F (x , y)

s.t.∇y f (x , y) + u∇yg(x , y) = 0,

g(x , y) ≤ 0, u ≥ 0, uTg(x , y) = 0.

Drawback of FOA:

The true optimal solution of the bilevel program may not be
recovered by solving the corresponding MPEC, cf. Mirrlees
(1999).

Even when the lower level problem is convex, a local optimal
solution of MPEC may not be a local optimal solution of BP
if the multiplier is non-unique, cf. Dempe and Dutta 2012.
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If the lower level problem is convex in y , then the bilevel
program is equivalent to

min
x ,y

F (x , y)

s.t. 0 ∈ ∇y f (x , y) + NY (x)(y).

Some researches have been done for the case Y (x) = Y .

Compared with MPCC reformulation, it is easier for this
reformulation to satisfy constraint qualifications; cf. Adam,
Henrion and Outrata, 2018. Based on this reformulation,
some new sharp necessary optimality conditions have been
derived in Gfrerer and JY: “New constraint qualifications for

mathematical programs with equilibrium constraints via variational

analysis” (2017) and “New sharp necessary optimality conditions for

mathematical programs with equilibrium constraints” (2020).
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The value function approach

Basic features of the value function approach:

replace the original BP by the following equivalent problem
(Outrata (1990), JY and Zhu (1995)):

(VP) min
x ,y

F (x , y)

s.t. f (x , y)− v(x) ≤ 0, g(x , y) ≤ 0.

where v(x) := infy
{
f (x , y) : g(x , y) ≤ 0

}
is the value

function.

can deal with BPs without convexity assumption on (Px).

Drawback of the value function approach:

The resulting stationary condition based on the value function
approach may be too strong.
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The combined approach

Basic features of the combined approach:

replace the lower level problem by both the value function
constraint and some necessary optimality condition of the
lower level program.

Combined program with KKT condition (JY-Zhu (2010)):

(CP) min
x ,y ,u

F (x , y)

s.t. f (x , y)− v(x) ≤ 0,

∇y f (x , y) + u∇yg(x , y) = 0,

g(x , y) ≤ 0, u ≥ 0, uTg(x , y) = 0.

Combined program with Fritz John (FJ) condition or
Bouligand (B)-condition (Ke, Yao, JY and Zhang, 2021).

It is easier for the resulting stationary condition to hold than
the one based on the value function approach.
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Due to the existence of the value function constraint
f (x , y)− v(x) ≤ 0,

Mangasarian-Fromovitz constraint qualifi-
cation (MFCQ) fails for (VP) and (CP)!
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Partial calmness condition

Basic features of the partial calmness condition:

the partial calmness condition allows one to partially penalize
the value function constraint f (x , y)− v(x) ≤ 0 to the
objective function. Consequently, the usual constraint
qualifications can be applied to the rest of the constraints.

proposed for the value function reformulation (JY-Zhu (1995),
the combined program with KKT condition (JY-Zhu (2010)),
and the combined program with FJ condition and B-condition
(Ke-Yao-JY-Zhang (2021)).

How stringent is the partial calmness condition?

Recently in Ke-Yao-JY-Zhang (2021), we have shown that at
least for the case where x is one-dimensional, the partial
calmness for the combined program is a generic condition
while the one for the value function reformulation is not.
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Semi-infinite programming reformulation

y ∈ S(x)⇐⇒ g(x , y) ≤ 0 and f (x , z)− f (x , y) ≥ 0 ∀z ∈ Y (x)

• When all functions are polynomials and KKT condition holds at
each y ∈ S(x), we can find a multiplier of the lower level problem
as a polynomial or rational function of (x , y), denoted by λ(x , y).
• The bilevel program is equivalent to the generalized SIP:

(SIP) min
x ,y

F (x , y)

s.t. f (x , z)− f (x , y) ≥ 0 ∀z ∈ Y (x),

∇y f (x , y) + λ(x , y)∇yg(x , y) = 0,

g(x , y) ≤ 0, λ(x , y) ≥ 0, λ(x , y)Tg(x , y) = 0.

• Based on this reformulation recently we have proposed a
numerical algorithm to globally solve the polynomial bilevel
program in Nie, Wang, JY and Zhong, A Lagrange Multiplier Expression

Method for Bilevel Polynomial Optimization, arXiv (2007.07933).
Jane Ye 16 / 37
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• Based on this reformulation recently we have proposed a
numerical algorithm to globally solve the polynomial bilevel
program in Nie, Wang, JY and Zhong, A Lagrange Multiplier Expression

Method for Bilevel Polynomial Optimization, arXiv (2007.07933).
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Directional Optimality Conditions for (VP)

• Motivation: The usual constraint qualification such as MFCQ
does not hold for any of the reformulations of the bilevel program:
JY-Zhu-Zhu (1997) for the MPEC approach, JY-Zhu (1995) for
the value function reformulation, JY-Zhu (2010) for the combined
program.

(VP) min
x ,y

F (x , y)

s.t. f (x , y)− v(x) ≤ 0, g(x , y) ≤ 0.

The FJ condition for (VP): ∃(r , λ, µ) 6= 0 such that

0 ∈ r∇F (x̄ , ȳ) + λ(∇f (x̄ , ȳ) + ∂(−v)(x̄)× {0}) +∇g(x̄ , ȳ)Tµ

r ≥ 0, 0 ≤ µ ⊥ g(x̄ , ȳ).

• If the limiting subdifferential ∂(−v)(x̄) can be replaced by a
smaller set, then the resulting FJ condition is sharper and the
constraint qualification is then weaker.
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By xk
d−→ x̄ where d is a vector, we mean there exist

tk ↓ 0, dk → d such that xk = x̄ + tkd
k .

Definition (Directional subdifferentials Ginchev and Mordukhovich
2011)

Let ϕ : Rn → R and ϕ(x̄) be finite. The (analytic) limiting
subdifferential of ϕ at x̄ in direction d ∈ Rn is defined as

∂ϕ(x̄ ; d) := {lim
k
ξk |∃xk d−→ x̄ , ϕ(xk)→ ϕ(x̄), ξk ∈ ∂̂ϕ(xk)},

where ∂̂ϕ is the regular subdifferential.

• For example, ϕ(x) = |x |. Then the limiting subdifferential at 0 is
equal to the interval:

∂ϕ(0) = [−1, 1].

• But the directional limiting subdifferential at 0 is a singleton:

∂ϕ(0; 1) = {1}, ∂ϕ(0;−1) = {−1}.
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Consider problem (P) : min f (x) s.t. g(x) ≤ 0.

The feasible region: F := {x |g(x) ≤ 0}. Suppose that f is
smooth, g = (g1, . . . , gm) and gi is directionally differentiable
at x̄ .

Let Īg := {i |gi (x̄) = 0}.
Define g ′ := (g ′1, . . . , g

′
m) and g ′i (x̄ ; d) = 0 if i 6∈ Īg .

The linearized cone:

L(x̄) := {d |g ′(x̄ ; d) ≤ 0}

The critical cone:

C (x̄) = L(x̄) ∩ {d |∇f (x̄)Td ≤ 0}.
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Directional optimality conditions proposed by Gfrerer 2013

Suppose x̄ is a local optimal solution of (P) and g is Lipschitz
continuous at x̄ . Let d ∈ C (x̄). Suppose g is directional
differentiable at x̄ in direction d . If the first order sufficient
condition for metric subregularity (FOSCMS) holds:{

0 ∈ ∂g(x̄ ; d)Tλ,
0 ≤ λ ⊥ g(x̄), λ ⊥ g ′(x̄ ; d)

=⇒ λ = 0,

then the directional KKT condition holds:

0 ∈ ∇f (x̄) + ∂g(x̄ ; d)Tλ,

0 ≤ λ ⊥ g(x̄), λ ⊥ g ′(x̄ ; d).

• Since when d = 0, FOSCMS is equivalent to MFCQ, for
simplicity, I will call FOSCMS the directional MFCQ.
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FOSCMS/the directional MFCQ fails for (VP)

Proposition (Bai and JY, 2021)

Assume that v(x) is directionally differentiable at x̄ . Then
FOSCMS/the directional MFCQ fails at any feasible solution of
(VP) in any critical direction.
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Directional neighborhood of the origin

Vε,δ(d) =

{
Bε(0), d = 0,

{0} ∪ {z ∈ Bε(0)|
∥∥ z
‖z‖ −

d
‖d‖
∥∥ ≤ δ}, d 6= 0.
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Directional Clarke calmness condition

Since the directional MFCQ is too strong to be applicable for
bilevel programs, we now introduce a directional version of the
calmness condition for (P).

Definition (Directional Clarke calmness; Bai and JY, 2021)

Suppose x̄ solves (P). We say that (P) is (Clarke) calm at x̄ in
direction d if x̄ also solves (for some positive ε, δ, ρ)

min f (x) + ρ‖g+(x)‖
s.t. x ∈ x̄ + Vε,δ(d).

When d = 0, the directional calmness reduces to the calmness
introduced by Clarke.

Directional Clarke calmness with d 6= 0 is weaker than the
Clarke calmness.
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Directional KKT condition under directional calmness

Theorem (Bai and JY, 2021)

Let x̄ be a local minimizer of (P). Suppose f (x) is continuously
differentiable at x̄ and g(x) is directionally Lipschitz and
directionally differentiable at x̄ in direction d ∈ C (x̄). Suppose that
the (P) is calm at x̄ in direction d . Then there exists a vector
λ ∈ Rm such that the directional KKT condition holds at x̄ in
direction d :

0 ∈ ∇f (x̄) + ∂g(x̄ ; d)Tλ

0 ≤ λ ⊥ g(x̄), λ ⊥ g ′(x̄ ; d).

When d = 0, the directional KKT recovers KKT condition.

When d 6= 0, directional KKT condition is sharper than the
(nondirectional) KKT condition under weaker (directional)
calmness condition.
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Directional KKT condition for bilevel program

Theorem (Bai and JY, 2021)

Let (x̄ , ȳ) be a local minimizer of (BP). Suppose the value
function v(x) is Lipschitz continuous and directionally
differentiable at x̄ in direction dx and (dx , dy ) ∈ C (x̄ , ȳ)

C (x̄ , ȳ) := L(x̄ , ȳ) ∩ {(dx , dy )|F (x̄ , ȳ)(dx , dy ) ≤ 0},

L(x̄ , ȳ) :=

{
(dx , dy )| ∇f (x̄ , ȳ)(dx , dy ) ≤ v ′(x̄ ; dx)

∇g(x̄ , ȳ)(dx , dy ) ≤ 0

}
.

Suppose that (VP) is calm at (x̄ , ȳ) in direction (dx , dy ). Then
there exists (λ, µ) ≥ 0 such that

0 ∈ ∇F (x̄ , ȳ) + λ (∇f (x̄ , ȳ) + ∂(−v)(x̄ ; dx)× {0})
+∇g(x̄ , ȳ)Tµ,

µ ⊥ g(x̄ , ȳ), µ ⊥ ∇g(x̄ , ȳ)(dx , dy ).
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Directional Clarke subdifferential

Definition

Suppose ϕ(x) : Rn → R is Lipschitz continuous at x̄ in direction d ,
we define the directional Clarke subdifferential of ϕ at x̄ in
direction d as

∂cϕ(x̄ ; d) := co(∂ϕ(x̄ ; d)).

We have
∂c(−v)(x̄ ; d) = −∂cv(x̄ ; d)

Under certain conditions, we have derive some upper estimates for
the directional Clarke subdifferential of the value function in terms
of the problem data. Substitute these upper estimates to the
directional KKT condition we obtain the condition in terms of the
problem data.
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Difference of Convex Algorithms for Bilevel
Programs

• Motivation: Many functions can be represented as a difference
convex (DC) function: lower C 2 function and C 1+ function is a
difference convex (DC) function, and the class of DC functions is
closed under many operations. If the lower level program is
completely convex (convex in both variables x and y), then the
value function is convex and the value function constraint becomes
a DC constraint:

f (x , y)− v(x) ≤ 0.

To use the difference of convex algorithm (DCA) cf. review paper
by Horst and Thoai 1999, one needs to study two issues:

Under what conditions, all functions including the value
function are convex and Lipschitz continuous?

Under what condition, the extended MFCQ holds?
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Difference of convex bilevel program

min
x ,y

F (x , y) := F1(x , y)− F2(x , y)

s.t. x ∈ X , y ∈ S(x) := arg min
y∈Y
{f (x , y) s.t.g(x , y) ≤ 0} ,

where X ⊆ Rn and Y ⊆ Rm are nonempty closed convex sets,
g : Rn × Rm → RI is convex on an open convex set containing the
set X × Y , and the functions F1,F2, f : Rn × Rm → R are convex
on an open convex set containing the set

C := {(x , y) ∈ X × Y : g(x , y) ≤ 0}.

By Lampariello and Sagratella (2020), if the lower level objective
function is in the form of f (x , y) = f1(x , y1) + f2(y2) where f2 is
convex, f1(·, y1) is convex for every y1 and f1(x , ·) is uniformly
strongly convex for every x , then the lower level problem can be
reformulated as one with a completely convex objective.
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Standing Assumptions

(I) S(x) 6= ∅ for all x ∈ X . For all x in an open convex set
O ⊇ X , the feasible region F(x) := {y ∈ Y : g(x , y) ≤ 0} is
nonempty and f (x , y) is bounded below on F(x).

(II) Assume that the partial derivative formula holds for each of
the lower level objective and constraint functions:

∂φ(x , y) = ∂xφ(x , y)× ∂yφ(x , y).

Some sufficient conditions for the partial derivative formula:

φ(x , y) = φ1(x) + φ2(y).

φ(x , y) is C 1 respect to either x or y .
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lasso problem as a bilevel program with a completely
convex lower level program

By change of variable r := 1
λ , lasso problem can be equivalently

reformulated as:

min
r ,θ1,...,θk

CV (θ1, . . . , θk)

r > 0 and for each k = 1, . . . ,K

θk ∈ arg min
θ

∑
(xj ,yj )∈Ωk

trn

(xTj θ − yj)
2

r
+ ‖θ‖1.

Since a square over linear function

φ(x, r) = ‖x‖2/r

is completely convex, the lower level is a completely convex bilevel
program.
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The bilevel model for support vector (SV) classification

Given a training set Ω := {(aj , bj)}nj=1 where aj ∈ Rp, and the
labels bj = ±1 indicate the class membership. The bilevel model
for SV classification (Kunapuli, Bennett, Hu and Pang, 2008):

min
λ,w̄ ,w ,c

CV(w1, . . . ,wK , c1, . . . , cK )

:=
1

K

K∑
k=1

∑
(aj ,bj )∈Ωk

max(1− bj(aTj wk − ck), 0)

s.t. λlb ≤ λ ≤ λub, w̄lb ≤ w̄ ≤ w̄ub, and for k = 1, . . . ,K :

(wk , ck) ∈ argmin
−w̄ ≤ w ≤ w̄

c ∈ R

 ∑
(aj ,bj )∈Ωk

trn

max(1− bj(aTj w − c), 0) +
λ

2
‖w‖2

 .

By change of variable r := 1
λ , the bilevel model for SV

classification problem can be equivalently reformulated as a
bilevel program with completely convex lower level program.
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Reformulation of the bilevel program as a DC program

Using the convex analysis in Rockafellar (1970) we can obtain:
(1) under the assumptions, all functions F1,F2, g are convex and
Lipschitz continuous, and the value function v(x) is convex and
Lipschitz continuous on X ; (2) for any x ∈ X and y ∈ S(x),

⋃
γ∈KT (x ,y)

(
∂x f (x , y) +

l∑
i=1

γi∂xgi (x , y)

)
⊆ ∂v(x).

For ε ≥ 0, consider the following difference of convex program:

(VP)ε min
(x ,y)∈X×Y

F1(x , y)− F2(x , y)

s.t. f (x , y)− v(x) ≤ ε
g(x , y) ≤ 0.

For any ε > 0, the extended MFCQ always hold on

C := {(x , y) ∈ X × Y |g(x , y) ≤ 0}.
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Inexact proximal difference of convex algorithm (iPDCA)

Given a current iteration point (xk , yk), solve the lower level
problem (Pxk ) with a global minimizer ỹk and a corresponding
multiplier denoted by γk .

Select

ξk0 ∈ ∂F2(xk , yk), ξk1 ∈ ∂x f (xk , ỹk)+
l∑

i=1

γki ∂xgi (x
k , ỹk) ⊆ ∂v(xk).

Compute (xk+1, yk+1) as an approximate minimizer of the
strongly convex subproblem for (VP)ε given by

min
(x ,y)∈C

F1(x , y)− 〈ξk0 , (x , y)〉︸ ︷︷ ︸
linearization of F2 at (xk ,yk )

+
ρ

2
‖(x , y)− (xk , yk)‖2

+ βk max{f (x , y)− (f (xk , ỹk) + 〈ξk1 , x − xk〉)︸ ︷︷ ︸
linearization of V (x) at xk

− ε, 0}.

Jane Ye 33 / 37



Inexact proximal difference of convex algorithm (iPDCA)

Given a current iteration point (xk , yk), solve the lower level
problem (Pxk ) with a global minimizer ỹk and a corresponding
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Convergence theorem

Definition

We say a point (x̄ , ȳ) is a KKT point of problem (VP)ε with ε ≥ 0
if there exists λ ≥ 0 such that{

0 ∈ ∂F1(x̄ , ȳ)− ∂F2(x̄ , ȳ) + λ∂f (x̄ , ȳ)− λ∂v(x̄)× {0}+NC (x̄ , ȳ),

f (x̄ , ȳ)− v(x̄)− ε ≤ 0, λ (f (x̄ , ȳ)− v(x̄)− ε) = 0.

Theorem (JY, Yuan, Zeng and Zhang 2021)

Assume that the upper level objective F is bounded below on C .
Let {(xk , yk)} be an iteration sequence generated by iPDCA .
Moreover assume that KT (xk , y) 6= ∅ for all y ∈ S(xk). Suppose
that either ε > 0 or ε = 0 and the penalty sequence {βk} is
bounded. Than any accumulation point of {(xk , yk)} is an KKT
point of problem (VP)ε.
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Table: Numerical results comparing iP-DCA and MPEC approach

Dataset Method CV error Test error Time(sec)

australian scale

iP-DCA(ε = 0, tol = 10−2) 0.28 ± 0.03 0.15 ± 0.01 73.7 ± 106.6
iP-DCA(ε = 0, tol = 10−3) 0.28 ± 0.03 0.15 ± 0.01 81.2 ± 110.8
iP-DCA(ε = 10−2, tol = 10−2) 0.28 ± 0.03 0.15 ± 0.01 10.7 ± 6.3
iP-DCA(ε = 10−2, tol = 10−3) 0.28 ± 0.03 0.15 ± 0.01 128.7 ± 74.4
iP-DCA(ε = 10−4, tol = 10−2) 0.28 ± 0.03 0.15 ± 0.01 74.2 ± 123.8
iP-DCA(ε = 10−4, tol = 10−3) 0.28 ± 0.03 0.15 ± 0.01 109.0 ± 141.0
MPEC approach 0.29 ± 0.04 0.15 ± 0.01 491.2 ± 245.1

breast-cancer scale

iP-DCA(ε = 0, tol = 10−2) 0.06 ± 0.01 0.04 ± 0.00 53.1 ± 67.2
iP-DCA(ε = 0, tol = 10−3) 0.06 ± 0.01 0.04 ± 0.00 78.3 ± 73.9
iP-DCA(ε = 10−2, tol = 10−2) 0.06 ± 0.01 0.04 ± 0.00 15.5 ± 2.1
iP-DCA(ε = 10−2, tol = 10−3) 0.06 ± 0.01 0.04 ± 0.00 108.9 ± 40.4
iP-DCA(ε = 10−4, tol = 10−2) 0.06 ± 0.01 0.04 ± 0.01 24.6 ± 17.5
iP-DCA(ε = 10−4, tol = 10−3) 0.06 ± 0.01 0.04 ± 0.01 86.8 ± 59.3
MPEC approach 0.08 ± 0.01 0.04 ± 0.01 294.5 ± 98.2

diabetes scale

iP-DCA(ε = 0, tol = 10−2) 0.56 ± 0.03 0.24 ± 0.02 12.0 ± 13.6
iP-DCA(ε = 0, tol = 10−3) 0.56 ± 0.03 0.24 ± 0.02 25.9 ± 33.2
iP-DCA(ε = 10−2, tol = 10−2) 0.57 ± 0.03 0.24 ± 0.02 3.1 ± 0.6
iP-DCA(ε = 10−2, tol = 10−3) 0.56 ± 0.03 0.24 ± 0.02 62.1 ± 31.7
iP-DCA(ε = 10−4, tol = 10−2) 0.56 ± 0.03 0.24 ± 0.02 12.7 ± 19.7
iP-DCA(ε = 10−4, tol = 10−3) 0.56 ± 0.03 0.24 ± 0.02 39.2 ± 45.7
MPEC approach 0.59 ± 0.03 0.25 ± 0.02 346.7 ± 216.9
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