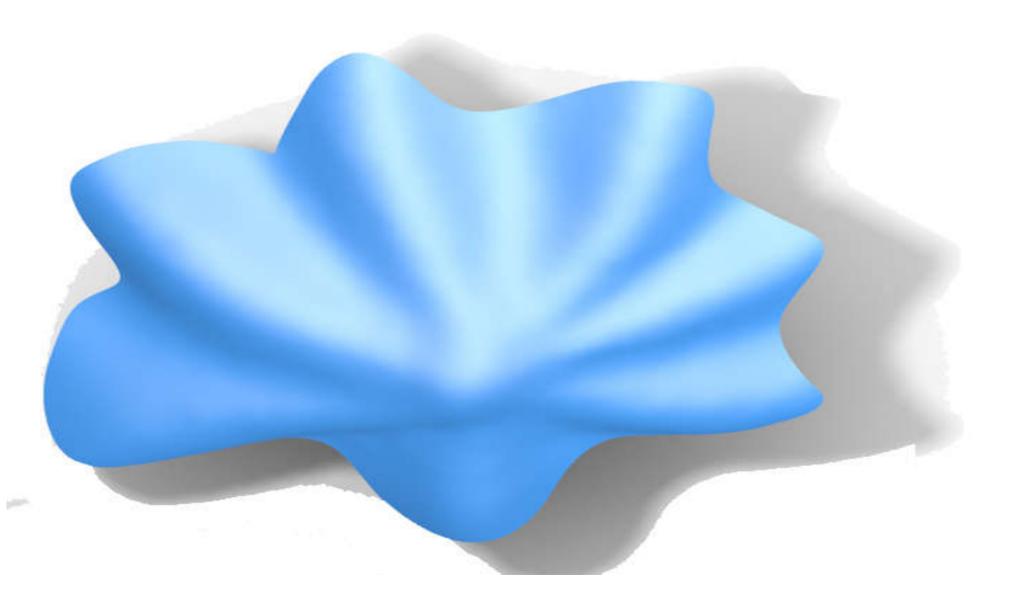
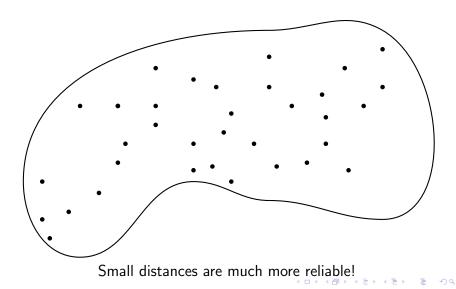
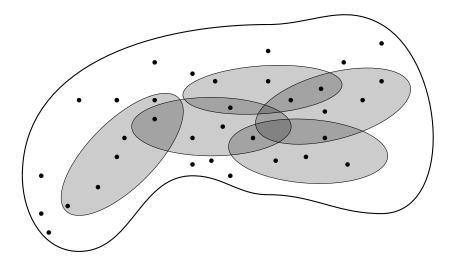
Discovering low-dimensional manifolds in high-dimensional data sets



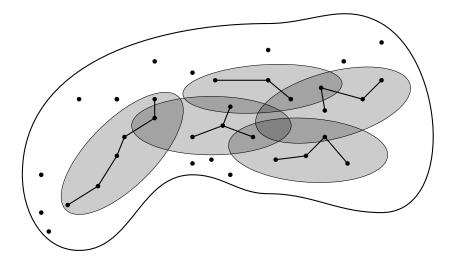
Diffusion Maps: "Knit together" local geometry to get "better" distances



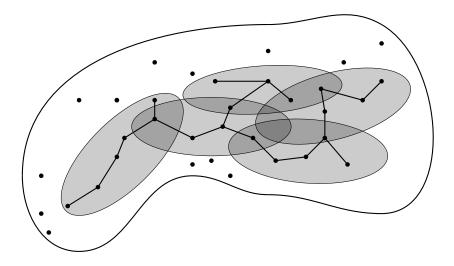


◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

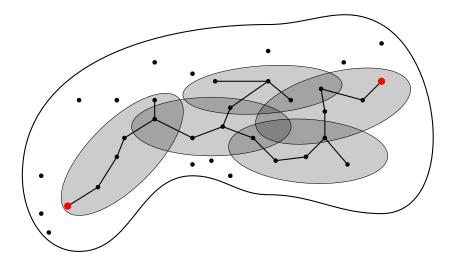
A collection of small tangent patches does give a good first approximation of a surface



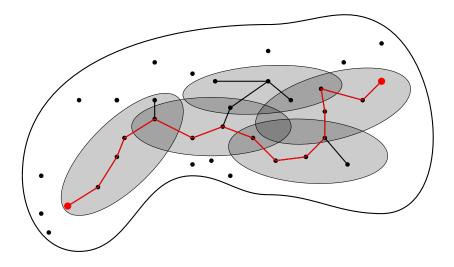
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで



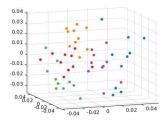
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

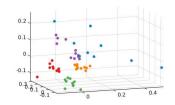
How pide
$$\mathbb{Z}$$
? Want: approximation to diffusion on manifold
"true" diffusion: Semi-group property
Shan Shan $e^{-\frac{1}{2}/2\mathbb{Z}} = e^{-(\mathbb{C}+S)L}$

Spectral decomposition of
$$D_{z}^{-1}W_{z}$$

 \Rightarrow eigenvectors Ψ_{ℓ} with
eigenvalues $\lambda_{l; \tau}$
 $\left(e^{-\delta\tau L}\right) \simeq \sum_{l=1}^{N} (\lambda_{l; \tau})^{\delta} \Psi_{\ell}(i) \Psi_{\ell}(j)$
each data point j is mapped to the
feature vector $(\Lambda_{l; \tau})^{\delta/2} \Psi_{\ell}(j) \Big|_{\ell=1}^{L}$
 $D_{ij;t}^{i} = \sum_{l=1}^{N} (\lambda_{l;t})^{t} |\Psi_{\ell}(i) - \Psi_{\ell}(j)|^{2}$

MDS for cPD & DD





cPD

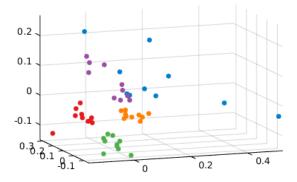
DD

ヘロン ヘロン ヘビン ヘビン

æ

Diffusion Distance (DD) Fix $1 \le m \le N$, $t \ge 0$,

$$D_m^t(S_i, S_j) = \left(\sum_{k=1}^m \lambda_k^t \left(u_k(i) - u_k(j)\right)^2\right)^{\frac{1}{2}}$$



◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

It all started with a conversation with biologists....

Jukka Jernvall

More Precisely: biological morphologists Study Teeth & Bones of extant & extinct animals still live today fossils

Collaborators

Rima Alaifari ETH Zürich

Doug Boyer Duke

Yaron Lipman Weizmann

Roi Poranne ETH Zürich

Ingrid Daubechies Duke

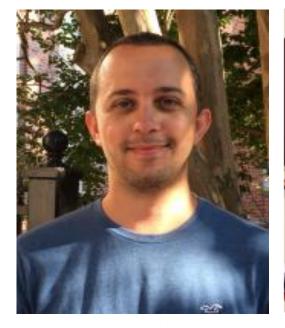
Jesús Puente J.P. Morgan

Tingran Gao Duke

Robert Ravier Duke

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

₹ • **ગ ૧**



Shahar Kovalsky

Shan Shan

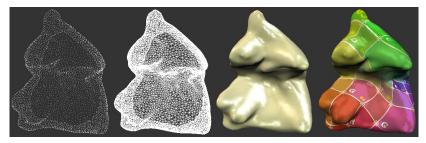
Nadav Dym

Chen-Yun Lin

First: project on "complexity" of teeth

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Data Acquisition



Surface reconstructed from μ CT-scanned voxel data

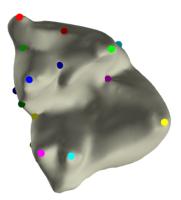
・ロト ・ 戸 ト ・ ヨ ト ・

э



• Manually put *k* landmarks

second mandibular molar of a Philippine flying lemur

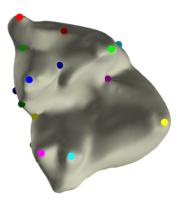


• Manually put k landmarks

 p_1, p_2, \cdots, p_k

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

second mandibular molar of a Philippine flying lemur



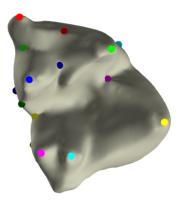
second mandibular molar of a Philippine flying lemur

• Manually put k landmarks

 p_1, p_2, \cdots, p_k

• Use spatial coordinates of the landmarks as features

$$p_j = (x_j, y_j, z_j), \ j = 1, \cdots, k$$



second mandibular molar of a Philippine flying lemur

• Manually put k landmarks

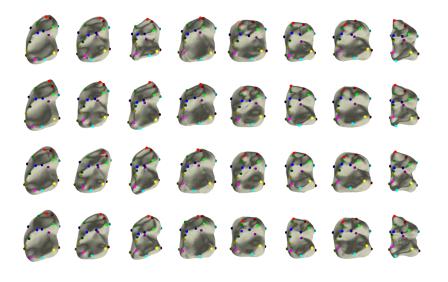
 p_1, p_2, \cdots, p_k

• Use spatial coordinates of the landmarks as features

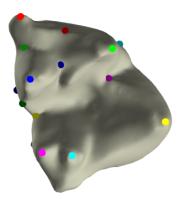
$$p_j = (x_j, y_j, z_j), \ j = 1, \cdots, k$$

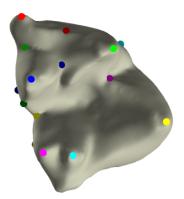
• Represent a shape in $\mathbb{R}^{3 \times k}$

The Shape Space of k landmarks in \mathbb{R}^3



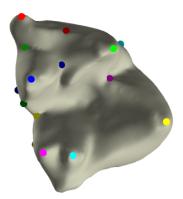
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ





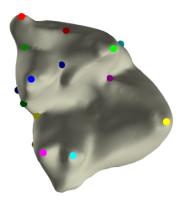
• Landmark Placement: tedious and time-consuming

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



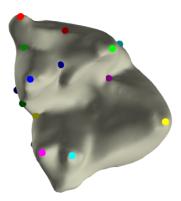
- Landmark Placement: tedious and time-consuming
- Fixed Number of Landmarks: lack of flexibility

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()



- Landmark Placement: tedious and time-consuming
- Fixed Number of Landmarks: lack of flexibility
- Domain Knowledge: high degree of expertise needed, not easily accessible

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()



- Landmark Placement: tedious and time-consuming
- Fixed Number of Landmarks: lack of flexibility
- Domain Knowledge: high degree of expertise needed, not easily accessible
- Subjectivity: debates exist even among experts

Landmarked Teeth
$$\longrightarrow$$

 $d_{Procrustes}^{2}\left(S_{1}, S_{2}\right) = \min_{R \text{ rigid tr.}} \sum_{j=1}^{J} \left\|R\left(x_{j}\right) - y_{j}\right\|^{2}$

Landmarked Teeth
$$\longrightarrow$$

 $d_{Procrustes}^{2}\left(S_{1}, S_{2}\right) = \min_{R \text{ rigid tr.}} \sum_{j=1}^{J} \left\|R\left(x_{j}\right) - y_{j}\right\|^{2}$

Find way to compute a distance that does as well, for biological purposes, as Procrustes distance, based on expert-placed landmarks, automatically?

Landmarked Teeth
$$\longrightarrow$$

 $d_{Procrustes}^{2}\left(S_{1}, S_{2}\right) = \min_{R \text{ rigid tr.}} \sum_{j=1}^{J} \left\|R\left(x_{j}\right) - y_{j}\right\|^{2}$

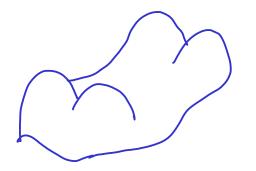
Find way to compute a distance that does as well, for biological purposes, as Procrustes distance, based on expert-placed landmarks, automatically?

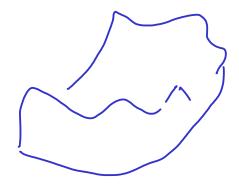
examples: finely discretized triangulated surfaces

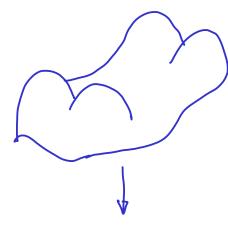
We defined 2 different distances

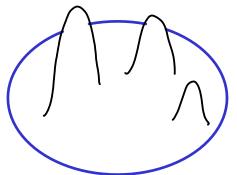
 $d_{
m cWn}$ (S₁, S₂): conformal flattening comparison of neighborhood geometry optimal mass transport

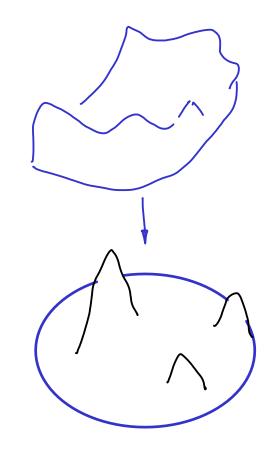
 $d_{\rm cP}$ (S₁, S₂): continuous Procrustes distance

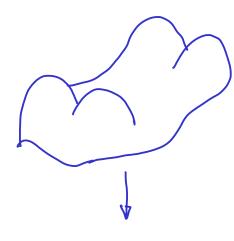


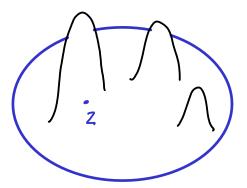


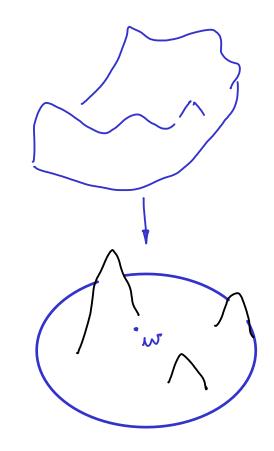


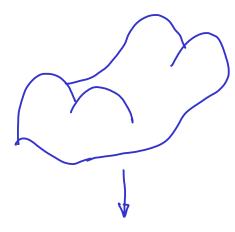


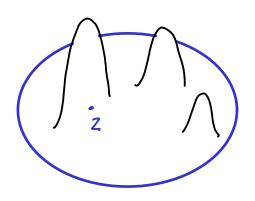


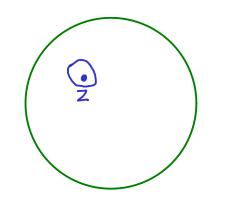


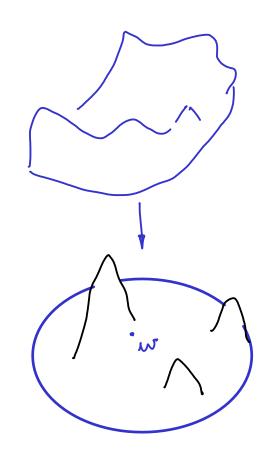


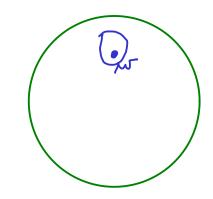


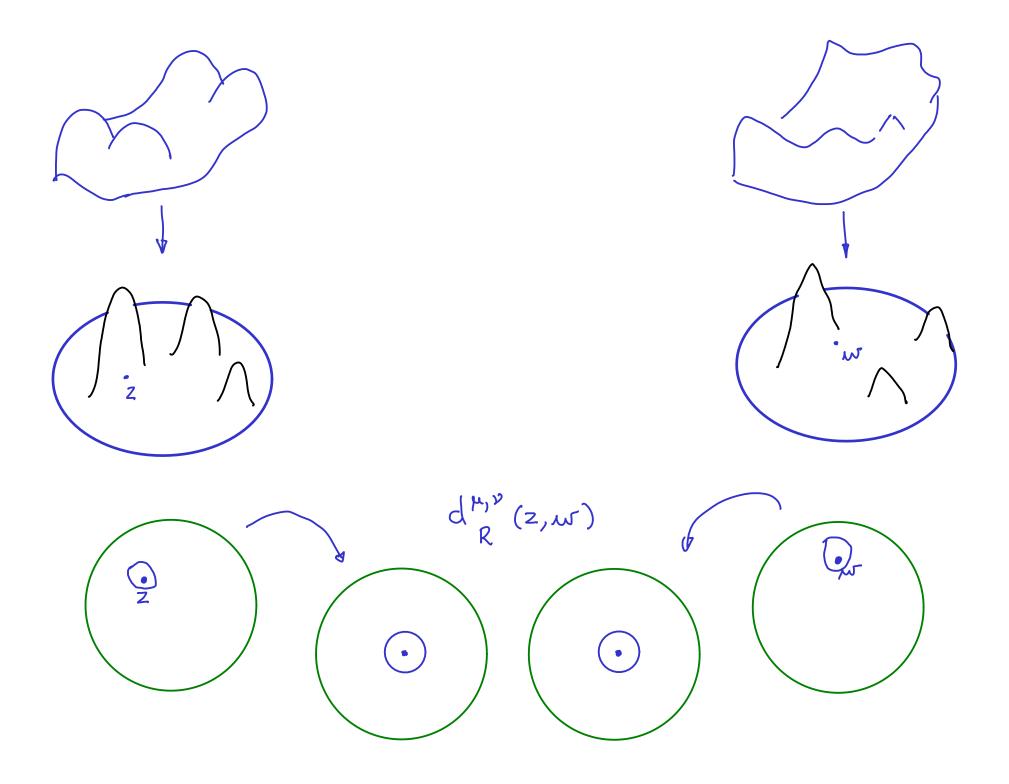


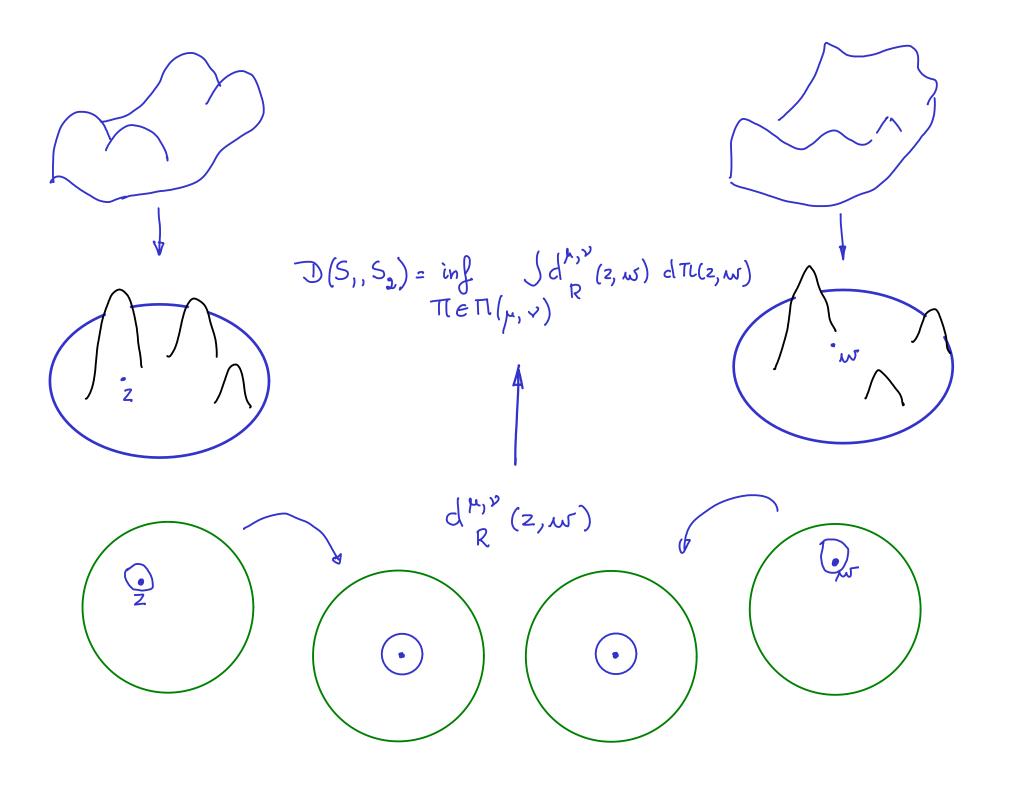


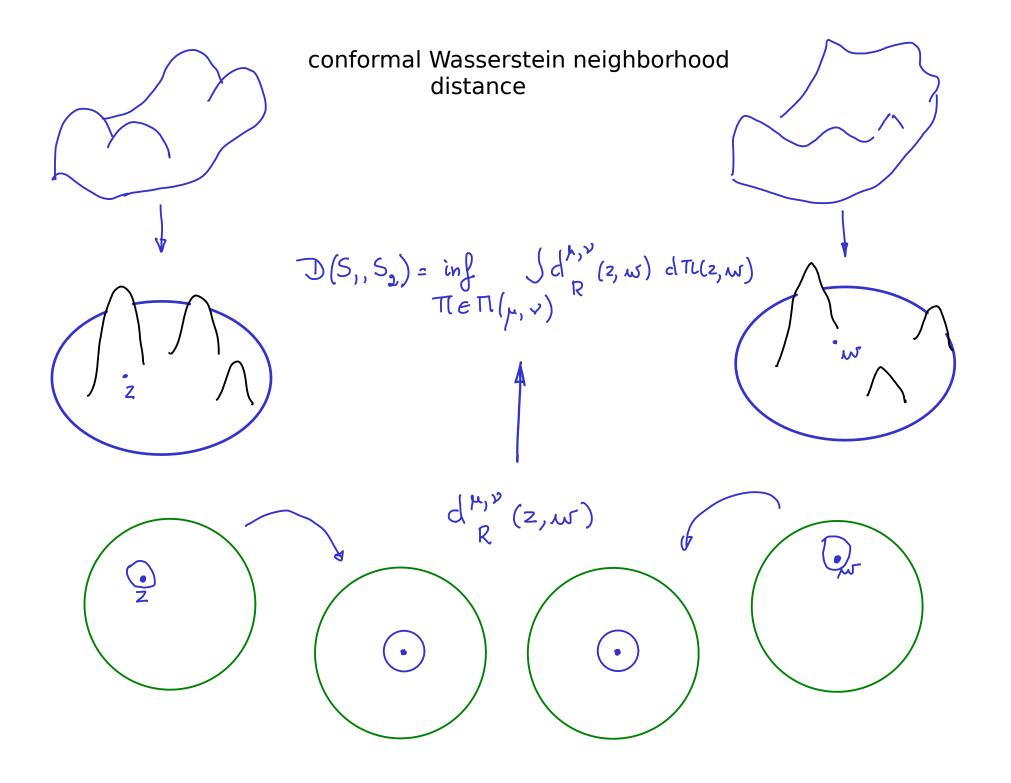












$$D_{\mathrm{cP}}\left(S_{1},S_{2}
ight)=\left(\int_{\mathcal{S}_{1}}\left\Vert \quad x \ -\mathcal{C}\left(x
ight)\left\Vert^{2}d\mathrm{vol}_{\mathcal{S}_{1}}\left(x
ight)
ight)^{rac{1}{2}},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

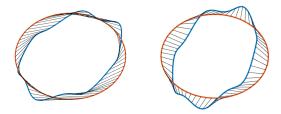
where $C: S_1 \rightarrow S_2$ is an area-preserving diffeomorphism.

$$D_{ ext{cP}}\left(S_{1},S_{2}
ight)=\left(egin{array}{c} \inf \ R\in\mathbb{E}(3) \int_{\mathcal{S}_{1}}\left\Vert R\left(x
ight)-\mathcal{C}\left(x
ight)
ight\Vert ^{2}d ext{vol}_{\mathcal{S}_{1}}\left(x
ight)
ight) ^{rac{1}{2}},$$

where $C: S_1 \to S_2$ is an area-preserving diffeomorphism, and \mathbb{E}_3 is the Euclidean group on \mathbb{R}^3 .

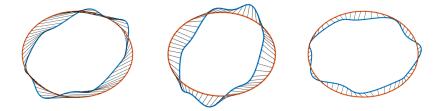
・ロト ・聞ト ・ヨト ・ヨト

-



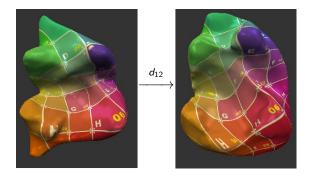
$$D_{\mathrm{cP}}\left(S_{1},S_{2}\right) = \left(\inf_{\mathcal{C}\in\mathcal{A}\left(S_{1},S_{2}\right)}\inf_{R\in\mathbb{E}\left(3\right)}\int_{S_{1}}\left\|R\left(x\right)-\mathcal{C}\left(x\right)\right\|^{2}d\mathrm{vol}_{S_{1}}\left(x\right)\right)^{\frac{1}{2}},$$

where $\mathcal{A}(S_1, S_2)$ is the set of area-preserving diffeomorphisms between S_1 and S_2 , and \mathbb{E}_3 is the Euclidean group on \mathbb{R}^3 .



・ロト ・聞ト ・ヨト ・ヨト

$$d_{cP}\left(S_{1},S_{2}\right) = \inf_{\mathcal{C}\in\mathscr{A}} \inf_{R\in\mathbb{E}_{3}} \left(\int_{S_{1}} \|R(x) - \mathcal{C}(x)\|^{2} d\operatorname{vol}_{S_{1}}(x)\right)^{1/2}$$

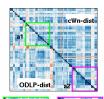


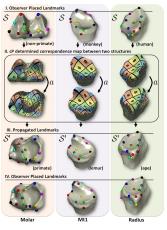
・ロト ・回ト ・ヨト ・ヨト

- 2

We defined 2 different distances

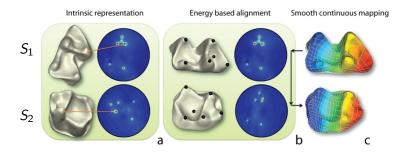
- $d_{
 m cWn}(S_1,S_2)$: conformal flattening comparison of neighborhood geometry optimal mass transport
 - $d_{\mathrm{cP}}\left(S_{1},S_{2}
 ight)$: continuous Procrustes distance



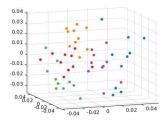


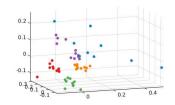
◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 のへで

Bypass Explicit Feature Extraction



MDS for cPD & DD





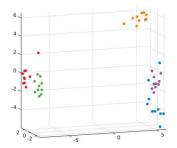
cPD

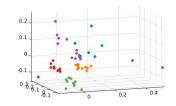
DD

ヘロン ヘロン ヘビン ヘビン

æ

Even better can be obtained!





HBDD

DD

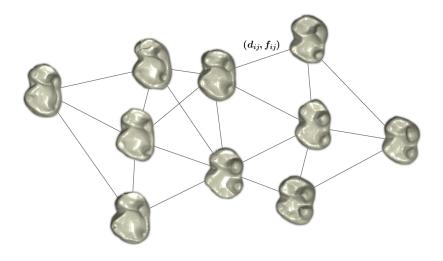
・ロト ・ 日 ・ ・ ヨ ・

ヨト ヨ

to get Diffusion Distance

•

used local distances knitted together -> spectral parametrization -> distance.



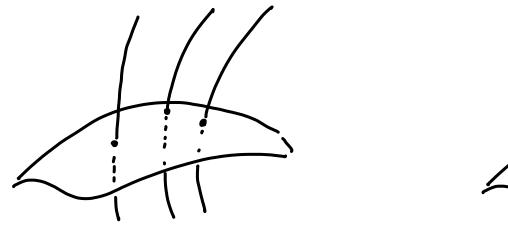
to get Diffusion Distance : used local distances knitted together -> spectral parametrization -> distance.

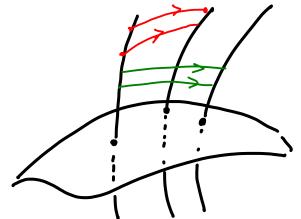
> mappings were used only to obtain numerical values for local distances.

to get Diffusion Distance : used local distances knitted together -> spectral parametrization -> distance.

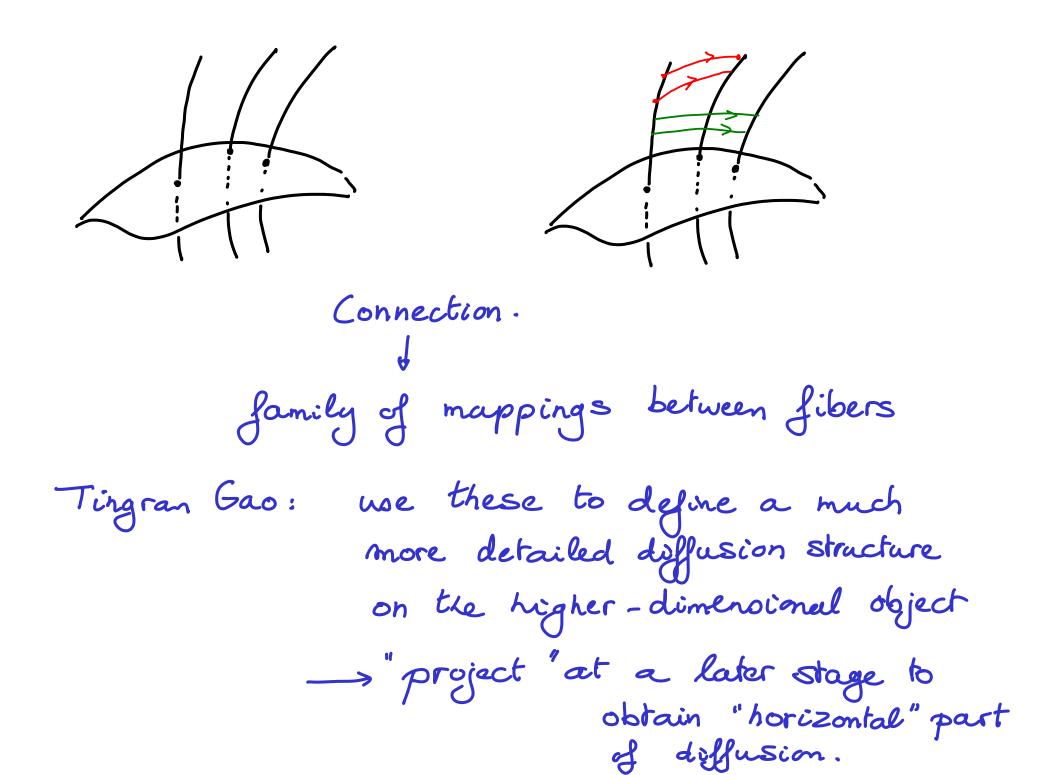
> mappings were used only to obtain numerical values for local distances.

but they can do much more for us! in fact: we have a fiber bundle. (because of the mappings)





Connection. family of mappings between fibers



Fibre Bundle $\mathscr{E} = (E, M, F, \pi)$

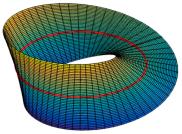
- E: total manifold
- M: base manifold
- $\pi: E \to M$: smooth surjective map (bundle projection)

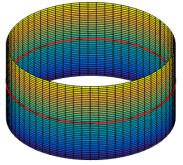
▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

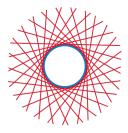
F: fibre manifold

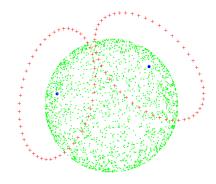
Fibre Bundle $\mathscr{E} = (E, M, F, \pi)$

- E: total manifold
- M: base manifold
- $\pi: E \to M$: smooth surjective map (bundle projection)
- F: fibre manifold
- Iocal triviality: for "small" open set U ⊂ M, π⁻¹(U) is diffeomorphic to U × F



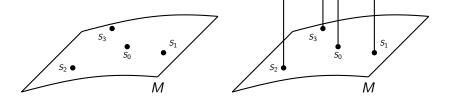




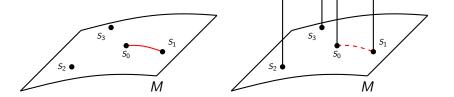


4 ロト 4 日 ト 4 目 ト 4 目 ト 目 の 4 で 16/60

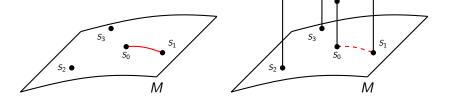
- E: total manifold
- M: base manifold
- $\pi: E \to M$: smooth surjective map (bundle projection)
- F: fibre manifold
- ► *local triviality*: for "small" open set $U \subset M$, $\pi^{-1}(U)$ is diffeomorphic to $U \times F$



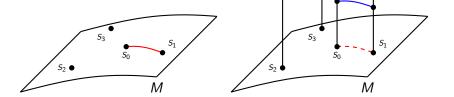
- E: total manifold
- M: base manifold
- $\pi: E \to M$: smooth surjective map (bundle projection)
- F: fibre manifold
- ► *local triviality*: for "small" open set $U \subset M$, $\pi^{-1}(U)$ is diffeomorphic to $U \times F$



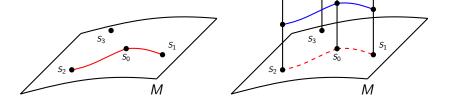
- E: total manifold
- M: base manifold
- $\pi: E \to M$: smooth surjective map (bundle projection)
- F: fibre manifold
- Iocal triviality: for "small" open set U ⊂ M, π⁻¹(U) is diffeomorphic to U × F



- E: total manifold
- M: base manifold
- $\pi: E \to M$: smooth surjective map (bundle projection)
- F: fibre manifold
- Iocal triviality: for "small" open set U ⊂ M, π⁻¹(U) is diffeomorphic to U × F

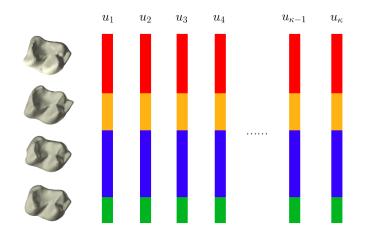


- E: total manifold
- M: base manifold
- $\pi: E \to M$: smooth surjective map (bundle projection)
- F: fibre manifold
- Iocal triviality: for "small" open set U ⊂ M, π⁻¹(U) is diffeomorphic to U × F



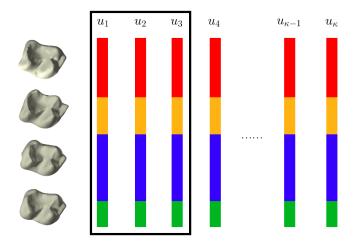
- E: total manifold
- M: base manifold
- $\pi: E \to M$: smooth surjective map (bundle projection)
- F: fibre manifold
- Iocal triviality: for "small" open set U ⊂ M, π⁻¹(U) is diffeomorphic to U × F

Horizontal Diffusion Maps: Embedding the Entire Bundle



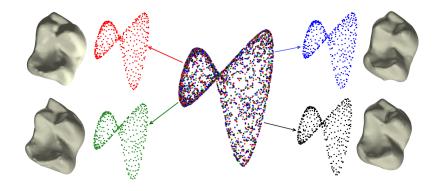
< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · 𝔍 𝔅 32/60

Horizontal Diffusion Maps: Embedding the Entire Bundle



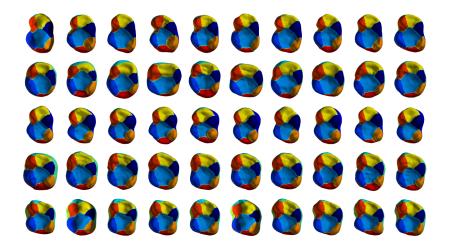
<ロ ト < 回 ト < 三 ト < 三 ト 三 の へ C 33/60

Horizontal Diffusion Maps

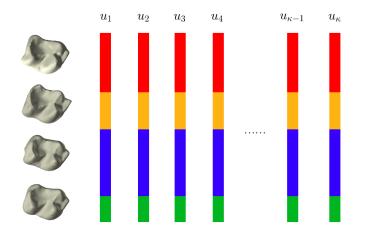


<□▶ <□▶ <□▶ < ■▶ < ■▶ < ■ のへで 34/60

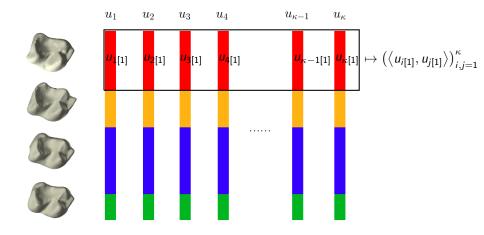
Automatic Landmarking — Interpretability



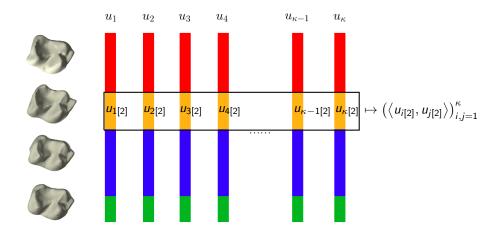
< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ ∽ ♀♀ 35/60

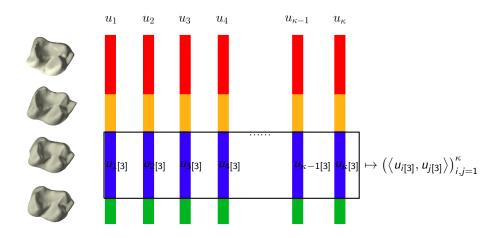


<ロト < 回 ト < 三 ト < 三 ト 三 の へ で 36/60



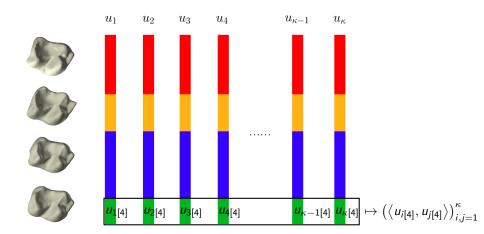
< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · 𝔍 𝔅 37/60





<ロト < 回 ト < 三 ト < 三 ト 三 の へ で 39/60

Horizontal Diffusion Maps: Embedding the Base Manifold



<ロト < 団ト < 臣ト < 臣ト 王 のへで 40/60

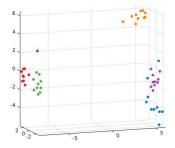
spectral coordinates for points in fiber bundle:

$$(j,p) \longrightarrow (u_k(j,p))$$

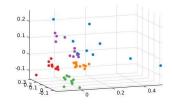
 $j \longrightarrow pt p$
 $s_j \longrightarrow pt p$
 $s_j \longrightarrow pt p$

spectral coordinates for points in fiber bundle:
(j,p) (
$$u_k(j,p)$$
)
(j,p) ($u_k(j,p)$)
(j,p) ($u_k(j,p)$)
(j,p) ($u_k(i,p) - u_k(j,q)$)²]
(j,p) ($u_k(i,p) - u_k(j,q)$)²]

Species Clustering



Horizontal Base Diffusion Distance (with Maps)

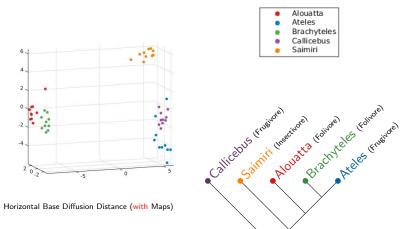


Diffusion Distance (without Maps)

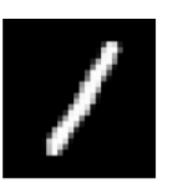
▲□▶ ▲圖▶ ▲国▶ ▲国≯

≣ ∽ ९ № 41/60

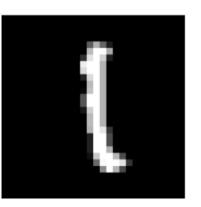
Species Clustering

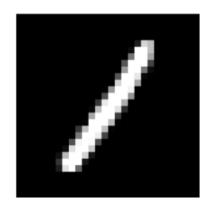


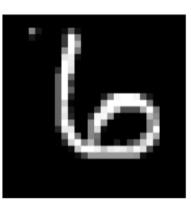
▲□▶ ▲□▶ ▲ ■▶ ▲ ■▶ ■ のへで 42/60

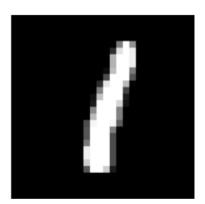


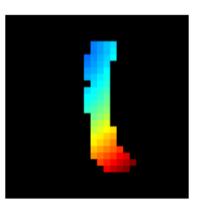


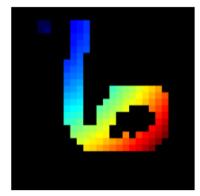


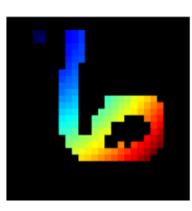


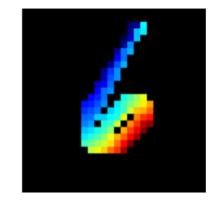


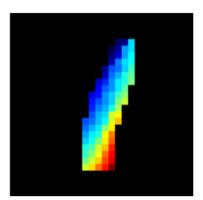


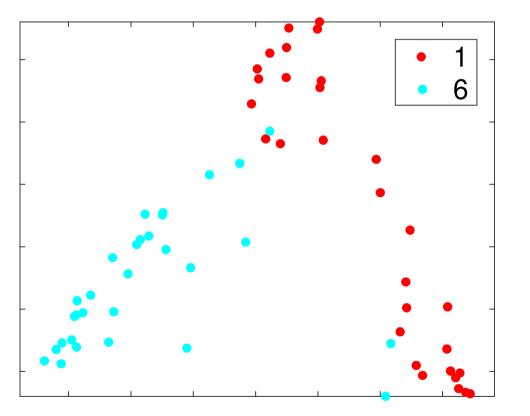


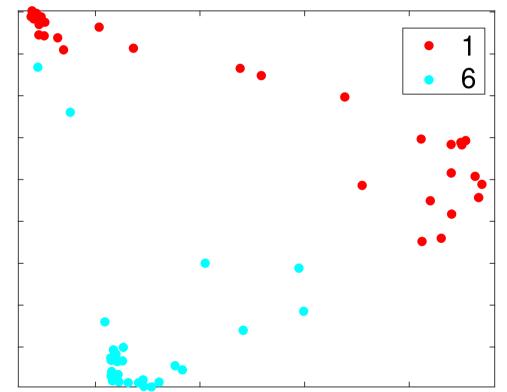


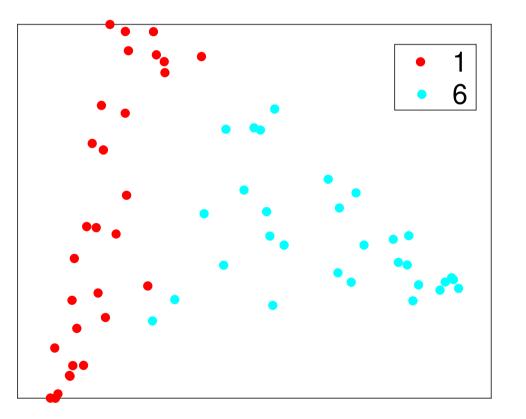


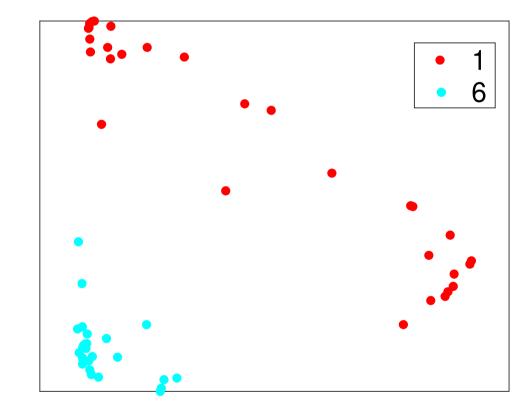


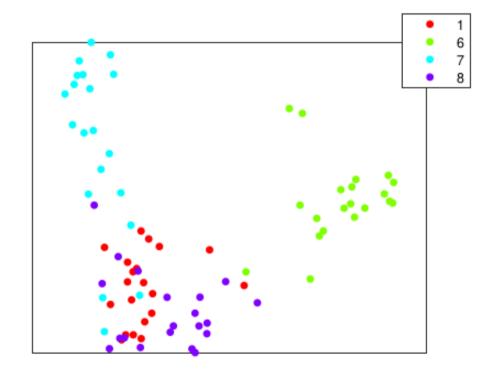


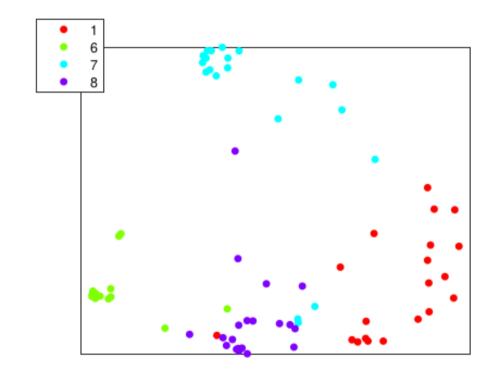












multi-resolution ; coarse & fine -graining.
 Connection is reasonable for bones/teeth of closely related species.

primate molars

crabeater seal molars