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Motivation/Outline

find reliable, efficient numerical method for calculating key
rates for quantum key distribution (QKD) protocols
Currently: ill-posed models ; i.e., we want to (minimize)

find reliable provable lower bound

for the convex relative entropy: trace ρ log ρ− σ log ρ

σ, ρ � 0 (positive semidefinite matrices), even though
singular (opt. currently on boundary of SDP cone)

regulariz. using FACIAL REDUCTION, FR;
on both constraints and nonlinear objective

(I) theoretically proven upper and lower bounds with
possible approximate FR; high precision
(II) (Gauss-Newton) interior point approach on regularized
problem; (originally singularity degree ONE>0)
avoid current perturbation approach to get ρ � 0 (pos. def.)
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QKD Background (Details in References)

Quantum key distribution, QKD: the art of distributing
secret keys between two honest parties, traditionally
known as Alice and Bob;
secret key rate (number of bits of secret key obtained per
exchange of quantum signal) calculation is at the core of a
security proof for any QKD protocol;
calculation is a convex minimization (lower bound)
problem, s.t. constraints to detect presence of any third
party (Eve eavesdropping); fundamentally: security comes
from the Heisenberg uncertainty principle as
eavesdropping means detectable disturbances so Alice
and Bob can detect presence of Eve;
even with a quantum computer, a secret key generated by
QKD remains secure.
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(asymptotic) Key Rate Calculation

Winick, Lütkenhaus, Coles [9]

p∗ = minρ D(G(ρ)‖Z(G(ρ)))
s.t. Γ(ρ) = γ, (trace ρ = 1)

ρ � 0 (density matrices)

Here:
D(δ‖σ) = f (δ, σ) = trace δ[log δ − log σ] is the
quantum relative entropy;
Γ : Hn → Rm lin. transf., Γ(ρ) = (trace Γiρ) = (〈Γi , ρ〉);
Hn linear space Hermitian matrices over R; γ ∈ Rm

G and Z are linear, completely positive maps, CP
(here, sums of products ZiρZ ∗i )

CP G,Z; e.g., G : Hn → Hk , k > n, G(Hn
+) ⊆ Hk

+

e.g. G(ρ) =
∑t

j=1 KjρK ∗j ,
∑t

j=1 K ∗j Kj � I.
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Linear Maps G,Z

Definition (G : Hn → Hk (Kraus repres.))

G(ρ) :=
∑̀
j=1

KjρK ∗j ,

Kj ∈ Ck×n,
∑`

j=1 K ∗j Kj � I; adjoint G∗(δ) :=
∑`

j=1 K ∗j δKj ;
Generally k = i ∗ n > n, i = 2,3, . . .;
and so typically G(ρ) rank deficient ∀ρ � 0 (positive definite)

Definition (self-adjoint (projection) Z : Hk → Hk )

Z(δ) :=
N∑

j=1

ZjδZj ,

Zj = Z 2
j = Z ∗j ∈ Hk

+ and
∑N

j=1 Zj = Ik
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Properties of QKD Problem

Lemma

The linear map Z is an orthogonal projection on Hk and
trace(δ) ≤ 1, δ � 0 implies:

trace (δ logZ(δ)) = trace (Z(δ) logZ(δ))

G, Z ◦ G May not Preserve Positive Definiteness

p∗ = minρ D(G(ρ)‖Z(G(ρ)))
s.t. Γ(ρ) = γ,

ρ � 0 (density matrices)

Known Properties

min
ρ,σ,δ

trace(δ(log δ))− trace(σ(log σ))

quantum relative entropy D is finite under range condition;
jointly convex in both δ and σ
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Equivalent Formulation

Ready for FR, Facial Reduction (Regularization)

p∗ = minρ,σ,δ trace(δ(log δ))− trace(σ(log σ))
s.t. Γ(ρ) = γ

σ = Z(δ)
δ = G(ρ)
ρ, σ, δ � 0.

Our Goal: Final Asymptotic Key Rate
obtained by getting a reliable lower bound of this problem (and
then removing the cost of error correction, a constant).
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Facial Reduction, FR, Borwein-W. [3], Preliminaries

Slater Constraint Qualification, Strict Feasibility, Stability
Slater: ∃ρ̂ � 0 : Γρ̂ = γ

Strong Duality, Stability

Slater is sufficient for strong duality;
equivalent to numerical stability under RHS perturbations;
Slater fails in surprisingly many applications

Advantages of FR

FR can be used to obtain strict feasibility and regularize the
problem, and often simultaneously simplify the problem.

current applications: e.g.

hard discrete opt.; (distance geometry); EDM and low rank
matrix completion etc ... (recent survey Drusvyatskiy-W. [5])
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Facial Reduction, FR, Preliminaries cont...

convex cone: K : λK ⊆ K , ∀λ ≥ 0, K + K ⊂ K ,
dual cone: S∗ = {φ ∈ H : 〈φ, s〉 ≥ 0, ∀s ∈ S}.
convex cone F is a face of a convex cone K , F E K , if

x , y ∈ K , x + y ∈ F =⇒ x , y ∈ F .

Faces of the positive semidefinite cone are characterized by the
range or nullspace of any element in the relative interior:

Lemma

Let F a convex subset of Hn
+ with X ∈ ri F with orthogonal

spectral decomposition X =
[
P Q

] [D 0
0 0

] [
P Q

]∗, with

D ∈ Hr
++. Then TFAE:

(i) F EHn
+;

(ii) F = {Y ∈ Hn
+ : range(Y ) ⊂ range(X )}

= {Y ∈ Hn
+ : null(Y ) ⊃ null(X )};

(iii) F = PHr
+P∗; (iv) F = Hn

+ ∩ (QQ∗)⊥ (exposing QQ∗)
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Facial Reduction via Theorem of Alternative

Lemma (theorem of the alternative)
For the feasible constraint system, exactly one of the following
statements holds:

1 there exists ρ � 0 such that Γ(ρ) = γ (Slater);
2 there exists y (and exposing vector Z ) such that

0 6= Z = Γ∗(y) � 0 , 〈γ, y〉 = 0.

The matrix Z = Γ∗y above is an exposing vector for the feasible
set.

Definition (minimal face)

K a closed convex cone; S ⊆ K a convex set; then face(S) E K
is the minimal face, the intersection of all faces of K that
contain S.
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First (Partial) FR Step on SR (Analytical/Accurate)

affine manifold constraint is divided into two sets
observable, reduced density operator constraint sets, SO ∩ SR;
with Kronecker product, ⊗

SO =
{
ρ � 0 : 〈PA

s ⊗ PB
t , ρ〉 = pst , ∀s, t

}
,

SR = {ρ � 0 : traceB(ρ) = ρA} (partial trace)
=

{
ρ � 0 : 〈Θj ⊗ IB, ρ〉 = θj , ∀j = 1, . . . ,mR

}
,

where

data θj = 〈Θj , ρA〉; and ρA ∈ HnA
+ often singular

{Θj} orthonormal basis system A.

Let range P = range ρA ( HnA ,P∗P = Ir , and let V = P ⊗ IB.
Then FR : ρ ∈ SR =⇒ ρ = VRV ∗, for some R ∈ Hr ·nB

+
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FR on the Objective Function

Lemma (useful equivalent form for entropy function)
Let Y = VRV ∗ ∈ H+, R � 0 be the compact spectral
decomposition of Y with V ∗V = I. Then

trace(Y log Y ) = trace(R log R).

Proof.

We obtain a unitary matrix U =
[
V P

]
by completing the

basis. Then Y = UDU∗, where D = BlkDiag(R,0). We
conclude, with 0 · log 0 = 0, that
trace Y log Y = trace D log D = trace R log R.
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Exposing Vectors Analytically; Spectral Decomposition

We use the following simple result to obtain the exposing
vectors of the minimal face in the problem analytically, i.e., we
find the matrices V with orthonormal columns.

Lemma (analytic FR)

Let C ⊆ Hn
+ be a given closed convex set with nonempty

interior. Let Qi ∈ Hk×n, i = 1, . . . , t , be given matrices. Define
the linear map A : Hn → Hk and matrix V by

A (X ) =
t∑
i

QiXQ∗i , range(V ) = range

(
t∑

i=1

QiQ∗i

)
.

Then the minimal face,

face(A(C )) = VHr
+V ∗.
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Obtain the Minimal Faces, VH+V ∗

ρ = VρRρV ∗ρ ∈ Hn
+, Rρ ∈ Hnρ

+

δ = VδRδV ∗δ ∈ Hk
+, Rδ ∈ Hkδ

+

σ = VσRσV ∗σ ∈ Hk
+, Rσ ∈ Hkσ

+

Define the linear maps

ΓV : Hnρ

+ → Rm by ΓV (Rρ) = Γ(VρRρV ∗ρ ),

GV : Hnρ

+ → Hk
+ by GV (Rρ) = G(VρRρV ∗ρ ),

ZV : Hkδ
+ → Hk

+ by ZV (Rδ) = Z(VδRδV ∗δ ).

14



Substitute with Linear Mapping Vδ(·) := Vδ · V ∗δ

Equivalent Formulation

min trace(Rδ log(Rδ))− trace
(
Rσ log(Rσ)

)
subject to: ΓV (Rρ) = γ

Vσ(Rσ)−ZV (Rδ) = 0
Vδ(Rδ)− GV (Rρ) = 0
Rρ,Rσ,Rδ � 0.

After Rotation and Substitution; final model (QKD)

p∗ = min f (ρ) = trace
(
Ĝ(ρ)(log Ĝ(ρ))

)
− trace

(
Ẑ(ρ) log Ẑ(ρ)

)
subject to: ΓV (ρ) = γV

ρ ∈ Hnρ

+ ,

Slater holds; smaller regularized problem;
positive definiteness preserved in obj. fn
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Derivatives

Theorem (Derivatives of regularized objective)

Let ρ � 0. The gradient of f is

∇f (ρ) = Ĝ∗(log[Ĝ(ρ)]) + Ĝ∗(I) − Ẑ∗(log[Ẑ(ρ)]) + Ẑ∗(I) .

The Hessian in direction ∆ρ is (1st order info)

∇2f (ρ)(∆ρ) = Ĝ∗(log′[Ĝ(ρ)](Ĝ(∆ρ)) −

Ẑ∗(log′[Ẑ(ρ)](Ẑ(∆ρ))

Theorem (subdifferential)

Let {ρi}i ⊆ Snρ

++ with ρi → ρ̄. If we have the convergence
limi ∇f (ρi) = φ, then

φ ∈ ∂f (ρ̄).
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Part II: Opt. Cond.; Bounds; GN Int. Pt. Method

Duality, and primal-dual optimality conditions with
null-space representation
Derive a Gauss-Newton search direction for the nonlinear
SDP (with exact primal and dual feasibility possible)
derive provable lower and upper bounds
Empirics

Facially Reduced (Regularized) Nonlinear SDP

p∗ = min f (ρ) (regularized relative entropy)
subject to: ΓV (ρ) = γV (FR constraints)

ρ ∈ Hnρ

+ (smaller SDP constr.)
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Duality/Optimality

Theorem (Basic Duality/Opt)
1 Lagrangian L(ρ, y) = f (ρ) + 〈y , ΓVρ− γV 〉, y ∈ RmV .

2 Strong Duality
p∗ = max

y
min
ρ�0

L(ρ, y)

= d∗ = max
Z�0,y

(
min
ρ

(L(ρ, y)− 〈Z , ρ〉)
)

and d∗ is attained for some (y ,Z ) ∈ RmV ×Hnρ

+ .
3 p-d pair (ρ, (y ,Z )), with ∂f (ρ) 6= ∅, is optimal iff

0 ∈ ∂f (ρ) + ΓV
∗y − Z (dual feasibility)

0 = ΓVρ− γV (linear primal feasibility)
0 = 〈ρ,Z 〉 (complementary slackness)
0 � ρ,Z (SDP primal feasibility).

Moreover, Γ∗V y � 0, 〈y , γV 〉 < 0, for some y, implies infeas.
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Nullspace Representation/Residuals

Definition (nullspace representation)

ρ̂ ∈ Hnρ feasible point for ΓV (·) = γV .
N ∗ : Rn2

ρ−mV → Hnρ injective linear map in adjoint form so that
we have the nullspace representation for the residual:

F p
µ = ΓVρ− γV ⇐⇒ F p

µ = N ∗(v) + ρ̂− ρ, for some v .

Perturbed Optimality Conditions/Residuals
(i) dual feas.; (ii) primal feas.; (iii) perturbed compl. slack.

Fµ(ρ, v , y ,Z ) =

F d
µ

F p
µ

F c
µ

 =

∇ρf (ρ) + ΓV
∗y − Z

N ∗v + ρ̂− ρ
Zρ− µI

 = 0, ρ,Z � 0.

EXACT p-d feas if updated as: ρ← ∆v ; Z ← ∆ρ,∆y ;
after a steplength = 1 is taken, exact p.f. is maintained.
exact dual feas. for Z is key for lower bound
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Projected Gauss-Newton P-D I-P Method

Linearized System for GN Direction; OVERDETERMINED

F ′µdGN =

∇2f (ρ)∆ρ+ ΓV
∗∆y −∆Z

N ∗(∆v)−∆ρ
Z ∆ρ+ ∆Zρ

 ≈ −Fµ.

From First Block (for backsubstitution)

∆Z = F d
µ +∇2f (ρ)∆ρ+ ΓV

∗∆y
= F d

µ +∇2f (ρ)(F p
µ +N ∗(∆v)) + ΓV

∗∆y .

From Second Block (for backsubstitution)

∆ρ = F p
µ +N ∗(∆v).

Now substitute ∆Z ,∆ρ into third block.
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Projected GN direction

dGN =
(
∆v ∆y

)
(backsubst. for ∆ρ,∆Z )

found from the least squares solution of (OVERDETERMINED)[
ZN ∗(∆v) +∇2f (ρ)N ∗(∆v)ρ

]
+ [ΓV

∗∆yρ]
= −F c

µ − ZF p
µ −

(
F d
µ +∇2f (ρ)F p

µ

)
ρ

(Uses Hessian acting on a vector: ∇2f (ρ) : H→ H)

Initialize: ρ̂ � 0, µ ∈ R++, η ∈ (0,1)
WHILE: stopping criteria is not met
solve for (∆v ,∆y)
∆ρ = F p

µ +N ∗(∆v)
∆Z = F d

µ +∇2f (ρ)(F p
µ +N ∗(∆v)) + ΓV

∗∆y
choose steplength α
(ρ, y ,Z )← (ρ, y ,Z ) + α(∆ρ,∆y ,∆Z )
µ = trace(ρZ )/n; µ← ηµ
ENDWHILE
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Implementation Details

Sparse Nullspace Representation
We use a matrix representation M for Γ and a row and column
permutation to get a well-conditioned near triangular basis
matrix B. nullspace representation:

r̂ = Hvec ρ̂; ΓV ρ̂ = Mr̂(cp) = γV , M =
[
B E

]
, N∗ =

[
B−1E
−I

]
;

Optimal Diagonal Preconditioning, [4]

di = ‖F c′
µ (ei)‖, for unit vectors ei ; column precondition using

F c′
µ ← F c′

µ Diag (d)−1

MATLAB: dGN = ((F c′
µ /Diag (d))\RHS)./d

Performed exceptionally well; problems are VERY
ill-conditioned.
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Upper Bounds

Evaluate f at Feasible ρ; Iterative Refinement if Needed
if approximate linear feasibility ΓV ρ̂ ≈ γV , we apply iterative
refinement by finding the projection Let ρ̂ � 0, F p

µ = ΓV ρ̂− γV .
Then

ρ = ρ̂− ΓV
†F p
µ = argmin ρ

{
1
2
‖ρ− ρ̂‖2 : ΓVρ = γV

}
,

where we denote ΓV
†, generalized inverse. If ρ � 0, then

p∗ ≤ f (ρ).

EXACT Primal Feasibility
In our tests we take a Newton step quite early, and maintain
exact primal feasibility (no roundoff error buildup) for the further
iterations.
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Lower Bound from Weak Duality

ρ � 0,Z � 0 in Interior Point Algorithm

The gradients exist at ρ � 0; we can verify dual feasibility.

Corollary (Lower Bound for FR problem from EXACT Dual
Feas.)

ρ̂, ŷ primal-dual iterate; ρ̂ � 0. Set Z̄ = ∇f (ρ̂) + ΓV
∗ŷ .

If Z̄ � 0, then lower bound is:

p∗ ≥ f (ρ̂) + 〈ŷ , ΓV ρ̂− γV 〉 − 〈ρ̂, Z̄ 〉.

Proof.
Consider the dual problem
d∗ = maxy ,Z�0 minρ∈Hnρ L(ρ, y)− 〈Z , ρ〉. Dual feasibility implies:

Z̄ � 0, ∇f (ρ̂) + ΓV
∗ŷ − Z̄ = 0 =⇒ ρ̂ ∈ argmin ρL(ρ, ŷ)− 〈Z̄ , ρ〉.

Result follows from weak duality.
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Numerics; GN vs FW with/without FR

Problem Data Gauss-Newton FW (FR) FW (no FR) cvxquad (FR)
protocol size gap time gap time gap time gap time
ebBB84 (4,16) 6.0e-13 0.4 1.0e-04 86.9 1.2e-04 93.9 5.5e-01 194
ebBB84 (4,16) 1.2e-12 0.3 1.7e-04 96.8 1.3e-04 110.5 5.4e-01 1938
ebBB84 (4,16) 1.1e-12 0.2 1.6e-04 86.5 2.2e-04 112.0 5.7e-01 1979
ebBB84 (4,16) 4.2e-13 0.2 2.2e-04 88.6 2.2e-04 111.9 6.3e-01 523
pmBB84 (8,32) 5.5e-13 0.2 3.1e-05 1.3 6.5e-04 1.6 5.3e-01 158
pmBB84 (8,32) 6.1e-13 0.2 1.6e-04 1.1 3.8e-04 93.0 5.2e-01 207
pmBB84 (8,32) 6.3e-13 0.2 5.5e-05 1.1 3.0e-04 112.3 5.6e-01 299
pmBB84 (8,32) 1.3e-12 0.2 2.6e-04 1.1 1.3e-03 87.0 5.9e-01 188
mdiBB84 (48,96) 7.9e-13 0.9 9.6e-05 1.6 5.4e-04 120.9 1.8e-01 570
mdiBB84 (48,96) 1.4e-12 0.7 5.5e-05 101.2 6.6e-04 119.7 2.4e-01 585
mdiBB84 (48,96) 5.7e-13 0.9 1.5e-04 101.9 1.7e-03 439.3 3.1e-01 584
mdiBB84 (48,96) 9.2e-13 0.8 1.8e-04 100.0 2.2e-03 441.3 3.7e-01 558

Table: Numerical Report: Gauss-Newton, Frank-Wolfe (FW), cvxquad

GN performs significantly better for both accuracy and
running time
only three protocols (each with four different parameter
settings);
that is all that cvxquad could handle;
FW is significantly improved by using our new FR

25



Larger Numerics; cvxquad Failed

Problem Data Gauss-Newton FW (FR) FW (no FR)
protocol size gap time gap time gap time
TFQKD (12,24) 5.9e-13 1.1 2.6e-09 1.9 1.6e-03 364.1
TFQKD (12,24) 1.2e-12 0.8 3.8e-09 1.5 5.6e-04 369.1
TFQKD (12,24) 3.2e-13 0.8 4.0e-09 1.3 1.7e-04 4.1
DMCV (44,176) 2.7e-09 1326.1 2.4e-06 2808.4 3.4e-06 4933.9
DMCV (44,176) 2.7e-09 1377.4 1.3e-06 974.2 2.5e-06 1281.2
DMCV (48,192) 3.1e-09 1807.1 2.7e-06 3167.4 5.1e-06 5407.5
DMCV (48,192) 3.2e-09 2110.6 2.6e-06 979.8 2.0e-06 1756.3

dprBB84 (12,48) 4.9e-13 1.3 3.8e-06 88.0 9.4e-05 123.0
dprBB84 (24,96) 1.0e-12 12.1 6.2e-06 15.9 3.6e-06 31.1
dprBB84 (36,144) 5.0e-13 69.3 6.5e-04 8.8 2.1e-02 30.1
dprBB84 (48,192) 1.1e-12 325.5 4.4e-05 17.1 9.8e-04 181.9

Table: Numerical Report: Gauss-Newton, Frank-Wolfe (FW)

GN performs significantly better again
FW does significantly better with our new FR again
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GN is Exactly Analytical (Protocol mdiBB84)
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pz =0.5, Gauss-Newton
pz =0.5, theory
pz =0.7, Gauss-Newton
pz =0.7, theory
pz =0.9, Gauss-Newton
pz =0.9, theory
pz =0.99, Gauss-Newton
pz =0.99, theory

The • are the lower bounds from GN; they coincide exactly with
the analytical values on the curves.
This meets with the empirical evidence of gaps ≈ 10−12
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Conclusion

regularized the key rate calculation using FACIAL
REDUCTION on both constraints and nonlinear (relative
entropy) objective function over the Hermitians (complex);
provided theoretically proven upper and lower bounds with
high precision
derived robust (Gauss-Newton) interior point approach on
regularized problem

avoids current perturbation approach to get ρ � 0;
avoids roundoff error from backsubstitution steps;
attains exact primal feasibility during iterations
uses exact dual feasibility steps to improve on lower bounds
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