Compositions of projection mappings:
 fixed point sets and difference vectors

Heinz H. Bauschke
heinz.bauschke@ubc.ca

Mathematics
University of British Columbia, Kelowna, B.C., Canada Research supported by NSERC

One World Optimization Seminar

Monday, March 28, 2021
15:30 CEST ($=6: 30$ AM Vancouver time)

Abstract

Projection operators and associated projection algorithms are fundamental building blocks in fixed point theory and optimization.

In this talk, I will survey recent results on the displacement mapping of the right-shift operator and sketch a new application deepening our understanding of the geometry of the fixed point set of the composition of projection operators in Hilbert space.

Based on joint works with Salha Alwadani, Julian Revalski, and Shawn Wang.

Acknowledgments

First and foremost, a

BIG THANK YOU

to the organizers for keeping us optimistically optimizing during the past 14 months!!

Radu Boț

Shoham Sabach

Mathias Staudigl

Acknowledgments

This talk is based on joint works with various collaborators, most recently with

- Salihah Alwadani (UBC Okanagan)
- Julian Revalski (Academy of Sciences, Bulgaria)
- Xianfu Wang (UBC Okanagan)

Salha Alwadani

Julian Revalski

Shawn Wang

Introduction

The setting

Throughout, suppose that

X is a real Hilbert space,

with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$, and $m \geq 2$. Assume that
$C_{1}, C_{2}, \ldots, C_{m}$ are nonempty closed convex subsets of X,
with associated projectors (nearest-point mappings)

$$
\mathrm{P}_{1}:=\mathrm{P}_{C_{1}}, \ldots, \mathrm{P}_{m}:=\mathrm{P}_{C_{m}} .
$$

Our goal is to understand the fixed point set

$$
F_{m}:=\operatorname{Fix}\left(\mathrm{P}_{m} \cdots \mathrm{P}_{2} \mathrm{P}_{1}\right) .
$$

We also define cyclically

$$
\begin{gathered}
F_{m-1}:=\operatorname{Fix}\left(\mathrm{P}_{m-1} \mathrm{P}_{m-2} \cdots \mathrm{P}_{1} \mathrm{P}_{m}\right) \\
\vdots \\
F_{1}:=\operatorname{Fix}\left(\mathrm{P}_{1} \mathrm{P}_{m} \cdots \mathrm{P}_{3} \mathrm{P}_{2}\right)
\end{gathered}
$$

Why care?

A significant number of convex optimization problems are convex feasibility problems of the form

$$
\text { Find } x \in C_{1} \cap C_{2} \cap \cdots \cap C_{m}=: S
$$

Very beautifully,

$$
S \neq \varnothing \Rightarrow S=F_{m}=F_{m-1}=\cdots=F_{1}
$$

And, very usefully, when $S \neq \varnothing$, then a point in S can be found as the weak limit of the sequence

$$
\begin{aligned}
& x_{0}, P_{1} x_{0}, P_{2} P_{1} x_{0}, \ldots, P_{m} \cdots P_{1} x_{0} \\
& \quad P_{1} P_{m} \cdots P_{1} x_{0}, \ldots,\left(P_{m} \cdots P_{1}\right)^{2} x_{0} \\
& \quad P_{1}\left(P_{m} \cdots P_{1}\right)^{2} x_{0}, \ldots,\left(P_{m} \cdots P_{1}\right)^{3} x_{0}, \ldots
\end{aligned}
$$

generated by the method of cyclic projections a.k.a. "POCS" (Projections Onto Convex Sets).
This was applied by Sir Godfrey Hounsfield who won a Nobel prize in 1979 for his work on Computer-assisted Tomography.

$S \neq \varnothing \Rightarrow S=F_{m}=\cdots=F_{1}$

When $S=C_{1} \cap \cdots \cap C_{m} \neq \varnothing$, then all fixed point sets F_{i} must coincide with S.

The question

Question: What happens when $S=\varnothing$? What is F_{m} ??

$m=2$

Suppose now (temporarily) that $m=2$.
Consider the "gap" between C_{1} and C_{2} :

$$
\delta:=\inf _{\left(c_{1}, c_{2}\right) \in C_{1} \times C_{2}}\left\|c_{1}-c_{2}\right\| .
$$

This is an infimum which may or may not be attained.
Let's assume δ is actually attained, i.e., the infimum is a minimum. Then the following hold for $\left(c_{1}, c_{2}\right)$ and $\left(c_{1}^{\prime}, c_{2}^{\prime}\right)$ in $C_{1} \times C_{2}$:

- $\left\|c_{1}-c_{2}\right\|=\delta \Leftrightarrow c_{2}=\mathrm{P}_{2} c_{1}$ and $c_{1}=\mathrm{P}_{1} c_{2}$ in which case (c_{1}, c_{2}) form a best approximation pair
- $\left\|c_{1}-c_{2}\right\|=\delta \Rightarrow c_{2} \in F_{2}$ and $c_{1} \in F_{1}$
- F_{1} and F_{2} are both nonempty
- $\left\|c_{1}-c_{2}\right\|=\delta$ and $\left\|c_{1}^{\prime}-c_{2}^{\prime}\right\|=\delta$ implies

$$
v_{1}:=c_{2}-c_{1}=c_{2}^{\prime}-c_{1}^{\prime}
$$

the difference (a.k.a. gap) vector is well defined!

$m=2$ and δ infimum attained

Two best approximation pairs $\left(c_{1}, c_{2}\right)$ and $\left(c_{1}^{\prime}, c_{2}^{\prime}\right)$

$m=2$ (continued)

Recall $\delta:=\inf _{\left(c_{1}, c_{2}\right) \in C_{1} \times c_{2}}\left\|c_{1}-c_{2}\right\|$.
If one of the sets is bounded, say C_{2}, then δ is always attained.
Sketch of Proof:

- The map

$$
\mathrm{P}_{2} \mathrm{P}_{1}: C_{2} \rightarrow C_{2}
$$

is a nonexpansive (Lipschitz-1) selfmap of C_{2}.

- By the Browder-Göhde-Kirk Fixed Point Theorem, this map has a fixed point $\bar{x} \in C_{2}$:

$$
\bar{x}=\mathrm{P}_{2} \mathrm{P}_{1} \bar{x}
$$

- But then

$$
\left(c_{1}, c_{2}\right)=\left(\mathrm{P}_{1} \bar{x}, \bar{x}\right)
$$

forms a best approximation pair and attains the infimum!
Remark: This proof also works for $m \geq 2$!

$m=2$ (continued)

Recall $\delta:=\inf _{\left(c_{1}, c_{2}\right) \in C_{1} \times c_{2}}\left\|c_{1}-c_{2}\right\|$.
However, it can happen that δ is not attained:
Example. Assume that in $X=\mathbb{R}^{2}$ we have

$$
\begin{aligned}
& C_{1}=\mathbb{R} \times\{0\} \\
& C_{2}=\operatorname{epi}(1+\exp)=\left\{(\xi, \eta) \in \mathbb{R}^{2} \mid 1+\exp (\xi) \leq \eta\right\}
\end{aligned}
$$

Then $\delta=1$, but the infimum is not attained.
Example. Suppose that C_{1} and C_{2} are closed affine subspaces, say $C_{1}=c_{1}+L_{1}, C_{2}=c_{2}+L_{2}$, where L_{1}, L_{2} are linear subspaces.
Then:

- If X is finite-dimensional, then δ is always attained.
- If X is infinite-dimensional, then one can construct C_{1} and C_{2} such that the Minkowski sum
$C_{1}+C_{2}$ is not closed
and δ is not attained!
$m=2$ and δ infimum not attained

The (magic) difference vectors

Whether or not δ is attained, we can always (well!) define the so-called difference vectors

$$
\begin{aligned}
& v_{1}:=\mathrm{P}_{\overline{C_{2}-C_{1}}}(0), \\
& v_{2}:=\mathrm{P}_{\overline{C_{1}-C_{2}}}(0) .
\end{aligned}
$$

(Here $C_{2}-C_{1}=\left\{c_{2}-c_{1} \mid\left(c_{1}, c_{2}\right) \in C_{1} \times C_{2}\right\}$.) These satisfy

$$
\left\|v_{1}\right\|=\left\|v_{2}\right\|=\delta \text { and } v_{1}+v_{2}=0
$$

Moreover, the difference vectors satisfy

$$
\begin{aligned}
& F_{2}=C_{2} \cap\left(v_{1}+C_{1}\right) \\
& F_{1}=C_{1} \cap\left(v_{2}+C_{2}\right) .
\end{aligned}
$$

In other words, the sets F_{1} and F_{2} are obtained in two easy steps:
Step 1 translate/shift the original sets C_{1} and C_{2} using v_{1} and v_{2}, Step 2 then intersect!

The difference vector for $m=2$ and δ attained

δ attained and $F_{2}=C_{2} \cap\left(v_{1}+C_{1}\right) \neq \varnothing$

The difference vector for $m=2$ and δ unattained

17

The geometry conjecture

The geometry conjecture, first posed in 1997 by Bauschke, Borwein, and Lewis (Contemp. Math.), states the following:

Suppose $m \geq 2$. Then there exist vectors $v_{1}, v_{2}, \ldots, v_{m}$ such that

$$
\begin{aligned}
& F_{m}=C_{m} \cap\left(v_{m-1}+C_{m-1}\right) \\
& \cap\left(v_{m-1}+v_{m-2}+C_{m-2}\right) \\
& \vdots \\
& \cap\left(v_{m-1}+\cdots+v_{2}+v_{1}+C_{1}\right)
\end{aligned}
$$

and similarly for F_{m-1}, \ldots, F_{1}.
When $\bigcap_{i=1}^{m} C_{i} \neq \varnothing\left(\Rightarrow v_{1}=\cdots v_{m}=0\right)$, or when $m=2$, the geometry conjecture holds true by works of Cheney and Goldstein (Proc. AMS 1959) and of Bauschke and Borwein (JAT 1994).

The problem in one picture

What are the difference vectors v_{1}, v_{2}, v_{3} ?

Cycles

Suppose that $F_{m} \neq \varnothing$, and pick $z_{m} \in F_{m}$, i.e.,

$$
z_{m}=\mathrm{P}_{m} \cdots \mathrm{P}_{2} \mathrm{P}_{1} z_{m}
$$

Then

$$
\mathrm{P}_{1} z_{m}=\mathrm{P}_{1} \mathrm{P}_{m} \cdots \mathrm{P}_{2} \mathrm{P}_{1} z_{m}=\left(\mathrm{P}_{1} \mathrm{P}_{m} \cdots \mathrm{P}_{2}\right)\left(\mathrm{P}_{1} z_{m}\right)
$$

and so

$$
\begin{aligned}
z_{1} & :=\mathrm{P}_{1} z_{m} \in F_{1} \\
z_{2} & :=\mathrm{P}_{2} z_{1} \in F_{2} \\
& \vdots \\
z_{m-1} & :=\mathrm{P}_{m-1} z_{m-2} \in F_{m-1} \\
z_{m} & =\mathrm{P}_{m} z_{m-1} .
\end{aligned}
$$

We refer to the vector $\mathrm{z}:=\left(z_{1}, z_{2}, \ldots, z_{m}\right) \in X^{m}$ as a cycle.
Cycles exist $\Leftrightarrow F_{m} \neq \varnothing$.

Cycles and optimization!

If $m=2$, then $z=\left(z_{1}, z_{2}\right)$ is a cycle if and only if z is a minimizer of the function

$$
\mathrm{x}=\left(x_{1}, x_{2}\right) \mapsto \iota c_{1}\left(x_{1}\right)+\iota c_{2}\left(x_{2}\right)+\frac{1}{2}\left\|x_{1}-x_{2}\right\|^{2} .
$$

This suggests the conjecture that $z=\left(z_{1}, \ldots, z_{m}\right)$ is a cycle if it minimizes a function of the form

$$
x=\left(x_{1}, \ldots, x_{m}\right) \mapsto \sum_{i=1}^{m} \iota c_{i}\left(x_{i}\right)+\varphi\left(x_{1}, \ldots, x_{m}\right)
$$

however, Baillon, Combettes, and Cominetti proved in 2012 that this is impossible when $m \geq 3$: cycles defy optimization!

On the positive side, we can deduce some information about the difference vectors and the geometry conjecture when we have cycles!

Cycles and difference vectors

Assume that we have two cycles, say $z:=\left(z_{1}, z_{2}, \ldots, z_{m}\right)$ and $\mathrm{y}:=\left(y_{1}, y_{2}, \ldots, y_{m}\right)$.

For notational simplicity, let's assume that $m=3$ (the proof easily extends to general m).
Then, by definition of "cycle",

$$
\begin{aligned}
& z_{1}=\mathrm{P}_{1} z_{3} \\
& z_{2}=\mathrm{P}_{2} z_{1} \\
& z_{3}=\mathrm{P}_{3} z_{2}
\end{aligned}
$$

and similarly for $\left(y_{1}, y_{2}, y_{3}\right)$.
Because projectors are firmly nonexpansive, this implies ...

Cycles and difference vectors (continued)

$$
\begin{aligned}
\left\|y_{3}-z_{3}\right\|^{2}= & \left\|\mathrm{P}_{3} y_{2}-\mathrm{P}_{3} z_{2}\right\|^{2} \\
\leq & \left\|y_{2}-z_{2}\right\|^{2}-\left\|\left(\mathrm{Id}-\mathrm{P}_{3}\right) y_{2}-\left(\mathrm{Id}-\mathrm{P}_{3}\right) z_{2}\right\|^{2} \\
\leq & \left\|y_{1}-z_{1}\right\|^{2}-\|\left(\text { Id }-\mathrm{P}_{2}\right) y_{1}-\left(\mathrm{Id}-\mathrm{P}_{2}\right) z_{1} \|^{2} \\
& \quad-\|\left(\text { Id }-\mathrm{P}_{3}\right) y_{2}-\left(\mathrm{Id}-\mathrm{P}_{3}\right) z_{2} \|^{2} \\
\leq & \left\|y_{3}-z_{3}\right\|^{2}-\|\left(\text { Id }-\mathrm{P}_{1}\right) y_{3}-\left(\mathrm{Id}-\mathrm{P}_{1}\right) z_{3} \|^{2} \\
& \quad-\|\left(\text { Id }-\mathrm{P}_{2}\right) y_{1}-\left(\mathrm{Id}-\mathrm{P}_{2}\right) z_{1} \|^{2} \\
& \quad-\|\left(\text { Id }-\mathrm{P}_{3}\right) y_{2}-\left(\mathrm{Id}-\mathrm{P}_{3}\right) z_{2} \|^{2} .
\end{aligned}
$$

Hence equality holds throughout, which implies that all nonpositive terms are equal to zero and thus:

$$
\begin{aligned}
& y_{2}-P_{3} y_{2}=z_{2}-P_{3} z_{2} \Leftrightarrow y_{2}-y_{3}=z_{2}-z_{3} \\
& y_{1}-P_{2} y_{1}=z_{1}-P_{2} z_{1} \Leftrightarrow y_{1}-y_{2}=z_{1}-z_{2} ; \\
& y_{3}-P_{1} y_{3}=z_{3}-P_{1} z_{3} \Leftrightarrow y_{3}-y_{1}=z_{3}-z_{1} .
\end{aligned}
$$

Cycles and difference vectors (continued)

We thus well define

$$
\begin{aligned}
& v_{1}:=z_{2}-z_{1} \\
& v_{2}:=z_{3}-z_{2} \\
& v_{3}:=z_{1}-z_{3}
\end{aligned}
$$

where $\mathrm{z}=\left(z_{1}, z_{2}, z_{3}\right)$ is any cycle. Then

$$
\begin{gathered}
z_{3} \in C_{3} \\
z_{3}=v_{2}+z_{2} \in v_{2}+C_{2} \\
z_{3}=v_{2}+v_{1}+z_{1} \in v_{2}+v_{1}+C_{1} .
\end{gathered}
$$

We thus proved

$$
F_{3} \subseteq C_{3} \cap\left(v_{2}+C_{2}\right) \cap\left(v_{2}+v_{1}+C_{1}\right)
$$

which is one half of the geometry conjecture! But:
\ominus the other half of the geometry conjecture is still missing;
\ominus we don't know how to define the v_{i} intrinsically, i.e., in the absence of cycles, when $m \geq 3$!

Geometry conjecture

Regarding the geometry conjecture, we know:

- it is true when $C_{1} \cap \cdots \cap C_{m} \neq \varnothing$ (with $\left.v_{i} \equiv 0\right)$;
- it is true when $m=2$;
- one half is known to be true when there are cycles.

GOOD NEWS: The geometry conjecture is true in general !!

Main Result and Tools utilized

Product space

We will work in the product space

$$
X:=X^{m}
$$

in which we set

$$
C:=C_{1} \times \cdots \times C_{m} \text { and } \Delta:=\{(x, \ldots, x) \in X \mid x \in X\}
$$

It is well known that

$$
\mathrm{P}_{\mathrm{C}}\left(x_{1}, \ldots, x_{m}\right)=\left(\mathrm{P}_{1} x_{1}, \ldots, \mathrm{P}_{m} x_{m}\right)
$$

and

$$
\mathrm{P}_{\Delta}\left(x_{1}, \ldots, x_{m}\right)=\frac{1}{m}\left(\sum_{i=1}^{m} x_{i}, \ldots, \sum_{i=1}^{m} x_{i}\right)
$$

The right shift operator

Define the (circular) right shift operator R by

$$
\mathrm{R}: \mathrm{X} \rightarrow \mathrm{X}:\left(x_{1}, x_{2}, \ldots, x_{m}\right) \mapsto\left(x_{m}, x_{1}, x_{2}, \ldots, x_{m-1}\right)
$$

Then

$$
\mathrm{z}=\left(z_{1}, \ldots, z_{m}\right) \text { is a cycle } \Leftrightarrow \mathrm{z}=\mathrm{P}_{\mathrm{C}}(\mathrm{Rz})
$$

Denote the (possibly empty) set of all cycles by

$$
Z:=\operatorname{Fix}\left(P_{C} R\right)
$$

Now $z=P_{C} R z=\left(I d+N_{C}\right)^{-1} R z \Leftrightarrow R z \in z+N_{C} \Leftrightarrow \Leftrightarrow$

$$
\begin{equation*}
0 \in N_{C}(z)+(I d-R)(z) \tag{P}
\end{equation*}
$$

which we view as a (primal) sum problem!
Note that the operator sum in (P) is maximally monotone.
Recall that $A: X \rightrightarrows X$ is monotone if $\left(\forall x^{*} \in A x\right)\left(\forall y^{*} \in A y\right)$ $\left\langle x-y, x^{*}-y^{*}\right\rangle \geq 0$; it is maximally monotone if it cannot be enlarged without destroying monotonicity: e.g., subdifferentials of convex functions and matrices whose symmetric part is $\succeq 0$.

The (Attouch-Théra) dual and the skew operator T

The Attouch-Théra dual of (P) is

$$
\begin{equation*}
0 \in N_{\mathrm{C}}^{-1}(\mathrm{y})+(\mathrm{ld}-\mathrm{R})^{-1}(\mathrm{y}) . \tag{D}
\end{equation*}
$$

This operator sum is not necessarily maximally monotone! If y solves (D), then

$$
\mathrm{Z}=N_{\mathrm{C}}^{-1}(\mathrm{y}) \cap-(\mathrm{Id}-\mathrm{R})^{-1}(\mathrm{y}) \neq \varnothing
$$

But what is $(\mathrm{Id}-\mathrm{R})^{-1}$? It turns out that

$$
(\mathrm{Id}-\mathrm{R})^{-1}=\frac{1}{2} \mathrm{Id}+N_{\Delta^{\perp}}+\mathrm{T}
$$

where $\mathrm{T}^{*}=-\mathrm{T}$ is the skew linear (\Rightarrow monotone) operator

$$
\mathrm{T}:=\frac{1}{2 m} \sum_{k=1}^{m-1}(m-2 k) \mathrm{R}^{k} .
$$

This inversion formula is a consequence of recent work by Alwadani-Bauschke-Revalski-Wang 2020.

Instances of T for $m \in\{2,3,4,5,6\}$

$$
\begin{aligned}
& \left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \quad \frac{1}{6}\left(\begin{array}{ccc}
0 & -1 & 1 \\
1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right), \quad \frac{1}{4}\left(\begin{array}{cccc}
0 & -1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
-1 & 0 & 1 & 0
\end{array}\right), \\
& \frac{1}{10}\left(\begin{array}{ccccc}
0 & -3 & -1 & 1 & 3 \\
3 & 0 & -3 & -1 & 1 \\
1 & 3 & 0 & -3 & -1 \\
-1 & 1 & 3 & 0 & -3 \\
-3 & -1 & 1 & 3 & 0
\end{array}\right), \quad \frac{1}{6}\left(\begin{array}{cccccc}
0 & -2 & -1 & 0 & 1 & 2 \\
2 & 0 & -2 & -1 & 0 & 1 \\
1 & 2 & 0 & -2 & -1 & 0 \\
0 & 1 & 2 & 0 & -2 & -1 \\
-1 & 0 & 1 & 2 & 0 & -2 \\
-2 & -1 & 0 & 1 & 2 & 0
\end{array}\right)
\end{aligned}
$$

Only when $m=2$ do we get a symmetric matrix!

The extended dual and the magic vector y

Using the formula for $(\mathrm{Id}-R)^{-1}$, we rewrite (D) as

$$
\begin{equation*}
0 \in N_{\mathrm{C}}^{-1}(\mathrm{y})+\frac{1}{2} \mathrm{y}+N_{\Delta^{\perp}}(\mathrm{y})+\mathrm{Ty} . \tag{D}
\end{equation*}
$$

On the other hand,
$N_{\mathrm{C}}^{-1}+N_{\Delta^{\perp}}=N_{\mathrm{C}}^{-1}+N_{\Delta}^{-1}=\partial \sigma_{\mathrm{C}}+\partial \sigma_{\Delta} \subseteq \partial\left(\sigma_{\mathrm{C}}+\sigma_{\Delta}\right)=\partial \sigma_{\mathrm{C}+\Delta}$,
and this last term is maximally monotone!
Altogether, we consider the following problem which extends (D):

$$
\begin{equation*}
0 \in \frac{1}{2} y+T y+\partial \sigma_{C+\Delta}(y) \tag{D}
\end{equation*}
$$

Now we have a miracle: ($\overline{\mathrm{D}})$ always has a unique solution; in fact, y is the resolvent of the maximally monotone operator

$$
2 \mathrm{~T}+2 \partial \sigma_{\mathrm{C}+\Delta}
$$

evaluated at 0 ! Moreover, one can show that the magic vector y satisfying ($\overline{\mathrm{D}}$) is characterized to be the unique solution to

$$
\mathrm{y} \in \Delta^{\perp}, \quad-\frac{1}{2} \mathrm{y}-\mathrm{Ty} \in \overline{\mathrm{C}+\Delta}, \quad \text { and } \sigma_{\mathrm{C}}(\mathrm{y})+\frac{1}{2}\|\mathrm{y}\|^{2} \leq 0
$$

Main result and the magic vectors e, v

Let y be the unique solution to ($\overline{\mathrm{D}}$).
Set

$$
\mathrm{e}:=-\frac{1}{2} \mathrm{y}-\mathrm{Ty} \in \Delta^{\perp}
$$

Theorem. (Alwadani-Bauschke-Revalski-Wang 2020)

$$
\mathrm{Z}=\mathrm{e}+(\Delta \cap(\mathrm{C}-\mathrm{e}))
$$

Then $Z \neq \varnothing \Leftrightarrow e \in C+\Delta$; if $e=c+d \in C+\Delta$, then $c \in Z$. Finally, set

$$
\mathrm{v}:=-\mathrm{R}^{*} \mathrm{y}=\mathrm{R}^{*} \mathrm{e}-\mathrm{e} \in \Delta^{\perp}
$$

where R^{*}, the adjoint of R, is the (circular) left shift operator. Then this vector

$$
v=\left(v_{1}, \ldots, v_{m}\right)
$$

is the sought-after difference vector making the geometry conjecture true!!

Revisiting $m=2$

Difference vectors revisited

It was long known that

$$
v=\left(P_{\overline{C_{2}-C_{1}}}(0), P_{\overline{C_{1}-C_{2}}}(0)\right) .
$$

Our analysis simplifies a lot when $m=2$; in particular, the skew operator T turns into the zero operator.

This allows us to obtain the alternative description

$$
\mathrm{v}=2 P_{\overline{\Delta-\mathrm{C}}}(0)
$$

which appears to be new.

Two lines

Let's assume that $m=2$ and

$$
C_{1}=c_{1}+\mathbb{R} u_{1}, \quad C_{2}=c_{2}+\mathbb{R} u_{2}
$$

where

$$
c_{1} \perp u_{1}, c_{2} \perp u_{2}, \text { and }\left\|u_{1}\right\|=\left\|u_{2}\right\|=1
$$

The parallel case: WLOG $u_{1}=u_{2}=u$. Then

$$
\mathrm{Z}=\left(c_{1}, c_{2}\right)+\mathbb{R}(u, u), \mathrm{v}=\left(c_{2}-c_{1}, c_{1}-c_{2}\right)=\mathrm{y} \text { and } \mathrm{e}=-\frac{1}{2} \mathrm{v}
$$

The nonparallel case: Set

$$
\rho_{1}:=\frac{\left\langle u_{1}, c_{2}\right\rangle+\left\langle u_{1}, u_{2}\right\rangle\left\langle u_{2}, c_{1}\right\rangle}{1-\left\langle u_{1}, u_{2}\right\rangle^{2}}, \rho_{2}:=\frac{\left\langle u_{2}, c_{1}\right\rangle+\left\langle u_{1}, u_{2}\right\rangle\left\langle u_{1}, c_{2}\right\rangle}{1-\left\langle u_{1}, u_{2}\right\rangle^{2}}
$$

Then $Z=\{z\}$ is a singleton,

$$
\mathrm{z}=\left(z_{1}, z_{2}\right)=\left(c_{1}+\rho_{1} u_{1}, c_{2}+\rho_{2} u_{2}\right) ;
$$

and

$$
\mathrm{v}=\left(z_{2}-z_{1}, z_{1}-z_{2}\right)=\mathrm{y} \text { and } \mathrm{e}=-\frac{1}{2} \mathrm{v} .
$$

$m=3$

A characterization of the magic vector y

The magic vector $\mathrm{y}=\left(y_{1}, y_{2}, y_{3}\right)$ is characterized by the following:

$$
y_{1}+y_{2}+y_{3}=0,
$$

there exist sequences $\left(c_{1, n}\right)_{n \in \mathbb{N}}$ in $C_{1},\left(c_{2, n}\right)_{n \in \mathbb{N}}$ in $C_{2},\left(c_{3, n}\right)_{n \in \mathbb{N}}$ in C_{3}, and $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X such that

$$
\begin{aligned}
& c_{1, n}+x_{n} \rightarrow \frac{1}{6}\left(-3 y_{1}+y_{2}-y_{3}\right), \\
& c_{2, n}+x_{n} \rightarrow \frac{1}{6}\left(-y_{1}-3 y_{2}+y_{3}\right), \\
& c_{3, n}+x_{n} \rightarrow \frac{1}{6}\left(y_{1}-y_{2}-3 y_{3}\right),
\end{aligned}
$$

and $\left(\forall\left(c_{1}, c_{2}, c_{3}\right) \in C_{1} \times C_{2} \times C_{3}\right)$

$$
\left\langle y_{1}, c_{1}\right\rangle+\left\langle y_{2}, c_{2}\right\rangle+\left\langle y_{3}, c_{3}\right\rangle \leq-\frac{1}{2}\left(\left\|y_{1}\right\|^{2}+\left\|y_{2}\right\|^{2}+\left\|y_{3}\right\|^{2}\right) .
$$

The magic vectors e and v

Given the magic vector $\mathrm{y}=\left(y_{1}, y_{2}, y_{3}\right)$, we have
$e=\left(e_{1}, e_{2}, e_{3}\right)=\frac{1}{6}\left(-3 y_{1}+y_{2}-y_{3},-y_{1}-3 y_{2}+y_{3}, y_{1}-y_{3}-3 y_{3}\right)$ and

$$
v=-\left(y_{2}, y_{3}, y_{1}\right)
$$

Note that if $v=\left(v_{1}, v_{2}, v_{3}\right)$, then y can be obtained by

$$
y=-R v=-\left(v_{3}, v_{1}, v_{2}\right)
$$

Three lines

Assume we are given three lines

$$
C_{1}=c_{1}+\mathbb{R} u_{1}, C_{2}=c_{2}+\mathbb{R} u_{2}, C_{3}=c_{3}+\mathbb{R} u_{3},
$$

where

$$
c_{1} \perp u_{1}, c_{2} \perp u_{2}, c_{3} \perp u_{3} \text { and }\left\|u_{1}\right\|=\left\|u_{2}\right\|=\left\|u_{3}\right\|=1
$$

The parallel case: WLOG $u_{1}=u_{2}=u_{3}=u$. Then

$$
Z=\left(c_{1}, c_{2}, c_{3}\right)+\mathbb{R}(u, u, u) \text { and } v=\left(c_{2}-c_{1}, c_{3}-c_{2}, c_{1}-c_{3}\right) .
$$

Three parallel lines

Three nonparallel lines

The nonparallel case: Then $Z=\{z\}$ is a singleton and

$$
\mathrm{z}=\left(z_{1}, z_{2}, z_{3}\right)=\left(c_{1}+\rho_{1} u_{1}, c_{2}+\rho_{2} u_{2}, c_{3}+\rho_{3} u_{3}\right)
$$

where

$$
\begin{aligned}
& \rho_{1}:=\frac{\left\langle u_{1}, c_{3}\right\rangle+\left\langle u_{1}, u_{3}\right\rangle\left\langle u_{3}, c_{2}\right\rangle+\left\langle u_{1}, u_{3}\right\rangle\left\langle u_{3}, u_{2}\right\rangle\left\langle u_{2}, c_{1}\right\rangle}{1-\left\langle u_{3}, u_{2}\right\rangle\left\langle u_{2}, u_{1}\right\rangle\left\langle u_{1}, u_{3}\right\rangle}, \\
& \rho_{2}:=\frac{\left\langle u_{2}, c_{1}\right\rangle+\left\langle u_{2}, u_{1}\right\rangle\left\langle u_{1}, c_{3}\right\rangle+\left\langle u_{2}, u_{1}\right\rangle\left\langle u_{1}, u_{3}\right\rangle\left\langle u_{3}, c_{2}\right\rangle}{1-\left\langle u_{3}, u_{2}\right\rangle\left\langle u_{2}, u_{1}\right\rangle\left\langle u_{1}, u_{3}\right\rangle}, \\
& \rho_{3}:=\frac{\left\langle u_{3}, c_{2}\right\rangle+\left\langle u_{3}, u_{2}\right\rangle\left\langle u_{2}, c_{1}\right\rangle+\left\langle u_{3}, u_{2}\right\rangle\left\langle u_{2}, u_{1}\right\rangle\left\langle u_{1}, c_{3}\right\rangle}{1-\left\langle u_{3}, u_{2}\right\rangle\left\langle u_{2}, u_{1}\right\rangle\left\langle u_{1}, u_{3}\right\rangle},
\end{aligned}
$$

and

$$
v=\left(z_{2}-z_{1}, z_{3}-z_{2}, z_{1}-z_{3}\right)
$$

Three nonparallel lines

An example featuring epi(exp)

Let's assume that

$$
X=\mathbb{R}^{2}
$$

and consider the following three sets under two different orderings:

$$
\begin{gathered}
\operatorname{epi}(\exp)=\left\{(\xi, \eta) \in \mathbb{R}^{2} \mid \exp (\xi) \leq \eta\right\} \\
\mathbb{R} \times\{0\}
\end{gathered}
$$

and

$$
\mathbb{R} \times\{1\}
$$

(This example is similar to one discussed by De Pierro in 2001.)

An ordering with cycles

Assume first that

$$
C_{1}=\mathbb{R} \times\{0\}, \quad C_{2}=\mathbb{R} \times\{1\}, \quad C_{3}=\operatorname{epi}(\exp)
$$

Then, using the characterizations, one can verify that

$$
\begin{aligned}
& y=\left(y_{1}, y_{2}, y_{3}\right)=((0,1),(0,-1),(0,0)), \\
& e=\left(e_{1}, e_{2}, e_{3}\right)=\left(\left(0,-\frac{2}{3}\right),\left(0, \frac{1}{3}\right),\left(0, \frac{1}{3}\right)\right), \\
& v=\left(v_{1}, v_{2}, v_{3}\right)=((0,1),(0,0),(0,-1)) .
\end{aligned}
$$

and that

$$
\begin{aligned}
F_{3} & =C_{3} \cap\left(C_{2}+v_{2}\right) \cap\left(C_{1}+v_{1}+v_{2}\right) \\
& =\operatorname{epi}(\exp) \cap(\mathbb{R} \times\{1\}+(0,0)) \cap(\mathbb{R} \times\{0\}+(0,1)) \\
& =\operatorname{epi}(\exp) \cap(\mathbb{R} \times\{1\}) \cap(\mathbb{R} \times\{1\}) \\
& =\mathbb{R}_{-} \times\{1\} .
\end{aligned}
$$

Similarly, $F_{1}=\mathbb{R}_{-} \times\{0\}$ and $F_{2}=\mathbb{R}_{-} \times\{1\}$.

The ordering with cycles

An ordering without cycles

Now assume that

$$
C_{1}=\mathbb{R} \times\{1\}, \quad C_{2}=\mathbb{R} \times\{0\}, \quad C_{3}=\operatorname{epi}(\exp)
$$

Then, using the characterizations, one can verify that

$$
\begin{aligned}
& y=\left(y_{1}, y_{2}, y_{3}\right)=((0,-1),(0,1),(0,0)), \\
& e=\left(e_{1}, e_{2}, e_{3}\right)=\left(\left(0, \frac{2}{3}\right),\left(0,-\frac{1}{3}\right),\left(0,-\frac{1}{3}\right)\right), \\
& v=\left(v_{1}, v_{2}, v_{3}\right)=((0,-1),(0,0),(0,1)) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
F_{3} & =C_{3} \cap\left(C_{2}+v_{2}\right) \cap\left(C_{1}+v_{1}+v_{2}\right) \\
& =\operatorname{epi}(\exp) \cap(\mathbb{R} \times\{0\}+(0,0)) \cap(\mathbb{R} \times\{1\}+(0,-1)) \\
& =\operatorname{epi}(\exp) \cap(\mathbb{R} \times\{1\}) \cap(\mathbb{R} \times\{0\}) \\
& =\varnothing
\end{aligned}
$$

and therefore $F_{1}=F_{2}=\varnothing$ as well.

Computing the magic vector y

A characterization of y

One may show that y is the unique fixed point of the operator

$$
(\mathrm{Id}-\mathrm{P})\left(\frac{1}{2} y-T y\right)=y, \quad \text { where } P=P_{\overline{C+\Delta}}
$$

Now P is a projector, hence $\mathrm{Id}-\mathrm{P}$ is (firmly) nonexpansive. Is $\frac{1}{2} \mathrm{Id}-\mathrm{T}$ a Banach contraction? It depends on m !

m	eigenvalues of $\left(\frac{1}{2} \mathrm{Id}-\mathrm{T}\right)^{*}\left(\frac{1}{2} \mathrm{Id}-\mathrm{T}\right)$	$\left\\|\frac{1}{2} \mathrm{Id}-\mathrm{T}\right\\|$
2	$\frac{1}{4}$ (twice)	$\frac{1}{2}=0.5$
3	$\frac{1}{3}$ (twice), $\frac{1}{4}$	$\frac{1}{\sqrt{3}} \approx 0.58$
4	$\frac{1}{2}$ (twice), $\frac{1}{4}$ (twice)	$\frac{1}{\sqrt{2}} \approx 0.71$
5	$\frac{1}{2}+\frac{1}{2 \sqrt{5}}$ (twice), $\frac{1}{2}-\frac{1}{2 \sqrt{5}}$ (twice), $\frac{1}{4}$	$\sqrt{\frac{1}{2}+\frac{1}{2 \sqrt{5}}} \approx 0.85$
6	1 (twice), $\frac{1}{3}$ (twice), $\frac{1}{4}$ (twice)	1

If $m \geq 7$, then $\| \frac{1}{2}$ Id $-\mathrm{T} \|>1$.

A forward-backward approach

One may also show the following, using the forward-backward algorithm appropriately:

Let $0<\gamma<1, x_{0} \in X$, generate a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ via

$$
\begin{aligned}
\mathrm{x}_{n+1} & =\mathrm{P}_{\overline{\mathrm{C}+\Delta}}\left(\mathrm{x}_{n}-\gamma\left(\frac{1}{2} \mathrm{Id}+\mathrm{T}\right)^{-1} \mathrm{x}_{n}\right) \\
& =\mathrm{P}_{\overline{\mathrm{C}+\Delta}}\left((1-\gamma) \mathrm{x}_{n}+\gamma \mathrm{R} \mathrm{x}_{n}-2 \gamma \mathrm{P}_{\Delta \mathrm{x}_{n}}\right) .
\end{aligned}
$$

Then

$$
\begin{gathered}
\mathrm{x}_{n} \rightarrow \mathrm{e}, \\
\mathrm{R} \mathrm{x}_{n}-\mathrm{x}_{n}-2 \mathrm{P}_{\Delta \mathrm{x}_{n} \rightarrow \mathrm{y}}
\end{gathered}
$$

and

$$
\mathrm{R}^{*} \mathrm{x}_{n}-\mathrm{x}_{n} \rightarrow \mathrm{v} .
$$

But how to compute $\mathrm{P}_{\overline{\mathrm{C}+\Delta}}$?

Seeger's algorithm

Given

$$
x \in X \text { and } d_{0} \in X
$$

generate sequences $\left(c_{n}\right)_{n \geq 1}$ and $\left(d_{n}\right)_{n \geq 1}$ iteratively via

$$
c_{n}:=P_{C}\left(x-d_{n-1}\right), \quad d_{n}:=P_{\Delta}\left(x-c_{n}\right)
$$

Then

$$
\mathrm{c}_{n}+\mathrm{d}_{n} \rightarrow \mathrm{P}_{\overline{\mathrm{C}+\Delta}}(\mathrm{x})
$$

This was proved by A. Seeger: Alternating projection and decomposition with respect to two convex sets, Mathematica Japonica 47 (1998), 273-280.

Conclusion

Conclusion and future work future work

- The geometry conjecture is settled.
- The proof relied on monotone operator theory!
- We have presented new descriptions of the cycles and the difference vectors.

The following questions are natural to investigate:

- How do these results generalize from projections to underrelaxed projections or even proximal mappings? (Partial results are available!)
- Can we even go to maximally monotone operators, perhaps utilizing the extended or variational sum?
- Can we rigorously justify algorithms that do not rely on Seeger's algorithm?

Selected references

- S. Alwadani, H.H. Bauschke, J.P. Revalski, and X. Wang: Resolvents and Yosida approximations of displacement mappings of isometries, March 23, 2021, https://arxiv.org/abs/2006.04860.
To appear in Set-Valued Variational Anal.
- S. Alwadani, H.H. Bauschke, J.P. Revalski, and X. Wang: The difference vectors for convex sets and a resolution of the geometry conjecture, May 28, 2020, https://arxiv.org/abs/2012.04784
To appear in Open Journal of Mathematical Optimization
- S. Alwadani, H.H. Bauschke, and X. Wang: Attouch-Théra duality, generalized cycles and gap vectors,
May 3, 2021, https://arxiv.org/abs/2101. 05857
To appear in SIAM Journal on Optimization
- H. Attouch and M. Théra: A general duality principle for the sum of two operators, J. Convex Anal. 3 (1996), 1-24.
- J.-B. Baillon, P.L. Combettes, and R. Cominetti: There is no variational characterization of the cycles in the method of cyclic projections, J. Func. Anal. 262 (2012), 400-408.
- H.H. Bauschke and P.L. Combettes: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, second edition, Springer 2017.

Open Journal of Mathematical Optimization

Open Journal of Mathematical Optimization

Steering Committee

- Dimitris Bertsimas (MIT, USA)
- Martine Labbé (ULB, Belgium)
- Eva K. Lee (Georgia Tech, USA)
- Marc Teboulle (Tel-Aviv University, Israel)

Section Editors

- Continuous Optimization - Russell Luke (Universität Göttingen, Germany)
- Discrete Optimization - Sebastian Pokutta (ZIB, Germany)
- Optimization under Uncertainty - Guzin Bayraksan, (Ohio State University, USA)
- Computational aspects and applications - Bernard Gendron (Montréal University, Canada)

