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Abstract

Projection operators and associated projection algorithms are
fundamental building blocks in fixed point theory and optimization.

In this talk, I will survey recent results on the displacement
mapping of the right-shift operator and sketch a new application
deepening our understanding of the geometry of the fixed point set
of the composition of projection operators in Hilbert space.

Based on joint works with Salha Alwadani, Julian Revalski, and
Shawn Wang.
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Introduction
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The setting
Throughout, suppose that

X is a real Hilbert space,

with inner product 〈·, ·〉 and norm ‖ · ‖, and m ≥ 2. Assume that

C1,C2, . . . ,Cm are nonempty closed convex subsets of X ,

with associated projectors (nearest-point mappings)

P1 := PC1 , . . . ,Pm := PCm .

Our goal is to understand the fixed point set

Fm := Fix(Pm · · ·P2P1).

We also define cyclically

Fm−1 := Fix(Pm−1Pm−2 · · ·P1Pm)

...

F1 := Fix(P1Pm · · ·P3P2).
6



Why care?
A significant number of convex optimization problems are convex
feasibility problems of the form

Find x ∈ C1 ∩ C2 ∩ · · · ∩ Cm =: S .

Very beautifully,

S 6= ∅ ⇒ S = Fm = Fm−1 = · · · = F1.

And, very usefully, when S 6= ∅, then a point in S can be found as
the weak limit of the sequence

x0,P1x0,P2P1x0, . . . ,Pm · · ·P1x0

P1Pm · · ·P1x0, . . . , (Pm · · ·P1)2x0,

P1(Pm · · ·P1)2x0, . . . , (Pm · · ·P1)3x0, . . .

generated by the method of cyclic projections a.k.a. “POCS”
(Projections Onto Convex Sets).
This was applied by Sir Godfrey Hounsfield who won a Nobel prize
in 1979 for his work on Computer-assisted Tomography. 7



S 6= ∅ ⇒ S = Fm = · · · = F1

:C
, [• x #ECinco - circa

Cz

When S = C1 ∩ · · · ∩ Cm 6= ∅, then all fixed point sets Fi must
coincide with S .

8



The question

Question: What happens when S = ∅? What is Fm ??
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m = 2
Suppose now (temporarily) that m = 2.
Consider the “gap” between C1 and C2:

δ := inf
(c1,c2)∈C1×C2

‖c1 − c2‖.

This is an infimum which may or may not be attained.
Let’s assume δ is actually attained, i.e., the infimum is a minimum.
Then the following hold for (c1, c2) and (c ′1, c

′
2) in C1 × C2:

• ‖c1 − c2‖ = δ ⇔ c2 = P2c1 and c1 = P1c2 in which case
(c1, c2) form a best approximation pair
• ‖c1 − c2‖ = δ ⇒ c2 ∈ F2 and c1 ∈ F1

• F1 and F2 are both nonempty
• ‖c1 − c2‖ = δ and ‖c ′1 − c ′2‖ = δ implies

v1 := c2 − c1 = c ′2 − c ′1,

the difference (a.k.a. gap) vector is well defined!
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m = 2 and δ infimum attained
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Two best approximation pairs (c1, c2) and (c ′1, c
′
2)
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m = 2 (continued)
Recall δ := inf

(c1,c2)∈C1×C2

‖c1 − c2‖.

If one of the sets is bounded, say C2, then δ is always attained.

Sketch of Proof:
• The map

P2P1 : C2 → C2

is a nonexpansive (Lipschitz-1) selfmap of C2.
• By the Browder–Göhde–Kirk Fixed Point Theorem, this map

has a fixed point x̄ ∈ C2:

x̄ = P2P1x̄ .

• But then
(c1, c2) =

(
P1x̄ , x̄

)
forms a best approximation pair and attains the infimum!

Remark: This proof also works for m ≥ 2! 12



m = 2 (continued)
Recall δ := inf

(c1,c2)∈C1×C2

‖c1 − c2‖.

However, it can happen that δ is not attained:

Example. Assume that in X = R2 we have

C1 = R× {0},
C2 = epi(1 + exp) =

{
(ξ, η) ∈ R2

∣∣ 1 + exp(ξ) ≤ η
}
.

Then δ = 1, but the infimum is not attained.

Example. Suppose that C1 and C2 are closed affine subspaces, say
C1 = c1 + L1, C2 = c2 + L2, where L1, L2 are linear subspaces.
Then:
• If X is finite-dimensional, then δ is always attained.
• If X is infinite-dimensional, then one can construct C1 and C2

such that the Minkowski sum

C1 + C2 is not closed

and δ is not attained! 13



m = 2 and δ infimum not attained

δ = 1 but the infimum is not attained
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The (magic) difference vectors
Whether or not δ is attained, we can always (well!) define the
so-called difference vectors

v1 := PC2−C1
(0),

v2 := PC1−C2
(0).

(Here C2 − C1 =
{
c2 − c1

∣∣ (c1, c2) ∈ C1 × C2

}
.) These satisfy

‖v1‖ = ‖v2‖ = δ and v1 + v2 = 0.

Moreover, the difference vectors satisfy

F2 = C2 ∩ (v1 + C1)

F1 = C1 ∩ (v2 + C2).

In other words, the sets F1 and F2 are obtained in two easy steps:

Step 1 translate/shift the original sets C1 and C2 using v1 and v2,
Step 2 then intersect!

15



The difference vector for m = 2 and δ attained

V , -1C ,
Cz

*
.

IE-Gn (v,-19)

:

δ attained and F2 = C2 ∩ (v1 + C1) 6= ∅
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The difference vector for m = 2 and δ unattained

δ is unattained and F2 = ∅

17



The geometry conjecture
The geometry conjecture, first posed in 1997 by Bauschke,
Borwein, and Lewis (Contemp. Math.), states the following:

Suppose m ≥ 2. Then there exist vectors v1, v2, . . . , vm
such that

Fm = Cm ∩ (vm−1 + Cm−1)

∩ (vm−1 + vm−2 + Cm−2)

...

∩ (vm−1 + · · ·+ v2 + v1 + C1)

and similarly for Fm−1, . . . ,F1.

When
⋂m

i=1 Ci 6= ∅ (⇒ v1 = · · · vm = 0), or when m = 2, the
geometry conjecture holds true by works of Cheney and Goldstein
(Proc. AMS 1959) and of Bauschke and Borwein (JAT 1994).

What happens when m ≥ 3? 18



The problem in one picture

What are the difference vectors v1, v2, v3? 19



Cycles
Suppose that Fm 6= ∅, and pick zm ∈ Fm, i.e.,

zm = Pm · · ·P2P1zm.

Then

P1zm = P1Pm · · ·P2P1zm =
(
P1Pm · · ·P2

)(
P1zm

)
and so

z1 := P1zm ∈ F1

z2 := P2z1 ∈ F2

...

zm−1 := Pm−1zm−2 ∈ Fm−1

zm = Pmzm−1.

We refer to the vector z := (z1, z2, . . . , zm) ∈ Xm as a cycle.

Cycles exist ⇔ Fm 6= ∅.

20



Cycles and optimization!
If m = 2, then z = (z1, z2) is a cycle if and only if z is a minimizer
of the function

x = (x1, x2) 7→ ιC1(x1) + ιC2(x2) + 1
2‖x1 − x2‖2.

This suggests the conjecture that z = (z1, . . . , zm) is a cycle if it
minimizes a function of the form

x = (x1, . . . , xm) 7→
m∑
i=1

ιCi
(xi ) + ϕ(x1, . . . , xm);

however, Baillon, Combettes, and Cominetti proved in 2012 that
this is impossible when m ≥ 3: cycles defy optimization!

On the positive side, we can deduce some information about the
difference vectors and the geometry conjecture when we have
cycles!

21



Cycles and difference vectors

Assume that we have two cycles, say z := (z1, z2, . . . , zm) and
y := (y1, y2, . . . , ym).

For notational simplicity, let’s assume that m = 3 (the proof easily
extends to general m).

Then, by definition of “cycle”,

z1 = P1z3

z2 = P2z1

z3 = P3z2

and similarly for (y1, y2, y3).

Because projectors are firmly nonexpansive, this implies . . .

22



Cycles and difference vectors (continued)

‖y3 − z3‖2 = ‖P3y2 − P3z2‖2

≤ ‖y2 − z2‖2 − ‖(Id−P3)y2 − (Id−P3)z2‖2

≤ ‖y1 − z1‖2 − ‖(Id−P2)y1 − (Id−P2)z1‖2

− ‖(Id−P3)y2 − (Id−P3)z2‖2

≤ ‖y3 − z3‖2 − ‖(Id−P1)y3 − (Id−P1)z3‖2

− ‖(Id−P2)y1 − (Id−P2)z1‖2

− ‖(Id−P3)y2 − (Id−P3)z2‖2.

Hence equality holds throughout, which implies that
all nonpositive terms are equal to zero and thus:

y2 − P3y2 = z2 − P3z2 ⇔ y2 − y3 = z2 − z3

y1 − P2y1 = z1 − P2z1 ⇔ y1 − y2 = z1 − z2;

y3 − P1y3 = z3 − P1z3 ⇔ y3 − y1 = z3 − z1.
23



Cycles and difference vectors (continued)
We thus well define

v1 := z2 − z1

v2 := z3 − z2

v3 := z1 − z3

where z = (z1, z2, z3) is any cycle. Then

z3 ∈ C3

z3 = v2 + z2 ∈ v2 + C2

z3 = v2 + v1 + z1 ∈ v2 + v1 + C1.

We thus proved

F3 ⊆ C3 ∩ (v2 + C2) ∩ (v2 + v1 + C1),

which is one half of the geometry conjecture! But:

	 the other half of the geometry conjecture is still missing;
	 we don’t know how to define the vi intrinsically,
i.e., in the absence of cycles, when m ≥ 3! 24



Geometry conjecture

Regarding the geometry conjecture, we know:

• it is true when C1 ∩ · · · ∩ Cm 6= ∅ (with vi ≡ 0);

• it is true when m = 2;

• one half is known to be true when there are cycles.

GOOD NEWS: The geometry conjecture is true in general !!

25



Main Result and Tools utilized
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Product space

We will work in the product space

X := Xm

in which we set

C := C1 × · · · × Cm and ∆ :=
{

(x , . . . , x) ∈ X
∣∣ x ∈ X

}
.

It is well known that

PC(x1, . . . , xm) =
(
P1x1, . . . ,Pmxm

)
and

P∆(x1, . . . , xm) =
1

m

( m∑
i=1

xi , . . . ,
m∑
i=1

xi

)
.

27



The right shift operator
Define the (circular) right shift operator R by

R: X→ X: (x1, x2, . . . , xm) 7→ (xm, x1, x2, . . . , xm−1).

Then
z = (z1, . . . , zm) is a cycle ⇔ z = PC(Rz).

Denote the (possibly empty) set of all cycles by

Z := Fix(PCR).

Now z = PCRz = (Id +NC)−1Rz ⇔ Rz ∈ z + NCz ⇔
0 ∈ NC(z) + (Id−R)(z), (P)

which we view as a (primal) sum problem!

Note that the operator sum in (P) is maximally monotone.

Recall that A : X ⇒ X is monotone if (∀x∗ ∈ Ax)(∀y∗ ∈ Ay)
〈x − y , x∗ − y∗〉 ≥ 0; it is maximally monotone if it cannot be
enlarged without destroying monotonicity: e.g., subdifferentials of
convex functions and matrices whose symmetric part is � 0. 28



The (Attouch–Théra) dual and the skew operator T
The Attouch–Théra dual of (P) is

0 ∈ N−1
C (y) + (Id−R)−1(y). (D)

This operator sum is not necessarily maximally monotone!
If y solves (D), then

Z = N−1
C (y) ∩ −(Id−R)−1(y) 6= ∅.

But what is (Id−R)−1? It turns out that

(Id−R)−1 = 1
2 Id +N∆⊥ + T,

where T∗ = −T is the skew linear (⇒ monotone) operator

T :=
1

2m

m−1∑
k=1

(m − 2k)Rk .

This inversion formula is a consequence of recent work by
Alwadani-Bauschke-Revalski-Wang 2020.

29



Instances of T for m ∈ {2, 3, 4, 5, 6}

(
0 0
0 0

)
,

1

6

 0 −1 1
1 0 −1
−1 1 0

 ,
1

4


0 −1 0 1
1 0 −1 0
0 1 0 −1
−1 0 1 0

 ,

1

10


0 −3 −1 1 3
3 0 −3 −1 1
1 3 0 −3 −1
−1 1 3 0 −3
−3 −1 1 3 0

 ,
1

6



0 −2 −1 0 1 2
2 0 −2 −1 0 1
1 2 0 −2 −1 0
0 1 2 0 −2 −1
−1 0 1 2 0 −2
−2 −1 0 1 2 0


Only when m = 2 do we get a symmetric matrix!

30



The extended dual and the magic vector y
Using the formula for (Id−R)−1, we rewrite (D) as

0 ∈ N−1
C (y) + 1

2 y + N∆⊥(y) + Ty. (D)

On the other hand,

N−1
C + N∆⊥ = N−1

C + N−1
∆ = ∂σC + ∂σ∆ ⊆ ∂(σC + σ∆) = ∂σC+∆,

and this last term is maximally monotone!
Altogether, we consider the following problem which extends (D):

0 ∈ 1
2 y + Ty + ∂σC+∆(y). (D)

Now we have a miracle: (D) always has a unique solution; in fact,
y is the resolvent of the maximally monotone operator

2T + 2∂σC+∆

evaluated at 0! Moreover, one can show that the magic vector y
satisfying (D) is characterized to be the unique solution to

y ∈ ∆⊥, −1
2 y − Ty ∈ C + ∆, and σC(y) + 1

2‖y‖
2 ≤ 0. 31



Main result and the magic vectors e, v
Let y be the unique solution to (D).
Set

e := −1
2 y − Ty ∈ ∆⊥.

Theorem. (Alwadani-Bauschke-Revalski-Wang 2020)

Z = e +
(
∆ ∩ (C− e)

)
.

Then Z 6= ∅ ⇔ e ∈ C + ∆; if e = c + d ∈ C + ∆, then c ∈ Z.
Finally, set

v := −R∗y = R∗e− e ∈ ∆⊥,

where R∗, the adjoint of R, is the (circular) left shift operator.
Then this vector

v = (v1, . . . , vm)

is the sought-after difference vector making the geometry
conjecture true!!

32



Revisiting m = 2

33



Difference vectors revisited

It was long known that

v =
(
PC2−C1

(0),PC1−C2
(0)
)
.

Our analysis simplifies a lot when m = 2; in particular, the skew
operator T turns into the zero operator.

This allows us to obtain the alternative description

v = 2P∆−C(0),

which appears to be new.

34



Two lines
Let’s assume that m = 2 and

C1 = c1 + Ru1, C2 = c2 + Ru2,

where
c1 ⊥ u1, c2 ⊥ u2, and ‖u1‖ = ‖u2‖ = 1.

The parallel case: WLOG u1 = u2 = u. Then

Z = (c1, c2) + R(u, u), v = (c2 − c1, c1 − c2) = y and e = −1
2 v.

The nonparallel case: Set

ρ1 :=
〈u1, c2〉+ 〈u1, u2〉〈u2, c1〉

1− 〈u1, u2〉2
, ρ2 :=

〈u2, c1〉+ 〈u1, u2〉〈u1, c2〉
1− 〈u1, u2〉2

Then Z = {z} is a singleton,

z = (z1, z2) = (c1 + ρ1u1, c2 + ρ2u2);

and
v = (z2 − z1, z1 − z2) = y and e = −1

2 v.
35



m = 3
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A characterization of the magic vector y

The magic vector y = (y1, y2, y3) is characterized by the following:

y1 + y2 + y3 = 0,

there exist sequences (c1,n)n∈N in C1, (c2,n)n∈N in C2, (c3,n)n∈N in
C3, and (xn)n∈N in X such that

c1,n + xn → 1
6

(
− 3y1 + y2 − y3

)
,

c2,n + xn → 1
6

(
− y1 − 3y2 + y3

)
,

c3,n + xn → 1
6

(
y1 − y2 − 3y3

)
,

and (∀(c1, c2, c3) ∈ C1 × C2 × C3)

〈y1, c1〉+ 〈y2, c2〉+ 〈y3, c3〉 ≤ −1
2

(
‖y1‖2 + ‖y2‖2 + ‖y3‖2

)
.

37



The magic vectors e and v

Given the magic vector y = (y1, y2, y3), we have

e = (e1, e2, e3) = 1
6

(
− 3y1 + y2− y3,−y1− 3y2 + y3, y1− y3− 3y3

)
and

v = −(y2, y3, y1).

Note that if v = (v1, v2, v3), then y can be obtained by

y = −Rv = −(v3, v1, v2).

38



Three lines

Assume we are given three lines

C1 = c1 + Ru1, C2 = c2 + Ru2, C3 = c3 + Ru3,

where

c1 ⊥ u1, c2 ⊥ u2, c3 ⊥ u3 and ‖u1‖ = ‖u2‖ = ‖u3‖ = 1.

The parallel case: WLOG u1 = u2 = u3 = u. Then

Z = (c1, c2, c3) + R(u, u, u) and v = (c2 − c1, c3 − c2, c1 − c3).

39



Three parallel lines
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Three nonparallel lines
The nonparallel case: Then Z = {z} is a singleton and

z = (z1, z2, z3) = (c1 + ρ1u1, c2 + ρ2u2, c3 + ρ3u3),

where

ρ1 :=
〈u1, c3〉+ 〈u1, u3〉〈u3, c2〉+ 〈u1, u3〉〈u3, u2〉〈u2, c1〉

1− 〈u3, u2〉〈u2, u1〉〈u1, u3〉
,

ρ2 :=
〈u2, c1〉+ 〈u2, u1〉〈u1, c3〉+ 〈u2, u1〉〈u1, u3〉〈u3, c2〉

1− 〈u3, u2〉〈u2, u1〉〈u1, u3〉
,

ρ3 :=
〈u3, c2〉+ 〈u3, u2〉〈u2, c1〉+ 〈u3, u2〉〈u2, u1〉〈u1, c3〉

1− 〈u3, u2〉〈u2, u1〉〈u1, u3〉
,

and
v = (z2 − z1, z3 − z2, z1 − z3).

41



Three nonparallel lines
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An example featuring epi(exp)

Let’s assume that
X = R2

and consider the following three sets under two different orderings:

epi(exp) =
{

(ξ, η) ∈ R2
∣∣ exp(ξ) ≤ η

}
,

R× {0},

and
R× {1}.

(This example is similar to one discussed by De Pierro in 2001.)

43



An ordering with cycles
Assume first that

C1 = R× {0}, C2 = R× {1}, C3 = epi(exp).

Then, using the characterizations, one can verify that

y = (y1, y2, y3) =
(
(0, 1), (0,−1), (0, 0)

)
,

e = (e1, e2, e3) =
(
(0,−2

3 ), (0, 1
3 ), (0, 1

3 )
)
,

v = (v1, v2, v3) =
(
(0, 1), (0, 0), (0,−1)

)
.

and that

F3 = C3 ∩ (C2 + v2) ∩ (C1 + v1 + v2)

= epi(exp) ∩ (R× {1}+ (0, 0)) ∩ (R× {0}+ (0, 1))

= epi(exp) ∩ (R× {1}) ∩ (R× {1})
= R− × {1}.

Similarly, F1 = R− × {0} and F2 = R− × {1}.
44



The ordering with cycles
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An ordering without cycles
Now assume that

C1 = R× {1}, C2 = R× {0}, C3 = epi(exp).

Then, using the characterizations, one can verify that

y = (y1, y2, y3) =
(
(0,−1), (0, 1), (0, 0)

)
,

e = (e1, e2, e3) =
(
(0, 2

3 ), (0,−1
3 ), (0,−1

3 )
)
,

v = (v1, v2, v3) =
(
(0,−1), (0, 0), (0, 1)

)
.

Hence

F3 = C3 ∩ (C2 + v2) ∩ (C1 + v1 + v2)

= epi(exp) ∩ (R× {0}+ (0, 0)) ∩ (R× {1}+ (0,−1))

= epi(exp) ∩ (R× {1}) ∩ (R× {0})
= ∅,

and therefore F1 = F2 = ∅ as well.

46



Computing the magic vector y
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A characterization of y
One may show that y is the unique fixed point of the operator

(Id−P)( 1
2 y − Ty) = y, where P = PC+∆.

Now P is a projector, hence Id−P is (firmly) nonexpansive.
Is 1

2 Id−T a Banach contraction? It depends on m!

m eigenvalues of ( 1
2 Id−T)∗( 1

2 Id−T) ‖1
2 Id−T‖

2 1
4 (twice) 1

2 = 0.5

3 1
3 (twice), 1

4
1√
3
≈ 0.58

4 1
2 (twice), 1

4 (twice) 1√
2
≈ 0.71

5 1
2 + 1

2
√

5
(twice), 1

2 −
1

2
√

5
(twice), 1

4

√
1
2 + 1

2
√

5
≈ 0.85

6 1 (twice), 1
3 (twice), 1

4 (twice) 1

If m ≥ 7, then ‖1
2 Id−T‖ > 1. 48



A forward-backward approach
One may also show the following, using the forward-backward
algorithm appropriately:

Let 0 < γ < 1, x0 ∈ X, generate a sequence (xn)n∈N via

xn+1 = PC+∆

(
xn − γ( 1

2 Id +T)−1xn
)

= PC+∆

(
(1− γ)xn + γRxn − 2γP∆xn

)
.

Then
xn → e,

Rxn − xn − 2P∆xn → y,

and
R∗xn − xn → v.

But how to compute PC+∆?

49



Seeger’s algorithm

Given
x ∈ X and d0 ∈ X,

generate sequences (cn)n≥1 and (dn)n≥1 iteratively via

cn := PC(x− dn−1), dn := P∆(x− cn).

Then
cn + dn → PC+∆(x).

This was proved by A. Seeger: Alternating projection and
decomposition with respect to two convex sets, Mathematica
Japonica 47 (1998), 273–280.
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Conclusion

51



Conclusion and future work future work

• The geometry conjecture is settled.

• The proof relied on monotone operator theory!

• We have presented new descriptions of the cycles and the
difference vectors.

The following questions are natural to investigate:

• How do these results generalize from projections to
underrelaxed projections or even proximal mappings?
(Partial results are available!)

• Can we even go to maximally monotone operators,
perhaps utilizing the extended or variational sum?

• Can we rigorously justify algorithms that do not rely on
Seeger’s algorithm?
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