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Sparse Optimization

Sparse optimization:

minx∈X f (x) := g(x) + h(x).

Here, X is a finite dimensional space and

g is a loss function which typically measures the data misfitting.

h is a regularization function which enforces some specific
simple or low complexity structure of the solution;

h is typically nonsmooth (e.g. h(x) = ‖x‖p, 0 < p ≤ 1,
cardinality function, rank function, the nuclear norm) and
sometimes can be nonconvex.
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Examples

Lasso
min
x∈Rn

1
2
‖Ax − b‖2 + λ‖x‖1

where A ∈ Rp×n, b ∈ Rp and λ ≥ 0.

Group Lasso (Yuan etal. 2006)

min
x∈Rn

1
2
‖Ax − b‖2 +

m∑
i=1

λi‖xJi‖

where A ∈ Rp×n, b ∈ Rp, λi ≥ 0 and
⋃m

i=1 Ji = {1, . . . ,n}.
Sparse generalized eigenvalue problem (Tan etal. 2018)

min
x∈Rn

xT Ax
xT Bx

+ λ ‖x‖0

s.t. ‖x‖ = 1,

where A,B ∈ Sn, B is positive definite, λ ≥ 0 and ‖x‖0 is the
cardinality of x .

Guoyin Li



Motivation KL inequality Estimations of exponents for error bounds and KL inequality Conclusion and future work

Least squares with nuclear norm regularization

min
X∈Rm×n

1
2
‖AX − b‖2 + λ‖X‖∗

where X ∈ Rm×n, A : Rm×n → Rp, b ∈ Rp and λ ≥ 0.

Least squares with rank constraint

min
X∈Rm×n

1
2
‖AX − b‖2

s.t rank(X ) ≤ r .
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Sparse optimization is ubiquitous. It has been found applications in a
wide range of fields:

machine learning and statistics;

signal processing;

finance;

structure engineering.
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Sparse Optimization

Why it is useful and important?

A solution for sparse optimization has a desired low complexity
structure, so that, it can be efficiently stored, implemented and
utilised, and is robust to the data inexactness.
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First order methods

First order methods include proximal gradient method and its
accelerated version, Douglas-Rachford splitting, Alternating direction
methods of multipliers (ADMM) etc.
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E.g. Proximal gradient algorithm:

Given f = g + h with g is C1 with Lipschitz gradient. Initialize x0. For
k = 1,2, . . . ,

xk+1 ∈ proxγh(xk − γ∇g(xk ))

Here, proxγh(x) = Argminy∈Rn{ 1
2‖x − y‖2 + γh(y)}.

Note: For g = 1
2 d2

C and h = δD where δ is the indicator function with
convex sets C,D. Proximal gradient method with γ = 1 reduces to
alternating projection algorithm: xk+1 = PD(PC(xk )).
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Alternating projection algorithm for degenerate case:

Direct computation shows that xk → 0 and ‖xk‖ = O( 1√
k

).

Alternating projection algorithm for non-degenerate case: linear
convergence (see e.g. Bauschke & Borwein, 1996; Lewis, Luke
& Malick, 2009, Drusvyatskiy, Ioffe & Lewis 2015)
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Inertial proximal gradient method for an equivalent reformulation
for sparse generelized eigenvalue problem (Boţ, Dao & L. 2020)
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How do we understand the convergence behavior or convergence
rate of these numerical algorithms?
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Key tool I: KL inequality

(Łojasiewicz’s gradient inequality, 1963) Let f be an analytic
function on Rn with ∇f (x) = 0. Then, exists a rational number
α ∈ (0,1] and c, δ > 0 such that

‖∇f (x)‖ ≥ c|f (x)− f (x)|α for all x with ‖x − x‖ ≤ δ.

This can fail for C∞ function, in general.

Extended by Kurdyka to C1 definable function. Further extended
by Lewis, Bolte, Daniilidis to nonsmooth cases
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Definition

We say that a proper closed function f : X→ R ∪ {∞} satisfies the
Kurdyka-Łojasiewicz (KL) property at x̄ ∈ dom ∂f if there are
ν ∈ (0,∞], a neighborhood V of x̄ and a continuous concave function
ϕ : [0, ν)→ [0,∞) with ϕ(0) = 0 such that

(i) ϕ is continuously differentiable on (0, ν) with ϕ′ > 0 on (0, ν);

(ii) For any x ∈ V with f (x̄) < f (x) < f (x̄) + ν, it holds that

ϕ′(f (x)− f (x̄))dist(0, ∂f (x)) ≥ 1. (3.0)

Note: ∂f is the so-called limiting subdifferential. The Łojasiewicz
inequality corresponds to the case where ϕ(s) = cs1−α.

Guoyin Li



Motivation KL inequality Estimations of exponents for error bounds and KL inequality Conclusion and future work

KL exponent

Definition (KL exponent, Attouch et al. 10)

We say that a proper closed function f has the Kurdyka-Łojasiewicz
(KL) property at x̄ ∈ dom ∂f with exponent α if there exist c, ν > 0 and
a neighborhood N of x̄ such that:

for all x ∈ N with f (x̄) < f (x) < f (x̄) + ν, one has

dist(0, ∂f (x)) ≥ c
[
f (x)− f (x̄)

]α
.

A proper closed function f satisfying the KL property with exponent α
at all points in dom ∂f is called a KL function with exponent α.
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Prototypical result on convergence rate:

For proximal gradient algorithm and some of its variants: Let {xk} be
a bounded sequence generated by the algorithm. Let f be a KL
function with exponent α ∈ [0,1). Then the following results hold.

(i) If α = 0, then {xk} converges finitely.

(ii) If α ∈ (0, 1
2 ], then {xk} converges locally linearly.

(iii) If α ∈ ( 1
2 ,1), then {xk} converges locally sublinearly with order

O(k−τ ) and τ = 1−α
2α−1 .

Holds also for proximal alternating minimization algorithm (Attouch et
al. ’10), Douglas-Rachford algorithm (L., Pong ’15), etc., if f is
replaced by a suitable potential function.
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Key tool II: Error bounds

For f : Rn → R ∪ {∞}, we consider the following inequality system

(S) f (z) ≤ 0.

To judge whether x is an approximate solution of (S), we want to
know d(x , [f ≤ 0]) := inf{‖x − z‖ : f (z) ≤ 0}.

However, we often measure [f (x)]+ := max{f (x),0}.

So, we seek an error bound: there exist τ, α > 0 such that

d(x , [f ≤ 0]) ≤ τ
(
[f (x)]+ + [f (x)]α+

)
either locally or globally.
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Error bounds and its exponent

Definition
We say f has a
(1) global error bound with exponent α if there exist τ > 0 such that

d(x , [f ≤ 0]) ≤ τ
(
[f (x)]+ + [f (x)]α+

)
for all x ∈ Rn

(2) local error bound with exponent α around x if there exist τ, ε > 0
such that

d(x , [f ≤ 0]) ≤ τ
(
[f (x)]+ + [f (x)]α+

)
for all x ∈ B(x ; ε).

If α = 1, we say f has a Lipschitz type global (resp. local) error bound.
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Error bound is useful in

analyzing the convergence properties of algorithms (e.g. Luo
2000, Fukushima 2005, Attouch etal. 2009, Tseng 2010 and
Izmailov & Solodov 2014);

sensitivity analysis of optimization problem/variational inequality
problem (e.g. Jourani 2000, Ye 2002)

identifying the active constraints (e.g. Facchinei etal. 1998 and
Pang 1997)

studying maximal monotone operator (Dutta & Borwein 2015)
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Some Known Results

Lipschitz type global error bound holds when f is maximum of
finitely many affine functions (Hoffman 1951)

Global error bound can fail even when f is convex and
continuous (e.g. f (x1, x2) = x1 +

√
x2

1 + x2
2 ).

Many further developments (e.g. Ioffe, Klatte, Kummer, Kruger,
Lewis, Li, Ng, Outrata, Pang, Robinson, Thera etc...)
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Quadratic cases

Global error bound with exponent 1/2 holds when f is a convex
quadratic function. (Luo and Luo, 1994).

Local error bound with exponent 1/2 holds when f is a
(nonconvex) quadratic function. (Luo and Sturm, 1998).

Open questions raised by Luo and Sturm: what happens for the
case f can be expressed as finitely many quadratic functions?
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Interplay between KL inequality and error bounds

Let f be a proper closed convex function with argminf 6= ∅. Then,
the following are equivalent (Bolte etal 2017)

f has KL exponent α ∈ (0,1);
for all x ∈ Argminf , local error bound holds for f − inf f at x
with exponent 1− α.
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How to estimate these exponents?

Our strategy:
Exploiting the polynomial structure.
Lift and project approach, then exploit underlying conic
structure (such as semi-definite representability and
C2-cone structure)
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Motivating Example

Consider f (x) = x2. Then, [f ≤ 0] = {0} and so,

d(x , [f ≤ 0]) = |x | ≤ (x2)
1
2 = [f (x)]

1
2
+.

More generally, consider f (x) = xd with d is an even number.
Then,

d(x , [f ≤ 0]) = |x | ≤ (xd )
1
d = [f (x)]

1
d
+.
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Can we extend the results from convex quadratic functions
to convex polynomials? If yes, how about nonconvex cases
involving polynomial structures?
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Recent development for polynomial systems

Global error bound with exponent 1
(d−1)n+1 holds when f is

a convex polynomial with degree d on Rn (L. 2010).
Global error bound with exponent 1

(d−1)n+1 holds when f is
a convex piecewise polynomial with degree d on Rn. (L.
2013).
local error bound with exponent max

{ 2
(2d−1)n+1 ,

1
β(n−1)dn

}
if f is maximum of finitely many convex polynomials with
degree d on Rn, where β(s) is the central binomial
coefficient

( s
[s/2]

)
(Borwein, L. & Yao, 2014).
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Recent development for polynomial systems cont.

A convex piecewise polynomial function of degree at most
d ≥ 2 on Rn is a KL function with exponent 1− 1

(d−1)n+1
(Bolte et al. 2015)
If f is the maximum of m polynomials of degree at most
d ≥ 2 on Rn, then the KL exponent is 1− 1

(d+1)(3d)n+m−2 (L.,
Mordukhovich and Pham, 2015)
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Next, we illustrate how to derive the exponent in error bound/KL
inequality for the case of convex polynomials.
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What is special about polynomials?

Polynomial optimization problems can be solved via a
sequential SDP approximation scheme (in some cases,
one single SDP is enough). (Lasserre 2000, Parrilo 2000,
De Klerk & Laurent 2010, Nie 2014).

For a convex polynomial f on Rn with degree d , we have
(1) inf f > −∞⇒ argminf 6= ∅ (Belousov & Klatte 2000);
(2) d(0,∇f (xk ))→ 0 ⇒ f (xk )→ inf f (L. 2010);
(3) If f∞(v) = 0, then f (x + tv) = f (x) for all x ∈ Rn and t ∈ R

(Teboulle & Auslender, 2003).

Note: f∞(v) = supt>0
f (x+tv)−f (x)

t for all x ∈ domf .

Guoyin Li
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Let κ(n,d) = (d − 1)n + 1.

Theorem (L. 2010)
For a convex polynomial f on Rn with degree d. Then there
exists τ > 0 such that

d(x , [f ≤ 0]) ≤ τ
(
[f (x)]+ + [f (x)]

κ(n,d)−1

+

)
for all x ∈ Rn. (4.0)

convex quadratic d = 2 (and so, κ(n,d)−1 = 1/2).
previous example xd  n = 1 (and so, κ(n,d)−1 = 1/d).
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What is behind the proof?

Growth property for polynomials and its variants
(Gwoździewicz 1999) In addition, if f is a polynomial with
degree d and 0 is a strict local minimizer, then, there exist
β, δ > 0 s.t. d(x , f−1(0)) ≤ β |f (x)|ρ for all ‖x‖ ≤ δ, with
ρ = 1

(d−1)n+1 = κ(n,d)−1.

Further development on dropping the strict minimizer
assumption with weaker estimate in Gwoździewicz’s result
(Kurdyka 2012, and L., Mordukhovich and Pham 2015).
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Outline of the proof

Induction on the dimension k of [f ≤ 0]

(1) If k = 0, then strict minimizer, so Gwoździewicz’s result
can be applied.

(2) Suppose the result is true for k = p;
(3) For the case k = p + 1, find a direction v such that

f∞(v) = 0, and so, f (x + tv) = f (x) for all x and for all t .
Reduce the case to k = p.

Guoyin Li
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Lift and project approach via inf-projection

We call the function f (x) := infy∈Y F (x , y) for x ∈ X an
inf-projection of F .

The strict epigraph of f , defined as
{(x , r) ∈ X× R : f (x) < r}, is equal to the projection of the
strict epigraph of F onto X× R.
Arises naturally in studying sensitivity analysis as value
function.
Used frequently in characterizing complicate functions via
optimal value of conic programs.
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Theorem (KL exponent via inf-projection Yu, L. Pong, 2019)

Let F : X× Y→ R ∪ {∞} be a proper closed function and
define f (x) := infy∈Y F (x , y) and Y (x) := Argminy∈YF (x , y) for
x ∈ X. Let x̄ ∈ dom ∂f . Suppose that

(i) It holds that ∂F (x̄ , ȳ) 6= ∅ for all ȳ ∈ Y (x̄).
(ii) F is level-bounded in y locally uniformly in x.
(iii) The function F satisfies the KL property with exponent

α ∈ [0,1) at every point in {x̄} × Y (x̄).
Then f satisfies the KL property at x̄ with exponent α.

Note: F is level-bounded in y locally uniformly in x means for
any x and β ∈ R, there exists ρ > 0 such that

{(u, y) : ‖u − x‖ ≤ ρ,F (u, y) ≤ β}

is bounded

Guoyin Li
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LMI-representable functions

Definition
We say f is LMI-representable if there exists d > 0 and
matrices {A00,A0,A1, . . . ,An} ⊂ Sdi such that

epi f =

(x , t) ∈ Rn × R : A00 +
n∑

j=1

Ajxj + A0t � 0

 .

Example of LMI representable functions: `1-norm, `2-norm,
convex quadratic functions and indicator function of
second-order cone.
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Theorem (Sum of LMI-representable functions Yu, L. Pong,
2019)

Let f =
∑m

i=1 fi , where each fi : Rn → R ∪ {∞} is a proper
closed function which is LMI-representable. Suppose that

Strict feasibility condition is satisfied for the LMI
representation;
Strict complementarity condition holds, 0 ∈ ri ∂f (x̄).

Then f satisfies the KL property at x̄ with exponent 1
2 .

Idea of the proof:
Write f (x) = inf(s,t) F (x , s, t) with F (x , s, t) = t + δD(x , s, t)
where D = {(x , s, t) : t ≥

∑m
i=1 si , si ≥ fi(x)} is a set

described by semi-definite constraints.
Argue the resulting semi-definite program has singular
degree one, then apply error bound result in SDP and
inf-projection theorem.
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Explicit examples

Each of the following functions satisfies the KL property with
exponent 1

2 at an x̄ satisfying 0 ∈ ri ∂f (x̄):
(i) Group Lasso with overlapping blocks of variables:

f (x) =
1
2
‖Ax − b‖2 +

s∑
i=1

wi‖xJi‖,

where b ∈ Rp, A ∈ Rp×n,
⋃s

i=1 Ji = {1, . . . ,n}, xJi is the
subvector of x indexed by Ji , and wi ≥ 0, i = 1, . . . , s.

(ii) Group fused Lasso (Alaı́z etal, 2013):

f (x) =
1
2
‖Ax − b‖2 +

s∑
i=1

wi‖xJi‖+
s∑

i=2

νi‖xJi − xJi−1‖,

where b ∈ Rp, A ∈ Rp×rs, Ji is an equi-partition of
{1, . . . ,n} in the sense that

⋃s
i=1 Ji = {1, . . . ,n}, Ji ∩ Jj = ∅

and |Ji | = |Jj | = r for i 6= j , wi , νi ≥ 0, i = 1, . . . , s.
Guoyin Li



Motivation KL inequality Estimations of exponents for error bounds and KL inequality Conclusion and future work

Nuclear norm regularization

Similar strategy can be applied for the model problem

f (X ) :=

p∑
k=1

fk (X ) + τ‖X‖∗, (4.0)

where X ∈ Rm×n, ‖X‖∗ denotes the nuclear norm of X (the
sum of all singular values of X ) and each fk : Rm×n → R ∪ {∞}
is a proper closed LMI-representable function.

We do this by using the SDP representation (Rechet, Fazel &
Parrilo, 2010)

‖X‖∗ =
1
2

inf
U,V

{
tr(U) + tr(V ) :

[
U X

X T V

]
� 0, U ∈ Sm,V ∈ Sn

}

Guoyin Li
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Theorem (Nuclear norm regularization, Yu, L. Pong, 2019)

Let f (X ) =
∑m

i=1 fi(X ) + τ‖X‖∗ with each fi is
LMI-representable. Suppose that

Strict feasibility condition is satisfied for each of the LMI
representation;
Strict complementarity condition holds, 0 ∈ ri ∂f (x̄).

Then f satisfies the KL property at X̄ with exponent 1
2 .

Note: In the case m = 1 and f1(X ) = 1
2‖AX − b‖2, this can be

derived using the error bound result in Zhou & So 2017 under
the strict complementarity condition.

Guoyin Li
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Beyond semi-algebraic structure: C2-cone reduciblity

Definition (Shapiro, 2003)
A closed set D ⊆ X is said to be

C2-cone reducible at w̄ ∈ D if ∃ a closed convex pointed
cone K ⊆ Y, ρ > 0 and a mapping Θ : X→ Y such that
(1) Θ is twice continuously differentiable in B(w̄ , ρ);
(2) Θ(w̄) = 0 and DΘ(w̄) : X→ Y is onto,
(3) D ∩ B(w̄ , ρ) = {w : Θ(w) ∈ K} ∩ B(w̄ , ρ).

C2-cone reducible if D is C2-cone reducible at w̄ for all
w̄ ∈ D.

Examples:
Polyhedra, second order cone, positive semi-definite cone.
D = {w : gi(w) ≤ 0, i = 1, . . . ,m}, gi ∈ C2, LICQ holds at
w̄ ∈ D implies that D is C2-cone reducible at w̄ .

Guoyin Li
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Theorem
Let ` : Y→ R be a function that is strongly convex on any
compact convex set and has locally Lipschitz gradient,
A : X→ Y be a linear map, and v ∈ X. Consider the function

f (x) := `(Ax) + 〈v , x〉+ σD(x)

with D being a C2-cone reducible closed convex set. Suppose
that

A−1{Ax̄} ∩ riND(−A∗∇`(Ax̄)− v) 6= ∅.

Then f satisfies the KL property at x̄ with exponent 1
2 .

Note: The ri condition can be dropped if ND(·) is a polyhedral
set.

Guoyin Li
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Explicit examples

Let ` : Rm → R be strongly convex on any compact convex set
and have locally Lipschitz gradient, A : Sn → Rm be linear.

Each of the following functions satisfies the KL property with
exponent 1

2 at an X̄ satisfying the ri condition
(PSD cone constraint )

f (X ) = `(AX ) + 〈V ,X 〉+ δSn
+

(X )

(Schatten p-norm regularization)

f (X ) = `(AX ) + 〈V ,X 〉+ τ‖X‖p for all X ∈ Sn,

where p ∈ [1,2] ∪ {+∞}and ‖X‖p is the Schatten p-norm.
Note: One could also cover entropy regularization. The two
above cases can also be derived using the machinery of Cui,
Ding and Zhao 2017 via spectral functions.
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These approaches also allow us to consider other model such
as

(Least squares with rank constraint)

f (X ) =
1
2
‖AX − b‖2 + δrank(·)≤r (X )

for X ∈ Rm×n, A : Rm×n → Rp.
(Sparse generalized eigenvalue problem)

f (x) =
xT Ax
xT Bx

+ δ‖·‖=1(x) + λ‖x‖0

for A,B ∈ Sn, B is positive definite.

Guoyin Li
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Conclusions

Sparse optimization problems is an important and
challenging topic, and first order method used widely in this
context.
The convergence rate of the first order method relies on
the KL exponent of a suitable potential function.
One approach in obtaining the KL exponent is to develop
calculus rule (such as inf-projection) of KL function and
also exploit the underlying polynomial/conic structure.
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What we did not cover?
Proximal error bound (in the sense of Luo & Tseng).
See e.g. Drusvyatskiy & Lewis 2018, Zhou & So 2017, L.
Pong, 2018.
The link between KL inequality with metric (sub)regularity.
See e.g. Bolte, Daniilidis, Olivier & Laurent, 2010.
KL inequality in infinite dimensional space
See e.g. Hauer & Mazón 2019.
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Some questions:

The lift and project approach may depend on the
representation of the lifting. Is there an optimal lifting?
What about the modulus of error bound and KL inequality?
Some of the results with KL exponent 1/2 relies on the ri
condition. Can this be relaxed?
Further calculus rules?

Guoyin Li



Motivation KL inequality Estimations of exponents for error bounds and KL inequality Conclusion and future work

Want to know more?
(1) H. Attouch, J. Bolte, and B. F. Svaiter, Convergence of descent

methods for semi-algebraic and tame problems: proximal
algorithms, forward-backward splitting, and regularized
Gauss-Seidel methods, Math. Program. 137 (2013), 91-129.

(2) G. Li, T.K. Pong, Calculus of the exponent of
Kurdyka-Lojasiewicz inequality and its applications to linear
convergence of first-order methods. Found. Comput. Math. 18
(2018), no. 5, 1199-1232

(3) G. Li, B.S. Mordukhovich and T.S. Pham, New fractional error
bounds for nonconvex polynomial systems with applications to
Hölderian stability in optimization, Math. Program, 153 (2015),
333-362.

(4) P. Yu, G. Li and T.K. Pong, Deducing Kurdyka-Ł ojasiewicz
exponent via inf-projection, arXiv:1902.03635
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Thanks !

Guoyin Li
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