
Quadratic Regularization Methods with
Finite-Difference Gradient Approximations

Geovani Nunes Grapiglia
UCLouvain, Belgium

One World Optimization Seminar
January 31, 2022

1 / 45

Outline

▶ Introduction and Motivation

▶ New Methods

▶ Preliminary Numerical Results

2 / 45

Problem Definition

We are interested in the unconstrained optimization problem

Minimize f (x), x ∈ Rn, (1)

where

▶ f : Rn → R is nonconvex and has a lower bound flow ∈ R.
▶ ∇f : Rn → Rn is L-Lipschitz continuous.

Derivative-Free Optimization: We want to (approximately) solve
(1) relying only on evaluations of f (·).

3 / 45

Problem Definition

We are interested in the unconstrained optimization problem

Minimize f (x), x ∈ Rn, (1)

where

▶ f : Rn → R is nonconvex and has a lower bound flow ∈ R.
▶ ∇f : Rn → Rn is L-Lipschitz continuous.

Derivative-Free Optimization: We want to (approximately) solve
(1) relying only on evaluations of f (·).

3 / 45

Worst-Case Evaluation Complexity Bounds

Practical Goal: Given ϵ > 0, generate x̄ such that

∥∇f (x̄)∥ ≤ ϵ. (2)

Question: In the worst-case, how many function evaluations an
specific method performs to generate x̄ satisfying (2)?

4 / 45

Worst-Case Evaluation Complexity Bounds

Practical Goal: Given ϵ > 0, generate x̄ such that

∥∇f (x̄)∥ ≤ ϵ. (2)

Question: In the worst-case, how many function evaluations an
specific method performs to generate x̄ satisfying (2)?

4 / 45

Worst-Case Evaluation Complexity Bounds
Deterministic DFO Methods: O

(
n2ϵ−2

)
function evaluations

▶ Direct Search Methods: Vicente (2013); Konecny & Richtárik
(2014).

▶ Derivative-free trust-region methods: Garmanjani, Júdice & Vicente
(2016)

Randomized Methods: Random steps, directions, subspaces...

▶ Nesterov & Spokoiny (2011): O
(
nϵ−2

)
.

▶ Gratton, Royer, Vicente & Zhang (2015): O
(
mnϵ−2

)
.

▶ Bergou, Gorbunov & Richtárik (2020): O
(
nϵ−2

)
.

▶ Kimiaei & Neumaier (2021): O
(
mnϵ−2

)
.

▶ Cartis & Roberts (2021): O
(
rϵ−2

)
.

Remark: Complexity bounds to generate xk such that

E [∥∇f (xk)∥] ≤ ϵ or P (∥∇f (xk)∥ ≤ ϵ) ≥ 1− e−cϵ−2

.

5 / 45

Worst-Case Evaluation Complexity Bounds
Deterministic DFO Methods: O

(
n2ϵ−2

)
function evaluations

▶ Direct Search Methods: Vicente (2013); Konecny & Richtárik
(2014).

▶ Derivative-free trust-region methods: Garmanjani, Júdice & Vicente
(2016)

Randomized Methods: Random steps, directions, subspaces...

▶ Nesterov & Spokoiny (2011): O
(
nϵ−2

)
.

▶ Gratton, Royer, Vicente & Zhang (2015): O
(
mnϵ−2

)
.

▶ Bergou, Gorbunov & Richtárik (2020): O
(
nϵ−2

)
.

▶ Kimiaei & Neumaier (2021): O
(
mnϵ−2

)
.

▶ Cartis & Roberts (2021): O
(
rϵ−2

)
.

Remark: Complexity bounds to generate xk such that

E [∥∇f (xk)∥] ≤ ϵ or P (∥∇f (xk)∥ ≤ ϵ) ≥ 1− e−cϵ−2

.

5 / 45

Worst-Case Evaluation Complexity Bounds
Deterministic DFO Methods: O

(
n2ϵ−2

)
function evaluations

▶ Direct Search Methods: Vicente (2013); Konecny & Richtárik
(2014).

▶ Derivative-free trust-region methods: Garmanjani, Júdice & Vicente
(2016)

Randomized Methods: Random steps, directions, subspaces...

▶ Nesterov & Spokoiny (2011): O
(
nϵ−2

)
.

▶ Gratton, Royer, Vicente & Zhang (2015): O
(
mnϵ−2

)
.

▶ Bergou, Gorbunov & Richtárik (2020): O
(
nϵ−2

)
.

▶ Kimiaei & Neumaier (2021): O
(
mnϵ−2

)
.

▶ Cartis & Roberts (2021): O
(
rϵ−2

)
.

Remark: Complexity bounds to generate xk such that

E [∥∇f (xk)∥] ≤ ϵ or P (∥∇f (xk)∥ ≤ ϵ) ≥ 1− e−cϵ−2

.

5 / 45

This Work

Question: Is it possible to design deterministic DFO methods with
worst-case evaluation complexity of O

(
nϵ−2

)
?

Yes!

6 / 45

This Work

Question: Is it possible to design deterministic DFO methods with
worst-case evaluation complexity of O

(
nϵ−2

)
? Yes!

6 / 45

Outline

▶ Introduction and Motivation

▶ New Methods

▶ Preliminary Numerical Results

7 / 45

Generic First-Order Method with Line Search (Template)

Step 0 Given x1 ∈ Rn and σ1 > 0, set k := 1.

Step 1 Set i := 0.

Step 1.1 Compute ∇f (xk).

Step 1.2 Set

x+k,i = xk −
(

1

2iσk

)
∇f (xk).

Step 1.3 If x+k,i satisfies a certain Line search condition, set ik := i and
go to Step 2. Otherwise, set i := i + 1 and go to Step 1.2.

Step 2 Set xk+1 = x+k,i , σk+1 =
1
2

(
2ikσk

)
, k := k + 1, and go to Step 1.

8 / 45

Generic First-Order Method with Line Search (Template)

Step 0 Given x1 ∈ Rn and σ1 > 0, set k := 1.

Step 1 Set i := 0.

Step 1.1 Compute ∇f (xk).

Step 1.2 Set

x+k,i = xk −
(

1

2iσk

)
∇f (xk).

Step 1.3 If x+k,i satisfies a certain Line search condition, set ik := i and
go to Step 2. Otherwise, set i := i + 1 and go to Step 1.2.

Step 2 Set xk+1 = x+k,i , σk+1 =
1
2

(
2ikσk

)
, k := k + 1, and go to Step 1.

9 / 45

Generic First-Order Method with Line Search (Template)

Step 0 Given x1 ∈ Rn and σ1 > 0, set k := 1.

Step 1 Set i := 0.

Step 1.1 Compute ∇f (xk).

Step 1.2 Set

x+k,i = xk −
(

1

2iσk

)
∇f (xk).

Step 1.3 If x+k,i satisfies a certain Line search condition, set ik := i and
go to Step 2. Otherwise, set i := i + 1 and go to Step 1.2.

Step 2 Set xk+1 = x+k,i , σk+1 =
1
2

(
2ikσk

)
, k := k + 1, and go to Step 1.

10 / 45

Generic First-Order Method with Line Search (Template)

Step 0 Given x1 ∈ Rn and σ1 > 0, set k := 1.

Step 1 Set i := 0.

Step 1.1 Compute ∇f (xk).

Step 1.2 Set

x+k,i = xk −
(

1

2iσk

)
∇f (xk).

Step 1.3 If x+k,i satisfies a certain Line search condition, set ik := i and
go to Step 2. Otherwise, set i := i + 1 and go to Step 1.2.

Step 2 Set xk+1 = x+k,i , σk+1 =
1
2

(
2ikσk

)
, k := k + 1, and go to Step 1.

11 / 45

Generic First-Order Method with Line Search (Template)

Step 0 Given x1 ∈ Rn and σ1 > 0, set k := 1.

Step 1 Set i := 0.

Step 1.1 Compute ∇f (xk).

Step 1.2 Set

x+k,i = xk −
(

1

2iσk

)
∇f (xk).

Step 1.3 If x+k,i satisfies a certain Line search condition, set ik := i and
go to Step 2. Otherwise, set i := i + 1 and go to Step 1.2.

Step 2 Set xk+1 = x+k,i , σk+1 =
1
2

(
2ikσk

)
, k := k + 1, and go to Step 1.

12 / 45

Derivative-Free Method

Step 0 Given x1 ∈ Rn and σ1 > 0, set k := 1.

Step 1 Set i := 0.

Step 1.1 Choose hi > 0 and compute gk,i ∈ Rn with

[gk,i]j =
f (xk + hiej)− f (xk)

hi
, i = 1, . . . , n.

Step 1.2 Set

x+k,i = xk −
(

1

2iσk

)
gk,i .

Step 1.3 If x+k,i satisfies a certain Line search condition, set ik := i and
go to Step 2. Otherwise, set i := i + 1 and go to Step 1.1.

Step 2 Set xk+1 = x+k,i , σk+1 =
1
2

(
2ikσk

)
, k := k + 1, and go to Step 1.

13 / 45

Derivative-Free Method

Step 0 Given x1 ∈ Rn and σ1 > 0, set k := 1.

Step 1 Set i := 0.

Step 1.1 Choose hi > 0 and compute gk,i ∈ Rn with

[gk,i]j =
f (xk + hiej)− f (xk)

hi
, i = 1, . . . , n.

Step 1.2 Set

x+k,i = xk −
(

1

2iσk

)
gk,i .

Step 1.3 If x+k,i satisfies a certain Line search condition, set ik := i and
go to Step 2. Otherwise, set i := i + 1 and go to Step 1.1.

Step 2 Set xk+1 = x+k,i , σk+1 =
1
2

(
2ikσk

)
, k := k + 1, and go to Step 1.

14 / 45

Derivative-Free Method

Step 0 Given x1 ∈ Rn and σ1 > 0, set k := 1.

Step 1 Set i := 0.

Step 1.1 Choose hi > 0 and compute gk,i ∈ Rn with

[gk,i]j =
f (xk + hiej)− f (xk)

hi
, i = 1, . . . , n.

Step 1.2 Set

x+k,i = xk −
(

1

2iσk

)
gk,i .

Step 1.3 If x+k,i satisfies a certain Line search condition, set ik := i and
go to Step 2. Otherwise, set i := i + 1 and go to Step 1.1.

Step 2 Set xk+1 = x+k,i , σk+1 =
1
2

(
2ikσk

)
, k := k + 1, and go to Step 1.

15 / 45

Derivative-Free Method

Step 0 Given x1 ∈ Rn and σ1 > 0, set k := 1.

Step 1 Set i := 0.

Step 1.1 Choose hi > 0 and compute gk,i ∈ Rn with

[gk,i]j =
f (xk + hiej)− f (xk)

hi
, i = 1, . . . , n.

Step 1.2 Set

x+k,i = xk −
(

1

2iσk

)
gk,i .

Step 1.3 If x+k,i satisfies a certain Line search condition, set ik := i and
go to Step 2. Otherwise, set i := i + 1 and go to Step 1.1.

Step 2 Set xk+1 = x+k,i , σk+1 =
1
2

(
2ikσk

)
, k := k + 1, and go to Step 1.

16 / 45

Derivative-Free Method

Step 0 Given x1 ∈ Rn and σ1 > 0, set k := 1.

Step 1 Set i := 0.

Step 1.1 Choose hi > 0 and compute gk,i ∈ Rn with

[gk,i]j =
f (xk + hiej)− f (xk)

hi
, i = 1, . . . , n.

Step 1.2 Set

x+k,i = xk −
(

1

2iσk

)
gk,i .

Step 1.3 If x+k,i satisfies a certain Line search condition, set ik := i and
go to Step 2. Otherwise, set i := i + 1 and go to Step 1.1.

Step 2 Set xk+1 = x+k,i , σk+1 =
1
2

(
2ikσk

)
, k := k + 1, and go to Step 1.

17 / 45

Derivative-Free Method

Step 0 Given x1 ∈ Rn and σ1 > 0, set k := 1.

Step 1 Set i := 0.

Step 1.1 Choose hi > 0 and compute gk,i ∈ Rn with

[gk,i]j =
f (xk + hiej)− f (xk)

hi
, i = 1, . . . , n.

Step 1.2 Set

x+k,i = xk −
(

1

2iσk

)
gk,i .

Step 1.3 If x+k,i satisfies a certain Line search condition, set ik := i and
go to Step 2. Otherwise, set i := i + 1 and go to Step 1.1.

Step 2 Set xk+1 = x+k,i , σk+1 =
1
2

(
2ikσk

)
, k := k + 1, and go to Step 1.

18 / 45

Choice of hi
Recently, Kohler and Lucchi (2017) and Wang et al. (2019) considered
adaptations of the Cubic Regularization of the Newton’s Method where
∇2f (xk) is replaced by a matriz Bk such that

∥∇2f (xk)− Bk∥ ≤ κB∥xk − xk−1∥. (3)

Inspired by condition (3), we want

∥∇f (xk)− gk,i∥ ≤ κg∥xk − xk−1∥. (4)

By the Lipschitz continuity of ∇f (·) wee know that

∥∇f (xk)− gk,i∥ ≤
√
nL

2
hi .

Thus, to obtain (4) it is enough to take

0 < hi ≤
2κg√
nL

∥xk − xk−1∥.

Our choice:

hi =
2κg√
n (2iσk)

∥xk − xk−1∥.

If 2iσk ≥ L, then (4) holds.

19 / 45

Choice of hi
Recently, Kohler and Lucchi (2017) and Wang et al. (2019) considered
adaptations of the Cubic Regularization of the Newton’s Method where
∇2f (xk) is replaced by a matriz Bk such that

∥∇2f (xk)− Bk∥ ≤ κB∥xk − xk−1∥. (3)

Inspired by condition (3), we want

∥∇f (xk)− gk,i∥ ≤ κg∥xk − xk−1∥. (4)

By the Lipschitz continuity of ∇f (·) wee know that

∥∇f (xk)− gk,i∥ ≤
√
nL

2
hi .

Thus, to obtain (4) it is enough to take

0 < hi ≤
2κg√
nL

∥xk − xk−1∥.

Our choice:

hi =
2κg√
n (2iσk)

∥xk − xk−1∥.

If 2iσk ≥ L, then (4) holds.

19 / 45

Choice of hi
Recently, Kohler and Lucchi (2017) and Wang et al. (2019) considered
adaptations of the Cubic Regularization of the Newton’s Method where
∇2f (xk) is replaced by a matriz Bk such that

∥∇2f (xk)− Bk∥ ≤ κB∥xk − xk−1∥. (3)

Inspired by condition (3), we want

∥∇f (xk)− gk,i∥ ≤ κg∥xk − xk−1∥. (4)

By the Lipschitz continuity of ∇f (·) wee know that

∥∇f (xk)− gk,i∥ ≤
√
nL

2
hi .

Thus, to obtain (4) it is enough to take

0 < hi ≤
2κg√
nL

∥xk − xk−1∥.

Our choice:

hi =
2κg√
n (2iσk)

∥xk − xk−1∥.

If 2iσk ≥ L, then (4) holds.

19 / 45

Choice of hi
Recently, Kohler and Lucchi (2017) and Wang et al. (2019) considered
adaptations of the Cubic Regularization of the Newton’s Method where
∇2f (xk) is replaced by a matriz Bk such that

∥∇2f (xk)− Bk∥ ≤ κB∥xk − xk−1∥. (3)

Inspired by condition (3), we want

∥∇f (xk)− gk,i∥ ≤ κg∥xk − xk−1∥. (4)

By the Lipschitz continuity of ∇f (·) wee know that

∥∇f (xk)− gk,i∥ ≤
√
nL

2
hi .

Thus, to obtain (4) it is enough to take

0 < hi ≤
2κg√
nL

∥xk − xk−1∥.

Our choice:

hi =
2κg√
n (2iσk)

∥xk − xk−1∥.

If 2iσk ≥ L, then (4) holds.

19 / 45

Choice of hi
Recently, Kohler and Lucchi (2017) and Wang et al. (2019) considered
adaptations of the Cubic Regularization of the Newton’s Method where
∇2f (xk) is replaced by a matriz Bk such that

∥∇2f (xk)− Bk∥ ≤ κB∥xk − xk−1∥. (3)

Inspired by condition (3), we want

∥∇f (xk)− gk,i∥ ≤ κg∥xk − xk−1∥. (4)

By the Lipschitz continuity of ∇f (·) wee know that

∥∇f (xk)− gk,i∥ ≤
√
nL

2
hi .

Thus, to obtain (4) it is enough to take

0 < hi ≤
2κg√
nL

∥xk − xk−1∥.

Our choice:

hi =
2κg√
n (2iσk)

∥xk − xk−1∥.

If 2iσk ≥ L, then (4) holds.

19 / 45

Choice of hi
Recently, Kohler and Lucchi (2017) and Wang et al. (2019) considered
adaptations of the Cubic Regularization of the Newton’s Method where
∇2f (xk) is replaced by a matriz Bk such that

∥∇2f (xk)− Bk∥ ≤ κB∥xk − xk−1∥. (3)

Inspired by condition (3), we want

∥∇f (xk)− gk,i∥ ≤ κg∥xk − xk−1∥. (4)

By the Lipschitz continuity of ∇f (·) wee know that

∥∇f (xk)− gk,i∥ ≤
√
nL

2
hi .

Thus, to obtain (4) it is enough to take

0 < hi ≤
2κg√
nL

∥xk − xk−1∥.

Our choice:

hi =
2κg√
n (2iσk)

∥xk − xk−1∥.

If 2iσk ≥ L, then (4) holds.
19 / 45

Derivative-Free Method

Step 0 Given x0, x1 ∈ Rn (x0 ̸= x1), κg > 0, and σ1 > 0, set k := 1.

Step 1 Set i := 0.

Step 1.1 For

hi =
2κg∥xk − xk−1∥√

n (2iσk)

compute gk,i ∈ Rn with

[gk,i]j =
f (xk + hiej)− f (xk)

hi
, i = 1, . . . , n.

Step 1.2 Set

x+k,i = xk −
(

1

2iσk

)
gk,i .

Step 1.3 If x+k,i satisfies a certain Line search condition, set ik := i and
go to Step 2. Otherwise, set i := i + 1 and go to Step 1.1.

Step 2 Set xk+1 = x+k,i , σk+1 =
1
2

(
2ikσk

)
, k := k + 1, and go to Step 1.

20 / 45

Derivative-Free Method

Lemma: Let

x+k,i = xk −
(

1

2iσk

)
gk,i .

with
∥∇f (xk)− gk,i∥ ≤ κg∥xk − xk−1∥.

If
2iσk ≥ 2 (L+ κg)

then

f (xk)− f (x+k,i) ≥
2iσk
4

∥x+k,i − xk∥2 −
κg
2
∥xk − xk−1∥2.

21 / 45

Derivative-Free Method

Lemma: Let

x+k,i = xk −
(

1

2iσk

)
gk,i .

with
∥∇f (xk)− gk,i∥ ≤ κg∥xk − xk−1∥.

If
2iσk ≥ 2 (L+ κg)

then

f (xk)− f (x+k,i) ≥
2iσk
4

∥x+k,i − xk∥2 −
κg
2
∥xk − xk−1∥2.

21 / 45

Derivative-Free Method

Step 0 Given x0, x1 ∈ Rn (x0 ̸= x1), κg > 0, and σ1 > 0, set k := 1

Step 1 Set i := 0.

Step 1.1 For

hi =
2κg∥xk − xk−1∥√

n (2iσk)

compute gk,i ∈ Rn with

[gk,i]j =
f (xk + hiej)− f (xk)

hi
, i = 1, . . . , n.

Step 1.2 Set

x+
k,i = xk −

(
1

2iσk

)
gk,i .

Step 1.3 If

f (xk)− f (x+
k,i) ≥

2iσk

4
∥x+

k,i − xk∥2 −
κg

2
∥xk − xk−1∥2,

set ik := i and go to Step 2. Otherwise, set i := i + 1 and go to Step 1.1.

Step 2 Set xk+1 = x+
k,i , σk+1 =

1
2

(
2ikσk

)
, k := k + 1, and go to Step 1.

22 / 45

Derivative-Free Method

Step 0 Given x0, x1 ∈ Rn (x0 ̸= x1), κg > 0, and σ1 > 0, set k := 1

Step 1 Set i := 0.

Step 1.1 For

hi =
2κg∥xk − xk−1∥√

n (2iσk)

compute gk,i ∈ Rn with

[gk,i]j =
f (xk + hiej)− f (xk)

hi
, i = 1, . . . , n.

Step 1.2 Set

x+
k,i = xk −

(
1

2iσk

)
gk,i .

Step 1.3 If

f (xk)− f (x+
k,i) ≥

2iσk

4
∥x+

k,i − xk∥2 −
κg

2
∥xk − xk−1∥2,

set ik := i and go to Step 2. Otherwise, set i := i + 1 and go to Step 1.1.

Step 2 Set xk+1 = x+
k,i , σk+1 =

1
2

(
2ikσk

)
, k := k + 1, and go to Step 1.

23 / 45

Derivative-Free Method

Step 0 Given x0, x1 ∈ Rn (x0 ̸= x1), κg > 0, and σ1 > 0, set k := 1.

Step 1 Set i := 0.

Step 1.1 For

hi =
2κg∥xk − xk−1∥√

n (2iσk)

compute gk,i ∈ Rn with

[gk,i]j =
f (xk + hiej)− f (xk)

hi
, i = 1, . . . , n.

Step 1.2 Set

x+
k,i = xk −

(
1

2iσk

)
gk,i .

Step 1.3 If

f (xk)− f (x+
k,i) ≥

2iσk

4
∥x+

k,i − xk∥2 −
κg

2
∥xk − xk−1∥2,

set ik := i and go to Step 2. Otherwise, set i := i + 1 and go to Step 1.1.

Step 2 Set xk+1 = x+
k,i , σk+1 =

1
2

(
2ikσk

)
, k := k + 1, and go to Step 1.

24 / 45

Derivative-Free Method

Step 0 Given x0, x1 ∈ Rn (x0 ̸= x1), and σ1 > 0, set κg = σ1/2, and k := 1.

Step 1 Set i := 0.

Step 1.1 For

hi =
2κg∥xk − xk−1∥√

n (2iσk)

compute gk,i ∈ Rn with

[gk,i]j =
f (xk + hiej)− f (xk)

hi
, i = 1, . . . , n.

Step 1.2 Set

x+
k,i = xk −

(
1

2iσk

)
gk,i .

Step 1.3 If

f (xk)− f (x+
k,i) ≥

2iσk

4
∥x+

k,i − xk∥2 −
σ1

4
∥xk − xk−1∥2,

set ik := i and go to Step 2. Otherwise, set i := i + 1 and go to Step 1.1.

Step 2 Set xk+1 = x+
k,i , σk+1 =

1
2

(
2ikσk

)
, k := k + 1, and go to Step 1.

25 / 45

Derivative-Free Method

Step 0 Given x0, x1 ∈ Rn (x0 ̸= x1), and σ1 > 0, set κg = σ1/2, and k := 1.

Step 1 Find the smallest integer i ≥ 0 such that 2iσk ≥ 2σ1.

Step 1.1 For

hi =
2κg∥xk − xk−1∥√

n (2iσk)

compute gk,i ∈ Rn with

[gk,i]j =
f (xk + hiej)− f (xk)

hi
, i = 1, . . . , n.

Step 1.2 Set

x+
k,i = xk −

(
1

2iσk

)
gk,i .

Step 1.3 If

f (xk)− f (x+
k,i) ≥

2iσk

4
∥x+

k,i − xk∥2 −
σ1

4
∥xk − xk−1∥2,

set ik := i and go to Step 2. Otherwise, set i := i + 1 and go to Step 1.1.

Step 2 Set xk+1 = x+
k,i , σk+1 =

1
2

(
2ikσk

)
, k := k + 1, and go to Step 1.

26 / 45

Complexity Analysis

Lemma: The sequence {σk} satisfies

σ1 ≤ σk ≤ 2
(
L+

σ1
2

)
≡ σmax,

for all k ≥ 1.

Moreover, the number FET of function evaluations performed up
to the Tth iteration is bounded as follows

FET ≤ 1 + (n + 1) [2T + log2(σmax)− log2(σ1)] = O(nT).

27 / 45

Complexity Analysis

Lemma: The sequence {σk} satisfies

σ1 ≤ σk ≤ 2
(
L+

σ1
2

)
≡ σmax,

for all k ≥ 1.

Moreover, the number FET of function evaluations performed up
to the Tth iteration is bounded as follows

FET ≤ 1 + (n + 1) [2T + log2(σmax)− log2(σ1)] = O(nT).

27 / 45

Complexity Analysis

Theorem: Given ϵ > 0, let T be the first iteration index such that

∥∇f (xT)∥ ≤ ϵ.

Then,

T ≤ 3+

(
5L

4
+ σmax

)2 [8(f (x1)− flow)

σ1
+ 2∥x1 − x0∥2

]
ϵ−2 = O(ϵ−2).

Corollary: FET ≤ O(nT) ≤ O(nϵ−2), i.e., the propose method
requires at most O

(
nϵ−2

)
function evaluations to generate xk such

that ∥∇f (xk)∥ ≤ ϵ.

28 / 45

Complexity Analysis

Theorem: Given ϵ > 0, let T be the first iteration index such that

∥∇f (xT)∥ ≤ ϵ.

Then,

T ≤ 3+

(
5L

4
+ σmax

)2 [8(f (x1)− flow)

σ1
+ 2∥x1 − x0∥2

]
ϵ−2 = O(ϵ−2).

Corollary: FET ≤ O(nT)

≤ O(nϵ−2), i.e., the propose method
requires at most O

(
nϵ−2

)
function evaluations to generate xk such

that ∥∇f (xk)∥ ≤ ϵ.

28 / 45

Complexity Analysis

Theorem: Given ϵ > 0, let T be the first iteration index such that

∥∇f (xT)∥ ≤ ϵ.

Then,

T ≤ 3+

(
5L

4
+ σmax

)2 [8(f (x1)− flow)

σ1
+ 2∥x1 − x0∥2

]
ϵ−2 = O(ϵ−2).

Corollary: FET ≤ O(nT) ≤ O(nϵ−2)

, i.e., the propose method
requires at most O

(
nϵ−2

)
function evaluations to generate xk such

that ∥∇f (xk)∥ ≤ ϵ.

28 / 45

Complexity Analysis

Theorem: Given ϵ > 0, let T be the first iteration index such that

∥∇f (xT)∥ ≤ ϵ.

Then,

T ≤ 3+

(
5L

4
+ σmax

)2 [8(f (x1)− flow)

σ1
+ 2∥x1 − x0∥2

]
ϵ−2 = O(ϵ−2).

Corollary: FET ≤ O(nT) ≤ O(nϵ−2), i.e., the propose method
requires at most O

(
nϵ−2

)
function evaluations to generate xk such

that ∥∇f (xk)∥ ≤ ϵ.

28 / 45

What is the main trick?

The trick is to use
√
n in hi =

2κg∥xk − xk−1∥√
n (2iσk)

Remember that

∥∇f (xk)− gk,i∥ ≤
√
nL

2
hi .

Suppose that

hi =
2κg∥xk − xk−1∥

(2iσk)
.

Then, ∥∇f (xk)− gk,i∥ ≤ κg∥xk − xk−1∥ whenever 2iσk ≥
√
nL.

In this case, we would get σk ≤ σmax = O(
√
n), which would imply an

iteration complexity bound

T ≤ 3 +

(
5L

4
+ σmax

)2 [
8(f (x1)− flow)

σ1
+ 2∥x1 − x0∥2

]
ϵ−2 = O(nϵ−2).

In this case we would have FET ≤ O(nT) ≤ O(n2ϵ−2).

29 / 45

What is the main trick?

The trick is to use
√
n in hi =

2κg∥xk − xk−1∥√
n (2iσk)

Remember that

∥∇f (xk)− gk,i∥ ≤
√
nL

2
hi .

Suppose that

hi =
2κg∥xk − xk−1∥

(2iσk)
.

Then, ∥∇f (xk)− gk,i∥ ≤ κg∥xk − xk−1∥ whenever 2iσk ≥
√
nL.

In this case, we would get σk ≤ σmax = O(
√
n), which would imply an

iteration complexity bound

T ≤ 3 +

(
5L

4
+ σmax

)2 [
8(f (x1)− flow)

σ1
+ 2∥x1 − x0∥2

]
ϵ−2 = O(nϵ−2).

In this case we would have FET ≤ O(nT) ≤ O(n2ϵ−2).

29 / 45

What is the main trick?

The trick is to use
√
n in hi =

2κg∥xk − xk−1∥√
n (2iσk)

Remember that

∥∇f (xk)− gk,i∥ ≤
√
nL

2
hi .

Suppose that

hi =
2κg∥xk − xk−1∥

(2iσk)
.

Then, ∥∇f (xk)− gk,i∥ ≤ κg∥xk − xk−1∥ whenever 2iσk ≥
√
nL.

In this case, we would get σk ≤ σmax = O(
√
n), which would imply an

iteration complexity bound

T ≤ 3 +

(
5L

4
+ σmax

)2 [
8(f (x1)− flow)

σ1
+ 2∥x1 − x0∥2

]
ϵ−2 = O(nϵ−2).

In this case we would have FET ≤ O(nT) ≤ O(n2ϵ−2).

29 / 45

What is the main trick?

The trick is to use
√
n in hi =

2κg∥xk − xk−1∥√
n (2iσk)

Remember that

∥∇f (xk)− gk,i∥ ≤
√
nL

2
hi .

Suppose that

hi =
2κg∥xk − xk−1∥

(2iσk)
.

Then, ∥∇f (xk)− gk,i∥ ≤ κg∥xk − xk−1∥ whenever 2iσk ≥
√
nL.

In this case, we would get σk ≤ σmax = O(
√
n), which would imply an

iteration complexity bound

T ≤ 3 +

(
5L

4
+ σmax

)2 [
8(f (x1)− flow)

σ1
+ 2∥x1 − x0∥2

]
ϵ−2 = O(nϵ−2).

In this case we would have FET ≤ O(nT) ≤ O(n2ϵ−2).

29 / 45

What is the main trick?

The trick is to use
√
n in hi =

2κg∥xk − xk−1∥√
n (2iσk)

Remember that

∥∇f (xk)− gk,i∥ ≤
√
nL

2
hi .

Suppose that

hi =
2κg∥xk − xk−1∥

(2iσk)
.

Then, ∥∇f (xk)− gk,i∥ ≤ κg∥xk − xk−1∥ whenever 2iσk ≥
√
nL.

In this case, we would get σk ≤ σmax = O(
√
n),

which would imply an
iteration complexity bound

T ≤ 3 +

(
5L

4
+ σmax

)2 [
8(f (x1)− flow)

σ1
+ 2∥x1 − x0∥2

]
ϵ−2 = O(nϵ−2).

In this case we would have FET ≤ O(nT) ≤ O(n2ϵ−2).

29 / 45

What is the main trick?

The trick is to use
√
n in hi =

2κg∥xk − xk−1∥√
n (2iσk)

Remember that

∥∇f (xk)− gk,i∥ ≤
√
nL

2
hi .

Suppose that

hi =
2κg∥xk − xk−1∥

(2iσk)
.

Then, ∥∇f (xk)− gk,i∥ ≤ κg∥xk − xk−1∥ whenever 2iσk ≥
√
nL.

In this case, we would get σk ≤ σmax = O(
√
n), which would imply an

iteration complexity bound

T ≤ 3 +

(
5L

4
+ σmax

)2 [
8(f (x1)− flow)

σ1
+ 2∥x1 − x0∥2

]
ϵ−2

= O(nϵ−2).

In this case we would have FET ≤ O(nT) ≤ O(n2ϵ−2).

29 / 45

What is the main trick?

The trick is to use
√
n in hi =

2κg∥xk − xk−1∥√
n (2iσk)

Remember that

∥∇f (xk)− gk,i∥ ≤
√
nL

2
hi .

Suppose that

hi =
2κg∥xk − xk−1∥

(2iσk)
.

Then, ∥∇f (xk)− gk,i∥ ≤ κg∥xk − xk−1∥ whenever 2iσk ≥
√
nL.

In this case, we would get σk ≤ σmax = O(
√
n), which would imply an

iteration complexity bound

T ≤ 3 +

(
5L

4
+ σmax

)2 [
8(f (x1)− flow)

σ1
+ 2∥x1 − x0∥2

]
ϵ−2 = O(nϵ−2).

In this case we would have FET ≤ O(nT) ≤ O(n2ϵ−2).

29 / 45

What is the main trick?

The trick is to use
√
n in hi =

2κg∥xk − xk−1∥√
n (2iσk)

Remember that

∥∇f (xk)− gk,i∥ ≤
√
nL

2
hi .

Suppose that

hi =
2κg∥xk − xk−1∥

(2iσk)
.

Then, ∥∇f (xk)− gk,i∥ ≤ κg∥xk − xk−1∥ whenever 2iσk ≥
√
nL.

In this case, we would get σk ≤ σmax = O(
√
n), which would imply an

iteration complexity bound

T ≤ 3 +

(
5L

4
+ σmax

)2 [
8(f (x1)− flow)

σ1
+ 2∥x1 − x0∥2

]
ϵ−2 = O(nϵ−2).

In this case we would have FET ≤ O(nT)

≤ O(n2ϵ−2).

29 / 45

What is the main trick?

The trick is to use
√
n in hi =

2κg∥xk − xk−1∥√
n (2iσk)

Remember that

∥∇f (xk)− gk,i∥ ≤
√
nL

2
hi .

Suppose that

hi =
2κg∥xk − xk−1∥

(2iσk)
.

Then, ∥∇f (xk)− gk,i∥ ≤ κg∥xk − xk−1∥ whenever 2iσk ≥
√
nL.

In this case, we would get σk ≤ σmax = O(
√
n), which would imply an

iteration complexity bound

T ≤ 3 +

(
5L

4
+ σmax

)2 [
8(f (x1)− flow)

σ1
+ 2∥x1 − x0∥2

]
ϵ−2 = O(nϵ−2).

In this case we would have FET ≤ O(nT) ≤ O(n2ϵ−2).

29 / 45

Quadratic Regularization Method: O(nϵ−2)

Instead of

x+k,i = xk −
(

1

2iσk

)
gk,i ,

we can compute x+k,i as an approximate minimizer of the quadratic model

Mxk ,2iσk
(y) = f (xk)+⟨gk,i , y−xk⟩+

1

2
⟨Bk(y−xk), y−xk⟩+

2iσk
2

∥y − xk∥2,

where Bk ∈ Rn×n is symmetric and positive semidefinite.

Example: Bk may be computed using Quasi-Newton formulas.

Additional Assumption: ∥Bk∥ ≤ M for all k ≥ 1.

30 / 45

Quadratic Regularization Method: O(nϵ−2)

Instead of

x+k,i = xk −
(

1

2iσk

)
gk,i ,

we can compute x+k,i as an approximate minimizer of the quadratic model

Mxk ,2iσk
(y) = f (xk)+⟨gk,i , y−xk⟩+

1

2
⟨Bk(y−xk), y−xk⟩+

2iσk
2

∥y − xk∥2,

where Bk ∈ Rn×n is symmetric and positive semidefinite.

Example: Bk may be computed using Quasi-Newton formulas.

Additional Assumption: ∥Bk∥ ≤ M for all k ≥ 1.

30 / 45

Quadratic Regularization Method: O(nϵ−2)

Instead of

x+k,i = xk −
(

1

2iσk

)
gk,i ,

we can compute x+k,i as an approximate minimizer of the quadratic model

Mxk ,2iσk
(y) = f (xk)+⟨gk,i , y−xk⟩+

1

2
⟨Bk(y−xk), y−xk⟩+

2iσk
2

∥y − xk∥2,

where Bk ∈ Rn×n is symmetric and positive semidefinite.

Example: Bk may be computed using Quasi-Newton formulas.

Additional Assumption: ∥Bk∥ ≤ M for all k ≥ 1.

30 / 45

QRM with Central Finite-Differences: O(nϵ−2)
We can also use central finite-difference gradients:

[gk,i]j =
f (xk + hiej)− f (xk − hiej)

2hi
, j = 1, . . . , n.

Remember that we want

∥∇f (xk)− gk,i∥ ≤ κg∥xk − xk−1∥. (5)

If we assume that ∇2f (·) is L2-Lipschitz continuous, we can show that

∥∇f (xk)− gk,i∥ ≤
√
nL2

6
h2
i .

Thus, to obtain (5) it is enough to take

0 < hi ≤
[
6κg∥xk − xk−1∥√

nL2

] 1
2

.

Our choice:

hi =

[
6κg∥xk − xk−1∥√

n(2iσk)

] 1
2

.

If 2iσk ≥ L2, then (5) holds.

31 / 45

QRM with Central Finite-Differences: O(nϵ−2)
We can also use central finite-difference gradients:

[gk,i]j =
f (xk + hiej)− f (xk − hiej)

2hi
, j = 1, . . . , n.

Remember that we want

∥∇f (xk)− gk,i∥ ≤ κg∥xk − xk−1∥. (5)

If we assume that ∇2f (·) is L2-Lipschitz continuous, we can show that

∥∇f (xk)− gk,i∥ ≤
√
nL2

6
h2
i .

Thus, to obtain (5) it is enough to take

0 < hi ≤
[
6κg∥xk − xk−1∥√

nL2

] 1
2

.

Our choice:

hi =

[
6κg∥xk − xk−1∥√

n(2iσk)

] 1
2

.

If 2iσk ≥ L2, then (5) holds.

31 / 45

QRM with Central Finite-Differences: O(nϵ−2)
We can also use central finite-difference gradients:

[gk,i]j =
f (xk + hiej)− f (xk − hiej)

2hi
, j = 1, . . . , n.

Remember that we want

∥∇f (xk)− gk,i∥ ≤ κg∥xk − xk−1∥. (5)

If we assume that ∇2f (·) is L2-Lipschitz continuous, we can show that

∥∇f (xk)− gk,i∥ ≤
√
nL2

6
h2
i .

Thus, to obtain (5) it is enough to take

0 < hi ≤
[
6κg∥xk − xk−1∥√

nL2

] 1
2

.

Our choice:

hi =

[
6κg∥xk − xk−1∥√

n(2iσk)

] 1
2

.

If 2iσk ≥ L2, then (5) holds.

31 / 45

QRM with Central Finite-Differences: O(nϵ−2)
We can also use central finite-difference gradients:

[gk,i]j =
f (xk + hiej)− f (xk − hiej)

2hi
, j = 1, . . . , n.

Remember that we want

∥∇f (xk)− gk,i∥ ≤ κg∥xk − xk−1∥. (5)

If we assume that ∇2f (·) is L2-Lipschitz continuous, we can show that

∥∇f (xk)− gk,i∥ ≤
√
nL2

6
h2
i .

Thus, to obtain (5) it is enough to take

0 < hi ≤
[
6κg∥xk − xk−1∥√

nL2

] 1
2

.

Our choice:

hi =

[
6κg∥xk − xk−1∥√

n(2iσk)

] 1
2

.

If 2iσk ≥ L2, then (5) holds.

31 / 45

QRM with Central Finite-Differences: O(nϵ−2)
We can also use central finite-difference gradients:

[gk,i]j =
f (xk + hiej)− f (xk − hiej)

2hi
, j = 1, . . . , n.

Remember that we want

∥∇f (xk)− gk,i∥ ≤ κg∥xk − xk−1∥. (5)

If we assume that ∇2f (·) is L2-Lipschitz continuous, we can show that

∥∇f (xk)− gk,i∥ ≤
√
nL2

6
h2
i .

Thus, to obtain (5) it is enough to take

0 < hi ≤
[
6κg∥xk − xk−1∥√

nL2

] 1
2

.

Our choice:

hi =

[
6κg∥xk − xk−1∥√

n(2iσk)

] 1
2

.

If 2iσk ≥ L2, then (5) holds.

31 / 45

QRM with Central Finite-Differences: O(nϵ−2)
We can also use central finite-difference gradients:

[gk,i]j =
f (xk + hiej)− f (xk − hiej)

2hi
, j = 1, . . . , n.

Remember that we want

∥∇f (xk)− gk,i∥ ≤ κg∥xk − xk−1∥. (5)

If we assume that ∇2f (·) is L2-Lipschitz continuous, we can show that

∥∇f (xk)− gk,i∥ ≤
√
nL2

6
h2
i .

Thus, to obtain (5) it is enough to take

0 < hi ≤
[
6κg∥xk − xk−1∥√

nL2

] 1
2

.

Our choice:

hi =

[
6κg∥xk − xk−1∥√

n(2iσk)

] 1
2

.

If 2iσk ≥ L2, then (5) holds.

31 / 45

Outline

▶ Introduction and Motivation

▶ New Methods

▶ Preliminary Numerical Results

32 / 45

Preliminary Numerical Results

Numerical experiments were performed on the set of 15 nonlinear
least-squares problems from the Moré-Garbow-Hillstrom collection
in which the dimension n can be chosen.

For each problem, two choices of starting points were considered,
namely

x0 = 5s x̄ ,

with s ∈ {0, 1}, where x̄ is the standard starting point given in the
MGH collection.

Four dimensions were considered: n = 8, 12, 16, 20.

Total of 120 test problems.

33 / 45

Preliminary Numerical Results

Numerical experiments were performed on the set of 15 nonlinear
least-squares problems from the Moré-Garbow-Hillstrom collection
in which the dimension n can be chosen.

For each problem, two choices of starting points were considered,
namely

x0 = 5s x̄ ,

with s ∈ {0, 1}, where x̄ is the standard starting point given in the
MGH collection.

Four dimensions were considered: n = 8, 12, 16, 20.

Total of 120 test problems.

33 / 45

Preliminary Numerical Results

Numerical experiments were performed on the set of 15 nonlinear
least-squares problems from the Moré-Garbow-Hillstrom collection
in which the dimension n can be chosen.

For each problem, two choices of starting points were considered,
namely

x0 = 5s x̄ ,

with s ∈ {0, 1}, where x̄ is the standard starting point given in the
MGH collection.

Four dimensions were considered: n = 8, 12, 16, 20.

Total of 120 test problems.

33 / 45

Preliminary Numerical Results: Experiment 1
In the first experiment, the following code was tested:

▶ FDGM: New method with forward finite-difference gradients and
Bk = 0.

It was applied to the test problems with n = 8 and the choice s = 1 for
the starting points (15 problems).

To investigate the ability of FDGM to generate approximate stationary
points, the code was endowed with the stopping criterion

∥∇f (xk)∥ ≤ ϵ. (6)

Notation:

▶ T (ϵ): number of iterations required by the solver to generate xk for
which (6) holds.

▶ FE (ϵ): Corresponding number of function evaluations.

▶ A(ϵ): It is defined as

A(ϵ) =
FE (ϵ)

T (ϵ)(n + 1)
.

34 / 45

Preliminary Numerical Results: Experiment 1
In the first experiment, the following code was tested:

▶ FDGM: New method with forward finite-difference gradients and
Bk = 0.

It was applied to the test problems with n = 8 and the choice s = 1 for
the starting points (15 problems).

To investigate the ability of FDGM to generate approximate stationary
points, the code was endowed with the stopping criterion

∥∇f (xk)∥ ≤ ϵ. (6)

Notation:

▶ T (ϵ): number of iterations required by the solver to generate xk for
which (6) holds.

▶ FE (ϵ): Corresponding number of function evaluations.

▶ A(ϵ): It is defined as

A(ϵ) =
FE (ϵ)

T (ϵ)(n + 1)
.

34 / 45

Preliminary Numerical Results: Experiment 1
In the first experiment, the following code was tested:

▶ FDGM: New method with forward finite-difference gradients and
Bk = 0.

It was applied to the test problems with n = 8 and the choice s = 1 for
the starting points (15 problems).

To investigate the ability of FDGM to generate approximate stationary
points, the code was endowed with the stopping criterion

∥∇f (xk)∥ ≤ ϵ. (6)

Notation:

▶ T (ϵ): number of iterations required by the solver to generate xk for
which (6) holds.

▶ FE (ϵ): Corresponding number of function evaluations.

▶ A(ϵ): It is defined as

A(ϵ) =
FE (ϵ)

T (ϵ)(n + 1)
.

34 / 45

Preliminary Numerical Results: Experiment 1
In the first experiment, the following code was tested:

▶ FDGM: New method with forward finite-difference gradients and
Bk = 0.

It was applied to the test problems with n = 8 and the choice s = 1 for
the starting points (15 problems).

To investigate the ability of FDGM to generate approximate stationary
points, the code was endowed with the stopping criterion

∥∇f (xk)∥ ≤ ϵ. (6)

Notation:

▶ T (ϵ): number of iterations required by the solver to generate xk for
which (6) holds.

▶ FE (ϵ): Corresponding number of function evaluations.

▶ A(ϵ): It is defined as

A(ϵ) =
FE (ϵ)

T (ϵ)(n + 1)
.

34 / 45

Preliminary Numerical Results: Experiment 1
In the first experiment, the following code was tested:

▶ FDGM: New method with forward finite-difference gradients and
Bk = 0.

It was applied to the test problems with n = 8 and the choice s = 1 for
the starting points (15 problems).

To investigate the ability of FDGM to generate approximate stationary
points, the code was endowed with the stopping criterion

∥∇f (xk)∥ ≤ ϵ. (6)

Notation:

▶ T (ϵ): number of iterations required by the solver to generate xk for
which (6) holds.

▶ FE (ϵ): Corresponding number of function evaluations.

▶ A(ϵ): It is defined as

A(ϵ) =
FE (ϵ)

T (ϵ)(n + 1)
.

34 / 45

Preliminary Numerical Results: Experiment 1
In the first experiment, the following code was tested:

▶ FDGM: New method with forward finite-difference gradients and
Bk = 0.

It was applied to the test problems with n = 8 and the choice s = 1 for
the starting points (15 problems).

To investigate the ability of FDGM to generate approximate stationary
points, the code was endowed with the stopping criterion

∥∇f (xk)∥ ≤ ϵ. (6)

Notation:

▶ T (ϵ): number of iterations required by the solver to generate xk for
which (6) holds.

▶ FE (ϵ): Corresponding number of function evaluations.

▶ A(ϵ): It is defined as

A(ϵ) =
FE (ϵ)

T (ϵ)(n + 1)
.

34 / 45

Complexity Analysis

Lemma: The number FET of function evaluations performed up
to the Tth iteration is bounded as follows

FET ≤ 1 + (n + 1) [2T + log2(σmax)− log2(σ1)] .

35 / 45

Complexity Analysis

Lemma: The number FET of function evaluations performed up
to the Tth iteration is bounded as follows

AT =
FET

T (n + 1)
≤ 2 +

1 + (n + 1) [log2(σmax)− log2(σ1)]

T (n + 1)

So, when T → +∞, the upper bound on AT approaches to 2.

36 / 45

Complexity Analysis

Lemma: The number FET of function evaluations performed up
to the Tth iteration is bounded as follows

AT =
FET

T (n + 1)
≤ 2 +

1 + (n + 1) [log2(σmax)− log2(σ1)]

T (n + 1)

So, when T → +∞, the upper bound on AT approaches to 2.

36 / 45

Preliminary Numerical Results: Experiment 1

ϵ = 10−1 ϵ = 10−2

PROBLEM T (ϵ) FE(ϵ) A(ϵ) T (ϵ) FE(ϵ) A(ϵ)

1. Extend. Rosenbrock 5017 90450 2.0032 7406 133452 2.0022

2. Extend. Powell Sing. 279 5148 2.0502 886 16074 2.0158

3. Penalty I 14 325 2.5714 14 324 2.5714

4. Penalty II 16 387 2.6875 44 891 2.2500

5. Variably Dim. 399 7317 2.0376 590 10755 2.0254

6. Trigonometric 4 162 4.5000 28 567 2.2500

7. Discrete BV 11 297 3.0000 824 14931 2.0133

8. Discrete IE 3 126 4.6667 5 162 3.6000

9. Broyden Tridiagonal 21 504 2.6667 30 657 2.4333

10. Broyden Banded 16 405 2.8125 20 486 2.7000

11. Brown AL 17 432 2.8235 18 450 2.7778

12. Linear 4 144 4.0000 6 180 3.3333

13. Linear-1 4 279 7.7500 4 279 7.7500

14. Linear-0 10 369 4.1000 11 387 3.9091

15. Chebyquad 6 261 4.8333 8 297 4.1250

37 / 45

Preliminary Numerical Results: Experiment 1
Figure below presents all the pairs (T (ϵ),A(ϵ)).

38 / 45

Preliminary Numerical Results: Experiment 2

The following codes were compared in the full set of 120 test
problems:

▶ FDGM: New method with forward finite-difference gradients
and Bk = 0.

▶ FDBFGS: New method with forward finite-difference gradients
and Bk obtained by the BFGS formula.

▶ FCBFGS: New method with central finite-difference
gradients and Bk obtained by the BFGS formula.

39 / 45

Preliminary Numerical Results
Data Profiles with τ = 10−7 (Moré & Wild, 2009)

40 / 45

Preliminary Numerical Results

▶ FDBFGS: New method with forward finite-difference gradients
and Bk obtained by the BFGS formula.

▶ DFNLS: derivative-free trust-region method proposed by
G., Yuan & Yuan (2016).

▶ NMSMAX: Nelder-Mead Method.

41 / 45

Preliminary Numerical Results
Data Profiles with τ = 10−7 (Moré & Wild, 2009)

42 / 45

Conclusion

1. Deterministic Quadratic Regularization Derivative-Free Methods

2. Worst-case evaluation complexity bounds of O
(
nϵ−2

)
.

3. Preliminary numerical seem promissing.

43 / 45

Conclusion

1. Deterministic Quadratic Regularization Derivative-Free Methods

2. Worst-case evaluation complexity bounds of O
(
nϵ−2

)
.

3. Preliminary numerical seem promissing.

43 / 45

Conclusion

1. Deterministic Quadratic Regularization Derivative-Free Methods

2. Worst-case evaluation complexity bounds of O
(
nϵ−2

)
.

3. Preliminary numerical seem promissing.

43 / 45

Topics for Future Research

1. Generalization to composite nonsmooth optimization problems
(f (x) = ψ(c(x)), with ψ nonsmooth).

2. Adaptation to noisy problems: Berahas, Byrd & Nocedal
(2019), Berahas, Cao, Choromanski & Scheinberg (2021), Berahas,
Sohab & Vicente (2021), Shi, Xuan, Oztoprak & Nocedal (2021)...

44 / 45

Reference

G.N.G.: Quadratic Regularization Methods with Finite-Difference
Gradient Approximations. Optimization Online (November, 2021)

Happy Lunar New Year!

geovani.grapiglia@uclouvain.be

45 / 45

Reference

G.N.G.: Quadratic Regularization Methods with Finite-Difference
Gradient Approximations. Optimization Online (November, 2021)

Happy Lunar New Year!

geovani.grapiglia@uclouvain.be

45 / 45

	Capa
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

