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Collaborators

“Sequential Quadratic Optimization for Nonlinear Equality Constrained
Stochastic Optimization” https://arxiv.org/abs/2007.10525.

I to appear in SIAM Journal on Optimization
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Constrained optimization (deterministic)

Consider

min
x∈Rn

f(x)

s.t. cE(x) = 0

cI(x) ≤ 0

where f : Rn → R, cE : Rn → RmE , and cI : Rn → RmI are smooth

I Physically-constrained, resource-constrained, etc.

I Long history of algorithms (penalty, SQP, interior-point, etc.)

I Comprehensive theory (even with lack of constraint qualifications)

I Effective software (Ipopt, Knitro, LOQO, etc.)
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Constrained optimization (stochastic constraints)

Consider

min
x∈Rn

f(x)

s.t. cE(x) = 0

cI(x, ω) . 0

where f : Rn → R, cE : Rn → RmE , and cI : Rn × Ω→ RmI
I Various modeling paradigms:

I . . . stochastic optimization

I . . . (distributionally) robust optimization

I . . . chance-constrained optimization
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Constrained optimization (stochastic objective)

Consider

min
x∈Rn

f(x) ≡ E[F (x, ω)]

s.t. cE(x) = 0

cI(x) ≤ 0

where f : Rn × R, F : Rn × Ω→ R, cE : Rn → RmE , and cI : Rn → RmI
I ω has probability space (Ω,F , P )

I E[·] with respect to P

I Classical applications with objective uncertainty, constrained DNNs, etc.

I Very few algorithms so far (mostly penalty methods)
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Questions

Need to establish what we want/expect from an algorithm.

Note: We are interested in the fully stochastic regime.†

We assume:

I Feasible methods are not tractable.

I ... no projection methods, Frank-Wolfe, etc.

I “Two-phase” methods are not effective.

I ... should not search for feasibility, then optimize.

I Only enforce convergence in expectation.

Finally, want to use techniques that can generalize to diverse settings.

†Alternatively, see Na, Anitescu, Kolar (2021)
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This talk

Consider equality constrained stochastic optimization:

min
x∈Rn

f(x) ≡ E[F (x, ω)]

s.t. cE(x) = 0

I Adaptive SQP method for deterministic setting

I Stochastic SQP method for stochastic setting

I Convergence in expection (comparable to SG for unconstrained setting)

I Numerical experiments are very promising

I Various open questions!
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Stochastic gradient method (SG)

Invented by Herbert Robbins and Sutton Monro (1951)

Sutton Monro, former Lehigh faculty member
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Stochastic gradient (not descent)

min
x∈Rn

f(x) ≡ E[F (x, ω)]

where g := ∇f : Rn → Rn is Lipschitz continuous with constant L

Algorithm SG : Stochastic Gradient

1: choose an initial point x0 ∈ Rn and stepsizes {αk} > 0
2: for k ∈ {0, 1, 2, . . . } do
3: set xk+1 ← xk − αkgk, where Ek[gk] = gk and Ek[‖gk − gk‖22] ≤M
4: end for

Not a descent method! . . . but eventual descent in expectation:

f(xk+1)− f(xk) ≤ gTk (xk+1 − xk) + 1
2
L‖xk+1 − xk‖22

= −αkgTk gk + 1
2
α2
kL‖gk‖

2
2

=⇒ Ek[f(xk+1)]− f(xk) ≤ −αk‖gk‖22 + 1
2
α2
kLEk[‖gk‖22].

Markov process: xk+1 depends only on xk and random choice at iteration k.
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SG theory

Theorem SG

Since Ek[gk] = gk and Ek[‖gk − gk‖22] ≤M for all k ∈ N:

αk =
1

L
=⇒ E

 1

k

k∑
j=1

‖gj‖22

 ≤ O(M)

αk = Θ

(
1

k

)
=⇒ E

 1(∑k
j=1 αj

) k∑
j=1

αj‖gj‖22

→ 0

=⇒ lim inf
k→∞

E[‖gk‖22] = 0
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SG illustration

Figure: SG with fixed stepsize (left) vs. diminishing stepsizes (right)
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Sequential quadratic optimization (SQP)

Consider

min
x∈Rn

f(x)

s.t. c(x) = 0

with g ≡ ∇f , J ≡ ∇c, and H (positive definite on Null(J)), two viewpoints:

[
g(x) + J(x)T y

c(x)

]
= 0 or

min
d∈Rn

f(x) + g(x)T d+ 1
2
dTHd

s.t. c(x) + J(x)d = 0

both leading to the same “Newton-SQP system”:[
Hk JTk
Jk 0

] [
dk
yk

]
= −

[
gk
ck

]
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SQP illustration

Figure: Illustrations of SQP subproblem solutions
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SQP

I Algorithm guided by merit function, with adaptive parameter τ , defined by

φ(x, τ) = τf(x) + ‖c(x)‖1

a model of which is defined as

q(x, τ, d) = τ(f(x) + g(x)T d+ 1
2

max{dTHd, 0}) + ‖c(x) + J(x)d‖1

I For a given d ∈ Rn satisfying c(x) + J(x)d = 0, the reduction in this model is

∆q(x, τ, d) = −τ(g(x)T d+ 1
2

max{dTHd, 0}) + ‖c(x)‖1,

and it is easily shown that

φ′(x, τ, d) ≤ −∆q(x, τ, d)

SQP Methods for Constrained Stochastic Optimization 17 of 39
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SQP with backtracking line search

Algorithm SQP-B

1: choose x0 ∈ Rn, τ−1 ∈ R>0, σ ∈ (0, 1), η ∈ (0, 1)
2: for k ∈ {0, 1, 2, . . . } do
3: solve [

Hk JTk
Jk 0

] [
dk
yk

]
= −

[
gk
ck

]
4: set τk to ensure ∆q(xk, τk, dk)� 0, offered by

τk ≤
(1− σ)‖ck‖1

gTk dk + max{dTkHkdk, 0}
if gTk dk + max{dTkHkdk, 0} > 0

5: backtracking line search to ensure xk+1 ← xk + αkdk yields

φ(xk+1, τk) ≤ φ(xk, τk)− ηαk∆q(xk, τk, dk)

6: end for

SQP Methods for Constrained Stochastic Optimization 18 of 39
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Convergence theory

Assumption

I f , c, g, and J bounded and Lipschitz

I singular values of J bounded below (i.e., the LICQ)

I uTHku ≥ ζ‖u‖22 for all u ∈ Null(Jk) for all k ∈ N

Theorem SQP-B

I {αk} ≥ αmin for some αmin > 0

I {τk} ≥ τmin for some τmin > 0

I ∆q(xk, τk, dk)→ 0 implies

‖dk‖2 → 0, ‖ck‖2 → 0, ‖gk + JTk yk‖2 → 0
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Toward stochastic SQP

I In a stochastic setting, line searches are (likely) intractable

I However, for ∇f and ∇c, may have Lipschitz constants (or estimates)

I Step #1: Design an adaptive SQP method with

stepsizes determined by Lipschitz constant estimates

I Step #2: Design a stochastic SQP method on this approach
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Primary challenge: Nonsmoothness
In SQP-B, stepsize is chosen based on reducing the merit function.

The merit function is nonsmooth! An upper bound is

φ(xk + αkdk, τk)− φ(xk, τk)

≤ αkτkg
T
k dk + |1− αk|‖ck‖1 − ‖ck‖1 + 1

2
(τkLk + Γk)α2

k‖dk‖
2
2

where Lk and Γk are Lipschitz constant estimates for f and ‖c‖1 at xk

Figure: Three cases for upper bound of φ

Idea: Choose αk to ensure sufficient decrease using this bound
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SQP with adaptive stepsizes

Algorithm SQP-A

1: choose x0 ∈ Rn, τ−1 ∈ R>0, σ ∈ (0, 1), η ∈ (0, 1)

2: for k ∈ {0, 1, 2, . . . } do
3: solve [

Hk JT
k

Jk 0

] [
dk
yk

]
= −

[
gk
ck

]
4: set τk to ensure ∆q(xk, τk, dk)� 0, offered by

τk ≤
(1− σ)‖ck‖1

gT
k
dk + max{dT

k
Hkdk, 0}

if g
T
k dk + max{dTkHkdk, 0} > 0

5: set

α̂k ←
2(1− η)∆q(xk, τk, dk)

(τkLk + Γk)‖dk‖22
and

α̃k ← α̂k −
4‖ck‖1

(τkLk + Γk)‖dk‖22
6: set

αk ←


α̂k if α̂k < 1

1 if α̃k ≤ 1 ≤ α̂k

α̃k if α̃k > 1

7: set xk+1 ← xk + αkdk and continue or update Lk and/or Γk and return to step 5
8: end for
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Convergence theory

Exactly the same as for SQP-B, except different stepsize lower bound

I For SQP-A:

αk =
2(1− η)∆q(xk, τk, dk)

(τkLk + Γk)‖dk‖22
≥

2(1− η)κqτmin

(τ−1ρL+ ρΓ)κΨ
> 0

I For SQP-B:

αk >
2ν(1− η)∆q(xk, τk, dk)

(τkL+ Γ)‖dk‖22
≥

2ν(1− η)κqτmin

(τ−1L+ Γ)κΨ
> 0
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Stochastic setting

Consider the stochastic problem:

min
x∈Rn

f(x) ≡ E[F (x, ω)]

s.t. c(x) = 0

Let us assume only the following:

Assumption

For all k ∈ N, one can compute gk with

Ek[gk] = gk and Ek[‖gk − gk‖22] ≤M

Search directions computed by:[
Hk JTk
Jk 0

] [
dk
yk

]
= −

[
gk
ck

]
Important: Given xk, the values (ck, Jk, Hk) are deterministic
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Stochastic SQP with adaptive stepsizes
(For simplicity, assume Lipschitz constants L and Γ are known.)

Algorithm : Stochastic SQP

1: choose x0 ∈ Rn, τ̄−1 ∈ R>0, σ ∈ (0, 1), {βk} ∈ (0, 1]

2: for k ∈ {0, 1, 2, . . . } do
3: solve [

Hk JT
k

Jk 0

] [
dk
yk

]
= −

[
gk
ck

]
4: set τ̄k to ensure ∆q(xk, τ̄k, dk)� 0, offered by

τ̄k ≤
(1− σ)‖ck‖1

gT
k
dk + max{dTkHkdk, 0}

if g
T
k dk + max{dTkHkdk, 0} > 0

5: set

¯̂αk ←
βk∆q(xk, τ̄k, dk)

(τ̄kL + Γ)‖dk‖22
and

¯̃αk ← ¯̂αk −
4‖ck‖1

(τ̄kL + Γ)‖dk‖22
6: set

ᾱk ←


¯̂αk if ¯̂αk < 1

1 if ¯̃αk ≤ 1 ≤ ¯̂αk
¯̃αk if ¯̃αk > 1

7: set xk+1 ← xk + ᾱkdk
8: end for
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Stepsize control

The sequence {βk} allows us to consider, like for SG,

I a fixed stepsize

I diminishing stepsizes (e.g., Θ(1/k))

Unfortunately, additional control on the stepsize is needed

I too small: insufficient progress

I too large: ruins progress toward feasibility / optimality

We never know when the stepsize is too small or too large!

Idea: Project ¯̂αk and ¯̃αk onto[
βk τ̄k

τ̄kL+ Γ
,
βk τ̄k

τ̄kL+ Γ
+ θβ2

k

]
where θ ∈ R>0 is a user-defined parameter

SQP Methods for Constrained Stochastic Optimization 28 of 39
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Fundamental lemmas

Lemma

For all k ∈ N, for any realization of gk, one finds

φ(xk + ᾱkdk, τ̄k)− φ(xk, τ̄k)

≤ −ᾱk∆q(xk, τ̄k, dk)︸ ︷︷ ︸
O(βk),“deterministic”

+ 1
2
ᾱkβk∆q(xk, τ̄k, dk)︸ ︷︷ ︸
O(β2

k
),stochastic/noise

+ ᾱk τ̄kg
T
k (dk − dk)︸ ︷︷ ︸

due to adaptive ᾱk

Lemma

For all k ∈ N, for any realization of gk, one finds

Ek[dk] = dk, Ek[yk] = yk, and Ek[‖dk − dk‖2] = O(
√
M)

as well as

gTk dk ≥ Ek[gTk dk] ≥ gTk dk − ζ
−1M and dTkHkdk ≤ Ek[d

T
kHkdk]

SQP Methods for Constrained Stochastic Optimization 29 of 39
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Good merit parameter behavior

Lemma

If {τ̄k} eventually remains fixed at sufficiently small τmin > 0, then for large k

Ek[ᾱk τ̄kg
T
k (dk − dk)] = β2

kτminO(
√
M)

Theorem

If {τ̄k} eventually remains fixed at sufficiently small τmin > 0, then for large k

βk = Θ(1) =⇒ αk =
τmin

τminL+ Γ
=⇒ E

 1

k

k∑
j=1

∆q(xj , τmin, dj)

 ≤ O(M)

βk = Θ

(
1

k

)
=⇒ E

 1(∑k
j=1 βj

) k∑
j=1

βj∆q(xj , τmin, dj)

→ 0
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Good merit parameter behavior

Lemma

If {τ̄k} eventually remains fixed at sufficiently small τmin > 0, then for large k

Ek[ᾱk τ̄kg
T
k (dk − dk)] = β2

kτminO(
√
M)

Theorem

If {τ̄k} eventually remains fixed at sufficiently small τmin > 0, then for large k

βk = Θ(1) =⇒ αk =
τmin

τminL+ Γ
=⇒ E

 1

k

k∑
j=1

(‖gj + JTj yj‖2 + ‖cj‖2)

 ≤ O(M)

βk = Θ

(
1

k

)
=⇒ E

 1(∑k
j=1 βj

) k∑
j=1

βj(‖gj + JTj yj‖2 + ‖cj‖2)

→ 0
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Poor merit parameter behavior

{τ̄k} ↘ 0:

I cannot occur if ‖gk − gk‖2 is bounded uniformly

I occurs with small probability if distribution of gk has fast decay(?)

{τ̄k} remains too large:

I can only occur if realization of {gk} is one-sided for all k

I if there exists p ∈ (0, 1] such that, for all k in infinite K,

Pk
[
gTk dk + max{dTkHkdk, 0} ≥ gTk dk + max{dTkHkdk, 0}

]
≥ p

then occurs with probability zero
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Numerical results

CUTE problems with noise added to gradients with different noise levels

I Stochastic SQP: 103 iterations

I Stochastic Subgradient: 104 iterations and tuned over 11 values of τ

Figure: Box plots for feasibility errors (left) and optimality errors (right).
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Current work: Complexity bounds

Iteration complexity

I adaptiveness of merit parameter is the main challenge!

Conjecture: Suppose the algorithm is run

I kmax iterations with

I βk = γ/
√
kmax + 1 and

I the merit parameter is reduced at most smax � kmax times.

Let k∗ be sampled uniformly over {1, . . . , kmax}. With probability 1− δ,

E[∆q(xk∗ )] ≤
τ−1(f0 − finf) + ‖c0‖1 + γM2 +O(smax + log(1/δ))

√
kmax + 1

SQP Methods for Constrained Stochastic Optimization 34 of 39
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Current work: No LICQ

Remove constraint qualification

I infeasible and/or degenerate problems

I step decomposition method

Figure: Box plots for feasibility errors (left) and optimality errors (right).
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Current work: Matrix-free, inequality constraints

Matrix-free methods

I inexact subproblem solves

I stochasticity and inexactness(!)

I applicable for large-scale, e.g., PDE-constrained

Inequality constraints

I SQP

I interior-point
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Summary

Consider equality constrained stochastic optimization:

min
x∈Rn

f(x) ≡ E[F (x, ω)]

s.t. cE(x) = 0

I Adaptive SQP method for deterministic setting

I Stochastic SQP method for stochastic setting

I Convergence in expection (comparable to SG for unconstrained setting)

I Numerical experiments are very promising

I Various extensions (coming soon)
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