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Update on me

Last year, I moved to Seoul National Univesity, Korea.

Prior to moving, my primary research area was
monotone operator theory. (Also, Wotao and
I have finally finished our book on monotone
operator theory and splitting methods.)

Since, I’ve started to work on machine
learning and acceleration.

Today, I’ll share my recent work on
acceleration.
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Acceleration of first-order convex minimization

Consider
minimize

x∈Rn
f(x)

where f is L-smooth convex. Gradient descent

xk+1 = xk − 1

L
f(xk)

converge with the rate f(xk)− f⋆ ≤ O(1/k).
Nesterov’s celebrated accelerated gradient method (AGM)

yk+1 = xk − 1

L
∇f(xk)

xk+1 = yk+1 +
k − 1

k + 2
(yk+1 − yk)

converges with the accelerated rate f(xk)− f⋆ ≤ O(1/k2).

Question) Can we accelerate methods for other setups?
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Acceleration for monotone inclusions and fixed-point iterations

Acceleration for making gradients small in smooth convex minimization
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Smooth convex-concave minimax optimization

We consider

minimize
x∈Rn

maximize
y∈Rm

L(x,y),

where L is convex-concave and R-smooth. Recently, minimax
optimization has gained popularity in machine learning.

(x⋆,y⋆) solves the minimax problem if it is a saddle point, i.e., if

L(x⋆,y) ≤ L(x⋆,y⋆) ≤ L(x,y⋆), ∀x ∈ Rn, y ∈ Rm.

Saddle operator is

G(x,y)
∆
=

[
∇xL(x,y)
−∇yL(x,y)

]
.

L is R-smooth of G is R-Lipschitz continuous. z = (x,y) is a saddle
point of L if and only if G(z) = 0.
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Classical results in minimax optimization

Analogue of gradient descent (simultaneous gradient descent-ascent)

zk+1 = zk − αG(zk),

does not converge in general. (Write zk = (xk,yk).)

zk

zk+1

zk+1/2

−αG(zk+1/2)

−αG(zk)

−αG(zk+1/2)

Extragradient (EG) algorithm1

zk+1/2 = zk − αG(zk)

zk+1 = zk − αG(zk+1/2)

does converge.

1G. M. Korpelevich. The extragradient method for finding saddle points and other
problems. 1976.

Acceleration for smooth convex-concave minimax optimization 6



EG is optimal

Duality gap naturally generalizes function value in convex minimization.

Theorem (Informal2)
The averaged iterates of EG satisfy

max
y∈Y

L(xk,y)− min
x∈X

L(x,yk)︸ ︷︷ ︸
:=duality gap

≤ O
(
R∥z0 − z⋆∥2

k

)
.

Theorem (Informal3)
Complexity lower bound for first-order gradient methods:

duality gap (xk,yk) ≥ Ω

(
R∥z0 − z⋆∥2

k

)
.

2A. Nemirovski. Prox-method with rate of convergence O(1/t) for variational
inequalities with Lipschitz continuous monotone operators and smooth convex-concave
saddle point problems. 2004.



So is acceleration possible?

EG already optimal for duality gap. Further acceleration is impossible.

Or is it?

What if we change the optimality measure?

Duality gap, as an optimality measure, has drawbacks:

� Does not generalize to the non-convex-non-concave setup.

� Cannot be measured throughout the algorithm.
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Optimality measures and gradient norm

What if we consider the squared gradient norm

∥G(z)∥2 = ∥∇L(z)∥2

as the optimality measure?

Theorem (Informal)
EG and several other known methods exhibit the rate

min
i=0,...,k

∥∇L(zi)∥2 ≤ O
(
R2∥z0 − z⋆∥2

k

)
.

We can do better.
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Main Results: Optimal acceleration for gradient norm

Contribution 1. Present Extra Anchored Gradient (EAG) with rate

∥∇L(zk)∥2 ≤ O
(
R2∥z0 − z⋆∥2

k2

)
.

Contribution 2. Establish EAG’s optimality with matching lower bound

∥∇L(zk)∥2 ≥ Ω

(
R2∥z0 − z⋆∥2

k2

)
.
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Extra anchored gradient (EAG) algorithm

General form of EAG:

zk+1/2 = zk +
1

k + 2
(z0 − zk)− αk G(zk)

zk+1 = zk +
1

k + 2
(z0 − zk)− αk G(zk+1/2)

αk > 0 are step-sizes and 1
k+2 are anchoring coefficients.

Anchor term pulls zk towards the initial point z0.
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EAG-C

EAG with constant step-size (EAG-C):

zk+1/2 = zk +
1

k + 2
(z0 − zk)− αG(zk)

zk+1 = zk +
1

k + 2
(z0 − zk)− αG(zk+1/2),

where α > 0 is fixed.

Theorem
With α = 1

8R , EAG-C exhibits the rate

∥∇L(zk)∥2 ≤ 260R2∥z0 − z⋆∥2

(k + 1)2
.

EAG-C is simple, but analysis is very complicated. Constant is large as
stepsize α is restrictive.

Acceleration for smooth convex-concave minimax optimization 12



EAG-V
EAG with varying step-size (EAG-V):

zk+1/2 = zk +
1

k + 2
(z0 − zk)− αkG(zk)

zk+1 = zk +
1

k + 2
(z0 − zk)− αkG(zk+1/2),

where α0 ∈
(
0, 1

R

)
and

αk+1 =
αk

1− α2
kR

2

(
1− (k + 2)2

(k + 1)(k + 3)
α2
kR

2

)
.

Theorem
With α0 = 0.618

R , EAG-V exhibits the rate

∥∇L(zk)∥2 ≤ 27R2∥z0 − z⋆∥2

(k + 1)(k + 2)
.

EAG-V is complicated, but analysis is simple. Constant is better as larger
stepsizes αk accomodated.



Proof outline

Theorem (Lyapunov analysis)
There exists a sequence Ak = Θ(k2) such that

Vk
∆
= Ak∥G(zk)∥2 + (k + 1)⟨G(zk), zk − z0⟩

is nonincreasing in k ≥ 0.
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Proof outline

Using the Lyapunov function, we have

A0R
2∥z0 − z⋆∥2 ≥ A0∥G(z0)∥2 = V0 ≥ · · · ≥ Vk

= Ak∥G(zk)∥2 + (k + 1)⟨G(zk), zk − z0⟩
≥ Ak∥G(zk)∥2 + (k + 1)⟨G(zk), z⋆ − z0⟩.

With Young’s inequality, we get(
A0R

2 +
(k + 1)2

2Ak

)
∥z0 − z⋆∥2 ≥ Ak

2
∥G(zk)∥2.

Since Ak = Θ(k2), we conclude ∥G(zk)∥2 ≤ O
(

R2∥z0−z⋆∥2

k2

)
.
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EAG is optimal up to a constant

Theorem
Let k ≥ 0 and n ≥ k+ 2. Then there exists an R-smooth saddle function
L on Rn ×Rn satisfying

∥∇L(zk)∥2 ≥ R2∥z0 − z⋆∥2

(k + 1)2

for any z0 ∈ Rn ×Rn and any iterative algorithm satisfying

xi ∈ x0 + span{∇xL(x
0,y0), . . . ,∇xL(x

i−1,yi−1)}
yi ∈ y0 + span{∇yL(x

0,y0), . . . ,∇yL(x
i−1,yi−1)}

for i = 1, . . . , k.

The algorithm class contains both simultaneous and alternating gradient
descent-ascent methods.
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Worst-case saddle function construction

Worst-case bilinear saddle function:

L(x,y) = x⊺Ay − b⊺x− b⊺y

where A ∈ Sn×n and b ∈ Rn.

Note that [∇L(x,y) = 0] ⇔ [Ax = b and Ay = b].

Since A is symmetric, when x0 = y0 = 0, the span conditions

xk ∈ x0 + span{∇xL(x
0,y0), . . . ,∇xL(x

k−1,yk−1)}
yk ∈ y0 + span{∇yL(x

0,y0), . . . ,∇yL(x
k−1,yk−1)}.

reduce to

xk,yk ∈ Kk−1(A;b)
∆
= span{b,Ab, . . . ,Ak−1b}

(Kk−1(A;b) is the (k − 1)th Krylov subspace.)
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Nemirovsky’s lower bound for Ax = b

Key idea: bilinear minimax problems generalize Ax = b with A ∈ Sn×n,
so the following lower bound applies to our setup.

Lemma (Nemirovsky3)
Let R > 0, k ≥ 0 and n ≥ k + 2. Then there exists a A ∈ Sn×n such
that ∥A∥ ≤ R and 0 ̸= b ∈ R(A) satisfing

∥Ax− b∥2 ≥ R2∥x⋆∥2

(k + 1)2

for all x ∈ Kk−1(A;b), where x⋆ is the minimum norm solution to
Ax = b.

3Nemirovsky. Information-based complexity of linear operator equations. J.
Complexity, 1992.
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Experiments
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(Left) Plots of ∥∇L(zk)∥2 versus iteration count. Dashed lines indicate
theoretical upper bounds. We observe the O(1/k2) rate.

(Right) Comparison of trajectories. The anchoring mechanism dampens
cycling behavior.
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Summary

With EAG and a matching lower bound, we establish the optimal
accelerated O(1/k2) complexity on the squared gradient magnitude for
smooth convex-concave minimax problems.

Reference:
T. Yoon and E. K. Ryu, Accelerated algorithms for smooth
convex-concave minimax problems with O(1/k2) rate on squared
gradient norm, ICML, 2021.
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Monotone inclusion problem

Consider the problem

find
x∈Rn

0 ∈ 𝔸x,

where 𝔸 is maximal monotone.

Proximal point method:
xk+1 = 𝕁𝔸x

k

exhibits the rate

∥xk − 𝕁𝔸x
k∥2 ≤ O

(
1

k

)
.
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Accelerated proximal point method

Accelerated proximal point method (APPM):

yk+1 = 𝕁𝔸x
k

xk+1 = yk+1 +
k

k + 2
(yk+1 − yk)− k

k + 2
(yk − xk−1),

where y0 = x0.

Exhibits the rate

∥xk − 𝕁𝔸x
k∥2 ≤ O

(
1

k2

)
.

Kim, Accelerated proximal point method for maximally monotone operators,
MPA, 2021.
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Fixed-point problem

Consider the problem

find
x∈Rn

x = 𝕋x,

where 𝕋 : Rn → Rn is nonexpansive.

Krasnosel’skĭı–Mann iteration:

xk+1 =
1

2
xk +

1

2
𝕋xk

exhibits the rate

∥xk − 𝕋xk∥2 ≤ O
(
1

k

)
.
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Optimized Halpern method

Optimized Halpern method (OHM):

xk+1 =
1

k + 2
x0 +

k + 1

k + 2
𝕋xk.

Exhibits the rate

∥xk − 𝕋xk∥2 ≤ O
(

1

k2

)
.

Lieder, On the convergence rate of the Halpern-iteration, OPTL, 2021.
Acceleration for monotone inclusions and fixed-point iterations 25



APPM ∼= OHM

The two independent discoveries, APPM and OHM, are equivalent.

Kim and Lieder discovered these methods with a computer-assisted
methodology, the performance estimation problem†. The presented
proofs are verifiable but arguably difficult to understand.

†Drori and Teboulle, Performance of first-order methods for smooth convex
minimization: a novel approach. MPA, 2014.

†Taylor, Hendrickx, and Glineur. Smooth strongly convex interpolation and exact
worst-case performance of first-order methods, MPA, 2017.
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Accelerated rates of APPM and OHM

Theorem
APPM/OHM exhibits the rate

∥xk−1 − 𝕁𝔸x
k−1∥2 ≤ ∥x0 − x⋆∥2

k2

for k = 1, 2, . . . .

Equivalently,

∥𝕋xk−1 − xk−1∥2 ≤ 4∥x0 − x⋆∥2

k2
.
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Accelerated rates of APPM and OHM

Proof. Define �̃�yk = xk−1 − yk, which implies �̃�yk ∈ 𝔸yk. Define

V k =
k2

2
∥�̃�yk∥2 + k⟨�̃�yk, yk − x⋆⟩+ 1

2
∥k�̃�yk − (x0 − x⋆)∥2

for k = 0, 1, . . . . Then

V k+1 − V k = −k(k + 1)⟨�̃�yk+1 − �̃�yk, yk+1 − yk⟩ ≤ 0.

Conclude

k2

2
∥�̃�yk∥2 ≤ V k ≤ V 0 =

1

2
∥x0 − x⋆∥2.

This Lyapunov proof is due to: Park and Ryu, Exact Optimal Accelerated
Complexity for Fixed-Point Iterations, upcoming, 2021.

A proof with a similar structure was also presented in: Diakonikolas, Halpern
iteration for near-optimal and parameter-free monotone inclusion and strong solutions
to variational inequalities, COLT, 2020.



Optimality of APPM and OHM

APPM/OHM are exactly optimal; they have an exact matching
complexity lower bound.

Theorem (Informal)
Given k, there exists an operator 𝔸 such that

∥xk−1 − 𝕁𝔸x
k−1∥2 ≥ ∥x0 − x⋆∥2

k2

for any algorithm satisfying the span condition.
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Accelerating Picard and Banach

When 𝕋 is contractive, i.e., γ-Lipschitz with γ < 1, the classical iteration

xk+1 = 𝕋xk

exhibits the rate O(γk).

Theorem (Informal)
Using a mechanism analogous to APPM/OHM, we can accelerate the
classical fixed-point iteration in the contractive (strongly monotone)
setup. This accelerated rate is exactly optimal.
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Acceleration under quasi-uniform monotonicity

𝔸 : Rn ⇒ Rn is quasi-uniformly monotone with parameters µ > 0 and
α > 1 if it is monotone and

⟨𝔸x, x− x⋆⟩ ≥ µ∥x− x⋆∥α+1

for any x ∈ Rn and x⋆ ∈ Zer𝔸. (α = 1 and α = ∞ respectively
correspond to strong and plain monotonicity.)

Theorem
Under quasi-uniformly monotonicity, PPM exhibits the rate

∥𝔸xk∥2 ≤ O
(
k−

α+1
α−1

)
.

Theorem (Informal)
Under quasi-uniformly monotonicity, we can use a restarting scheme
accelerate the rate to

∥𝔸xk∥2 ≤ O
(
k−

2α
α−1

)
.
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Experiments

(Left) Total variation CT reconstruction with PDHG. OHM with restart
faster at later iterations.

(Right) Decentralized compressed sensing with PG-EXTRA. Faster linear
convergence with method analogous to APPM/OHM.
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Summary

The classical fixed-point iterations are suboptimal.

We present acceleration schemes for fixed-point iterations and provide
matching complexity lower bounds.

Reference:
J. Park and E. K. Ryu, Exact optimal accelerated complexity for
fixed-point iterations, upcoming, 2021.
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Is there a geometric structure of acceleration?

The many accelerated methods have been developed and analyzed with
disparate techniques, without a unified framework. Is there a geometric
structure of acceleration?

In this work, we identify the “parallel” and “collinear” structures of
acceleration.

Using this insight, we better understand the acceleration of OGM-G and
extended the acceleration to the prox-grad setup.
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OGM-G: O((f(x0)− f⋆)/K
2) rate

OGM-G:

xk+1 = x+
k +

(θk − 1)(2θk+1 − 1)

θk(2θk − 1)
(x+

k − x+
k−1) +

2θk+1 − 1

2θk − 1
(x+

k − xk)

where x+ = x− 1
L∇f(x) and θ2k − θk = θ2k+1.

OGM-G exhibts the rate

∥∇f(xK)∥2 ≤ O((f(x0)− f⋆)/K
2).

Discovered with a computer-assisted methodology. Original proof by KF
was verifiable but arguably difficult to understand.

Kim and Fessler, Optimizing the efficiency of first-order methods for decreasing
the gradient of smooth convex functions, JOTA, 2021.
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FGM+OGM-G: O(∥x0 − x⋆∥2/K4) rate

FGM+OGM-G: From x0 run K iterations of FGM. Continue with
OGM-G and run K iterations. Concatenated method exhibits the rate

∥∇f(x2K)∥2 ≤ O(∥x0 − x⋆∥2/K4)

FGM: O(1/K2) rate on
(
∥x0 − x⋆∥2 7→ f(xK)− f(x⋆)

)
.

OGM-G: O(1/K2) rate on
(
f(x0)− f(x⋆) 7→ ∥∇f(xK)∥2

)
.

FGM+OGM-G: O(1/K4) rate on
(
∥x0 − x⋆∥2 7→ ∥∇f(x2K)∥2

)
.

Nesterov, Gasnikov, Guminov, and Dvurechensky, Primal–dual accelerated
gradient methods with small-dimensional relaxation oracle, Optimization Methods and
Software, 2020.
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Nesterov’s FGM

Nesterov’s FGM:

xk+1 = x+
k +

θk − 1

θk+1
(x+

k − x+
k−1),

where y0 = x0, θ0 = 1, and θ2k+1 − θk+1 = θ2k for k = 0, 1, . . . .

Equivalent form: with z0 = x0,

zk+1 = zk − θk
L
∇f(xk)

xk+1 =

(
1− 1

θk+1

)
x+
k +

1

θk+1
zk+1.
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Analysis of FGM

FGM’s rate

f(x+
k−1)− f⋆ ≤ 2L∥x0 − x⋆∥2

k2
+ o

(
1

k2

)
established through Lyapunov analysis: define

Uk = θ2k−1

(
f(x+

k−1)− f⋆
)
+

L

2
∥zk − x⋆∥2

and show Uk ≤ · · · ≤ U0.

Nesterov, A method for unconstrained convex minimization problem with the rate
of convergence O(1/k2), Proceedings of the USSR Academy of Sciences, 1983.
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Parallel structure of FGM

Geometric observation. In FGM, x+
k − xk and zk+1 − zk are parallel.

Plane of iteration of FGM:

x+
k−1 xk zk

zk+1

x+
k

xk+1
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OGM

OGM:

xk+1 = x+
k +

θk − 1

θk+1
(x+

k − x+
k−1) +

θk
θk+1

(x+
k − x+

k−1)

for k = 0, 1, . . . , where y0 = x0.

Equivalent form: with z0 = x0,

zk+1 = zk − 2θk
L

∇f(xk)

xk+1 =

(
1− 1

θk+1

)
x+
k +

1

θk+1
zk+1.

Drori and Teboulle, Performance of first-order methods for smooth convex
minimization: a novel approach. Mathematical Programming, 2014.

Kim and Fessler, Optimized first-order methods for smooth convex minimization,
Mathematical Programming, 2016
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Analysis of OGM

OGM’s rate

f(x+
k−1)− f⋆ ≤ L∥x0 − x⋆∥2

k2
+ o

(
1

k2

)
established through Lyapunov analysis: define

Uk =2θ2k

(
f(xk)− f⋆ −

1

2L
∥∇f(xk)∥2

)
+

L

2
∥zk+1 − x⋆∥2

and show Uk ≤ · · · ≤ U0.

Park, Park, and Ryu, Factor-
√
2 acceleration of accelerated gradient methods,

arXiv, 2021.
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Parallel structure of OGM

Geometric observation. In OGM, x+
k − xk and zk+1 − zk are parallel.

Plane of iteration of OGM:

x+
k−1 xk zk

zk+1

x+
k

xk+1
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Parallel and collinear structure

Define this as the parallel structure.

For the strongly convex setup, define an analogous collinear structure.

Many of accelerated methods satisfy these structures: Nesterov’s FGM,
OGM, OGM-G, Nesterov’s FGM in the strongly convex setup (SC-FGM),
SC-OGM, TMM, non-stationary SC-FGM, ITEM, geometric descent,
Güler’s first and second accelerated proximal methods, and FISTA.
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The parallel structure of OGM-G

For OGM-G, define zk-sequence so that the parallel structure is safisfied.

Equivalent form of OGM-G:

xk =
θ4k+1

θ4k
x+
k−1 +

(
1−

θ4k+1

θ4k

)
zk

zk+1 = zk − θk
L
∇f(xk).

Now, x+
k − xk and zk+1 − zk are parallel.

Plane of iteration of OGM-G:

x+
k−1 xk zk

zk+1

x+
k

xk+1
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New analysis of OGM-G

We can now perform a Lyapunov analysis of OGM-G: define

Uk =
1

θ2k

(
1

2L
∥∇f(xK)∥2 +

1

2L
∥∇f(xk)∥2 + f(xk)− f(xK)−

〈
∇f(xk), xk − x+

k−1

〉)
+

L

θ4k

〈
zk − x+

k−1, zk − x+
K

〉
and show Uk ≤ · · · ≤ U0.

A similar Lyapunov-type analysis was also presented in: Diakonikolas and Wang,
Potential function-based framework for making the gradients small in convex and
min-max optimization, arXiv, 2021.
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New analysis of OGM-G

The Lyapunov function Uk is obtained from cocoercivity inequalities and
the parallel structure of OGM-G:

0 ≥
1

θ2
k+1

(
f(xk+1) − f(xk) − ⟨∇f(xk+1), xk+1 − xk⟩ +

1

2L
∥∇f(xk+1) − ∇f(xk)∥2

)

+

(
1

θ2
k+1

−
1

θ2
k

)(
f(xk) − f(xK) − ⟨∇f(xk), xk − xK⟩ +

1

2L
∥∇f(xk) − ∇f(xK)∥2

)
=

1

θ2
k+1

(
1

2L
∥∇f(xK)∥2

+
1

2L
∥∇f(xk+1)∥2

+ f(xk+1) − f(xK) −
〈
∇f(xk+1), xk+1 − x

+
k

〉)
−

1

θ2
k

(
1

2L
∥∇f(xK)∥2

+
1

2L
∥∇f(xk)∥2

+ f(xk) − f(xK) −
〈
∇f(xk), xk − x

+
k−1

〉)
−
〈
∇f(xk), θ

−2
k+1x

+
k − θ

−2
k x

+
k−1 −

(
θ
−2
k+1 − θ

−2
k

)
x
+
K

〉
︸ ︷︷ ︸

:=T

.
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New analysis of OGM-G

The term T can be understood as follows. Define −→uv = v − u. Then

x+
k−1 xk zk

zk+1

x+
k

t

1

L
T

(i)
=

〈−−−→
xkx

+
k , (θ

−2
k+1 − θ

−2
k )

−−→
tx

+
k + θ

−2
k

−−−−−→
x
+
k−1x

+
k

〉
(ii)
=

〈−−−→
xkx

+
k , (θ

−2
k+1 − θ

−2
k )(

−−−→
tzk+1 − −−−−→zkzk+1 − −−−→xkzk +

−−−→
xkx

+
k )

+ θ
−2
k (

−−−−−→
x
+
k−1xk +

−−−→
xkx

+
k )

〉
(iii)
=

〈−−−→
xkx

+
k , (θ

−2
k+1 − θ

−2
k )

−−−→
tzk+1 − (θ

−2
k+1 − θ

−2
k )(θk − 1)

−−−→
xkx

+
k

−
(
θ
−2
k+1 − θ

−2
k

)−−−→xkzk + (2θk − 1)θ
−4
k+1

−−−→xkzk + θ
−2
k

−−−→
xkx

+
k

〉
(iv)
=

〈−−−→
xkx

+
k ,

(
θ
−2
k+1 − θ

−2
k

)−−−→
tzk+1 + θ

−2
k+1(θk − 1)

−1−−−→xkzk

〉
(v)
= θ

−4
k+1

〈−−−−−→
x
+
k zk+1 − −−−→xkzk,

−−−→
tzk+1

〉
+ θ

−4
k+1

〈−−−→
tzk+1 − −→

tzk,
−−−→xkzk

〉
(vi)
= θ

−4
k+1

〈
zk+1 − x

+
k , zk+1 − x

+
K

〉
− θ

−4
k

〈
zk − x

+
k−1, zk − x

+
K

〉
.
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Prox-grad setup

Consider the problem

minimize
x∈Rn

F (x) := f(x) + g(x),

where f : Rn → R is convex and L-smooth g is proximable.

Prox-grad step notation:

x⊕ = argmin
y∈Rn

{
f(x) + ⟨∇f(x), y − x⟩+ g(y) +

L

2
∥y − x∥2

}
.
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FISTA-G

A novel method, FISTA-G:

xk+1 = x⊕
k +

φk+1 − φk+2

φk − φk+1
(x⊕

k − x⊕
k−1)

for k = 0, 1, . . . ,K − 1, where x⊕
−1 := x0, φK+1 = 0, φK = 1, and

φk =
φ2
k+2 − φk+1φk+2 + 2φ2

k+1 + (φk+1 − φk+2)
√
φ2
k+2 + 3φ2

k+1

φk+1 + φk+2

for k = −1, 0, . . . ,K − 1.
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Parallel structure of FISTA-G

Define z0 = x0, zk = φk

φk−φk+1
xk − φk+1

φk−φk+1
x⊕
k−1 for k = 0, 1, . . . ,K.

Then x+
k − xk and zk+1 − zk are parallel.

Plane of iteration of FISTA-G:

x⊕
k−1 xk zk

zk+1

x⊕
k

xk+1
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FISTA-G: O((F (x0)− F⋆) /K
2) rate

Theorem
FISTA-G’s final iterate xK exhibits the rate

min ∥∂F (x⊕
K)∥2 ≤ 4∥∇̃LF (xK)∥2 ≤ 264L

(K + 2)2
(F (x0)− F⋆) .

Proof outline. Define

Uk =
2φk−1

(φk−1 − φk)2

(
1

2L
∥∇̃LF (xk)∥

2
+ F (x⊕

k )− F (x⊕
K)−

〈
∇̃LF (xk), xk − x⊕

k−1

〉)
+

L

φk

〈
zk − x⊕

k−1, zk − x⊕
K

〉
and show Uk ≤ · · · ≤ U0.
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FISTA+FISTA-G: O((∥x0 − x⋆∥2)/K4) rate

Corollary
FISTA+FISTA-G’s final iterate x2K exhibits the rate

min ∥∂F (x⊕
2K)∥2 ≤ 4∥∇̃LF (x2K)∥2 ≤ 528L2

(K + 2)4
∥x0 − x⋆∥2.
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Experiments

Compressed sensing experiments:

minimize
x∈Rn

∥Ax− b∥2 + λ∥x∥1, minimize
x∈Rn

∥Ax− b∥2 + λ∥x∥nuc.
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Summary

We identify a geometric structure common among a wide range of
accelerated first-order methods.

Using this geometric insight, we better understand the acceleration of
OGM-G and extended the acceleration to the prox-grad setup.

Reference: J. Lee, C. Park, and E. K. Ryu, A geometric structure of
acceleration and its role in making gradients small fast, NeurIPS, 2021.
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Conclusion

The space of deterministic first-order convex optimization has a lot of
exciting recent developments. With the aid the PEP†, several new
acceleration mechanisms have been discovered.

Open problem: Is there a common underlying structure to these
acceleration mechanisms, despite their apparent differences?

†Drori and Teboulle, Performance of first-order methods for smooth convex
minimization: a novel approach. MPA, 2014.

†Taylor, Hendrickx, and Glineur. Smooth strongly convex interpolation and exact
worst-case performance of first-order methods, MPA, 2017.
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