Nonsmooth implicit differentiation for optimization

Edouard Pauwels (IRIT, Toulouse 3, France)

joint work with

JÉRÔME BOLTE, TÂM LÊ, ANTONIO SILVETI-FALLS (TSE, TOULOUSE 1, FRANCE)

OWOS seminar (September 2021)

- The classical implicit function theorem has two parts (existence and calculus)
- Nonsmooth generalizations essentially focused on existence.

- The classical implicit function theorem has two parts (existence and calculus)
- Nonsmooth generalizations essentially focused on existence.

Contributions: nonsmooth generalization of the calculus part.

- The classical implicit function theorem has two parts (existence and calculus)
- Nonsmooth generalizations essentially focused on existence.

Contributions: nonsmooth generalization of the calculus part.

• Direct generalization of calculus fails.

- The classical implicit function theorem has two parts (existence and calculus)
- Nonsmooth generalizations essentially focused on existence.

Contributions: nonsmooth generalization of the calculus part.

- Direct generalization of calculus fails.
- Our solution: use conservative Jacobians.

- The classical implicit function theorem has two parts (existence and calculus)
- Nonsmooth generalizations essentially focused on existence.

Contributions: nonsmooth generalization of the calculus part.

- Direct generalization of calculus fails.
- Our solution: use conservative Jacobians.
- Applications in compositional modeling (ML, DEQ), bilevel optimization, ...

Introduction

- 2 Failure of formal nonsmooth implicit differentiation
- 3 Conservative gradients and Jacobians
- 4 Nonsmooth implicit differentiation

5 Applications

Introduction

- 2 Failure of formal nonsmooth implicit differentiation
- 3 Conservative gradients and Jacobians
- 4 Nonsmooth implicit differentiation
- 5 Applications

$$F(\bar{x},\bar{y})=0.$$

If $B_{\overline{y}}$ is invertible, then there exists $U \subset \mathbb{R}^n$ a neighborhood of \overline{x} and a differentiable function G(x) so that

 $\forall x \in U \qquad F(x, G(x)) = 0,$

and y = G(x) is the unique such solution in a neighborhood of \overline{y} .

 $\operatorname{Jac}_{G}(x) = -B^{-1}A, \qquad [A B] = \operatorname{Jac}_{F}(x, G(x)).$

$$F(\bar{x},\bar{y})=0.$$

If $B_{\overline{y}}$ is invertible, then there exists $U \subset \mathbb{R}^n$ a neighborhood of \overline{x} and a differentiable function G(x) so that

$$\forall x \in U \qquad F(x, G(x)) = 0,$$

and y = G(x) is the unique such solution in a neighborhood of \overline{y} .

 $\operatorname{Jac}_{G}(x) = -B^{-1}A, \qquad [A B] = \operatorname{Jac}_{F}(x, G(x)).$

$$F(\bar{x},\bar{y})=0.$$

If $B_{\overline{y}}$ is invertible, then there exists $U \subset \mathbb{R}^n$ a neighborhood of \overline{x} and a differentiable function G(x) so that

$$\forall x \in U \qquad F(x, G(x)) = 0,$$

and y = G(x) is the unique such solution in a neighborhood of \overline{y} .

 $\operatorname{Jac}_{G}(x) = -B^{-1}A, \qquad [A \ B] = \operatorname{Jac}_{F}(x, G(x)).$

• Existence: Equation F(x, y) = 0 defines a functional relation y = G(x) around \bar{x} .

$$F(\bar{x},\bar{y})=0.$$

If $B_{\bar{y}}$ is invertible, then there exists $U \subset \mathbb{R}^n$ a neighborhood of \bar{x} and a differentiable function G(x) so that

$$\forall x \in U \qquad F(x,G(x)) = 0,$$

and y = G(x) is the unique such solution in a neighborhood of \bar{y} .

$$\operatorname{Jac}_{G}(x) = -B^{-1}A, \qquad [A B] = \operatorname{Jac}_{F}(x, G(x)).$$

• Existence: Equation F(x, y) = 0 defines a functional relation y = G(x) around \bar{x} .

$$F(\bar{x},\bar{y})=0.$$

If $B_{\bar{y}}$ is invertible, then there exists $U \subset \mathbb{R}^n$ a neighborhood of \bar{x} and a differentiable function G(x) so that

$$\forall x \in U$$
 $F(x, G(x)) = 0,$

and y = G(x) is the unique such solution in a neighborhood of \overline{y} .

$$\operatorname{Jac}_{G}(x) = -B^{-1}A, \qquad [A B] = \operatorname{Jac}_{F}(x, G(x)).$$

• Existence: Equation F(x, y) = 0 defines a functional relation y = G(x) around \bar{x} .

• Implicit differentiation: Calculus rule for the derivative of G.

Classical implicit function theorem

 $F(x, y) = x^2 + y^2 - 1.$ $\mathbf{A} y$ F(x,y) = 0 \hat{x}

Classical implicit function theorem

 $F(x, y) = x^2 + y^2 - 1.$

Classical implicit function theorem

 $F(x, y) = x^2 + y^2 - 1.$ $\mathbf{A} y$ F(x,y) = 0 (\hat{x}, \hat{y}) G(x)**x** U

Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be continuously differentiable with Jacobian $\operatorname{Jac}_F : \mathbb{R}^n \to \mathbb{R}^{n \times n}$ and $\overline{x} \in \mathbb{R}^n$ such that $\operatorname{Jac}_F(\overline{x})$ is nonsingular. Then there exists $U \subset \mathbb{R}^n$ a neighborhood of \overline{x} such that F_U is a diffeomorphism. For all $x \in U$.

 $\operatorname{Jac}_{F^{-1}}(F(x)) = \operatorname{Jac}_F(x)^{-1}.$

Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be continuously differentiable with Jacobian $\operatorname{Jac}_F : \mathbb{R}^n \to \mathbb{R}^{n \times n}$ and $\overline{x} \in \mathbb{R}^n$ such that $\operatorname{Jac}_F(\overline{x})$ is nonsingular. Then there exists $U \subset \mathbb{R}^n$ a neighborhood of \overline{x} such that F_U is a diffeomorphism. For all $x \in U$.

 $\operatorname{Jac}_{F^{-1}}(F(x)) = \operatorname{Jac}_F(x)^{-1}.$

Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be continuously differentiable with Jacobian $\operatorname{Jac}_F : \mathbb{R}^n \to \mathbb{R}^{n \times n}$ and $\overline{x} \in \mathbb{R}^n$ such that $\operatorname{Jac}_F(\overline{x})$ is nonsingular. Then there exists $U \subset \mathbb{R}^n$ a neighborhood of \overline{x} such that F_U is a diffeomorphism. For all $x \in U$.

 $\operatorname{Jac}_{F^{-1}}(F(x)) = \operatorname{Jac}_F(x)^{-1}$

• Existence of a functional inverse for F around \bar{x} .

Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be continuously differentiable with Jacobian $\operatorname{Jac}_F : \mathbb{R}^n \to \mathbb{R}^{n \times n}$ and $\overline{x} \in \mathbb{R}^n$ such that $\operatorname{Jac}_F(\overline{x})$ is nonsingular. Then there exists $U \subset \mathbb{R}^n$ a neighborhood of \overline{x} such that F_U is a diffeomorphism. For all $x \in U$,

 $\operatorname{Jac}_{F^{-1}}(F(x)) = \operatorname{Jac}_{F}(x)^{-1}.$

• Existence of a functional inverse for F around \bar{x} .

Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be continuously differentiable with Jacobian $\operatorname{Jac}_F : \mathbb{R}^n \to \mathbb{R}^{n \times n}$ and $\overline{x} \in \mathbb{R}^n$ such that $\operatorname{Jac}_F(\overline{x})$ is nonsingular. Then there exists $U \subset \mathbb{R}^n$ a neighborhood of \overline{x} such that F_U is a diffeomorphism. For all $x \in U$,

$$\operatorname{Jac}_{F^{-1}}(F(x)) = \operatorname{Jac}_F(x)^{-1}.$$

- Existence of a functional inverse for F around \bar{x} .
- Calculus rule for the derivative of F^{-1} .

- F(x, y) = 0.
- Euclidean space.
- Continuously differentiable.
- Block invertible Jacobian.

- F(x, y) = 0.
- Euclidean space.
- Continuously differentiable.
- Block invertible Jacobian.

- F(x, y) = 0.
- Euclidean space.
- Continuously differentiable.
- Block invertible Jacobian.

In nonsmooth analysis:

• Strict differentiability: Leach (1961), Nijenhuis (1974).

- F(x, y) = 0.
- Euclidean space.
- Continuously differentiable.
- Block invertible Jacobian.

- Strict differentiability: Leach (1961), Nijenhuis (1974).
- Inclusions, set valued: Robinson (1980), Dontchev-Rockafellar (2009).

- F(x, y) = 0.
- Euclidean space.
- Continuously differentiable.
- Block invertible Jacobian.

- Strict differentiability: Leach (1961), Nijenhuis (1974).
- Inclusions, set valued: Robinson (1980), Dontchev-Rockafellar (2009).
- Inverse, set valued: Aubin (1982), Rockafellar (1985), Aubin-Frankowka (1984), Dontchev-Hager (1994).

- F(x, y) = 0.
- Euclidean space.
- Continuously differentiable.
- Block invertible Jacobian.

- Strict differentiability: Leach (1961), Nijenhuis (1974).
- Inclusions, set valued: Robinson (1980), Dontchev-Rockafellar (2009).
- Inverse, set valued: Aubin (1982), Rockafellar (1985), Aubin-Frankowka (1984), Dontchev-Hager (1994).
- Locally Lipschitz equations: Clarke (1976), Hiriart Urruty (1979), Clarke (1983).

- F(x, y) = 0.
- Euclidean space.
- Continuously differentiable.
- Block invertible Jacobian.

- Strict differentiability: Leach (1961), Nijenhuis (1974).
- Inclusions, set valued: Robinson (1980), Dontchev-Rockafellar (2009).
- Inverse, set valued: Aubin (1982), Rockafellar (1985), Aubin-Frankowka (1984), Dontchev-Hager (1994).
- Locally Lipschitz equations: Clarke (1976), Hiriart Urruty (1979), Clarke (1983).
- • Robinson (1991) directional derivatives with calculus (restricted subclass).
 - Sun (2001), semismoothness.
 - Fukui, Kurdyka, Paunescu (2007), subanalytic / tame.

Implicit function theorem:

- Existence: Locally implicitely defined functional relation.
- Calculus: Jacobians from matrix inversion.

Implicit function theorem:

- Existence: Locally implicitely defined functional relation.
- Calculus: Jacobians from matrix inversion.

Context of this presentation:

- Lipschitz equations: possibly nonsmooth, finite dimension.
- Implicit differentiation: Calculus part

Implicit function theorem:

- Existence: Locally implicitely defined functional relation.
- Calculus: Jacobians from matrix inversion.

Context of this presentation:

- Lipschitz equations: possibly nonsmooth, finite dimension.
- Implicit differentiation: Calculus part

Motivation and applications:

- Generalizations focused on the existence / regularity part.
- Applications:
 - Bilevel optimization: differentiate solutions of optimization problems.
 - Implicit compositional modeling: equilibrium models, declarative networks ...

Introduction

- 2 Failure of formal nonsmooth implicit differentiation
- 3 Conservative gradients and Jacobians
- 4 Nonsmooth implicit differentiation
- 5 Applications

Clarke's generalized derivatives: Given a locally Lipschitz function $F : \mathbb{R}^n \to \mathbb{R}^m$, the Clarke Jacobian at a point $x \in \mathbb{R}^n$ is

$$J_F^c(x) = \operatorname{conv}\left(\left\{\lim_{k\to\infty}\operatorname{Jac}_F(x_k): x_k\in \operatorname{diff}_F \text{ and } x_k\to x\right\}\right),$$

where $diff_F$ is the set of differentiability point of F (Rademacher: full measure).

$$F(\bar{x},\bar{y})=0.$$

If, $\forall [A B] \in J_F^c(\bar{x}, \bar{y})$, B is invertible, then $\exists U \subset \mathbb{R}^n$ a neighborhood of \bar{x} and a locally Lipschitz function G(x)so that

$$F(x, G(x)) = 0 \quad \forall x \in U,$$

 $F(\bar{x},\bar{y})=0.$

If, $\forall [A B] \in J_F^c(\bar{x}, \bar{y})$, *B* is invertible, then $\exists U \subset \mathbb{R}^n$ a neighborhood of \bar{x} and a locally Lipschitz function G(x)so that

$$F(x, G(x)) = 0 \quad \forall x \in U,$$

$$F(\bar{x},\bar{y})=0.$$

If, $\forall [A B] \in J_F^c(\bar{x}, \bar{y})$, B is invertible, then $\exists U \subset \mathbb{R}^n$ a neighborhood of \bar{x} and a locally Lipschitz function G(x)so that

 $F(x, G(x)) = 0 \quad \forall x \in U,$

$$F(\bar{x},\bar{y})=0.$$

If, $\forall [A B] \in J_F^c(\bar{x}, \bar{y})$, B is invertible, then $\exists U \subset \mathbb{R}^n$ a neighborhood of \bar{x} and a locally Lipschitz function G(x)so that

 $F(x, G(x)) = 0 \quad \forall x \in U,$

Clarke's inverse mapping theorem: Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be locally Lipschitz with Clarke Jacobian $J_F^c : \mathbb{R}^n \rightrightarrows \mathbb{R}^{n \times n}$ and $\bar{x} \in \mathbb{R}^n$ such that $J_F^c(\bar{x}) \subset \mathbb{R}^{n \times n}$ only contains nonsingular matrices. Then there exists $U \subset \mathbb{R}^n$ an eighborhood of \bar{x} such that F_U is a bi-Lipschitz homeomorphism.

$$J_{F^{-1}}^{c}(F(x)) = J_{F}^{c}(x)^{-1} := \left\{ M^{-1}, M \in J_{F}^{c}(x) \right\}$$
?

Clarke's inverse mapping theorem: Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be locally Lipschitz with Clarke Jacobian $J_F^c : \mathbb{R}^n \rightrightarrows \mathbb{R}^{n \times n}$ and $\bar{x} \in \mathbb{R}^n$ such that $J_F^c(\bar{x}) \subset \mathbb{R}^{n \times n}$ only contains nonsingular matrices. Then there exists $U \subset \mathbb{R}^n$ a neighborhood of \bar{x} such that F_U is a bi-Lipschitz homeomorphism.

$$J_{F^{-1}}^{c}(F(x)) = J_{F}^{c}(x)^{-1} := \left\{ M^{-1}, M \in J_{F}^{c}(x) \right\}$$
?

Clarke's inverse mapping theorem: Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be locally Lipschitz with Clarke Jacobian $J_F^c : \mathbb{R}^n \rightrightarrows \mathbb{R}^{n \times n}$ and $\bar{x} \in \mathbb{R}^n$ such that $J_F^c(\bar{x}) \subset \mathbb{R}^{n \times n}$ only contains nonsingular matrices. Then there exists $U \subset \mathbb{R}^n$ a neighborhood of \bar{x} such that F_U is a bi-Lipschitz homeomorphism.

$$J_{F^{-1}}^{c}(F(x)) = J_{F}^{c}(x)^{-1} := \left\{ M^{-1}, M \in J_{F}^{c}(x) \right\}$$
?

Clarke's inverse mapping theorem: Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be locally Lipschitz with Clarke Jacobian $J_F^c : \mathbb{R}^n \rightrightarrows \mathbb{R}^{n \times n}$ and $\bar{x} \in \mathbb{R}^n$ such that $J_F^c(\bar{x}) \subset \mathbb{R}^{n \times n}$ only contains nonsingular matrices. Then there exists $U \subset \mathbb{R}^n$ a neighborhood of \bar{x} such that F_U is a bi-Lipschitz homeomorphism.

$$J_{F^{-1}}^{c}(F(x)) = J_{F}^{c}(x)^{-1} := \left\{ M^{-1}, M \in J_{F}^{c}(x) \right\}$$
?

From Clarke's book: consider the function $F : \mathbb{R}^2 \to \mathbb{R}^2$ $F : \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} |x| + y \\ 2x + |y| \end{pmatrix}$

•
$$F(0) = 0$$

• $J^c F(0) = \left\{ \begin{pmatrix} \alpha & 1 \\ 2 & \beta \end{pmatrix}, \alpha, \beta \in [-1, 1] \right\}$

From Clarke's book: consider the function $F : \mathbb{R}^2 \to \mathbb{R}^2$ $F : \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} |x| + y \\ 2x + |y| \end{pmatrix}$

•
$$F(0) = 0$$

• $J^c F(0) = \begin{cases} \begin{pmatrix} \alpha & 1 \\ 2 & \beta \end{pmatrix}, \ \alpha, \beta \in [-1, 1] \end{cases}$

From Clarke's book: consider the function $F : \mathbb{R}^2 \to \mathbb{R}^2$ $F : \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} |x| + y \\ 2x + |y| \end{pmatrix}$

•
$$F(0) = 0$$

• $J^c F(0) = \left\{ \begin{pmatrix} \alpha & 1 \\ 2 & \beta \end{pmatrix}, \alpha, \beta \in [-1, 1] \right\}$

From Clarke's book: consider the function $F : \mathbb{R}^2 \to \mathbb{R}^2$ $F : \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} |x| + y \\ 2x + |y| \end{pmatrix}$

•
$$F(0) = 0$$

• $J^c F(0) = \left\{ \begin{pmatrix} \alpha & 1 \\ 2 & \beta \end{pmatrix}, \alpha, \beta \in [-1, 1] \right\}$

From Clarke's book: consider the function $F : \mathbb{R}^2 \to \mathbb{R}^2$ $F : \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} |x| + y \\ 2x + |y| \end{pmatrix}$

•
$$F(0) = 0$$

• $J^c F(0) = \left\{ \begin{pmatrix} \alpha & 1 \\ 2 & \beta \end{pmatrix}, \alpha, \beta \in [-1, 1] \right\}$

• Complies with hypotheses of Clarke's inverse mapping theorem

Failure of Jacobian inversion rule:

- $\dim(J_F^c(0)) = 2$
- dim $(J^c_{F^{-1}}(0)) = 3$
- There exists $M \in J^c_{F^{-1}}(0)$ such that $M^{-1}
 ot\in J^c_F(0)$

From Clarke's book: consider the function $F : \mathbb{R}^2 \to \mathbb{R}^2$ $F : \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} |x| + y \\ 2x + |y| \end{pmatrix}$

•
$$F(0) = 0$$

• $J^c F(0) = \left\{ \begin{pmatrix} \alpha & 1 \\ 2 & \beta \end{pmatrix}, \alpha, \beta \in [-1, 1] \right\}$

• Complies with hypotheses of Clarke's inverse mapping theorem

Failure of Jacobian inversion rule:

- $\dim(J_F^c(0)) = 2$
- dim $(J^c_{F^{-1}}(0)) = 3$
- There exists $M \in J^c_{F^{-1}}(0)$ such that $M^{-1} \not\in J^c_F(0)$

Elements of description

Explicit piecewise affine inverse.

$$\begin{split} F^{-1}(u,v) &= (v-u,2u-v) & \text{for } (u,v) \in A, \\ F^{-1}(u,v) &= \frac{1}{3} \left(u+v,2u-v \right) & \text{for } (u,v) \in B, \\ F^{-1}(u,v) &= (u+v,2u+v) & \text{for } (u,v) \in C, \\ F^{-1}(u,v) &= \frac{1}{3} \left(v-u,2u+v \right) & \text{for } (u,v) \in D, \end{split}$$

 $F \colon \mathbb{R}^2 \to \mathbb{R}^2$ complies with Clarke's inverse mapping theorem.

There exists $M \in J^c_{F^{-1}}(0)$ such that $M^{-1} \not\in J^c_F(0)$

Introduction

- 2 Failure of formal nonsmooth implicit differentiation
- 3 Conservative gradients and Jacobians
- 4 Nonsmooth implicit differentiation

5 Applications

6 Conclusion

- Objects akin to Clarke's subgradient / Jacobian (for locally Lipschitz functions).
- A given function $F : \mathbb{R}^n \to \mathbb{R}^m$ has multiple conservative Jacobians $J_F : \mathbb{R}^n \Rightarrow \mathbb{R}^{m \times n}$.
- Compatible with compositional calculus rules
 - $J_F: \mathbb{R}^n \rightrightarrows \mathbb{R}^{m \times n}$ conservative for $F: \mathbb{R}^n \to \mathbb{R}^m$.
 - $J_G: \mathbb{R}^m \rightrightarrows \mathbb{R}^{p imes m}$ conservative for $G: \mathbb{R}^m \to \mathbb{R}^p$.
 - Then $x \rightrightarrows J_G(F(x)) \times J_F(x)$ is conservative for $G \circ F$.
 - Sum rule, product rule, . . .
- Conservative gradients have a minimizing behavior similar to subgradients in optimization.

- Objects akin to Clarke's subgradient / Jacobian (for locally Lipschitz functions).
- A given function $F : \mathbb{R}^n \to \mathbb{R}^m$ has multiple conservative Jacobians $J_F : \mathbb{R}^n \rightrightarrows \mathbb{R}^{m \times n}$.
- Compatible with compositional calculus rules
 - $J_F : \mathbb{R}^n
 ightarrow \mathbb{R}^{m imes n}$ conservative for $F : \mathbb{R}^n
 ightarrow \mathbb{R}^m$
 - $J_G: \mathbb{R}^m
 ightarrow \mathbb{R}^{p imes m}$ conservative for $G: \mathbb{R}^m
 ightarrow \mathbb{R}^p$.
 - Then $x \rightrightarrows J_G(F(x)) \times J_F(x)$ is conservative for $G \circ F$.
 - Sum rule, product rule, . . .
- Conservative gradients have a minimizing behavior similar to subgradients in optimization.

- Objects akin to Clarke's subgradient / Jacobian (for locally Lipschitz functions).
- A given function $F : \mathbb{R}^n \to \mathbb{R}^m$ has multiple conservative Jacobians $J_F : \mathbb{R}^n \Rightarrow \mathbb{R}^{m \times n}$.
- Compatible with compositional calculus rules
 - $J_F: \mathbb{R}^n \rightrightarrows \mathbb{R}^{m \times n}$ conservative for $F: \mathbb{R}^n \to \mathbb{R}^m$
 - $J_G: \mathbb{R}^m \rightrightarrows \mathbb{R}^{p \times m}$ conservative for $G: \mathbb{R}^m \to \mathbb{R}^p$.
 - Then $x \rightrightarrows J_G(F(x)) \times J_F(x)$ is conservative for $G \circ F$.
 - Sum rule, product rule, ...
- Conservative gradients have a minimizing behavior similar to subgradients in optimization.

- Objects akin to Clarke's subgradient / Jacobian (for locally Lipschitz functions).
- A given function $F : \mathbb{R}^n \to \mathbb{R}^m$ has multiple conservative Jacobians $J_F : \mathbb{R}^n \Rightarrow \mathbb{R}^{m \times n}$.
- Compatible with compositional calculus rules
 - $J_F : \mathbb{R}^n \rightrightarrows \mathbb{R}^{m \times n}$ conservative for $F : \mathbb{R}^n \to \mathbb{R}^m$.
 - $J_G : \mathbb{R}^m \rightrightarrows \mathbb{R}^{p \times m}$ conservative for $G : \mathbb{R}^m \to \mathbb{R}^p$.
 - Then $x \rightrightarrows J_G(F(x)) \times J_F(x)$ is conservative for $G \circ F$
 - Sum rule, product rule, .
- Conservative gradients have a minimizing behavior similar to subgradients in optimization.

- Objects akin to Clarke's subgradient / Jacobian (for locally Lipschitz functions).
- A given function $F : \mathbb{R}^n \to \mathbb{R}^m$ has multiple conservative Jacobians $J_F : \mathbb{R}^n \rightrightarrows \mathbb{R}^{m \times n}$.
- Compatible with compositional calculus rules
 - $J_F : \mathbb{R}^n \rightrightarrows \mathbb{R}^{m \times n}$ conservative for $F : \mathbb{R}^n \to \mathbb{R}^m$.
 - $J_G : \mathbb{R}^m \rightrightarrows \mathbb{R}^{p \times m}$ conservative for $G : \mathbb{R}^m \to \mathbb{R}^p$.
 - Then $x \rightrightarrows J_G(F(x)) \times J_F(x)$ is conservative for $G \circ F$.
 - Sum rule, product rule, ...
- Conservative gradients have a minimizing behavior similar to subgradients in optimization.

- Objects akin to Clarke's subgradient / Jacobian (for locally Lipschitz functions).
- A given function $F : \mathbb{R}^n \to \mathbb{R}^m$ has multiple conservative Jacobians $J_F : \mathbb{R}^n \rightrightarrows \mathbb{R}^{m \times n}$.
- Compatible with compositional calculus rules
 - $J_F : \mathbb{R}^n \rightrightarrows \mathbb{R}^{m \times n}$ conservative for $F : \mathbb{R}^n \to \mathbb{R}^m$.
 - $J_G : \mathbb{R}^m \rightrightarrows \mathbb{R}^{p \times m}$ conservative for $G : \mathbb{R}^m \to \mathbb{R}^p$.
 - Then $x \rightrightarrows J_G(F(x)) \times J_F(x)$ is conservative for $G \circ F$.
 - Sum rule, product rule, ...
- Conservative gradients have a minimizing behavior similar to subgradients in optimization.

Conservative gradients / Jacobians:

- Objects akin to Clarke's subgradient / Jacobian (for locally Lipschitz functions).
- A given function $F : \mathbb{R}^n \to \mathbb{R}^m$ has multiple conservative Jacobians $J_F : \mathbb{R}^n \rightrightarrows \mathbb{R}^{m \times n}$.
- Compatible with compositional calculus rules
 - $J_F : \mathbb{R}^n \rightrightarrows \mathbb{R}^{m \times n}$ conservative for $F : \mathbb{R}^n \to \mathbb{R}^m$.
 - $J_G : \mathbb{R}^m \rightrightarrows \mathbb{R}^{p \times m}$ conservative for $G : \mathbb{R}^m \to \mathbb{R}^p$.
 - Then $x \rightrightarrows J_G(F(x)) \times J_F(x)$ is conservative for $G \circ F$.
 - Sum rule, product rule, ...
- Conservative gradients have a minimizing behavior similar to subgradients in optimization.

Bibliography:

- Introduction / nonsmooth algorithmic differentiation: Bolte-Pauwels (2020).
- Lazy gradient oracle: Bianchi-Hachem-Schechtman (2020).
- Structure / residual: Lewis-Tian (2021).
- Semi-smoothness: Davis-Drusvyatskiy (2021).

 $f: \mathbb{R}^{p} \to \mathbb{R}$ locally Lipschitz,

$$egin{aligned} & heta_{k+1} = heta_k - lpha_k \mathbf{v}_k & \Leftrightarrow & rac{ heta_{k+1} - heta_k}{lpha_k} \in -\partial^c f(heta_k) \ & \mathbf{v}_k \in \partial^c f(heta_k). \end{aligned}$$

 $f: \mathbb{R}^{p} \to \mathbb{R}$ locally Lipschitz, $f(\theta_{k+1}) \leq f(\theta_{k})$?

$$egin{aligned} & heta_{k+1} = heta_k - lpha_k \mathbf{v}_k & \Leftrightarrow & rac{ heta_{k+1} - heta_k}{lpha_k} \in -\partial^c f(heta_k) \ & \mathbf{v}_k \in \partial^c f(heta_k). \end{aligned}$$

 $f: \mathbb{R}^{p} \to \mathbb{R}$ locally Lipschitz, $f(\theta_{k+1}) \leq f(\theta_{k})$?

$$\begin{aligned} \theta_{k+1} &= \theta_k - \alpha_k \mathbf{v}_k \qquad \Leftrightarrow \qquad \frac{\theta_{k+1} - \theta_k}{\alpha_k} \in -\partial^c f(\theta_k) \\ \mathbf{v}_k &\in \partial^c f(\theta_k). \end{aligned}$$

Chain rule along Absolutely Continuous (AC) curves (Brézis, Valadier). Hypothesis: For any AC curve $\gamma : [0,1] \mapsto \mathbb{R}^{p}$

$$rac{d}{dt}f(\gamma(t))=\langle v,\dot{\gamma}(t)
angle \qquad orall v\in\partial^c f(\gamma(t)), \qquad ext{a.e.} \quad t\in[0,1]$$

 $f: \mathbb{R}^p \to \mathbb{R}$ locally Lipschitz, $f(\theta_{k+1}) \leq f(\theta_k)$?

$$\begin{aligned} \theta_{k+1} &= \theta_k - \alpha_k v_k \qquad \Leftrightarrow \qquad \frac{\theta_{k+1} - \theta_k}{\alpha_k} \in -\partial^c f(\theta_k) \\ v_k &\in \partial^c f(\theta_k). \end{aligned}$$

Chain rule along Absolutely Continuous (AC) curves (Brézis, Valadier). Hypothesis: For any AC curve $\gamma : [0, 1] \mapsto \mathbb{R}^{\rho}$

$$rac{d}{dt}f(\gamma(t))=\langle v,\dot{\gamma}(t)
angle \qquad orall v\in\partial^c f(\gamma(t)), \qquad ext{a.e.} \quad t\in[0,1]$$

Suppose: $\dot{\gamma}(t) \in -\partial^{c} f(\gamma(t))$ for almost all $t \in [0, 1]$,

 $f: \mathbb{R}^p \to \mathbb{R}$ locally Lipschitz, $f(\theta_{k+1}) \leq f(\theta_k)$?

$$\begin{aligned} \theta_{k+1} &= \theta_k - \alpha_k v_k \qquad \Leftrightarrow \qquad \frac{\theta_{k+1} - \theta_k}{\alpha_k} \in -\partial^c f(\theta_k) \\ v_k &\in \partial^c f(\theta_k). \end{aligned}$$

Chain rule along Absolutely Continuous (AC) curves (Brézis, Valadier). Hypothesis: For any AC curve $\gamma : [0, 1] \mapsto \mathbb{R}^{\rho}$

$$egin{aligned} &rac{d}{dt}f(\gamma(t))=\langle v,\dot{\gamma}(t)
angle &orall v\in\partial^c f(\gamma(t)), & ext{ a.e. } t\in[0,1] \ &=-\|\dot{\gamma}(t)\|^2, & ext{ a.e. } t\in[0,1] \end{aligned}$$

Suppose: $\dot{\gamma}(t) \in -\partial^c f(\gamma(t))$ for almost all $t \in [0, 1]$,

 $f: \mathbb{R}^p \to \mathbb{R}$ locally Lipschitz, $f(\theta_{k+1}) \leq f(\theta_k)$?

$$\begin{aligned} \theta_{k+1} &= \theta_k - \alpha_k v_k \qquad \Leftrightarrow \qquad \frac{\theta_{k+1} - \theta_k}{\alpha_k} \in -\partial^c f(\theta_k) \\ v_k &\in \partial^c f(\theta_k). \end{aligned}$$

Chain rule along Absolutely Continuous (AC) curves (Brézis, Valadier). Hypothesis: For any AC curve $\gamma : [0, 1] \mapsto \mathbb{R}^{\rho}$

$$egin{aligned} rac{d}{dt}f(\gamma(t)) &= \langle v,\dot{\gamma}(t)
angle & orall v \in \partial^c f(\gamma(t)), & ext{ a.e. } t \in [0,1] \ &= -\|\dot{\gamma}(t)\|^2, & ext{ a.e. } t \in [0,1] \end{aligned}$$

Suppose: $\dot{\gamma}(t) \in -\partial^c f(\gamma(t))$ for almost all $t \in [0, 1]$, then $t \mapsto f(\gamma(t))$ decreases, strictly if $0 \notin \partial^c f(\gamma(t))$.

 $f: \mathbb{R}^p \to \mathbb{R}$ locally Lipschitz, $f(\theta_{k+1}) \leq f(\theta_k)$?

$$\begin{aligned} \theta_{k+1} &= \theta_k - \alpha_k v_k \qquad \Leftrightarrow \qquad \frac{\theta_{k+1} - \theta_k}{\alpha_k} \in -\partial^c f(\theta_k) \\ v_k &\in \partial^c f(\theta_k). \end{aligned}$$

Chain rule along Absolutely Continuous (AC) curves (Brézis, Valadier). Hypothesis: For any AC curve $\gamma : [0, 1] \mapsto \mathbb{R}^{\rho}$

$$egin{aligned} rac{d}{dt}f(\gamma(t)) &= \langle v,\dot{\gamma}(t)
angle & orall v \in \partial^c f(\gamma(t)), & ext{ a.e. } t \in [0,1] \ &= - \|\dot{\gamma}(t)\|^2, & ext{ a.e. } t \in [0,1] \end{aligned}$$

Suppose: $\dot{\gamma}(t) \in -\partial^c f(\gamma(t))$ for almost all $t \in [0, 1]$, then $t \mapsto f(\gamma(t))$ decreases, strictly if $0 \notin \partial^c f(\gamma(t))$.

Benaim-Haufbauer-Sorin (2005) subgradient plus zero mean noise, under proper assumptions:

 $f: \mathbb{R}^p \to \mathbb{R}$ locally Lipschitz, $f(\theta_{k+1}) \leq f(\theta_k)$?

$$\begin{aligned} \theta_{k+1} &= \theta_k - \alpha_k \mathbf{v}_k \qquad \Leftrightarrow \qquad \frac{\theta_{k+1} - \theta_k}{\alpha_k} \in -\partial^c f(\theta_k) \\ \mathbf{v}_k &\in \partial^c f(\theta_k). \end{aligned}$$

Chain rule along Absolutely Continuous (AC) curves (Brézis, Valadier). Hypothesis: For any AC curve $\gamma : [0, 1] \mapsto \mathbb{R}^{\rho}$

$$egin{aligned} &rac{d}{dt}f(\gamma(t))=\langle v,\dot{\gamma}(t)
angle &orall v\in\partial^c f(\gamma(t)), & ext{ a.e. } t\in[0,1] \ &=-\|\dot{\gamma}(t)\|^2, & ext{ a.e. } t\in[0,1] \end{aligned}$$

Suppose: $\dot{\gamma}(t) \in -\partial^c f(\gamma(t))$ for almost all $t \in [0, 1]$, then $t \mapsto f(\gamma(t))$ decreases, strictly if $0 \notin \partial^c f(\gamma(t))$.

Benaim-Haufbauer-Sorin (2005) subgradient plus zero mean noise, under proper assumptions:

Vanishing step sizes, almost surely all accumulation points are critical points: $0 \in \partial^c f(\bar{\theta})$.

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

• $\partial^c f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

- $\partial^c f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).
- local minimizers are dense: there is a local minimizer arbitrarily close to any argument.

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

- $\partial^c f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).
- local minimizers are dense: there is a local minimizer arbitrarily close to any argument.

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

- $\partial^c f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).
- local minimizers are dense: there is a local minimizer arbitrarily close to any argument.

Let f be a tame locally Lipschitz function ("generic" in applications),

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

- $\partial^c f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).
- local minimizers are dense: there is a local minimizer arbitrarily close to any argument.

Let f be a tame locally Lipschitz function ("generic" in applications), • piecewise polynomial.

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

- $\partial^c f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).
- local minimizers are dense: there is a local minimizer arbitrarily close to any argument.

Let f be a tame locally Lipschitz function ("generic" in applications),

- piecewise polynomial.
- semi-algebraic.

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

- $\partial^c f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).
- local minimizers are dense: there is a local minimizer arbitrarily close to any argument.

Let f be a tame locally Lipschitz function ("generic" in applications),

- piecewise polynomial.
- semi-algebraic.
- definable.

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

- $\partial^c f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).
- local minimizers are dense: there is a local minimizer arbitrarily close to any argument.

Let f be a tame locally Lipschitz function ("generic" in applications),

- piecewise polynomial.
- semi-algebraic.
- definable.

Davis et .al. 2019, Bolte et. al. 2007: Subgradient projection formula implies chain rule along AC curves.

 $f: \mathbb{R}^{p} \to \mathbb{R} \text{ locally Lipschitz}$ $D: \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{p},$

For any AC curve $\gamma \colon [0,1] \mapsto \mathbb{R}^{r}$

$$rac{d}{dt}f(\gamma(t)) = \langle v, \dot{\gamma}(t) \rangle \qquad orall v \in D(\gamma(t)), \qquad ext{a.e.} \quad t \in [0, 1]$$

$$\begin{split} f &: \mathbb{R}^{p} \to \mathbb{R} \text{ locally Lipschitz} \\ D &: \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{p}, \\ \text{For any AC curve } \gamma \colon [0,1] \mapsto \mathbb{R}^{p} \end{split}$$

$$rac{d}{dt}f(\gamma(t))=\langle extsf{v},\dot{\gamma}(t)
angle \qquad orall extsf{v}\in D(\gamma(t)), \qquad extsf{a.e.} \quad t\in[0,1]$$

$$\begin{split} f \colon \mathbb{R}^p &\to \mathbb{R} \text{ locally Lipschitz} \\ D \colon \mathbb{R}^p \rightrightarrows \mathbb{R}^p, \text{ closed graph, non empty valued, locally bounded,} \\ \text{For any AC curve } \gamma \colon [0,1] \mapsto \mathbb{R}^p \end{split}$$

$$rac{d}{dt}f(\gamma(t))=\langle
u,\dot{\gamma}(t)
angle \qquad orall
u\in D(\gamma(t)), \qquad ext{a.e.} \quad t\in [0,1]$$

 $f : \mathbb{R}^{p} \to \mathbb{R}$ locally Lipschitz $D : \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{p}$, closed graph, non empty valued, locally bounded, For any AC curve $\gamma : [0, 1] \mapsto \mathbb{R}^{p}$

$$rac{d}{dt}f(\gamma(t))=\langle v,\dot{\gamma}(t)
angle \qquad orall v\in D(\gamma(t)), \qquad ext{a.e.} \quad t\in [0,1]$$

- f is path differentiable.
- D is a conservative gradient for f.
- Conservative Jacobians defined similarly

 $f : \mathbb{R}^{p} \to \mathbb{R}$ locally Lipschitz $D : \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{p}$, closed graph, non empty valued, locally bounded, For any AC curve $\gamma : [0, 1] \mapsto \mathbb{R}^{p}$

$$rac{d}{dt}f(\gamma(t))=\langle
u,\dot{\gamma}(t)
angle \qquad orall
u\in D(\gamma(t)), \qquad ext{a.e.} \quad t\in [0,1]$$

- f is path differentiable.
- D is a conservative gradient for f.
- Conservative Jacobians defined similarly

Results:

- $D(x) = \{\nabla f(x)\}$ for almost all $x \in \mathbb{R}^p$.
- $\partial^c f(x) \subset \operatorname{conv}(D(x))$ for all $x \in \mathbb{R}^p$.
- Sum, linear combinations, compositions of conservative Jacobians are conservative.

Conservative gradient and optimization

$$\min_{\theta \in \mathbb{R}^p} \ell(\theta) := \frac{1}{N} \sum_{i=1}^N \ell_i(\theta) \text{ with } \ell_i = g_{i,L} \circ g_{i,L-1} \circ \ldots \circ g_{i,1}$$

Assumption: For $i \in \{1, \ldots, N\}$ and $j \in \{1, \ldots, L\}$,

- $g_{i,j}$ locally Lipschitz, conservative Jacobian $J_{i,j}$, semialgebraic (or definable).
- For $i \in \{1, \ldots, N\}$, set $D_i = \prod_{i=1}^{L} J_{i,i}$.
 - $\sim D_i$ is a conservative gradient for ℓ_i .
 - Algorithmic differentiation is an oracle for D_i.

$$\min_{\theta \in \mathbb{R}^p} \ell(\theta) := \frac{1}{N} \sum_{i=1}^N \ell_i(\theta) \text{ with } \ell_i = g_{i,L} \circ g_{i,L-1} \circ \ldots \circ g_{i,1}$$

- $g_{i,j}$ locally Lipschitz, conservative Jacobian $J_{i,j}$, semialgebraic (or definable).
- For $i \in \{1, \ldots, N\}$, set $D_i = \prod_{l=1}^{L} J_{i,l}$.
 - D_i is a conservative gradient for ℓ_i .
 - Algorithmic differentiation is an oracle for D_i.

$$\min_{\theta \in \mathbb{R}^p} \ell(\theta) := \frac{1}{N} \sum_{i=1}^N \ell_i(\theta) \text{ with } \ell_i = g_{i,L} \circ g_{i,L-1} \circ \ldots \circ g_{i,1}$$

• $g_{i,j}$ locally Lipschitz, conservative Jacobian $J_{i,j}$, semialgebraic (or definable). For $i \in \{1, ..., N\}$, set $D_i = \prod_{l=1}^{L} J_{i,l}$.

- D_i is a conservative gradient for ℓ_i .
- Algorithmic differentiation is an oracle for D_i.

$$\min_{\theta \in \mathbb{R}^{\rho}} \ell(\theta) := \frac{1}{N} \sum_{i=1}^{N} \ell_i(\theta) \text{ with } \ell_i = g_{i,L} \circ g_{i,L-1} \circ \ldots \circ g_{i,1}$$

- $g_{i,j}$ locally Lipschitz, conservative Jacobian $J_{i,j}$, semialgebraic (or definable). For $i \in \{1, ..., N\}$, set $D_i = \prod_{l=1}^{L} J_{i,l}$.
 - D_i is a conservative gradient for ℓ_i .
 - Algorithmic differentiation is an oracle for D_i.

$$rac{ heta_{k+1}- heta_k}{lpha_k}\in -D_{l_k}(heta_k)$$

$$\min_{ heta \in \mathbb{R}^p} \ell(heta) := rac{1}{N} \sum_{i=1}^N \ell_i(heta) \, \, ext{with} \, \, \ell_i = g_{i,L} \circ g_{i,L-1} \circ \ldots \circ g_{i,1}$$

- $g_{i,j}$ locally Lipschitz, conservative Jacobian $J_{i,j}$, semialgebraic (or definable). For $i \in \{1, ..., N\}$, set $D_i = \prod_{l=1}^{L} J_{i,l}$.
 - D_i is a conservative gradient for ℓ_i .
 - Algorithmic differentiation is an oracle for D_i.

$$\frac{\theta_{k+1}-\theta_k}{\alpha_k}\in -D_{l_k}(\theta_k)$$

- Step size: $\sum_{k=1}^{+\infty} \alpha_k = +\infty$ and $\alpha_k = o(1/\log(k))$.
- Boundedness: there exists M > 0, $\|\theta_k\| \leq M$ almost surely.
- Almost surely, ℓ(θ_k) converges, accumulation points satisfy 0 ∈ ∑^N_{i=1} conv(D_i(θ
))
 For "most" such sequences, accumulation points are Clarke critical 0 ∈ ∂^cℓ(θ).

$$\min_{ heta \in \mathbb{R}^p} \ell(heta) := rac{1}{N} \sum_{i=1}^N \ell_i(heta) \, \, ext{with} \, \, \ell_i = g_{i,L} \circ g_{i,L-1} \circ \ldots \circ g_{i,1}$$

- $g_{i,j}$ locally Lipschitz, conservative Jacobian $J_{i,j}$, semialgebraic (or definable). For $i \in \{1, ..., N\}$, set $D_i = \prod_{l=1}^{L} J_{i,l}$.
 - D_i is a conservative gradient for ℓ_i .
 - Algorithmic differentiation is an oracle for D_i.

$$\frac{\theta_{k+1}-\theta_k}{\alpha_k}\in -D_{l_k}(\theta_k)$$

- Step size: $\sum_{k=1}^{+\infty} \alpha_k = +\infty$ and $\alpha_k = o(1/\log(k))$.
- Boundedness: there exists M > 0, $\|\theta_k\| \le M$ almost surely.
- Almost surely, $\ell(\theta_k)$ converges, accumulation points satisfy $0 \in \sum_{i=1}^{N} \operatorname{conv}(D_i(\bar{\theta}))$
- For "most" such sequences, accumulation points are Clarke critical $0 \in \partial^{c} \ell(\theta)$.

$$\min_{ heta \in \mathbb{R}^p} \ell(heta) := rac{1}{N} \sum_{i=1}^N \ell_i(heta) \, \, ext{with} \, \, \ell_i = g_{i,L} \circ g_{i,L-1} \circ \ldots \circ g_{i,1}$$

- $g_{i,j}$ locally Lipschitz, conservative Jacobian $J_{i,j}$, semialgebraic (or definable). For $i \in \{1, ..., N\}$, set $D_i = \prod_{l=1}^{L} J_{i,l}$.
 - D_i is a conservative gradient for ℓ_i .
 - Algorithmic differentiation is an oracle for D_i.

$$\frac{\theta_{k+1}-\theta_k}{\alpha_k}\in -D_{l_k}(\theta_k)$$

- Step size: $\sum_{k=1}^{+\infty} \alpha_k = +\infty$ and $\alpha_k = o(1/\log(k))$.
- Boundedness: there exists M > 0, $\|\theta_k\| \le M$ almost surely.
- Almost surely, $\ell(\theta_k)$ converges, accumulation points satisfy $0 \in \sum_{i=1}^N \operatorname{conv}(D_i(\bar{\theta}))$
- For "most" such sequences, accumulation points are Clarke critical $0 \in \partial^{c} \ell(\theta)$.

Conservative gradients / Jacobians:

- Objects akin to Clarke's subgradient / Jacobian.
- Compatible with compositional calculus rules
- Have a minimizing behavior similar to subgradients in optimization.

Introduction

- 2 Failure of formal nonsmooth implicit differentiation
- 3 Conservative gradients and Jacobians
- 4 Nonsmooth implicit differentiation
- 5 Applications

- $F : \mathbb{R}^n \to \mathbb{R}^n$ locally Lipschitz
- Clarke Jacobian $J_F^c \colon \mathbb{R}^n \rightrightarrows \mathbb{R}^{n \times n}$
- $\bar{x} \in \mathbb{R}^n$ such that $J_F^c(\bar{x}) \subset \mathbb{R}^{n \times n}$ only contains nonsingular matrices.

Then there exists $U \subset \mathbb{R}^n$ a neighborhood of \bar{x} such that F_U is a bi-Lipschitz homeomorphism.

Failure of formal differentiation

$$J_{F^{-1}}^{c}(y) \neq J_{F}^{c}(F^{-1}(y))^{-1} := \left\{ M^{-1}, M \in J_{F}^{c}(F^{-1}(y))
ight\}$$

- $F : \mathbb{R}^n \to \mathbb{R}^n$ locally Lipschitz
- Clarke Jacobian $J_F^c : \mathbb{R}^n \rightrightarrows \mathbb{R}^{n \times n}$
- $\bar{x} \in \mathbb{R}^n$ such that $J_F^c(\bar{x}) \subset \mathbb{R}^{n \times n}$ only contains nonsingular matrices.

Then there exists $U \subset \mathbb{R}^n$ a neighborhood of \bar{x} such that F_U is a bi-Lipschitz homeomorphism.

Failure of formal differentiation

$$J^{c}_{F^{-1}}(y)
eq J^{c}_{F}(F^{-1}(y))^{-1} := \left\{ M^{-1}, \ M \in J^{c}_{F}(F^{-1}(y))
ight\}$$

- $F : \mathbb{R}^n \to \mathbb{R}^n$ path differentiable
- Clarke Jacobian $J_F^c : \mathbb{R}^n \rightrightarrows \mathbb{R}^{n \times n}$
- $\bar{x} \in \mathbb{R}^n$ such that $J_F^c(\bar{x}) \subset \mathbb{R}^{n \times n}$ only contains nonsingular matrices.

Then there exists $U \subset \mathbb{R}^n$ a neighborhood of \bar{x} such that F_U is a bi-Lipschitz homeomorphism.

Failure of formal differentiation

$$J^{c}_{F^{-1}}(y)
eq J^{c}_{F}(F^{-1}(y))^{-1} := \left\{ M^{-1}, \ M \in J^{c}_{F}(F^{-1}(y))
ight\}$$

- $F : \mathbb{R}^n \to \mathbb{R}^n$ path differentiable
- Clarke Jacobian $J_F^c : \mathbb{R}^n \rightrightarrows \mathbb{R}^{n \times n}$
- $\bar{x} \in \mathbb{R}^n$ such that $J_F^c(\bar{x}) \subset \mathbb{R}^{n \times n}$ only contains nonsingular matrices.

Then there exists $U \subset \mathbb{R}^n$ a neighborhood of \bar{x} such that F_U is a bi-Lipschitz homeomorphism.

Failure of formal differentiation

$$J_{F^{-1}}^{c}(y) \neq J_{F}^{c}(F^{-1}(y))^{-1} := \left\{ M^{-1}, \ M \in J_{F}^{c}(F^{-1}(y)) \right\}$$

Conservative calculus:

$$y \rightrightarrows J^c_F(F^{-1}(y))^{-1} := \left\{ M^{-1}, M \in J^c_F(F^{-1}(y)) \right\}$$

is a conservative Jacobian for F^{-1} (in a neighborhood of $F(\bar{x})$).

- $F : \mathbb{R}^n \to \mathbb{R}^n$ path differentiable
- Conservative Jacobian $J_F : \mathbb{R}^n \rightrightarrows \mathbb{R}^{n \times n}$ convex valued
- $\bar{x} \in \mathbb{R}^n$ such that $J_{\mathsf{F}}(\bar{x}) \subset \mathbb{R}^{n \times n}$ only contains nonsingular matrices.

Then there exists $U \subset \mathbb{R}^n$ a neighborhood of \bar{x} such that F_U is a bi-Lipschitz homeomorphism.

Failure of formal differentiation

$$J_{F^{-1}}^{c}(y)
eq J_{F}^{c}(F^{-1}(y))^{-1} := \left\{ M^{-1}, M \in J_{F}^{c}(F^{-1}(y))
ight\}$$

Conservative calculus:

$$y \rightrightarrows J_{\mathcal{F}}(\mathcal{F}^{-1}(y))^{-1} := \left\{ M^{-1}, M \in J_{\mathcal{F}}(\mathcal{F}^{-1}(y)) \right\}$$

is a conservative Jacobian for F^{-1} (in a neighborhood of $F(\bar{x})$).

- $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ locally Lipschitz
- Clarke Jacobian $J_F^c : \mathbb{R}^n \times \mathbb{R}^m \rightrightarrows \mathbb{R}^{m \times (n+m)}$
- $(\bar{x}, \bar{y}) \in \mathbb{R}^n \times \mathbb{R}^m$ such that $F(\bar{x}, \bar{y}) = 0$.
- $\forall [A \ B] \in J^c_F(\bar{x}, \bar{y}), B$ is invertible

then $\exists U \subset \mathbb{R}^n$ a neighborhood of \bar{x} and a locally Lipschitz function G(x) so that

$$F(x, G(x)) = 0 \quad \forall x \in U,$$

and y = G(x) is the unique such solution in a neighborhood of \overline{y} .

- $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ path differentiable
- Clarke Jacobian $J_F^c : \mathbb{R}^n \times \mathbb{R}^m \rightrightarrows \mathbb{R}^{m \times (n+m)}$
- $(\bar{x}, \bar{y}) \in \mathbb{R}^n \times \mathbb{R}^m$ such that $F(\bar{x}, \bar{y}) = 0$.
- $\forall [A \ B] \in J^c_F(\bar{x}, \bar{y}), B$ is invertible

then $\exists U \subset \mathbb{R}^n$ a neighborhood of \bar{x} and a locally Lipschitz function G(x) so that

$$F(x, G(x)) = 0 \quad \forall x \in U,$$

and y = G(x) is the unique such solution in a neighborhood of \overline{y} .

- $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ path differentiable
- Clarke Jacobian $J_F^c : \mathbb{R}^n \times \mathbb{R}^m \rightrightarrows \mathbb{R}^{m \times (n+m)}$
- $(\bar{x}, \bar{y}) \in \mathbb{R}^n \times \mathbb{R}^m$ such that $F(\bar{x}, \bar{y}) = 0$.
- $\forall [A \ B] \in J^c_F(\bar{x}, \bar{y}), B$ is invertible

then $\exists U \subset \mathbb{R}^n$ a neighborhood of \bar{x} and a locally Lipschitz function G(x) so that

$$F(x, G(x)) = 0 \quad \forall x \in U,$$

and y = G(x) is the unique such solution in a neighborhood of \overline{y} .

Nonsmooth implicit differentiation:

$$x \rightrightarrows \left\{ -B^{-1}A : [A \ B] \in J^c_F(x, G(x))
ight\}.$$

is a conservative Jacobian for G in a neighborhood of \bar{x} .

- $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ path differentiable
- Conservative Jacobian $J_F : \mathbb{R}^n \rightrightarrows \mathbb{R}^{n \times n}$ convex valued

•
$$(\bar{x}, \bar{y}) \in \mathbb{R}^n \times \mathbb{R}^m$$
 such that $F(\bar{x}, \bar{y}) = 0$.

• $\forall [A B] \in J_F(\bar{x}, \bar{y}), B$ is invertible

then $\exists U \subset \mathbb{R}^n$ a neighborhood of \bar{x} and a locally Lipschitz function G(x) so that

$$F(x, G(x)) = 0 \quad \forall x \in U,$$

and y = G(x) is the unique such solution in a neighborhood of \overline{y} .

Nonsmooth implicit differentiation:

$$x \rightrightarrows \left\{ -B^{-1}A : [A \ B] \in J_{F}(x, G(x)) \right\}.$$

is a conservative Jacobian for G in a neighborhood of \bar{x} .

$$\min_{\theta \in \mathbb{R}^p} \ell(\theta) := \frac{1}{N} \sum_{i=1}^N \ell_i(\theta) \text{ with } \ell_i = g_{i,L} \circ g_{i,L-1} \circ \ldots \circ g_{i,1}$$

• $g_{i,j}$ locally Lipschitz, conservative Jacobian $J_{i,j}$, semialgebraic (or definable).

$$\min_{\theta \in \mathbb{R}^{\rho}} \ell(\theta) := \frac{1}{N} \sum_{i=1}^{N} \ell_i(\theta) \text{ with } \ell_i = g_{i,L} \circ g_{i,L-1} \circ \ldots \circ g_{i,1}$$

• $g_{i,j}$ locally Lipschitz, conservative Jacobian $J_{i,j}$, semialgebraic (or definable).

$$\min_{\theta \in \mathbb{R}^{\rho}} \ell(\theta) := \frac{1}{N} \sum_{i=1}^{N} \ell_i(\theta) \text{ with } \ell_i = g_{i,L} \circ g_{i,L-1} \circ \ldots \circ g_{i,1}$$

• $g_{i,j}$ locally Lipschitz, conservative Jacobian $J_{i,j}$, semialgebraic (or definable).

• Extends to implicitely defined input output relations.

• Preserved by inversion / implicit definition.

 \Rightarrow convergence of small step first order methods.

$$\min_{\theta \in \mathbb{R}^{\rho}} \ell(\theta) := \frac{1}{N} \sum_{i=1}^{N} \ell_i(\theta) \text{ with } \ell_i = g_{i,L} \circ g_{i,L-1} \circ \ldots \circ g_{i,1}$$

• $g_{i,j}$ locally Lipschitz, conservative Jacobian $J_{i,j}$, semialgebraic (or definable).

• Extends to implicitely defined input output relations.

• Preserved by inversion / implicit definition.

 \Rightarrow convergence of small step first order methods.

$$\min_{\theta \in \mathbb{R}^{\rho}} \ell(\theta) := \frac{1}{N} \sum_{i=1}^{N} \ell_i(\theta) \text{ with } \ell_i = g_{i,L} \circ g_{i,L-1} \circ \ldots \circ g_{i,1}$$

- $g_{i,j}$ locally Lipschitz, conservative Jacobian $J_{i,j}$, semialgebraic (or definable).
- Extends to implicitely defined input output relations.
- Preserved by inversion / implicit definition.

 \Rightarrow convergence of small step first order methods.

$$\min_{\theta \in \mathbb{R}^{\rho}} \ell(\theta) := \frac{1}{N} \sum_{i=1}^{N} \ell_i(\theta) \text{ with } \ell_i = g_{i,L} \circ g_{i,L-1} \circ \ldots \circ g_{i,1}$$

- $g_{i,j}$ locally Lipschitz, conservative Jacobian $J_{i,j}$, semialgebraic (or definable).
- Extends to implicitely defined input output relations.
- Preserved by inversion / implicit definition.
- \Rightarrow convergence of small step first order methods.

Introduction

- 2 Failure of formal nonsmooth implicit differentiation
- 3 Conservative gradients and Jacobians
- 4 Nonsmooth implicit differentiation

• the inner argmin is a singleton

 $\min_{\theta \in \mathbb{R}^p} \quad \ell(x(\theta))$ s.t. $x(\theta) \in \operatorname*{argmin}_{x \in \mathbb{R}^m} f(x, \theta)$

$$\min_{\theta \in \mathbb{R}^p} \quad \ell(x(\theta)) \\ \text{s.t.} \quad x(\theta) \in \operatorname*{argmin}_{x \in \mathbb{R}^m} f(x, \theta)$$

$$\min_{\theta \in \mathbb{R}^p} \quad \ell(x(\theta))$$
s.t. $x(\theta) = \operatorname*{argmin}_{x \in \mathbb{R}^m} f(x, \theta)$

$$egin{aligned} \min_{ heta \in \mathbb{R}^p} & \ell(x(heta)) \ & ext{where} & x(heta) = rgmin_{x \in \mathbb{R}^m} f(x, heta) \end{aligned}$$

Assumption: ℓ and f locally Lipschitz. For any θ ,

$$egin{aligned} \min_{ heta \in \mathbb{R}^p} & \ell(x(heta)) \ & ext{where} & x(heta) = rgmin_{x \in \mathbb{R}^m} f(x, heta) \end{aligned}$$

Assumption: ℓ and f locally Lipschitz. For any θ ,

• the inner argmin is a singleton

$$egin{aligned} \min_{ heta \in \mathbb{R}^p} & \ell(x(heta)) \ & ext{where} & x(heta) = rgmin_{x \in \mathbb{R}^m} f(x, heta) \end{aligned}$$

Example: Lasso hyperparameter optimization (Bertrand et. al. 2020).

$$\begin{aligned} x(\theta) &\in \underset{x \in \mathbb{R}^m}{\operatorname{argmin}} \frac{1}{2} \|Ax - b\|_2^2 + \theta \|x\|_1, \\ (A, b) &\in \mathbb{R}^{n \times m} \times \mathbb{R}^n, \text{ training data }, \ell \text{ loss on held out data} \\ x &= \underset{x \in \operatorname{prox}_{\theta \in \operatorname{Dim}}}{\operatorname{prox}} (x - sA^T(Ax - b)) \\ \end{aligned}$$

Assumption: ℓ and f locally Lipschitz. For any θ ,

• the inner argmin is a singleton

$$egin{aligned} \min_{ heta \in \mathbb{R}^p} & \ell(x(heta)) \ ext{where} & x(heta) = rgmin_{x \in \mathbb{R}^m} f(x, heta) \end{aligned}$$

Example: Lasso hyperparameter optimization (Bertrand et. al. 2020).

$$\begin{aligned} & x(\theta) \in \operatorname*{argmin}_{x \in \mathbb{R}^m} \frac{1}{2} \|Ax - b\|_2^2 + \theta \|x\|_1, & \theta > 0 \\ & (A, b) \in \mathbb{R}^{n \times m} \times \mathbb{R}^n, \text{ training data }, \ell \text{ loss on held out data} \\ & x = \operatorname{prox}_{s\theta \|\cdot\|_1} (x - sA^T (Ax - b)) & s > 0 \end{aligned}$$

Assumption: ℓ and f locally Lipschitz. For any θ ,

• the inner argmin is a singleton

$$egin{aligned} \min_{ heta \in \mathbb{R}^p} & \ell(x(heta)) \ ext{where} & x(heta) = rgmin_{x \in \mathbb{R}^m} f(x, heta) \end{aligned}$$

Example: Lasso hyperparameter optimization (Bertrand et. al. 2020).

$$\begin{aligned} x(\theta) &\in \operatorname*{argmin}_{x \in \mathbb{R}^m} \frac{1}{2} \|Ax - b\|_2^2 + \theta \|x\|_1, \\ (A, b) &\in \mathbb{R}^{n \times m} \times \mathbb{R}^n, \text{ training data }, \ell \text{ loss on held out data} \\ x &= \operatorname{prox}_{s\theta \|\cdot\|_1} (x - sA^T (Ax - b)) \\ \end{aligned}$$

Equicorrelation set: $\mathcal{E} := \{j \in \{1, \dots, m\} : |A_j^T(b - Ax(\theta))| = \theta\}.$

Assumption: ℓ and f locally Lipschitz. For any θ ,

• the inner argmin is a singleton

$$egin{aligned} \min_{ heta \in \mathbb{R}^p} & \ell(x(heta)) \ ext{where} & x(heta) = rgmin_{x \in \mathbb{R}^m} f(x, heta) \end{aligned}$$

Example: Lasso hyperparameter optimization (Bertrand et. al. 2020).

$$\begin{aligned} x(\theta) &\in \operatorname*{argmin}_{x \in \mathbb{R}^m} \frac{1}{2} \|Ax - b\|_2^2 + \theta \|x\|_1, \\ (A, b) &\in \mathbb{R}^{n \times m} \times \mathbb{R}^n, \text{ training data }, \ell \text{ loss on held out data} \\ x &= \operatorname{prox}_{s\theta \|\cdot\|_1} (x - sA^T (Ax - b)) \\ \end{aligned}$$

Equicorrelation set: $\mathcal{E} := \{j \in \{1, ..., m\} : |A_j^T(b - Ax(\theta))| = \theta\}.$ If $A_{\mathcal{E}}^T A_{\mathcal{E}}$ has full rank, nonsmooth implicit differentiation applies.

Assumption: ℓ and f locally Lipschitz. For any θ ,

• the inner argmin is a singleton

$$egin{aligned} \min_{ heta \in \mathbb{R}^p} & \ell(x(heta)) \ ext{where} & x(heta) = rgmin_{x \in \mathbb{R}^m} f(x, heta) \end{aligned}$$

Example: Lasso hyperparameter optimization (Bertrand et. al. 2020).

$$\begin{aligned} x(\theta) &\in \operatorname*{argmin}_{x \in \mathbb{R}^m} \frac{1}{2} \|Ax - b\|_2^2 + \theta \|x\|_1, \qquad \theta > 0\\ (A, b) &\in \mathbb{R}^{n \times m} \times \mathbb{R}^n, \text{ training data }, \ell \text{ loss on held out data}\\ x &= \operatorname{prox}_{s\theta \|\cdot\|_1} (x - sA^T (Ax - b)) \qquad s > 0 \end{aligned}$$

Equicorrelation set: $\mathcal{E} := \{j \in \{1, ..., m\} : |A_j^T(b - Ax(\theta))| = \theta\}.$ If $A_{\mathcal{E}}^T A_{\mathcal{E}}$ has full rank, nonsmooth implicit differentiation applies.

 \Rightarrow recover LARS algorithm + convergence of small step first order methods.

Compositional models,

Compositional models,

Image courtesy: implicit-layers-tutorial.org

Compositional models, elementary blocks called layers (parametric functions).

Image courtesy: implicit-layers-tutorial.org

Compositional models, elementary blocks called layers (parametric functions).

Image courtesy: implicit-layers-tutorial.org

Compositional models, elementary blocks called layers (parametric functions).

Examples: Equilibrium networks (Bai *et. al.* 2019), implicit networks (El Ghaoui *et. al.* 2019) declarative networks (Gould *et. al.* 2019), optimization layers (Agrawal *et. al.* 2019)

Compositional models, elementary blocks called layers (parametric functions).

Examples: Equilibrium networks (Bai et. al. 2019), implicit networks (El Ghaoui et. al. 2019) declarative networks (Gould et. al. 2019), optimization layers (Agrawal et. al. 2019)

Monotone operator DEQs: Winston *et. al.* 2020, $\sigma : \mathbb{R}^m \to \mathbb{R}^m$ proximal operator (convex function), $W \in \mathbb{R}^{m \times m}$ such that $W + W^T \succ I$.

 $z = \sigma(Wz + b)$ $\forall b \in \mathbb{R}^m$, unique solution z(b).

Compositional models, elementary blocks called layers (parametric functions).

Examples: Equilibrium networks (Bai et. al. 2019), implicit networks (El Ghaoui et. al. 2019) declarative networks (Gould et. al. 2019), optimization layers (Agrawal et. al. 2019)

Monotone operator DEQs: Winston *et. al.* 2020, $\sigma : \mathbb{R}^m \to \mathbb{R}^m$ proximal operator (convex function), $W \in \mathbb{R}^{m \times m}$ such that $W + W^T \succ I$.

 $z = \sigma(Wz + b)$ $\forall b \in \mathbb{R}^{m}$, unique solution z(b).

 $J_{\sigma}^{c} \colon \mathbb{R}^{m} \rightrightarrows \mathbb{R}^{m \times m}$ Clarke Jacobian for σ (assumed path differentiable).

Compositional models, elementary blocks called layers (parametric functions).

Examples: Equilibrium networks (Bai *et. al.* 2019), implicit networks (El Ghaoui *et. al.* 2019) declarative networks (Gould *et. al.* 2019), optimization layers (Agrawal *et. al.* 2019)

Monotone operator DEQs: Winston *et. al.* 2020, $\sigma : \mathbb{R}^m \to \mathbb{R}^m$ proximal operator (convex function), $W \in \mathbb{R}^{m \times m}$ such that $W + W^T \succ I$.

 $z = \sigma(Wz + b)$ $\forall b \in \mathbb{R}^{m}$, unique solution z(b).

 $J_{\sigma}^{c} \colon \mathbb{R}^{m} \rightrightarrows \mathbb{R}^{m \times m}$ Clarke Jacobian for σ (assumed path differentiable).

then (I - JW) invertible for all $J \in J^c_{\sigma}(Wz + b)$

Compositional models, elementary blocks called layers (parametric functions).

Examples: Equilibrium networks (Bai *et. al.* 2019), implicit networks (El Ghaoui *et. al.* 2019) declarative networks (Gould *et. al.* 2019), optimization layers (Agrawal *et. al.* 2019)

Monotone operator DEQs: Winston *et. al.* 2020, $\sigma : \mathbb{R}^m \to \mathbb{R}^m$ proximal operator (convex function), $W \in \mathbb{R}^{m \times m}$ such that $W + W^T \succ I$.

 $z = \sigma(Wz + b)$ $\forall b \in \mathbb{R}^{m}$, unique solution z(b).

 $J_{\sigma}^{c} \colon \mathbb{R}^{m} \rightrightarrows \mathbb{R}^{m \times m}$ Clarke Jacobian for σ (assumed path differentiable).

then (I - JW) invertible for all $J \in J^c_{\sigma}(Wz + b)$ \Rightarrow invertibility condition for nonsmooth implicit differentiation

Compositional models, elementary blocks called layers (parametric functions).

Examples: Equilibrium networks (Bai *et. al.* 2019), implicit networks (El Ghaoui *et. al.* 2019) declarative networks (Gould *et. al.* 2019), optimization layers (Agrawal *et. al.* 2019)

Monotone operator DEQs: Winston *et. al.* 2020, $\sigma : \mathbb{R}^m \to \mathbb{R}^m$ proximal operator (convex function), $W \in \mathbb{R}^{m \times m}$ such that $W + W^T \succ I$.

 $z = \sigma(Wz + b)$ $\forall b \in \mathbb{R}^{m}$, unique solution z(b).

 $J_{\sigma}^{c} \colon \mathbb{R}^{m} \rightrightarrows \mathbb{R}^{m \times m}$ Clarke Jacobian for σ (assumed path differentiable).

then (I - JW) invertible for all $J \in J^c_{\sigma}(Wz + b)$ \Rightarrow invertibility condition for nonsmooth implicit differentiation

 \Rightarrow convergence of small steps training algorithms.

Introduction

- 2 Failure of formal nonsmooth implicit differentiation
- 3 Conservative gradients and Jacobians
- 4 Nonsmooth implicit differentiation

5 Applications

$$\begin{split} & \min_{x,y,s} \quad \ell(x,y,s) := (x-s_1)^2 + 4(y-s_2)^2 \\ & \text{s.t.} \quad s \in \arg\max\{(a+b)(-2x+y+2) : a \in [0,3], b \in [0,5]\}. \end{split}$$

$$\begin{split} & \min_{x,y,s} \quad \ell(x,y,s) := (x-s_1)^2 + 4(y-s_2)^2 \\ & \text{s.t.} \quad s \in \arg\max\{(a+b)(-2x+y+2) : a \in [0,3], b \in [0,5]\}. \end{split}$$

• Fixed point of projected gradient (linear over a box)

$$\begin{split} & \min_{x,y,s} \quad \ell(x,y,s) := (x-s_1)^2 + 4(y-s_2)^2 \\ & \text{s.t.} \quad s \in \arg\max\{(a+b)(-2x+y+2) : a \in [0,3], b \in [0,5]\}. \end{split}$$

• Fixed point of projected gradient (linear over a box)

$$\begin{split} & \min_{x,y,s} \quad \ell(x,y,s) := (x-s_1)^2 + 4(y-s_2)^2 \\ & \text{s.t.} \quad s \in \arg\max\{(a+b)(-2x+y+2) : a \in [0,3], b \in [0,5]\}. \end{split}$$

- Fixed point of projected gradient (linear over a box)
- Invertibility condition outside of the line y = 2x 2.

$$\begin{split} & \min_{x,y,s} \quad \ell(x,y,s) := (x-s_1)^2 + 4(y-s_2)^2 \\ & \text{s.t.} \quad s \in \arg\max\{(a+b)(-2x+y+2) : a \in [0,3], b \in [0,5]\}. \end{split}$$

- Fixed point of projected gradient (linear over a box)
- Invertibility condition outside of the line y = 2x 2.
- Discontinuity of the solution map.

$$\begin{split} & \min_{x,y,s} \quad \ell(x,y,s) := (x-s_1)^2 + 4(y-s_2)^2 \\ & \text{s.t.} \quad s \in \arg\max\{(a+b)(-2x+y+2) : a \in [0,3], b \in [0,5]\}. \end{split}$$

- Fixed point of projected gradient (linear over a box)
- Invertibility condition outside of the line y = 2x 2.
- Discontinuity of the solution map.
- Globally affects dynamics (not of gradient type) although line never met.

$$\begin{split} \min_{x,y,s} & \ell(x,y,s) := (x-s_1)^2 + 4(y-s_2)^2 \\ \text{s.t.} & s \in \arg\max\{(a+b)(-2x+y+2) : a \in [0,3], b \in [0,5]\}. \end{split}$$

- Fixed point of projected gradient (linear over a box)
- Invertibility condition outside of the line y = 2x 2.
- Discontinuity of the solution map.
- Globally affects dynamics (not of gradient type) although line never met.
- Generic: robust to perturbation of problem data.

Nonsmooth implicit differentiation

• Does Lipschitz implicit function theorem come with a calculus?

Nonsmooth implicit differentiation

- Does Lipschitz implicit function theorem come with a calculus?
- Using Clarke's Jacobian: No.
 - Inverses of Clarke Jacobians are not Clarke Jacobians

Nonsmooth implicit differentiation

- Does Lipschitz implicit function theorem come with a calculus?
- Using Clarke's Jacobian: No.
 - Inverses of Clarke Jacobians are not Clarke Jacobians
- Using Conservative Jacobian: Yes.
 - Inverses of Conservative Jacobians are conservative Jacobians

Nonsmooth implicit differentiation

- Does Lipschitz implicit function theorem come with a calculus?
- Using Clarke's Jacobian: No.
 - Inverses of Clarke Jacobians are not Clarke Jacobians
- Using Conservative Jacobian: Yes.
 - Inverses of Conservative Jacobians are conservative Jacobians

Practical implications:

- Extends the domain of validity of stochastic learning algorithm / compositional modeling.
- Applications in ML (bilevel hyperparameter tuning, implicit neural networks ...).

Nonsmooth implicit differentiation

- Does Lipschitz implicit function theorem come with a calculus?
- Using Clarke's Jacobian: No.
 - Inverses of Clarke Jacobians are not Clarke Jacobians
- Using Conservative Jacobian: Yes.
 - Inverses of Conservative Jacobians are conservative Jacobians

Practical implications:

- Extends the domain of validity of stochastic learning algorithm / compositional modeling.
- Applications in ML (bilevel hyperparameter tuning, implicit neural networks ...).

Improvements:

- Do pathologies occur in practice? How to check?
- How to check invertibility condition?

Nonsmooth implicit differentiation

- Does Lipschitz implicit function theorem come with a calculus?
- Using Clarke's Jacobian: No.
 - Inverses of Clarke Jacobians are not Clarke Jacobians
- Using Conservative Jacobian: Yes.
 - Inverses of Conservative Jacobians are conservative Jacobians

Practical implications:

- Extends the domain of validity of stochastic learning algorithm / compositional modeling.
- Applications in ML (bilevel hyperparameter tuning, implicit neural networks ...).

Improvements:

- Do pathologies occur in practice? How to check?
- How to check invertibility condition?

Jérôme Bolte, Tâm Lê, Edouard Pauwels, Antonio Silveti-Falls https://arxiv.org/abs/2106.04350

Nonsmooth implicit differentiation

- Does Lipschitz implicit function theorem come with a calculus?
- Using Clarke's Jacobian: No.
 - Inverses of Clarke Jacobians are not Clarke Jacobians
- Using Conservative Jacobian: Yes.
 - Inverses of Conservative Jacobians are conservative Jacobians

Practical implications:

- Extends the domain of validity of stochastic learning algorithm / compositional modeling.
- Applications in ML (bilevel hyperparameter tuning, implicit neural networks ...).

Improvements:

- Do pathologies occur in practice? How to check?
- How to check invertibility condition?

Jérôme Bolte, Tâm Lê, Edouard Pauwels, Antonio Silveti-Falls https://arxiv.org/abs/2106.04350

Thanks.