Nonsmooth implicit differentiation for optimization

Edouard Pauwels (IRIT, Toulouse 3, France)

joint work with

Jérôme Bolte, Tâm Lê, Antonio Silveti-Falls (TSE, Toulouse 1, France)

OWOS seminar (September 2021)

TOULOUSE III
Paul Sabatier

Summary

Observations:

- The classical implicit function theorem has two parts (existence and calculus)
- Nonsmooth generalizations essentially focused on existence.

Summary

Observations:

- The classical implicit function theorem has two parts (existence and calculus)
- Nonsmooth generalizations essentially focused on existence.

Contributions: nonsmooth generalization of the calculus part.

Summary

Observations:

- The classical implicit function theorem has two parts (existence and calculus)
- Nonsmooth generalizations essentially focused on existence.

Contributions: nonsmooth generalization of the calculus part.

- Direct generalization of calculus fails.

Summary

Observations:

- The classical implicit function theorem has two parts (existence and calculus)
- Nonsmooth generalizations essentially focused on existence.

Contributions: nonsmooth generalization of the calculus part.

- Direct generalization of calculus fails.
- Our solution: use conservative Jacobians.

Summary

Observations:

- The classical implicit function theorem has two parts (existence and calculus)
- Nonsmooth generalizations essentially focused on existence.

Contributions: nonsmooth generalization of the calculus part.

- Direct generalization of calculus fails.
- Our solution: use conservative Jacobians.
- Applications in compositional modeling (ML, DEQ), bilevel optimization, ...
(1) Introduction
(2) Failure of formal nonsmooth implicit differentiation
(3) Conservative gradients and Jacobians

4 Nonsmooth implicit differentiation
(5) Applications
(6) Conclusion

Plan

(1) Introduction

2 Failure of formal nonsmooth implicit differentiation
(3) Conservative gradients and Jacobians

4 Nonsmooth implicit differentiation
(5) Applications
(6) Conclusion

Classical implicit function theorem (Dini 1877)

Let $F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be continuously differentiable with Jacobian $\operatorname{Jac}_{F}(x, y)=$ $\left[A_{x} B_{y}\right] \in \mathbb{R}^{m \times(n+m)}$ and $(\bar{x}, \bar{y}) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$ such that

$$
F(\bar{x}, \bar{y})=0 .
$$

Classical implicit function theorem (Dini 1877)

Let $F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be continuously differentiable with Jacobian $\operatorname{Jac}_{F}(x, y)=$ $\left[A_{x} B_{y}\right] \in \mathbb{R}^{m \times(n+m)}$ and $(\bar{x}, \bar{y}) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$ such that

$$
F(\bar{x}, \bar{y})=0 .
$$

If $B_{\bar{y}}$ is invertible, then there exists $U \subset \mathbb{R}^{n}$ a neighborhood of \bar{x} and a differentiable function $G(x)$ so that

$$
\forall x \in U \quad F(x, G(x))=0,
$$

and $y=G(x)$ is the unique such solution in a neighborhood of \bar{y}.

Classical implicit function theorem (Dini 1877)

Let $F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be continuously differentiable with Jacobian $\operatorname{Jac}_{F}(x, y)=$ $\left[A_{\times} B_{y}\right] \in \mathbb{R}^{m \times(n+m)}$ and $(\bar{x}, \bar{y}) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$ such that

$$
F(\bar{x}, \bar{y})=0 .
$$

If $B_{\bar{y}}$ is invertible, then there exists $U \subset \mathbb{R}^{n}$ a neighborhood of \bar{x} and a differentiable function $G(x)$ so that

$$
\forall x \in U \quad F(x, G(x))=0,
$$

and $y=G(x)$ is the unique such solution in a neighborhood of \bar{y}.

- Existence: Equation $F(x, y)=0$ defines a functional relation $y=G(x)$ around \bar{x}.

Classical implicit function theorem (Dini 1877)

Let $F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be continuously differentiable with Jacobian $\operatorname{Jac}_{F}(x, y)=$ $\left[A_{x} B_{y}\right] \in \mathbb{R}^{m \times(n+m)}$ and $(\bar{x}, \bar{y}) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$ such that

$$
F(\bar{x}, \bar{y})=0 .
$$

If $B_{\bar{y}}$ is invertible, then there exists $U \subset \mathbb{R}^{n}$ a neighborhood of \bar{x} and a differentiable function $G(x)$ so that

$$
\forall x \in U \quad F(x, G(x))=0,
$$

and $y=G(x)$ is the unique such solution in a neighborhood of \bar{y}.

$$
\operatorname{Jac}_{G}(x)=-B^{-1} A, \quad[A B]=\operatorname{Jac}_{F}(x, G(x)) .
$$

- Existence: Equation $F(x, y)=0$ defines a functional relation $y=G(x)$ around \bar{x}.

Classical implicit function theorem (Dini 1877)

Let $F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be continuously differentiable with Jacobian $\operatorname{Jac} F(x, y)=$ $\left[A_{x} B_{y}\right] \in \mathbb{R}^{m \times(n+m)}$ and $(\bar{x}, \bar{y}) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$ such that

$$
F(\bar{x}, \bar{y})=0 .
$$

If $B_{\bar{y}}$ is invertible, then there exists $U \subset \mathbb{R}^{n}$ a neighborhood of \bar{x} and a differentiable function $G(x)$ so that

$$
\forall x \in U \quad F(x, G(x))=0
$$

and $y=G(x)$ is the unique such solution in a neighborhood of \bar{y}.

$$
\operatorname{Jac}_{G}(x)=-B^{-1} A, \quad[A B]=\operatorname{Jac}_{F}(x, G(x))
$$

- Existence: Equation $F(x, y)=0$ defines a functional relation $y=G(x)$ around \bar{x}.
- Implicit differentiation: Calculus rule for the derivative of G.

Classical implicit function theorem

$$
F(x, y)=x^{2}+y^{2}-1
$$

Classical implicit function theorem

$$
F(x, y)=x^{2}+y^{2}-1 .
$$

Classical implicit function theorem

$$
F(x, y)=x^{2}+y^{2}-1 .
$$

Classical inverse mapping theorem

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuously differentiable with Jacobian $\mathrm{Jac}_{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times n}$ and $\bar{x} \in \mathbb{R}^{n}$ such that $\operatorname{Jac}_{F}(\bar{x})$ is nonsingular.

Classical inverse mapping theorem

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuously differentiable with Jacobian Jac $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times n}$ and $\bar{x} \in \mathbb{R}^{n}$ such that $\operatorname{Jac}_{F}(\bar{x})$ is nonsingular. Then there exists $U \subset \mathbb{R}^{n}$ a neighborhood of \bar{x} such that F_{U} is a diffeomorphism.

Classical inverse mapping theorem

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuously differentiable with Jacobian $\mathrm{Jac}_{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times n}$ and $\bar{x} \in \mathbb{R}^{n}$ such that $\operatorname{Jac}_{F}(\bar{x})$ is nonsingular. Then there exists $U \subset \mathbb{R}^{n}$ a neighborhood of \bar{x} such that F_{U} is a diffeomorphism.

- Existence of a functional inverse for F around \bar{x}.

Classical inverse mapping theorem

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuously differentiable with Jacobian Jac $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times n}$ and $\bar{x} \in \mathbb{R}^{n}$ such that $\operatorname{Jac}_{F}(\bar{x})$ is nonsingular. Then there exists $U \subset \mathbb{R}^{n}$ a neighborhood of \bar{x} such that F_{U} is a diffeomorphism. For all $x \in U$,

$$
\operatorname{Jac}_{F^{-1}}(F(x))=\operatorname{Jac}_{F}(x)^{-1} .
$$

- Existence of a functional inverse for F around \bar{x}.

Classical inverse mapping theorem

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuously differentiable with Jacobian Jac $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times n}$ and $\bar{x} \in \mathbb{R}^{n}$ such that $\operatorname{Jac}_{F}(\bar{x})$ is nonsingular. Then there exists $U \subset \mathbb{R}^{n}$ a neighborhood of \bar{x} such that F_{U} is a diffeomorphism. For all $x \in U$,

$$
\operatorname{Jac}_{F^{-1}}(F(x))=\operatorname{Jac}_{F}(x)^{-1} .
$$

- Existence of a functional inverse for F around \bar{x}.
- Calculus rule for the derivative of F^{-1}.

Generalizations of the implicit function theorem

- $F(x, y)=0$.
- Euclidean space.
- Continuously differentiable.
- Block invertible Jacobian.

Generalizations of the implicit function theorem

```
Sxainget Series in Operationn Receach
    anffinascal tnjozering
```

- $F(x, y)=0$.
- Euclidean space.
- Continuously differentiable.
- Block invertible Jacobian.

Implicit Functions and Solution
Mappings
A View from Variational Analysis
Second Edition

In nonsmooth analysis:

Generalizations of the implicit function theorem

Scringet Series in Operation Revesich
 dall topicering

- $F(x, y)=0$.
- Euclidean space.
- Continuously differentiable.
- Block invertible Jacobian.

In nonsmooth analysis:

- Strict differentiability: Leach (1961), Nijenhuis (1974).

Generalizations of the implicit function theorem

```
Spinger Serievin Opertions Rereach
anf finumdal Enjofering
```

- $F(x, y)=0$.
- Euclidean space.
- Continuously differentiable.
- Block invertible Jacobian.

Implicit Functions and Solution
Mappings
A View from Variational Analysis
Second Edition

In nonsmooth analysis:

- Strict differentiability: Leach (1961), Nijenhuis (1974).
- Inclusions, set valued: Robinson (1980), Dontchev-Rockafellar (2009).

Generalizations of the implicit function theorem

```
Splinger Seriefin Opertions Rereach
andfinamdial tnjotering
```

- $F(x, y)=0$.
- Euclidean space.
- Continuously differentiable.
- Block invertible Jacobian.

Implicit Functions and Solution Mappings
A View from Variational Analysis

In nonsmooth analysis:

- Strict differentiability: Leach (1961), Nijenhuis (1974).
- Inclusions, set valued: Robinson (1980), Dontchev-Rockafellar (2009).
- Inverse, set valued: Aubin (1982), Rockafellar (1985), Aubin-Frankowka (1984), Dontchev-Hager (1994).

Generalizations of the implicit function theorem

```
Sxinger Seriel in Operation Revarch
anf finamdal Enjicering
```

- $F(x, y)=0$.
- Euclidean space.
- Continuously differentiable.
- Block invertible Jacobian.

Implicit Functions and Solution
Mappings
A View from Variational Analysis

In nonsmooth analysis:

- Strict differentiability: Leach (1961), Nijenhuis (1974).
- Inclusions, set valued: Robinson (1980), Dontchev-Rockafellar (2009).
- Inverse, set valued: Aubin (1982), Rockafellar (1985), Aubin-Frankowka (1984), Dontchev-Hager (1994).
- Locally Lipschitz equations: Clarke (1976), Hiriart Urruty (1979), Clarke (1983).

Generalizations of the implicit function theorem

```
Scinger Serievin Opertions Rereach
```

- $F(x, y)=0$.
- Euclidean space.
- Continuously differentiable.
- Block invertible Jacobian.

In nonsmooth analysis:

- Strict differentiability: Leach (1961), Nijenhuis (1974).
- Inclusions, set valued: Robinson (1980), Dontchev-Rockafellar (2009).
- Inverse, set valued: Aubin (1982), Rockafellar (1985), Aubin-Frankowka (1984), Dontchev-Hager (1994).
- Locally Lipschitz equations: Clarke (1976), Hiriart Urruty (1979), Clarke (1983).
- Robinson (1991) directional derivatives with calculus (restricted subclass).
- Sun (2001), semismoothness.
- Fukui, Kurdyka, Paunescu (2007), subanalytic / tame.

Nonsmooth implicit differentiation

Implicit function theorem:

- Existence: Locally implicitely defined functional relation.
- Calculus: Jacobians from matrix inversion.

Nonsmooth implicit differentiation

Implicit function theorem:

- Existence: Locally implicitely defined functional relation.
- Calculus: Jacobians from matrix inversion.

Context of this presentation:

- Lipschitz equations: possibly nonsmooth, finite dimension.
- Implicit differentiation: Calculus part

Nonsmooth implicit differentiation

Implicit function theorem:

- Existence: Locally implicitely defined functional relation.
- Calculus: Jacobians from matrix inversion.

Context of this presentation:

- Lipschitz equations: possibly nonsmooth, finite dimension.
- Implicit differentiation: Calculus part

Motivation and applications:

- Generalizations focused on the existence / regularity part.
- Applications:
- Bilevel optimization: differentiate solutions of optimization problems.
- Implicit compositional modeling: equilibrium models, declarative networks

(1) Introduction

(2) Failure of formal nonsmooth implicit differentiation
(3) Conservative gradients and Jacobians

4 Nonsmooth implicit differentiation
(5) Applications
(6) Conclusion

Generalized derivative

Clarke's generalized derivatives: Given a locally Lipschitz function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, the Clarke Jacobian at a point $x \in \mathbb{R}^{n}$ is

$$
J_{F}^{c}(x)=\operatorname{conv}\left(\left\{\lim _{k \rightarrow \infty} \operatorname{Jac}_{F}\left(x_{k}\right): x_{k} \in \operatorname{diff}_{F} \text { and } x_{k} \rightarrow x\right\}\right),
$$

where diff_{F} is the set of differentiability point of F (Rademacher: full measure).

Generalized derivative

$$
J_{F}^{c}(x)=\operatorname{conv}\left(\left\{\lim _{k \rightarrow \infty} \operatorname{Jac}_{F}\left(x_{k}\right): x_{k} \in \operatorname{diff}_{F} \text { and } x_{k} \rightarrow x\right\}\right) .
$$

Generalized derivative

$$
J_{F}^{c}(x)=\operatorname{conv}\left(\left\{\lim _{k \rightarrow \infty} \operatorname{Jac}_{F}\left(x_{k}\right): x_{k} \in \operatorname{diff}_{F} \text { and } x_{k} \rightarrow x\right\}\right) .
$$

Generalized derivative

$$
J_{F}^{c}(x)=\operatorname{conv}\left(\left\{\lim _{k \rightarrow \infty} \operatorname{Jac}_{F}\left(x_{k}\right): x_{k} \in \operatorname{diff}_{F} \text { and } x_{k} \rightarrow x\right\}\right) .
$$

Generalized derivative

$$
J_{F}^{c}(x)=\operatorname{conv}\left(\left\{\lim _{k \rightarrow \infty} \operatorname{Jac}_{F}\left(x_{k}\right): x_{k} \in \operatorname{diff}_{F} \text { and } x_{k} \rightarrow x\right\}\right) .
$$

Generalized derivative

$$
J_{F}^{c}(x)=\operatorname{conv}\left(\left\{\lim _{k \rightarrow \infty} \operatorname{Jac}_{F}\left(x_{k}\right): x_{k} \in \operatorname{diff}_{F} \text { and } x_{k} \rightarrow x\right\}\right) .
$$

Lipschitz implicit function theorem (Hiriart Urruty 1979, Clarke 1976)

Let $F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be locally Lipschitz and $(\bar{x}, \bar{y}) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$ such that

$$
F(\bar{x}, \bar{y})=0 .
$$

If, $\forall[A B] \in J_{F}^{c}(\bar{x}, \bar{y}), B$ is invertible, then $\exists U \subset \mathbb{R}^{n}$ a neighborhood of \bar{x} and a locally Lipschitz function $G(x)$ so that

$$
F(x, G(x))=0 \quad \forall x \in U
$$

and $y=G(x)$ is the unique such solution in a neighborhood of \bar{y}.

Lipschitz implicit function theorem (Hiriart Urruty 1979, Clarke 1976)

Let $F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be locally Lipschitz and $(\bar{x}, \bar{y}) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$ such that

$$
F(\bar{x}, \bar{y})=0 .
$$

If, $\forall[A B] \in J_{F}^{c}(\bar{x}, \bar{y}), B$ is invertible, then $\exists U \subset \mathbb{R}^{n}$ a neighborhood of \bar{x} and a locally Lipschitz function $G(x)$ so that

$$
F(x, G(x))=0 \quad \forall x \in U
$$

and $y=G(x)$ is the unique such solution in a neighborhood of \bar{y}.

Lipschitz implicit function theorem (Hiriart Urruty 1979, Clarke 1976)

Let $F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be locally Lipschitz and $(\bar{x}, \bar{y}) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$ such that

$$
F(\bar{x}, \bar{y})=0 .
$$

If, $\forall[A B] \in J_{F}^{c}(\bar{x}, \bar{y}), B$ is invertible, then $\exists U \subset \mathbb{R}^{n}$ a neighborhood of \bar{x} and a locally Lipschitz function $G(x)$ so that

$$
F(x, G(x))=0 \quad \forall x \in U,
$$

and $y=G(x)$ is the unique such solution in a neighborhood of \bar{y}.

Lipschitz implicit function theorem (Hiriart Urruty 1979, Clarke 1976)

Let $F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be locally Lipschitz and $(\bar{x}, \bar{y}) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$ such that

$$
F(\bar{x}, \bar{y})=0 .
$$

If, $\forall[A B] \in J_{F}^{c}(\bar{x}, \bar{y}), B$ is invertible, then $\exists U \subset \mathbb{R}^{n}$ a neighborhood of \bar{x} and a locally Lipschitz function $G(x)$ so that

$$
F(x, G(x))=0 \quad \forall x \in U,
$$

and $y=G(x)$ is the unique such solution in a neighborhood of \bar{y}.

Formal nonsmooth calculus

Clarke's inverse mapping theorem: Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be locally Lipschitz with Clarke Jacobian $J_{F}^{c}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n \times n}$ and $\bar{x} \in \mathbb{R}^{n}$ such that $J_{F}^{c}(\bar{x}) \subset \mathbb{R}^{n \times n}$ only contains nonsingular matrices.

Formal inverse differentiation? For all $x \in U$,
$f_{F-1}^{c}(F(x))=f_{F}^{c}(x)^{-1}$

Formal nonsmooth calculus

Clarke's inverse mapping theorem: Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be locally Lipschitz with Clarke Jacobian $J_{F}^{c}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n \times n}$ and $\bar{x} \in \mathbb{R}^{n}$ such that $J_{F}^{c}(\bar{x}) \subset \mathbb{R}^{n \times n}$ only contains nonsingular matrices. Then there exists $U \subset \mathbb{R}^{n}$ a neighborhood of \bar{x} such that F_{U} is a bi-Lipschitz homeomorphism.

Formal inverse differentiation? For all $x \in U$,

$$
J_{F-1}^{c}(F(x))=J_{F}^{c}(x)^{-1}
$$

Formal nonsmooth calculus

Clarke's inverse mapping theorem: Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be locally Lipschitz with Clarke Jacobian $J_{F}^{c}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n \times n}$ and $\bar{x} \in \mathbb{R}^{n}$ such that $J_{F}^{c}(\bar{x}) \subset \mathbb{R}^{n \times n}$ only contains nonsingular matrices. Then there exists $U \subset \mathbb{R}^{n}$ a neighborhood of \bar{x} such that F_{U} is a bi-Lipschitz homeomorphism.

Formal inverse differentiation? For all $x \in U$,

$$
J_{F-1}^{c}(F(x))=J_{F}^{c}(x)^{-1}:=\left\{M^{-1}, M \in J_{F}^{c}(x)\right\} ?
$$

Formal nonsmooth calculus

Clarke's inverse mapping theorem: Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be locally Lipschitz with Clarke Jacobian $J_{F}^{c}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n \times n}$ and $\bar{x} \in \mathbb{R}^{n}$ such that $J_{F}^{c}(\bar{x}) \subset \mathbb{R}^{n \times n}$ only contains nonsingular matrices. Then there exists $U \subset \mathbb{R}^{n}$ a neighborhood of \bar{x} such that F_{U} is a bi-Lipschitz homeomorphism.

Formal inverse differentiation? For all $x \in U$,

$$
J_{F-1}^{c}(F(x))=J_{F}^{c}(x)^{-1}:=\left\{M^{-1}, M \in J_{F}^{c}(x)\right\} ?
$$

Failure of formal implicit differentiation

From Clarke's book: consider the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
F:\binom{x}{y} \mapsto\binom{|x|+y}{2 x+|y|}
$$

- $F(0)=0$
- $y^{c} F(0)=\left\{\left(\begin{array}{ll}\alpha & 1 \\ 2 & \beta\end{array}\right), \alpha, \beta \in[-1,1]\right\}$
- Complies with hypotheses of Clarke's inverse mapping theorem

Failure of formal implicit differentiation

From Clarke's book: consider the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
F:\binom{x}{y} \mapsto\binom{|x|+y}{2 x+|y|}
$$

- $F(0)=0$
- $J^{c} F(0)=\left\{\left(\begin{array}{ll}\alpha & 1 \\ 2 & \beta\end{array}\right), \alpha, \beta \in[-1,1]\right\}$
- Complies with hypotheses of Clarke's inverse mapping theorem

Failure of formal implicit differentiation

From Clarke's book: consider the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
F:\binom{x}{y} \mapsto\binom{|x|+y}{2 x+|y|}
$$

- $F(0)=0$
- $J^{c} F(0)=\left\{\left(\begin{array}{cc}\alpha & 1 \\ 2 & \beta\end{array}\right), \alpha, \beta \in[-1,1]\right\}$
- Complies with hypotheses of Clarke's inverse mapping theorem

Failure of formal implicit differentiation

From Clarke's book: consider the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
F:\binom{x}{y} \mapsto\binom{|x|+y}{2 x+|y|}
$$

- $F(0)=0$
- $J^{c} F(0)=\left\{\left(\begin{array}{cc}\alpha & 1 \\ 2 & \beta\end{array}\right), \alpha, \beta \in[-1,1]\right\}$
- Complies with hypotheses of Clarke's inverse mapping theorem

Failure of formal implicit differentiation

From Clarke's book: consider the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
F:\binom{x}{y} \mapsto\binom{|x|+y}{2 x+|y|}
$$

- $F(0)=0$
- $J^{c} F(0)=\left\{\left(\begin{array}{ll}\alpha & 1 \\ 2 & \beta\end{array}\right), \alpha, \beta \in[-1,1]\right\}$
- Complies with hypotheses of Clarke's inverse mapping theorem

Failure of Jacobian inversion rule:

- $\operatorname{dim}\left(J_{F}^{c}(0)\right)=2$
- $\operatorname{dim}\left(J_{F-1}^{c}(0)\right)=3$

Failure of formal implicit differentiation

From Clarke's book: consider the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
F:\binom{x}{y} \mapsto\binom{|x|+y}{2 x+|y|}
$$

- $F(0)=0$
- $J^{c} F(0)=\left\{\left(\begin{array}{ll}\alpha & 1 \\ 2 & \beta\end{array}\right), \alpha, \beta \in[-1,1]\right\}$
- Complies with hypotheses of Clarke's inverse mapping theorem

Failure of Jacobian inversion rule:

- $\operatorname{dim}\left(J_{F}^{c}(0)\right)=2$
- $\operatorname{dim}\left(J_{F-1}^{c}(0)\right)=3$
- There exists $M \in J_{F-1}^{c}(0)$ such that $M^{-1} \notin J_{F}^{c}(0)$

Elements of description

Explicit piecewise affine inverse.

$$
\begin{array}{ll}
F^{-1}(u, v)=(v-u, 2 u-v) & \text { for }(u, v) \in A \\
F^{-1}(u, v)=\frac{1}{3}(u+v, 2 u-v) & \text { for }(u, v) \in B \\
F^{-1}(u, v)=(u+v, 2 u+v) & \text { for }(u, v) \in C \\
F^{-1}(u, v)=\frac{1}{3}(v-u, 2 u+v) & \text { for }(u, v) \in D
\end{array}
$$

Failure of formal implicit differentiation

$F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ complies with Clarke's inverse mapping theorem.

There exists $M \in J_{F-1}^{c}(0)$ such that $M^{-1} \notin J_{F}^{c}(0)$

(1) Introduction

(2) Failure of formal nonsmooth implicit differentiation
(3) Conservative gradients and Jacobians

4 Nonsmooth implicit differentiation
(5) Applications
(6) Conclusion

Conservative gradients / Jacobians:

- Objects akin to Clarke's subgradient / Jacobian (for locally Lipschitz functions).

Conservative gradients / Jacobians:

- Objects akin to Clarke's subgradient / Jacobian (for locally Lipschitz functions).
- A given function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has multiple conservative Jacobians $J_{F}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{m \times n}$.

Conservative gradients / Jacobians:

- Objects akin to Clarke's subgradient / Jacobian (for locally Lipschitz functions).
- A given function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has multiple conservative Jacobians $J_{F}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{m \times n}$.
- Compatible with compositional calculus rules

Conservative gradients / Jacobians:

- Objects akin to Clarke's subgradient / Jacobian (for locally Lipschitz functions).
- A given function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has multiple conservative Jacobians $J_{F}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{m \times n}$.
- Compatible with compositional calculus rules
- $J_{F}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{m \times n}$ conservative for $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
- $J_{G}: \mathbb{R}^{m} \rightrightarrows \mathbb{R}^{p \times m}$ conservative for $G: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$.

Conservative gradients / Jacobians:

- Objects akin to Clarke's subgradient / Jacobian (for locally Lipschitz functions).
- A given function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has multiple conservative Jacobians $J_{F}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{m \times n}$.
- Compatible with compositional calculus rules
- $J_{F}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{m \times n}$ conservative for $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
- $J_{G}: \mathbb{R}^{m} \rightrightarrows \mathbb{R}^{p \times m}$ conservative for $G: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$.
- Then $x \rightrightarrows J_{G}(F(x)) \times J_{F}(x)$ is conservative for $G \circ F$.
- Sum rule, product rule, ...

Conservative gradients / Jacobians:

- Objects akin to Clarke's subgradient / Jacobian (for locally Lipschitz functions).
- A given function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has multiple conservative Jacobians $J_{F}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{m \times n}$.
- Compatible with compositional calculus rules
- $J_{F}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{m \times n}$ conservative for $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
- $J_{G}: \mathbb{R}^{m} \rightrightarrows \mathbb{R}^{p \times m}$ conservative for $G: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$.
- Then $x \rightrightarrows J_{G}(F(x)) \times J_{F}(x)$ is conservative for $G \circ F$.
- Sum rule, product rule, ...
- Conservative gradients have a minimizing behavior similar to subgradients in optimization.

In a nutshell

Conservative gradients / Jacobians:

- Objects akin to Clarke's subgradient / Jacobian (for locally Lipschitz functions).
- A given function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has multiple conservative Jacobians $J_{F}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{m \times n}$.
- Compatible with compositional calculus rules
- $J_{F}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{m \times n}$ conservative for $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
- $J_{G}: \mathbb{R}^{m} \rightrightarrows \mathbb{R}^{p \times m}$ conservative for $G: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$.
- Then $x \rightrightarrows J_{G}(F(x)) \times J_{F}(x)$ is conservative for $G \circ F$.
- Sum rule, product rule, ...
- Conservative gradients have a minimizing behavior similar to subgradients in optimization.

Bibliography:

- Introduction / nonsmooth algorithmic differentiation: Bolte-Pauwels (2020).
- Lazy gradient oracle: Bianchi-Hachem-Schechtman (2020).
- Structure / residual: Lewis-Tian (2021).
- Semi-smoothness: Davis-Drusvyatskiy (2021).

Descent mechanism: chain rule along Lipschitz curves

$f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz,

$$
\begin{array}{rlr}
\theta_{k+1} & =\theta_{k}-\alpha_{k} v_{k} \\
v_{k} & \in \partial^{c} f\left(\theta_{k}\right) .
\end{array}
$$

Descent mechanism: chain rule along Lipschitz curves

$f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz, $\quad f\left(\theta_{k+1}\right) \leq f\left(\theta_{k}\right)$?

$$
\begin{aligned}
\theta_{k+1} & =\theta_{k}-\alpha_{k} v_{k} \\
v_{k} & =\partial^{c} f\left(\theta_{k}\right) .
\end{aligned}
$$

Descent mechanism: chain rule along Lipschitz curves

$f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz, $\quad f\left(\theta_{k+1}\right) \leq f\left(\theta_{k}\right) ?$

$$
\begin{array}{rlr}
\theta_{k+1} & =\theta_{k}-\alpha_{k} v_{k} \\
v_{k} & \in \partial^{c} f\left(\theta_{k}\right) .
\end{array}
$$

Chain rule along Absolutely Continuous (AC) curves (Brézis, Valadier). Hypothesis: For any AC curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$

$$
\frac{d}{d t} f(\gamma(t))=\langle v, \dot{\gamma}(t)\rangle \quad \forall v \in \partial^{c} f(\gamma(t)), \quad \text { a.e. } \quad t \in[0,1]
$$

Descent mechanism: chain rule along Lipschitz curves

$f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz, $\quad f\left(\theta_{k+1}\right) \leq f\left(\theta_{k}\right) ?$

$$
\begin{array}{rlr}
\theta_{k+1} & =\theta_{k}-\alpha_{k} v_{k} \\
v_{k} & \in \partial^{c} f\left(\theta_{k}\right) .
\end{array}
$$

Chain rule along Absolutely Continuous (AC) curves (Brézis, Valadier). Hypothesis: For any AC curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$

$$
\frac{d}{d t} f(\gamma(t))=\langle v, \dot{\gamma}(t)\rangle \quad \forall v \in \partial^{c} f(\gamma(t)), \quad \text { a.e. } \quad t \in[0,1]
$$

Suppose: $\dot{\gamma}(t) \in-\partial^{c} f(\gamma(t))$ for almost all $t \in[0,1]$,

Descent mechanism: chain rule along Lipschitz curves

$f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz, $\quad f\left(\theta_{k+1}\right) \leq f\left(\theta_{k}\right) ?$

$$
\begin{array}{rlr}
\theta_{k+1} & =\theta_{k}-\alpha_{k} v_{k} \\
v_{k} & \in \partial^{c} f\left(\theta_{k}\right) .
\end{array}
$$

Chain rule along Absolutely Continuous (AC) curves (Brézis, Valadier). Hypothesis: For any AC curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$

$$
\begin{aligned}
\frac{d}{d t} f(\gamma(t)) & =\langle v, \dot{\gamma}(t)\rangle \quad \forall v \in \partial^{c} f(\gamma(t)), \\
& =-\|\dot{\gamma}(t)\|^{2}, \quad \text { a.e. } \quad t \in[0,1]
\end{aligned}
$$

Suppose: $\dot{\gamma}(t) \in-\partial^{c} f(\gamma(t))$ for almost all $t \in[0,1]$,

Descent mechanism: chain rule along Lipschitz curves

$f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz, $\quad f\left(\theta_{k+1}\right) \leq f\left(\theta_{k}\right) ?$

$$
\begin{array}{rlr}
\theta_{k+1} & =\theta_{k}-\alpha_{k} v_{k} \\
v_{k} & \in \partial^{c} f\left(\theta_{k}\right) .
\end{array}
$$

Chain rule along Absolutely Continuous (AC) curves (Brézis, Valadier). Hypothesis: For any AC curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$

$$
\begin{aligned}
\frac{d}{d t} f(\gamma(t)) & =\langle v, \dot{\gamma}(t)\rangle \quad \forall v \in \partial^{c} f(\gamma(t)), \\
& =-\|\dot{\gamma}(t)\|^{2}, \quad \text { a.e. } \quad t \in[0,1]
\end{aligned}
$$

Suppose: $\dot{\gamma}(t) \in-\partial^{c} f(\gamma(t))$ for almost all $t \in[0,1]$, then $t \mapsto f(\gamma(t))$ decreases, strictly if $0 \notin \partial^{c} f(\gamma(t))$.

Descent mechanism: chain rule along Lipschitz curves

$f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz, $\quad f\left(\theta_{k+1}\right) \leq f\left(\theta_{k}\right) ?$

$$
\begin{aligned}
\theta_{k+1} & =\theta_{k}-\alpha_{k} v_{k} \\
v_{k} & \in \partial^{c} f\left(\theta_{k}\right) .
\end{aligned}
$$

Chain rule along Absolutely Continuous (AC) curves (Brézis, Valadier). Hypothesis: For any AC curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$

$$
\begin{aligned}
\frac{d}{d t} f(\gamma(t)) & =\langle v, \dot{\gamma}(t)\rangle \quad \forall v \in \partial^{c} f(\gamma(t)), \\
& =-\|\dot{\gamma}(t)\|^{2}, \quad \text { a.e. } \quad t \in[0,1]
\end{aligned}
$$

Suppose: $\dot{\gamma}(t) \in-\partial^{c} f(\gamma(t))$ for almost all $t \in[0,1]$, then $t \mapsto f(\gamma(t))$ decreases, strictly if $0 \notin \partial^{c} f(\gamma(t))$.

Benaim-Haufbauer-Sorin (2005) subgradient plus zero mean noise, under proper assumptions:

Descent mechanism: chain rule along Lipschitz curves

$f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz, $\quad f\left(\theta_{k+1}\right) \leq f\left(\theta_{k}\right) ?$

$$
\begin{aligned}
\theta_{k+1} & =\theta_{k}-\alpha_{k} v_{k} \\
v_{k} & \in \partial^{c} f\left(\theta_{k}\right) .
\end{aligned}
$$

Chain rule along Absolutely Continuous (AC) curves (Brézis, Valadier). Hypothesis: For any AC curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$

$$
\begin{aligned}
\frac{d}{d t} f(\gamma(t)) & =\langle v, \dot{\gamma}(t)\rangle \quad \forall v \in \partial^{c} f(\gamma(t)), \\
& =-\|\dot{\gamma}(t)\|^{2}, \quad \text { a.e. } \quad t \in[0,1]
\end{aligned}
$$

Suppose: $\dot{\gamma}(t) \in-\partial^{c} f(\gamma(t))$ for almost all $t \in[0,1]$, then $t \mapsto f(\gamma(t))$ decreases, strictly if $0 \notin \partial^{c} f(\gamma(t))$.

Benaim-Haufbauer-Sorin (2005) subgradient plus zero mean noise, under proper assumptions:

Vanishing step sizes, almost surely all accumulation points are critical points: $0 \in \partial^{c} f(\bar{\theta})$.

Generic triviality, generic rigidity

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

Generic triviality, generic rigidity

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

- $\partial^{c} f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).

Generic triviality, generic rigidity

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

- $\partial^{c} f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).
- local minimizers are dense: there is a local minimizer arbitrarily close to any argument.

Generic triviality, generic rigidity

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

- $\partial^{c} f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).
- local minimizers are dense: there is a local minimizer arbitrarily close to any argument.

Generic triviality, generic rigidity

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

- $\partial^{c} f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).
- local minimizers are dense: there is a local minimizer arbitrarily close to any argument.

Let f be a tame locally Lipschitz function ("generic" in applications),

Generic triviality, generic rigidity

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

- $\partial^{c} f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).
- local minimizers are dense: there is a local minimizer arbitrarily close to any argument.

Let f be a tame locally Lipschitz function ("generic" in applications),

- piecewise polynomial.

Generic triviality, generic rigidity

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

- $\partial^{c} f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).
- local minimizers are dense: there is a local minimizer arbitrarily close to any argument.

Let f be a tame locally Lipschitz function ("generic" in applications),

- piecewise polynomial.
- semi-algebraic.

Generic triviality, generic rigidity

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

- $\partial^{c} f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).
- local minimizers are dense: there is a local minimizer arbitrarily close to any argument.

Let f be a tame locally Lipschitz function ("generic" in applications),

- piecewise polynomial.
- semi-algebraic.
- definable.

Generic triviality, generic rigidity

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

- $\partial^{c} f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).
- local minimizers are dense: there is a local minimizer arbitrarily close to any argument.

Let f be a tame locally Lipschitz function ("generic" in applications),

- piecewise polynomial.
- semi-algebraic.
- definable.

Davis et .al. 2019, Bolte et. al. 2007: Subgradient projection formula implies chain rule along AC curves.

Conservative gradient

Conservative gradient (Bolte-Pauwels):
$f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz
$D: \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{p}$,

Conservative gradient

Conservative gradient (Bolte-Pauwels):

$f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz
$D: \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{p}$,
For any AC curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$

$$
\frac{d}{d t} f(\gamma(t))=\langle v, \dot{\gamma}(t)\rangle \quad \forall v \in D(\gamma(t)), \quad \text { a.e. } \quad t \in[0,1]
$$

Conservative gradient

Conservative gradient (Bolte-Pauwels):

$f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz
$D: \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{p}$, closed graph, non empty valued, locally bounded, For any AC curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$

$$
\frac{d}{d t} f(\gamma(t))=\langle v, \dot{\gamma}(t)\rangle \quad \forall v \in D(\gamma(t)), \quad \text { a.e. } \quad t \in[0,1]
$$

Conservative gradient

Conservative gradient (Bolte-Pauwels):

$f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz
$D: \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{p}$, closed graph, non empty valued, locally bounded, For any AC curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$

$$
\frac{d}{d t} f(\gamma(t))=\langle v, \dot{\gamma}(t)\rangle \quad \forall v \in D(\gamma(t)), \quad \text { a.e. } \quad t \in[0,1]
$$

- f is path differentiable.
- D is a conservative gradient for f.
- Conservative Jacobians defined similarly

Conservative gradient

Conservative gradient (Bolte-Pauwels):

$f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz
$D: \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{p}$, closed graph, non empty valued, locally bounded, For any AC curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$

$$
\frac{d}{d t} f(\gamma(t))=\langle v, \dot{\gamma}(t)\rangle \quad \forall v \in D(\gamma(t)), \quad \text { a.e. } \quad t \in[0,1]
$$

- f is path differentiable.
- D is a conservative gradient for f.
- Conservative Jacobians defined similarly

Results:

- $D(x)=\{\nabla f(x)\}$ for almost all $x \in \mathbb{R}^{p}$.
- $\partial^{c} f(x) \subset \operatorname{conv}(D(x))$ for all $x \in \mathbb{R}^{p}$.
- Sum, linear combinations, compositions of conservative Jacobians are conservative.

Conservative gradient and optimization

$$
\min _{\theta \in \mathbb{R}^{P}} \ell(\theta):=\frac{1}{N} \sum_{i=1}^{N} \ell_{i}(\theta) \text { with } \ell_{i}=g_{i, L} \circ g_{i, L-1} \circ \ldots \circ g_{i, 1}
$$

Assumption: For $i \in\{1, \ldots, N\}$ and $j \in\{1, \ldots, L\}$,

- $g_{i, j}$ locally Lipschitz, conservative Jacobian $J_{i, j}$, semialgebraic (or definable).

Conservative gradient and optimization

$$
\min _{\theta \in \mathbb{R}^{P}} \ell(\theta):=\frac{1}{N} \sum_{i=1}^{N} \ell_{i}(\theta) \text { with } \ell_{i}=g_{i, L} \circ g_{i, L-1} \circ \ldots \circ g_{i, 1}
$$

Assumption: For $i \in\{1, \ldots, N\}$ and $j \in\{1, \ldots, L\}$,

- $g_{i, j}$ locally Lipschitz, conservative Jacobian $J_{i, j}$, semialgebraic (or definable).

$$
\min _{\theta \in \mathbb{R}^{P}} \ell(\theta):=\frac{1}{N} \sum_{i=1}^{N} \ell_{i}(\theta) \text { with } \ell_{i}=g_{i, L} \circ g_{i, L-1} \circ \ldots \circ g_{i, 1}
$$

Assumption: For $i \in\{1, \ldots, N\}$ and $j \in\{1, \ldots, L\}$,

- $g_{i, j}$ locally Lipschitz, conservative Jacobian $J_{i, j}$, semialgebraic (or definable).

For $i \in\{1, \ldots, N\}$, set $D_{i}=\prod_{l=1}^{L} J_{i, l}$.

- D_{i} is a conservative gradient for ℓ_{i}.
- Algorithmic differentiation is an oracle for D_{i}.

$$
\min _{\theta \in \mathbb{R}^{P}} \ell(\theta):=\frac{1}{N} \sum_{i=1}^{N} \ell_{i}(\theta) \text { with } \ell_{i}=g_{i, L} \circ g_{i, L-1} \circ \ldots \circ g_{i, 1}
$$

Assumption: For $i \in\{1, \ldots, N\}$ and $j \in\{1, \ldots, L\}$,

- $g_{i, j}$ locally Lipschitz, conservative Jacobian $J_{i, j}$, semialgebraic (or definable).

For $i \in\{1, \ldots, N\}$, set $D_{i}=\prod_{l=1}^{L} J_{i, l}$.

- D_{i} is a conservative gradient for ℓ_{i}.
- Algorithmic differentiation is an oracle for D_{i}.

Algorithmic differentiation + stochastic approximation: fix $\theta_{0} \in \mathbb{R}^{p},\left(I_{k}\right)_{k \in \mathbb{N}}$ i.i.d. uniform in $\{1, \ldots, N\}$,

$$
\frac{\theta_{k+1}-\theta_{k}}{\alpha_{k}} \in-D_{l_{k}}\left(\theta_{k}\right)
$$

$$
\min _{\theta \in \mathbb{R}^{P}} \ell(\theta):=\frac{1}{N} \sum_{i=1}^{N} \ell_{i}(\theta) \text { with } \ell_{i}=g_{i, L} \circ g_{i, L-1} \circ \ldots \circ g_{i, 1}
$$

Assumption: For $i \in\{1, \ldots, N\}$ and $j \in\{1, \ldots, L\}$,

- $g_{i, j}$ locally Lipschitz, conservative Jacobian $J_{i, j}$, semialgebraic (or definable).

For $i \in\{1, \ldots, N\}$, set $D_{i}=\prod_{l=1}^{L} J_{i, l}$.

- D_{i} is a conservative gradient for ℓ_{i}.
- Algorithmic differentiation is an oracle for D_{i}.

Algorithmic differentiation + stochastic approximation: fix $\theta_{0} \in \mathbb{R}^{p},\left(I_{k}\right)_{k \in \mathbb{N}}$ i.i.d. uniform in $\{1, \ldots, N\}$,

$$
\frac{\theta_{k+1}-\theta_{k}}{\alpha_{k}} \in-D_{l_{k}}\left(\theta_{k}\right)
$$

- Step size: $\sum_{k=1}^{+\infty} \alpha_{k}=+\infty$ and $\alpha_{k}=o(1 / \log (k))$.
- Boundedness: there exists $M>0,\left\|\theta_{k}\right\| \leq M$ almost surely.

$$
\min _{\theta \in \mathbb{R}^{P}} \ell(\theta):=\frac{1}{N} \sum_{i=1}^{N} \ell_{i}(\theta) \text { with } \ell_{i}=g_{i, L} \circ g_{i, L-1} \circ \ldots \circ g_{i, 1}
$$

Assumption: For $i \in\{1, \ldots, N\}$ and $j \in\{1, \ldots, L\}$,

- $g_{i, j}$ locally Lipschitz, conservative Jacobian $J_{i, j}$, semialgebraic (or definable).

For $i \in\{1, \ldots, N\}$, set $D_{i}=\prod_{l=1}^{L} J_{i, l}$.

- D_{i} is a conservative gradient for ℓ_{i}.
- Algorithmic differentiation is an oracle for D_{i}.

Algorithmic differentiation + stochastic approximation: fix $\theta_{0} \in \mathbb{R}^{p},\left(I_{k}\right)_{k \in \mathbb{N}}$ i.i.d. uniform in $\{1, \ldots, N\}$,

$$
\frac{\theta_{k+1}-\theta_{k}}{\alpha_{k}} \in-D_{l_{k}}\left(\theta_{k}\right)
$$

- Step size: $\sum_{k=1}^{+\infty} \alpha_{k}=+\infty$ and $\alpha_{k}=o(1 / \log (k))$.
- Boundedness: there exists $M>0,\left\|\theta_{k}\right\| \leq M$ almost surely.
- Almost surely, $\ell\left(\theta_{k}\right)$ converges, accumulation points satisfy $0 \in \sum_{i=1}^{N} \operatorname{conv}\left(D_{i}(\bar{\theta})\right)$

Conservative gradient and optimization

$$
\min _{\theta \in \mathbb{R}^{P}} \ell(\theta):=\frac{1}{N} \sum_{i=1}^{N} \ell_{i}(\theta) \text { with } \ell_{i}=g_{i, L} \circ g_{i, L-1} \circ \ldots \circ g_{i, 1}
$$

Assumption: For $i \in\{1, \ldots, N\}$ and $j \in\{1, \ldots, L\}$,

- $g_{i, j}$ locally Lipschitz, conservative Jacobian $J_{i, j}$, semialgebraic (or definable).

For $i \in\{1, \ldots, N\}$, set $D_{i}=\prod_{l=1}^{L} J_{i, l}$.

- D_{i} is a conservative gradient for ℓ_{i}.
- Algorithmic differentiation is an oracle for D_{i}.

Algorithmic differentiation + stochastic approximation: fix $\theta_{0} \in \mathbb{R}^{p},\left(I_{k}\right)_{k \in \mathbb{N}}$ i.i.d. uniform in $\{1, \ldots, N\}$,

$$
\frac{\theta_{k+1}-\theta_{k}}{\alpha_{k}} \in-D_{l_{k}}\left(\theta_{k}\right)
$$

- Step size: $\sum_{k=1}^{+\infty} \alpha_{k}=+\infty$ and $\alpha_{k}=o(1 / \log (k))$.
- Boundedness: there exists $M>0,\left\|\theta_{k}\right\| \leq M$ almost surely.
- Almost surely, $\ell\left(\theta_{k}\right)$ converges, accumulation points satisfy $0 \in \sum_{i=1}^{N} \operatorname{conv}\left(D_{i}(\bar{\theta})\right)$
- For "most" such sequences, accumulation points are Clarke critical $0 \in \partial^{c} \ell(\theta)$.

Conservative gradients / Jacobians:

- Objects akin to Clarke's subgradient / Jacobian.
- Compatible with compositional calculus rules
- Have a minimizing behavior similar to subgradients in optimization.

(1) Introduction

(2) Failure of formal nonsmooth implicit differentiation
(3) Conservative gradients and Jacobians

4 Nonsmooth implicit differentiation
(5) Applications
(6) Conclusion

Nonsmooth inverse mapping calculus

Clarke's inverse mapping theorem:

- $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ locally Lipschitz
- Clarke Jacobian $J_{F}^{c}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n \times n}$
- $\bar{x} \in \mathbb{R}^{n}$ such that $J_{F}^{c}(\bar{x}) \subset \mathbb{R}^{n \times n}$ only contains nonsingular matrices.

Then there exists $U \subset \mathbb{R}^{n}$ a neighborhood of \bar{x} such that F_{U} is a bi-Lipschitz homeomorphism.

Failure of formal differentiation

$$
J_{F-1}^{c}(y) \neq J_{F}^{c}\left(F^{-1}(y)\right)^{-1}
$$

Nonsmooth inverse mapping calculus

Clarke's inverse mapping theorem:

- $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ locally Lipschitz
- Clarke Jacobian $J_{F}^{c}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n \times n}$
- $\bar{x} \in \mathbb{R}^{n}$ such that $J_{F}^{c}(\bar{x}) \subset \mathbb{R}^{n \times n}$ only contains nonsingular matrices.

Then there exists $U \subset \mathbb{R}^{n}$ a neighborhood of \bar{x} such that F_{U} is a bi-Lipschitz homeomorphism.

Failure of formal differentiation

$$
J_{F-1}^{c}(y) \neq J_{F}^{c}\left(F^{-1}(y)\right)^{-1}:=\left\{M^{-1}, M \in J_{F}^{c}\left(F^{-1}(y)\right)\right\}
$$

Nonsmooth inverse mapping calculus

Clarke's inverse mapping theorem:

- $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ path differentiable
- Clarke Jacobian $J_{F}^{c}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n \times n}$
- $\bar{x} \in \mathbb{R}^{n}$ such that $J_{F}^{c}(\bar{x}) \subset \mathbb{R}^{n \times n}$ only contains nonsingular matrices.

Then there exists $U \subset \mathbb{R}^{n}$ a neighborhood of \bar{x} such that F_{U} is a bi-Lipschitz homeomorphism.

Failure of formal differentiation

$$
J_{F-1}^{c}(y) \neq J_{F}^{c}\left(F^{-1}(y)\right)^{-1}:=\left\{M^{-1}, M \in J_{F}^{c}\left(F^{-1}(y)\right)\right\}
$$

Nonsmooth inverse mapping calculus

Clarke's inverse mapping theorem:

- $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ path differentiable
- Clarke Jacobian $J_{\digamma}^{c}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n \times n}$
- $\bar{x} \in \mathbb{R}^{n}$ such that $J_{F}^{c}(\bar{x}) \subset \mathbb{R}^{n \times n}$ only contains nonsingular matrices.

Then there exists $U \subset \mathbb{R}^{n}$ a neighborhood of \bar{x} such that F_{U} is a bi-Lipschitz homeomorphism.

Failure of formal differentiation

$$
J_{F-1}^{c}(y) \neq J_{\digamma}^{c}\left(F^{-1}(y)\right)^{-1}:=\left\{M^{-1}, M \in J_{\digamma}^{c}\left(F^{-1}(y)\right)\right\}
$$

Conservative calculus:

$$
y \rightrightarrows J_{\digamma}^{c}\left(F^{-1}(y)\right)^{-1}:=\left\{M^{-1}, M \in J_{F}^{c}\left(F^{-1}(y)\right)\right\}
$$

is a conservative Jacobian for F^{-1} (in a neighborhood of $F(\bar{x})$).

Nonsmooth inverse mapping calculus

Clarke's inverse mapping theorem:

- $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ path differentiable
- Conservative Jacobian $J_{F}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n \times n}$ convex valued
- $\bar{x} \in \mathbb{R}^{n}$ such that $J_{F}(\bar{x}) \subset \mathbb{R}^{n \times n}$ only contains nonsingular matrices.

Then there exists $U \subset \mathbb{R}^{n}$ a neighborhood of \bar{x} such that F_{U} is a bi-Lipschitz homeomorphism.

Failure of formal differentiation

Conservative calculus:

$$
y \rightrightarrows J_{F}\left(F^{-1}(y)\right)^{-1}:=\left\{M^{-1}, M \in J_{\digamma}\left(F^{-1}(y)\right)\right\}
$$

is a conservative Jacobian for F^{-1} (in a neighborhood of $F(\bar{x})$).

Lipschitz implicit function theorem (Hiriart Urruty 1979, Clarke 1976)

- $F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ locally Lipschitz
- Clarke Jacobian $J_{F}^{c}: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightrightarrows \mathbb{R}^{m \times(n+m)}$
- $(\bar{x}, \bar{y}) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$ such that $F(\bar{x}, \bar{y})=0$.
- $\forall[A B] \in J_{F}^{c}(\bar{x}, \bar{y}), B$ is invertible then $\exists U \subset \mathbb{R}^{n}$ a neighborhood of \bar{x} and a locally Lipschitz function $G(x)$ so that

$$
F(x, G(x))=0 \quad \forall x \in U
$$

and $y=G(x)$ is the unique such solution in a neighborhood of \bar{y}.

Lipschitz implicit function theorem (Hiriart Urruty 1979, Clarke 1976)

- $F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ path differentiable
- Clarke Jacobian $J_{F}^{c}: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightrightarrows \mathbb{R}^{m \times(n+m)}$
- $(\bar{x}, \bar{y}) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$ such that $F(\bar{x}, \bar{y})=0$.
- $\forall[A B] \in J_{F}^{c}(\bar{x}, \bar{y}), B$ is invertible then $\exists U \subset \mathbb{R}^{n}$ a neighborhood of \bar{x} and a locally Lipschitz function $G(x)$ so that

$$
F(x, G(x))=0 \quad \forall x \in U
$$

and $y=G(x)$ is the unique such solution in a neighborhood of \bar{y}.

Lipschitz implicit function theorem (Hiriart Urruty 1979, Clarke 1976)

- $F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ path differentiable
- Clarke Jacobian $J_{F}^{c}: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightrightarrows \mathbb{R}^{m \times(n+m)}$
- $(\bar{x}, \bar{y}) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$ such that $F(\bar{x}, \bar{y})=0$.
- $\forall[A B] \in J_{F}^{c}(\bar{x}, \bar{y}), B$ is invertible then $\exists U \subset \mathbb{R}^{n}$ a neighborhood of \bar{x} and a locally Lipschitz function $G(x)$ so that

$$
F(x, G(x))=0 \quad \forall x \in U
$$

and $y=G(x)$ is the unique such solution in a neighborhood of \bar{y}.

Nonsmooth implicit differentiation:

$$
x \rightrightarrows\left\{-B^{-1} A:[A B] \in J_{F}^{c}(x, G(x))\right\}
$$

is a conservative Jacobian for G in a neighborhood of \bar{x}.

Lipschitz implicit function theorem (Hiriart Urruty 1979, Clarke 1976)

- $F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ path differentiable
- Conservative Jacobian $J_{F}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n \times n}$ convex valued
- $(\bar{x}, \bar{y}) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$ such that $F(\bar{x}, \bar{y})=0$.
- $\forall[A B] \in J_{F}(\bar{x}, \bar{y}), B$ is invertible then $\exists U \subset \mathbb{R}^{n}$ a neighborhood of \bar{x} and a locally Lipschitz function $G(x)$ so that

$$
F(x, G(x))=0 \quad \forall x \in U
$$

and $y=G(x)$ is the unique such solution in a neighborhood of \bar{y}.

Nonsmooth implicit differentiation:

$$
x \rightrightarrows\left\{-B^{-1} A:[A B] \in J_{F}(x, G(x))\right\}
$$

is a conservative Jacobian for G in a neighborhood of \bar{x}.

Conservative gradient and optimization

$$
\min _{\theta \in \mathbb{R}^{P}} \ell(\theta):=\frac{1}{N} \sum_{i=1}^{N} \ell_{i}(\theta) \text { with } \ell_{i}=g_{i, L} \circ g_{i, L-1} \circ \ldots \circ g_{i, 1}
$$

Assumption: For $i \in\{1, \ldots, N\}$ and $j \in\{1, \ldots, L\}$,

- $g_{i, j}$ locally Lipschitz, conservative Jacobian $J_{i, j}$, semialgebraic (or definable).

Conservative gradient and optimization

$$
\min _{\theta \in \mathbb{R}^{P}} \ell(\theta):=\frac{1}{N} \sum_{i=1}^{N} \ell_{i}(\theta) \text { with } \ell_{i}=g_{i, L} \circ g_{i, L-1} \circ \ldots \circ g_{i, 1}
$$

Assumption: For $i \in\{1, \ldots, N\}$ and $j \in\{1, \ldots, L\}$,

- $g_{i, j}$ locally Lipschitz, conservative Jacobian $J_{i, j}$, semialgebraic (or definable).

Conservative gradient and optimization

$$
\min _{\theta \in \mathbb{R}^{P}} \ell(\theta):=\frac{1}{N} \sum_{i=1}^{N} \ell_{i}(\theta) \text { with } \ell_{i}=g_{i, L} \circ g_{i, L-1} \circ \ldots \circ g_{i, 1}
$$

Assumption: For $i \in\{1, \ldots, N\}$ and $j \in\{1, \ldots, L\}$,

- $g_{i, j}$ locally Lipschitz, conservative Jacobian $J_{i, j}$, semialgebraic (or definable).
- Extends to implicitely defined input output relations.
- Preserved by inversion / implicit definition. \Rightarrow convergence of small step first order methods.

Conservative gradient and optimization

$$
\min _{\theta \in \mathbb{R}^{P}} \ell(\theta):=\frac{1}{N} \sum_{i=1}^{N} \ell_{i}(\theta) \text { with } \ell_{i}=g_{i, L} \circ g_{i, L-1} \circ \ldots \circ g_{i, 1}
$$

Assumption: For $i \in\{1, \ldots, N\}$ and $j \in\{1, \ldots, L\}$,

- $g_{i, j}$ locally Lipschitz, conservative Jacobian $J_{i, j}$, semialgebraic (or definable).
- Extends to implicitely defined input output relations.
- Preserved by inversion / implicit definition \Rightarrow convergence of small step first order methods.

Conservative gradient and optimization

$$
\min _{\theta \in \mathbb{R}^{p}} \ell(\theta):=\frac{1}{N} \sum_{i=1}^{N} \ell_{i}(\theta) \text { with } \ell_{i}=g_{i, L} \circ g_{i, L-1} \circ \ldots \circ g_{i, 1}
$$

Assumption: For $i \in\{1, \ldots, N\}$ and $j \in\{1, \ldots, L\}$,

- $g_{i, j}$ locally Lipschitz, conservative Jacobian $J_{i, j}$, semialgebraic (or definable).
- Extends to implicitely defined input output relations.
- Preserved by inversion / implicit definition.

\Rightarrow convergence of small step first order methods.

Conservative gradient and optimization

$$
\min _{\theta \in \mathbb{R}^{p}} \ell(\theta):=\frac{1}{N} \sum_{i=1}^{N} \ell_{i}(\theta) \text { with } \ell_{i}=g_{i, L} \circ g_{i, L-1} \circ \ldots \circ g_{i, 1}
$$

Assumption: For $i \in\{1, \ldots, N\}$ and $j \in\{1, \ldots, L\}$,

- $g_{i, j}$ locally Lipschitz, conservative Jacobian $J_{i, j}$, semialgebraic (or definable).
- Extends to implicitely defined input output relations.
- Preserved by inversion / implicit definition.
\Rightarrow convergence of small step first order methods.

Plan

(1) Introduction

(2) Failure of formal nonsmooth implicit differentiation
(3) Conservative gradients and Jacobians

4 Nonsmooth implicit differentiation
(5) Applications
(6) Conclusion

Bilevel programming

Assumption: ℓ and f locally Lipschitz. For any θ,

- the inner argmin is a singleton

$$
\begin{aligned}
\min _{\theta \in \mathbb{R}^{p}} & \ell(x(\theta)) \\
\text { s.t. } & x(\theta) \in \underset{x \in \mathbb{R}^{m}}{\operatorname{argmin}} f(x, \theta)
\end{aligned}
$$

Bilevel programming

Assumption: ℓ and f locally Lipschitz. For any θ,

- the inner argmin is a singleton

$$
\begin{aligned}
\min _{\theta \in \mathbb{R}^{p}} & \ell(x(\theta)) \\
\text { s.t. } & x(\theta) \in \underset{x \in \mathbb{R}^{m}}{\operatorname{argmin}} f(x, \theta)
\end{aligned}
$$

Bilevel programming

Assumption: ℓ and f locally Lipschitz. For any θ,

- the inner argmin is a singleton

$$
\begin{aligned}
\min _{\theta \in \mathbb{R}^{p}} & \ell(x(\theta)) \\
\text { s.t. } & x(\theta)=\underset{x \in \mathbb{R}^{m}}{\operatorname{argmin}} f(x, \theta)
\end{aligned}
$$

Bilevel programming

Assumption: ℓ and f locally Lipschitz. For any θ,

- the inner argmin is a singleton

$$
\begin{aligned}
\min _{\theta \in \mathbb{R}^{p}} & \ell(x(\theta)) \\
\text { where } & x(\theta)=\underset{x \in \mathbb{R}^{m}}{\operatorname{argmin}} f(x, \theta)
\end{aligned}
$$

Bilevel programming

How to differentiate the solution of an optimization problem?
Assumption: ℓ and f locally Lipschitz. For any θ,

- the inner argmin is a singleton

$$
\begin{aligned}
\min _{\theta \in \mathbb{R}^{p}} & \ell(x(\theta)) \\
\text { where } & x(\theta)=\underset{x \in \mathbb{R}^{m}}{\operatorname{argmin}} f(x, \theta)
\end{aligned}
$$

Bilevel programming

How to differentiate the solution of an optimization problem?
Assumption: ℓ and f locally Lipschitz. For any θ,

- the inner argmin is a singleton

$$
\begin{aligned}
\min _{\theta \in \mathbb{R}^{p}} & \ell(x(\theta)) \\
\text { where } & x(\theta)=\underset{x \in \mathbb{R}^{m}}{\operatorname{argmin}} f(x, \theta)
\end{aligned}
$$

Example: Lasso hyperparameter optimization (Bertrand et. al. 2020).

$$
\begin{aligned}
& x(\theta) \in \underset{x \in \mathbb{R}^{m}}{\operatorname{argmin}} \frac{1}{2}\|A x-b\|_{2}^{2}+\theta\|x\|_{1}, \\
& (A, b) \in \mathbb{R}^{n \times m} \times \mathbb{R}^{n}, \text { training data }, \ell \text { loss on held out data }
\end{aligned}
$$

Bilevel programming

How to differentiate the solution of an optimization problem?
Assumption: ℓ and f locally Lipschitz. For any θ,

- the inner argmin is a singleton

$$
\begin{aligned}
\min _{\theta \in \mathbb{R}^{p}} & \ell(x(\theta)) \\
\text { where } & x(\theta)=\underset{x \in \mathbb{R}^{m}}{\operatorname{argmin}} f(x, \theta)
\end{aligned}
$$

Example: Lasso hyperparameter optimization (Bertrand et. al. 2020).

$$
\begin{align*}
& x(\theta) \in \underset{x \in \mathbb{R}^{m}}{\operatorname{argmin}} \frac{1}{2}\|A x-b\|_{2}^{2}+\theta\|x\|_{1}, \\
& (A, b) \in \mathbb{R}^{n \times m} \times \mathbb{R}^{n}, \text { training data }, \ell \text { loss on held out data } \\
& x=\operatorname{prox}_{s \theta\|\cdot\|_{1}}\left(x-s A^{T}(A x-b)\right)
\end{align*}
$$

Bilevel programming

How to differentiate the solution of an optimization problem?
Assumption: ℓ and f locally Lipschitz. For any θ,

- the inner argmin is a singleton

$$
\begin{aligned}
\min _{\theta \in \mathbb{R}^{p}} & \ell(x(\theta)) \\
\text { where } & x(\theta)=\underset{x \in \mathbb{R}^{m}}{\operatorname{argmin}} f(x, \theta)
\end{aligned}
$$

Example: Lasso hyperparameter optimization (Bertrand et. al. 2020).

$$
\begin{align*}
& x(\theta) \in \underset{x \in \mathbb{R}^{m}}{\operatorname{argmin}} \frac{1}{2}\|A x-b\|_{2}^{2}+\theta\|x\|_{1}, \\
& (A, b) \in \mathbb{R}^{n \times m} \times \mathbb{R}^{n}, \text { training data }, \ell \text { loss on held out data } \\
& x=\operatorname{prox}_{s \theta\|\cdot\|_{1}}\left(x-s A^{T}(A x-b)\right)
\end{align*}
$$

Equicorrelation set: $\mathcal{E}:=\left\{j \in\{1, \ldots, m\}:\left|A_{j}^{T}(b-A x(\theta))\right|=\theta\right\}$.

Bilevel programming

How to differentiate the solution of an optimization problem?
Assumption: ℓ and f locally Lipschitz. For any θ,

- the inner argmin is a singleton

$$
\begin{aligned}
\min _{\theta \in \mathbb{R}^{p}} & \ell(x(\theta)) \\
\text { where } & x(\theta)=\underset{x \in \mathbb{R}^{m}}{\operatorname{argmin}} f(x, \theta)
\end{aligned}
$$

Example: Lasso hyperparameter optimization (Bertrand et. al. 2020).

$$
\begin{align*}
& x(\theta) \in \underset{x \in \mathbb{R}^{m}}{\operatorname{argmin}} \frac{1}{2}\|A x-b\|_{2}^{2}+\theta\|x\|_{1} \\
& (A, b) \in \mathbb{R}^{n \times m} \times \mathbb{R}^{n}, \text { training data }, \ell \text { loss on held out data } \\
& x=\operatorname{prox}_{s \theta\|\cdot\|_{1}}\left(x-s A^{T}(A x-b)\right)
\end{align*}
$$

Equicorrelation set: $\mathcal{E}:=\left\{j \in\{1, \ldots, m\}:\left|A_{j}^{T}(b-A x(\theta))\right|=\theta\right\}$. If $A_{\mathcal{E}}^{T} A_{\mathcal{E}}$ has full rank, nonsmooth implicit differentiation applies.

Bilevel programming

How to differentiate the solution of an optimization problem?
Assumption: ℓ and f locally Lipschitz. For any θ,

- the inner argmin is a singleton

$$
\begin{aligned}
\min _{\theta \in \mathbb{R}^{p}} & \ell(x(\theta)) \\
\text { where } & x(\theta)=\underset{x \in \mathbb{R}^{m}}{\operatorname{argmin}} f(x, \theta)
\end{aligned}
$$

Example: Lasso hyperparameter optimization (Bertrand et. al. 2020).

$$
\begin{align*}
& x(\theta) \in \underset{x \in \mathbb{R}^{m}}{\operatorname{argmin}} \frac{1}{2}\|A x-b\|_{2}^{2}+\theta\|x\|_{1} \\
& (A, b) \in \mathbb{R}^{n \times m} \times \mathbb{R}^{n}, \text { training data }, \ell \text { loss on held out data } \\
& x=\operatorname{prox}_{s \theta\|\cdot\|_{1}}\left(x-s A^{T}(A x-b)\right)
\end{align*}
$$

Equicorrelation set: $\mathcal{E}:=\left\{j \in\{1, \ldots, m\}:\left|A_{j}^{T}(b-A x(\theta))\right|=\theta\right\}$. If $A_{\mathcal{E}}^{T} A_{\mathcal{E}}$ has full rank, nonsmooth implicit differentiation applies.
\Rightarrow recover LARS algorithm + convergence of small step first order methods.

Compositional models

Neural networks:

Compositional models,

Compositional models

Neural networks:

Compositional models,

Compositional models

Neural networks:

Compositional models, elementary blocks called layers (parametric functions).

Compositional models

Neural networks:

Compositional models, elementary blocks called layers (parametric functions).

Image courtesy: implicit-layers-tutorial.org

Compositional models

Neural networks:

Compositional models, elementary blocks called layers (parametric functions).

Image courtesy: implicit-layers-tutorial.org
Examples: Equilibrium networks (Bai et. al. 2019), implicit networks (El Ghaoui et. al. 2019) declarative networks (Gould et. al. 2019), optimization layers (Agrawal et. al. 2019)

Compositional models

Neural networks:

Compositional models, elementary blocks called layers (parametric functions).

Image courtesy: implicit-layers-tutorial.org
Examples: Equilibrium networks (Bai et. al. 2019), implicit networks (El Ghaoui et. al. 2019) declarative networks (Gould et. al. 2019), optimization layers (Agrawal et. al. 2019)

Monotone operator DEQs: Winston et. al. 2020, $\sigma: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ proximal operator (convex function), $W \in \mathbb{R}^{m \times m}$ such that $W+W^{T} \succ I$.

$$
z=\sigma(W z+b) \quad \forall b \in \mathbb{R}^{m}, \text { unique solution } z(b)
$$

Compositional models

Neural networks:

Compositional models, elementary blocks called layers (parametric functions).

Image courtesy: implicit-layers-tutorial.org
Examples: Equilibrium networks (Bai et. al. 2019), implicit networks (El Ghaoui et. al. 2019) declarative networks (Gould et. al. 2019), optimization layers (Agrawal et. al. 2019)

Monotone operator DEQs: Winston et. al. 2020, $\sigma: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ proximal operator (convex function), $W \in \mathbb{R}^{m \times m}$ such that $W+W^{T} \succ I$.

$$
z=\sigma(W z+b) \quad \forall b \in \mathbb{R}^{m}, \text { unique solution } z(b)
$$

$J_{\sigma}^{c}: \mathbb{R}^{m} \rightrightarrows \mathbb{R}^{m \times m}$ Clarke Jacobian for σ (assumed path differentiable).

Compositional models

Neural networks:

Compositional models, elementary blocks called layers (parametric functions).

Image courtesy: implicit-layers-tutorial.org
Examples: Equilibrium networks (Bai et. al. 2019), implicit networks (El Ghaoui et. al. 2019) declarative networks (Gould et. al. 2019), optimization layers (Agrawal et. al. 2019)

Monotone operator DEQs: Winston et. al. 2020, $\sigma: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ proximal operator (convex function), $W \in \mathbb{R}^{m \times m}$ such that $W+W^{T} \succ I$.

$$
z=\sigma(W z+b) \quad \forall b \in \mathbb{R}^{m}, \text { unique solution } z(b)
$$

$J_{\sigma}^{c}: \mathbb{R}^{m} \rightrightarrows \mathbb{R}^{m \times m}$ Clarke Jacobian for σ (assumed path differentiable).
then $(I-J W)$ invertible for all $J \in J_{\sigma}^{c}(W z+b)$

Compositional models

Neural networks:

Compositional models, elementary blocks called layers (parametric functions).

Image courtesy: implicit-layers-tutorial.org
Examples: Equilibrium networks (Bai et. al. 2019), implicit networks (El Ghaoui et. al. 2019) declarative networks (Gould et. al. 2019), optimization layers (Agrawal et. al. 2019)

Monotone operator DEQs: Winston et. al. 2020, $\sigma: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ proximal operator (convex function), $W \in \mathbb{R}^{m \times m}$ such that $W+W^{T} \succ I$.

$$
z=\sigma(W z+b) \quad \forall b \in \mathbb{R}^{m}, \text { unique solution } z(b)
$$

$J_{\sigma}^{c}: \mathbb{R}^{m} \rightrightarrows \mathbb{R}^{m \times m}$ Clarke Jacobian for σ (assumed path differentiable).
then $(I-J W)$ invertible for all $J \in J_{\sigma}^{c}(W z+b)$
\Rightarrow invertibility condition for nonsmooth implicit differentiation

Compositional models

Neural networks:

Compositional models, elementary blocks called layers (parametric functions).

Image courtesy: implicit-layers-tutorial.org
Examples: Equilibrium networks (Bai et. al. 2019), implicit networks (El Ghaoui et. al. 2019) declarative networks (Gould et. al. 2019), optimization layers (Agrawal et. al. 2019)

Monotone operator DEQs: Winston et. al. 2020, $\sigma: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ proximal operator (convex function), $W \in \mathbb{R}^{m \times m}$ such that $W+W^{T} \succ I$.

$$
z=\sigma(W z+b) \quad \forall b \in \mathbb{R}^{m}, \text { unique solution } z(b)
$$

$J_{\sigma}^{c}: \mathbb{R}^{m} \rightrightarrows \mathbb{R}^{m \times m}$ Clarke Jacobian for σ (assumed path differentiable).
then $(I-J W)$ invertible for all $J \in J_{\sigma}^{c}(W z+b)$
\Rightarrow invertibility condition for nonsmooth implicit differentiation
\Rightarrow convergence of small steps training algorithms.

Plan

(1) Introduction

(2) Failure of formal nonsmooth implicit differentiation
(3) Conservative gradients and Jacobians

4 Nonsmooth implicit differentiation
(5) Applications
(6) Conclusion

Pathological Examples - Cyclic "gradient" orbits

Implicit differentiation applied to:

$$
\begin{array}{cl}
\min _{x, y, s} & \ell(x, y, s):=\left(x-s_{1}\right)^{2}+4\left(y-s_{2}\right)^{2} \\
\text { s.t. } & s \in \arg \max \{(a+b)(-2 x+y+2): a \in[0,3], b \in[0,5]\} .
\end{array}
$$

Pathological Examples - Cyclic "gradient" orbits

Implicit differentiation applied to:

$$
\begin{array}{cl}
\min _{x, y, s} & \ell(x, y, s):=\left(x-s_{1}\right)^{2}+4\left(y-s_{2}\right)^{2} \\
\text { s.t. } & s \in \arg \max \{(a+b)(-2 x+y+2): a \in[0,3], b \in[0,5]\} .
\end{array}
$$

- Fixed point of projected gradient (linear over a box)

Pathological Examples - Cyclic "gradient" orbits

Implicit differentiation applied to:

$$
\begin{array}{cl}
\min _{x, y, s} & \ell(x, y, s):=\left(x-s_{1}\right)^{2}+4\left(y-s_{2}\right)^{2} \\
\text { s.t. } & s \in \arg \max \{(a+b)(-2 x+y+2): a \in[0,3], b \in[0,5]\}
\end{array}
$$

- Fixed point of projected gradient (linear over a box)

Pathological Examples - Cyclic "gradient" orbits

Implicit differentiation applied to:

$$
\begin{array}{cl}
\min _{x, y, s} & \ell(x, y, s):=\left(x-s_{1}\right)^{2}+4\left(y-s_{2}\right)^{2} \\
\text { s.t. } & s \in \arg \max \{(a+b)(-2 x+y+2): a \in[0,3], b \in[0,5]\}
\end{array}
$$

- Fixed point of projected gradient (linear over a box)
- Invertibility condition outside of the line $y=2 x-2$.

Pathological Examples - Cyclic "gradient" orbits

Implicit differentiation applied to:

$$
\begin{array}{cl}
\min _{x, y, s} & \ell(x, y, s):=\left(x-s_{1}\right)^{2}+4\left(y-s_{2}\right)^{2} \\
\text { s.t. } & s \in \arg \max \{(a+b)(-2 x+y+2): a \in[0,3], b \in[0,5]\}
\end{array}
$$

- Fixed point of projected gradient (linear over a box)
- Invertibility condition outside of the line $y=2 x-2$.
- Discontinuity of the solution map.

Pathological Examples - Cyclic "gradient" orbits

Implicit differentiation applied to:

$$
\begin{array}{cl}
\min _{x, y, s} & \ell(x, y, s):=\left(x-s_{1}\right)^{2}+4\left(y-s_{2}\right)^{2} \\
\text { s.t. } & s \in \arg \max \{(a+b)(-2 x+y+2): a \in[0,3], b \in[0,5]\} .
\end{array}
$$

- Fixed point of projected gradient (linear over a box)
- Invertibility condition outside of the line $y=2 x-2$.
- Discontinuity of the solution map.
- Globally affects dynamics (not of gradient type) although line never met.

Pathological Examples - Cyclic "gradient" orbits

Implicit differentiation applied to:

$$
\begin{array}{cl}
\min _{x, y, s} & \ell(x, y, s):=\left(x-s_{1}\right)^{2}+4\left(y-s_{2}\right)^{2} \\
\text { s.t. } & s \in \arg \max \{(a+b)(-2 x+y+2): a \in[0,3], b \in[0,5]\} .
\end{array}
$$

- Fixed point of projected gradient (linear over a box)
- Invertibility condition outside of the line $y=2 x-2$.
- Discontinuity of the solution map.
- Globally affects dynamics (not of gradient type) although line never met.
- Generic: robust to perturbation of problem data.

Conclusion

Nonsmooth implicit differentiation

- Does Lipschitz implicit function theorem come with a calculus?

Conclusion

Nonsmooth implicit differentiation

- Does Lipschitz implicit function theorem come with a calculus?
- Using Clarke's Jacobian: No.
- Inverses of Clarke Jacobians are not Clarke Jacobians

Conclusion

Nonsmooth implicit differentiation

- Does Lipschitz implicit function theorem come with a calculus?
- Using Clarke's Jacobian: No.
- Inverses of Clarke Jacobians are not Clarke Jacobians
- Using Conservative Jacobian: Yes.
- Inverses of Conservative Jacobians are conservative Jacobians

Conclusion

Nonsmooth implicit differentiation

- Does Lipschitz implicit function theorem come with a calculus?
- Using Clarke's Jacobian: No.
- Inverses of Clarke Jacobians are not Clarke Jacobians
- Using Conservative Jacobian: Yes.
- Inverses of Conservative Jacobians are conservative Jacobians

Practical implications:

- Extends the domain of validity of stochastic learning algorithm / compositional modeling.
- Applications in ML (bilevel hyperparameter tuning, implicit neural networks ...).

Conclusion

Nonsmooth implicit differentiation

- Does Lipschitz implicit function theorem come with a calculus?
- Using Clarke's Jacobian: No.
- Inverses of Clarke Jacobians are not Clarke Jacobians
- Using Conservative Jacobian: Yes.
- Inverses of Conservative Jacobians are conservative Jacobians

Practical implications:

- Extends the domain of validity of stochastic learning algorithm / compositional modeling.
- Applications in ML (bilevel hyperparameter tuning, implicit neural networks ...).

Improvements:

- Do pathologies occur in practice? How to check?
- How to check invertibility condition?

Conclusion

Nonsmooth implicit differentiation

- Does Lipschitz implicit function theorem come with a calculus?
- Using Clarke's Jacobian: No.
- Inverses of Clarke Jacobians are not Clarke Jacobians
- Using Conservative Jacobian: Yes.
- Inverses of Conservative Jacobians are conservative Jacobians

Practical implications:

- Extends the domain of validity of stochastic learning algorithm / compositional modeling.
- Applications in ML (bilevel hyperparameter tuning, implicit neural networks ...).

Improvements:

- Do pathologies occur in practice? How to check?
- How to check invertibility condition?

> Jérôme Bolte, Tâm Lê, Edouard Pauwels, Antonio Silveti-Falls https://arxiv.org/abs/2106.04350

Conclusion

Nonsmooth implicit differentiation

- Does Lipschitz implicit function theorem come with a calculus?
- Using Clarke's Jacobian: No.
- Inverses of Clarke Jacobians are not Clarke Jacobians
- Using Conservative Jacobian: Yes.
- Inverses of Conservative Jacobians are conservative Jacobians

Practical implications:

- Extends the domain of validity of stochastic learning algorithm / compositional modeling.
- Applications in ML (bilevel hyperparameter tuning, implicit neural networks ...).

Improvements:

- Do pathologies occur in practice? How to check?
- How to check invertibility condition?

Jérôme Bolte, Tâm Lê, Edouard Pauwels, Antonio Silveti-Falls https://arxiv.org/abs/2106.04350

Thanks.

