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Observations:
@ The classical implicit function theorem has two parts (existence and calculus)

@ Nonsmooth generalizations essentially focused on existence.
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@ The classical implicit function theorem has two parts (existence and calculus)

@ Nonsmooth generalizations essentially focused on existence.

Contributions: nonsmooth generalization of the calculus part.
@ Direct generalization of calculus fails.
@ Our solution: use conservative Jacobians.

o Applications in compositional modeling (ML, DEQ), bilevel optimization, ...
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Classical implicit function theorem (Dini 1877)

Let F : R” x R™ — R™ be continuously differentiable with Jacobian Jac r(x,y) =
[Ac B)] € R™ ("™ and (%, 7) € R"” x R™ such that

F(x,y)=0.
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Jacg(x) = —B'A,  [A B] = Jacr(x, G(x)).

o Existence: Equation F(x,y) = 0 defines a functional relation y = G(x) around X.

o Implicit differentiation: Calculus rule for the derivative of G.
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Classical inverse mapping theorem

Let F : R” — R” be continuously differentiable with Jacobian Jac f: R” — R"*" and
x € R" such that Jac £(X) is nonsingular.
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o Calculus rule for the derivative of F71.
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@ Block invertible Jacobian.

4 Springer

In nonsmooth analysis:
o Strict differentiability: Leach (1961), Nijenhuis (1974).
o Inclusions, set valued: Robinson (1980), Dontchev-Rockafellar (2009).

o Inverse, set valued: Aubin (1982), Rockafellar (1985), Aubin-Frankowka (1984),
Dontchev-Hager (1994).

Locally Lipschitz equations: Clarke (1976), Hiriart Urruty (1979), Clarke (1983).

> Robinson (1991) directional derivatives with calculus (restricted subclass).
> Sun (2001), semismoothness.
> Fukui, Kurdyka, Paunescu (2007), subanalytic / tame.
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Nonsmooth implicit differentiation

Implicit function theorem:
o Existence: Locally implicitely defined functional relation.

@ Calculus: Jacobians from matrix inversion.
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Nonsmooth implicit differentiation

Implicit function theorem:
o Existence: Locally implicitely defined functional relation.

@ Calculus: Jacobians from matrix inversion.

Context of this presentation:
o Lipschitz equations: possibly nonsmooth, finite dimension.

o Implicit differentiation: Calculus part

Motivation and applications:

o Generalizations focused on the existence / regularity part.
@ Applications:

> Bilevel optimization: differentiate solutions of optimization problems.
> Implicit compositional modeling: equilibrium models, declarative networks . ..

9/34



© Failure of formal nonsmooth implicit differentiation
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Generalized derivative

Clarke's generalized derivatives: Given a locally Lipschitz function F : R” — R™, the
Clarke Jacobian at a point x € R" is

JE(x) = conv ({kll_>n;o Jac r(xk) : xx € diff  and xx — x}) ,

where difff is the set of differentiability point of F (Rademacher: full measure).
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Lipschitz implicit function theorem (Hiriart Urruty 1979, Clarke 1976)

AY

Let F: R" x R™ — R"” be locally F(aj y) -0
Lipschitz and (%, 7) € R” x R™ such ’
that

F(x,y) =0.
If, V[A B] € JE(X,¥), Bisinvertible,
then 3U C R" a neighborhood of x
and a locally Lipschitz function G(x) <
so that

sy

F(x,G(x))=0 Vxe U,

and y = G(x) is the unique such
solution in a neighborhood of j.
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Formal nonsmooth calculus

Clarke’s inverse mapping theorem: Let F : R” — R" be locally Lipschitz with Clarke
Jacobian JE: R” = R"*" and x € R" such that JE(X) C R"*" only contains nonsingular
matrices.
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From Clarke's book: consider the function F: R?> — R?
x x| +y )
F: —>
(923 Cabird

e F(0)=0

0= {(3 ) aser i)

o Complies with hypotheses of Clarke's inverse mapping theorem

Failure of Jacobian inversion rule:
e dim(JF(0)) =2
o dim(Jg_1(0)) =3
o There exists M € JE_,(0) such that M~ ¢ J£(0)
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Elements of description

Explicit piecewise affine inverse.

Fﬁl(u,v _(v— u,2u—v)

F Y (u,v

Fu,v —(u+v 2u+v)

F~'(u,v

)
)=
)
)=

(u—l—v 2u —

(v—u 2u+v) for

4

for (u,v) € A,

v) for (u,v) € B,

for (u,v) € C,

(
(
(
(

u,v) € D,
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Failure of formal implicit differentiation

F: R? — R? complies with Clarke's inverse mapping theorem.

There exists M € Jg_;(0) such that M~' & JE(0)
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© Conservative gradients and Jacobians
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In a nutshell

Conservative gradients / Jacobians:
@ Objects akin to Clarke's subgradient / Jacobian (for locally Lipschitz functions).

o A given function F: R" — R™ has multiple conservative Jacobians
Je: R" = R™X".
o Compatible with compositional calculus rules

> Jp: R" = R™X" conservative for F: R” — R™.

> Jo: R™ = RPXM conservative for G: R™ — RP.

> Then x =% Jg(F(x)) X Jr(x) is conservative for G o F.
> Sum rule, product rule, ...

o Conservative gradients have a minimizing behavior similar to subgradients in
optimization.

Bibliography:
@ Introduction / nonsmooth algorithmic differentiation: Bolte-Pauwels (2020).
o Lazy gradient oracle: Bianchi-Hachem-Schechtman (2020).
o Structure / residual: Lewis-Tian (2021).
o Semi-smoothness: Davis-Drusvyatskiy (2021).
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0k+1 = 0k — ok vk < Tkl Tk S —(9Cf(9k)
vk € O°F(6k).
Chain rule along Absolutely Continuous (AC) curves (Brézis, Valadier).
Hypothesis: For any AC curve v: [0, 1] — R”

R = (i) WD),  ae te[o1]

=-®I%  ae tefo1]

Suppose: ¥(t) € —0°f(y(t)) for almost all t € [0, 1],
then t — f(y(t)) decreases, strictly if 0 & °f(y(t)).

Benaim-Haufbauer-Sorin (2005) subgradient plus zero mean noise, under proper
assumptions:

Vanishing step sizes, almost surely all accumulation points are critical points: 0 € d°f ().
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Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz
function (in sup norm), then

o J°f is the unit ball everywhere (no chain rule, no subgradient algorithm).

@ local minimizers are dense: there is a local minimizer arbitrarily close to any argument.

(x)
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X

Let f be a tame locally Lipschitz function (“generic” in applications),

@ piecewise polynomial.

@ semi-algebraic.

o definable.
Davis et .al. 2019, Bolte et. al. 2007: Subgradient projection formula implies chain
rule along AC curves.
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Conservative gradient (Bolte-Pauwels):
f: RP — R locally Lipschitz

D: RP = RP, closed graph, non empty valued, locally bounded,
For any AC curve v: [0,1] — R”

RO = (vAD)  WeD(O(D), e te[o]

o f is path differentiable.
o D is a conservative gradient for f.

o Conservative Jacobians defined similarly

Results:

o D(x) = {Vf(x)} for almost all x € R".
@ J°f(x) C conv(D(x)) for all x € RP.

@ Sum, linear combinations, compositions of conservative Jacobians are conservative.
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Assumption: For i€ {1,... N} and j € {1,... L},

@ g ; locally Lipschitz, conservative Jacobian J; ;, semialgebraic (or definable).
For i€ {1,...,N}, set D; = [1, Ji..

@ D; is a conservative gradient for ¢;.

@ Algorithmic differentiation is an oracle for D;.

Algorithmic differentiation + stochastic approximation: fix 6y € R, (l)ken i.id.
uniform in {1,..., N},
Ors1 — Ok

—Dy, (0
an € ’k( k)

Step size: >, 5 ax = +00 and ax = o(1/ log(k)).

Boundedness: there exists M > 0, ||0x|| < M almost surely.

Almost surely, £(6x) converges, accumulation points satisfy 0 € S | conv(D;(f))
For "most” such sequences, accumulation points are Clarke critical 0 € 9°4(6).
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In a nutshell

Conservative gradients / Jacobians:
@ Objects akin to Clarke's subgradient / Jacobian.
o Compatible with compositional calculus rules

@ Have a minimizing behavior similar to subgradients in optimization.
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o Nonsmooth implicit differentiation
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Nonsmooth inverse mapping calculus

Clarke’s inverse mapping theorem:
e F:R" — R" locally Lipschitz
o Clarke Jacobian Jg: R” = R™"
e X € R” such that JE(x) C R"*" only contains nonsingular matrices.

Then there exists U C R" a neighborhood of X such that Fy is a bi-Lipschitz homeo-
morphism.
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Nonsmooth inverse mapping calculus

Clarke’s inverse mapping theorem:
e F:R"” —» R" path differentiable
o Conservative Jacobian Jg: R” = R"*" convex valued
e X € R” such that Jr(x) C R"*" only contains nonsingular matrices.

Then there exists U C R" a neighborhood of X such that Fy is a bi-Lipschitz homeo-
morphism.

Conservative calculus:
y = e (F ) = M M e () )

is a conservative Jacobian for F~! (in a neighborhood of F(X)).
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Lipschitz implicit function theorem (Hiriart Urruty 1979, Clarke 1976)

o F: R" x R™ — R™ locally Lipschitz
o Clarke Jacobian Jg: R” x R™ = R™*(n+m)
e (X,y) € R" x R" such that F(x,y) = 0.
e V[A B] € JE(X,y), B is invertible
then 3U C R” a neighborhood of X and a locally Lipschitz function G(x) so that
F(x,G(x))=0 Vx € U,

and y = G(x) is the unique such solution in a neighborhood of y.

27/34



Lipschitz implicit function theorem (Hiriart Urruty 1979, Clarke 1976)

o F:R" xR™ — R™ path differentiable
o Clarke Jacobian Jg: R” x R™ = R™*(n+m)
e (X,y) € R" x R" such that F(x,y) = 0.
e V[A B] € JE(X,y), B is invertible
then 3U C R” a neighborhood of X and a locally Lipschitz function G(x) so that
F(x,G(x))=0 Vx € U,

and y = G(x) is the unique such solution in a neighborhood of y.

27/34



Lipschitz implicit function theorem (Hiriart Urruty 1979, Clarke 1976)

o F:R" xR™ — R™ path differentiable
o Clarke Jacobian Jg: R” x R™ = R™*(n+m)
e (X,y) € R" x R" such that F(x,y) = 0.
e V[A B] € JE(X,y), B is invertible
then 3U C R” a neighborhood of X and a locally Lipschitz function G(x) so that

F(x,G(x))=0 Vx € U,

and y = G(x) is the unique such solution in a neighborhood of y.

Nonsmooth implicit differentiation:
x= {~BT'A A B] € JE(x, G(x)}

is a conservative Jacobian for G in a neighborhood of x.

27/34



Lipschitz implicit function theorem (Hiriart Urruty 1979, Clarke 1976)

o F:R" xR™ — R™ path differentiable
o Conservative Jacobian Jr: R" = R"*" convex valued
e (X,y) € R" x R" such that F(x,y) = 0.
e V[A B] € Jr(%,y), B is invertible
then 3U C R” a neighborhood of X and a locally Lipschitz function G(x) so that

F(x,G(x))=0 Vx € U,

and y = G(x) is the unique such solution in a neighborhood of y.

Nonsmooth implicit differentiation:
x = {—B’lA . [A B] € Jr(x, G(x))} :

is a conservative Jacobian for G in a neighborhood of x.
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Conservative gradient and optimization

N
. 1 .
gl’Te'I]IRrL 6(0) = N ‘_E 1 é,(@) with ¢; = 8iL0g&iL-10...08i1

Assumption: For i€ {1,... N} and j € {1,... L},

@ g;; locally Lipschitz, conservative Jacobian J; j, semialgebraic (or definable).

o Extends to implicitely defined input output relations.
o Preserved by inversion / implicit definition.

= convergence of small step first order methods.
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e Applications
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Bilevel programming

min - £(x(6))

s.t. x(0) € argmin f(x, )
xeRM
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Assumption: ¢ and f locally Lipschitz. For any 6,

@ the inner argmin is a singleton

min  £(x(0))

OERP

where x(0) = argmin f(x, 0)
xeRM

Example: Lasso hyperparameter optimization (Bertrand et. al. 2020).
x(0) € argmin %HAX — b||5 + 6]|x]|1, 6>0
xXERM

(A, b) € R™™ x R", training data , £ loss on held out data

X = Proxgg .y, (x — sAT (Ax — b)) s>0

Equicorrelation set: & := {j € {1,...,m} : |A] (b— Ax(8))| = 6}.
If AZAg has full rank, nonsmooth implicit differentiation applies.

= recover LARS algorithm + convergence of small step first order methods.
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Examples: Equilibrium networks (Bai et. al. 2019), implicit networks (El Ghaoui et. al.
2019) declarative networks (Gould et. al. 2019), optimization layers (Agrawal et. al. 2019)

Monotone operator DEQs: Winston et. al. 2020,
o: R™ — R™ proximal operator (convex function), W € R™*™ such that W+ W7 ~ .

z=o0(Wz+ b) Vb € R, unique solution z(b).
JS: R™ = R™*™ Clarke Jacobian for o (assumed path differentiable).

then (I — JW) invertible for all J € J5(Wz + b)
= invertibility condition for nonsmooth implicit differentiation
= convergence of small steps training algorithms.
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© Conclusion
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Pathological Examples - Cyclic “gradient” orbits

Implicit differentiation applied to:
min  £(x,y,s) = (x —s1)> + 4(y — )°
X,¥,8

st. secargmax{(a+ b)(—2x+y+2):a€[0,3],b € [0,5]}.
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Implicit differentiation applied to:

min  £(x,y,s) = (x —s1)> + 4(y — )°

X,Y,S

st. secargmax{(a+ b)(—2x+y+2):a€[0,3],b € [0,5]}.

o Fixed point of projected gradient (linear over a box)
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Fixed point of projected gradient (linear over a box)
Invertibility condition outside of the line y = 2x — 2.
Discontinuity of the solution map.
Globally affects dynamics (not of gradient type) although line never met.
Generic: robust to perturbation of problem data.
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@ Do pathologies occur in practice? How to check?
@ How to check invertibility condition?

Jérdme Bolte, TAm L&, Edouard Pauwels, Antonio Silveti-Falls
https://arxiv.org/abs/2106.04350
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