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Summary

Observations:

The classical implicit function theorem has two parts (existence and calculus)

Nonsmooth generalizations essentially focused on existence.

Contributions: nonsmooth generalization of the calculus part.

Direct generalization of calculus fails.

Our solution: use conservative Jacobians.

Applications in compositional modeling (ML, DEQ), bilevel optimization, . . .
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Classical implicit function theorem (Dini 1877)

Let F : Rn × Rm → Rm be continuously differentiable with Jacobian Jac F (x , y) =
[Ax By ] ∈ Rm×(n+m) and (x̄ , ȳ) ∈ Rn × Rm such that

F (x̄ , ȳ) = 0.

If Bȳ is invertible, then there exists U ⊂ Rn a neighborhood of x̄ and a differentiable
function G(x) so that

∀x ∈ U F (x ,G(x)) = 0,

and y = G(x) is the unique such solution in a neighborhood of ȳ .

Jac G (x) = −B−1A, [A B] = Jac F (x ,G(x)).

Existence: Equation F (x , y) = 0 defines a functional relation y = G(x) around x̄ .

Implicit differentiation: Calculus rule for the derivative of G .
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Jac G (x) = −B−1A, [A B] = Jac F (x ,G(x)).

Existence: Equation F (x , y) = 0 defines a functional relation y = G(x) around x̄ .

Implicit differentiation: Calculus rule for the derivative of G .

5 / 34



Classical implicit function theorem (Dini 1877)

Let F : Rn × Rm → Rm be continuously differentiable with Jacobian Jac F (x , y) =
[Ax By ] ∈ Rm×(n+m) and (x̄ , ȳ) ∈ Rn × Rm such that
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Classical implicit function theorem

F (x , y) = x2 + y 2 − 1.

y

x

F (x, y) = 0
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Classical inverse mapping theorem

Let F : Rn → Rn be continuously differentiable with Jacobian Jac F : Rn → Rn×n and
x̄ ∈ Rn such that Jac F (x̄) is nonsingular. Then there exists U ⊂ Rn a neighborhood
of x̄ such that FU is a diffeomorphism. For all x ∈ U,

Jac F−1 (F (x)) = Jac F (x)−1.

Existence of a functional inverse for F around x̄ .

Calculus rule for the derivative of F−1.
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Generalizations of the implicit function theorem

F (x , y) = 0.

Euclidean space.

Continuously differentiable.

Block invertible Jacobian.

In nonsmooth analysis:

Strict differentiability: Leach (1961), Nijenhuis (1974).

Inclusions, set valued: Robinson (1980), Dontchev-Rockafellar (2009).

Inverse, set valued: Aubin (1982), Rockafellar (1985), Aubin-Frankowka (1984),
Dontchev-Hager (1994).

Locally Lipschitz equations: Clarke (1976), Hiriart Urruty (1979), Clarke (1983).
I Robinson (1991) directional derivatives with calculus (restricted subclass).
I Sun (2001), semismoothness.
I Fukui, Kurdyka, Paunescu (2007), subanalytic / tame.
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Nonsmooth implicit differentiation

Implicit function theorem:

Existence: Locally implicitely defined functional relation.

Calculus: Jacobians from matrix inversion.

Context of this presentation:

Lipschitz equations: possibly nonsmooth, finite dimension.

Implicit differentiation: Calculus part

Motivation and applications:

Generalizations focused on the existence / regularity part.

Applications:
I Bilevel optimization: differentiate solutions of optimization problems.
I Implicit compositional modeling: equilibrium models, declarative networks . . .
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Generalized derivative

Clarke’s generalized derivatives: Given a locally Lipschitz function F : Rn → Rm, the
Clarke Jacobian at a point x ∈ Rn is

Jc
F (x) = conv

({
lim

k→∞
Jac F (xk) : xk ∈ diffF and xk → x

})
,

where diffF is the set of differentiability point of F (Rademacher: full measure).
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Lipschitz implicit function theorem (Hiriart Urruty 1979, Clarke 1976)

Let F : Rn × Rm → Rm be locally
Lipschitz and (x̄ , ȳ) ∈ Rn×Rm such
that

F (x̄ , ȳ) = 0.

If, ∀[A B] ∈ Jc
F (x̄ , ȳ), B is invertible,

then ∃U ⊂ Rn a neighborhood of x̄
and a locally Lipschitz function G (x)
so that

F (x ,G(x)) = 0 ∀x ∈ U,

and y = G(x) is the unique such
solution in a neighborhood of ȳ .

y

x

F (x, y) = 0
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Formal nonsmooth calculus

Clarke’s inverse mapping theorem: Let F : Rn → Rn be locally Lipschitz with Clarke
Jacobian Jc

F : Rn ⇒ Rn×n and x̄ ∈ Rn such that Jc
F (x̄) ⊂ Rn×n only contains nonsingular

matrices. Then there exists U ⊂ Rn a neighborhood of x̄ such that FU is a bi-Lipschitz
homeomorphism.

Formal inverse differentiation? For all x ∈ U,

Jc
F−1 (F (x)) = Jc

F (x)−1 :=
{
M−1, M ∈ Jc

F (x)
}

?
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Failure of formal implicit differentiation

From Clarke’s book: consider the function F : R2 → R2

F :

(
x
y

)
7→
(
|x |+ y

2x + |y |

)

F (0) = 0

JcF (0) =

{(
α 1
2 β

)
, α, β ∈ [−1, 1]

}
Complies with hypotheses of Clarke’s inverse mapping theorem

Failure of Jacobian inversion rule:

dim(Jc
F (0)) = 2

dim(Jc
F−1 (0)) = 3

There exists M ∈ Jc
F−1 (0) such that M−1 6∈ Jc

F (0)
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Elements of description

Explicit piecewise affine inverse.

F−1(u, v) = (v − u, 2u − v) for (u, v) ∈ A,

F−1(u, v) =
1

3
(u + v , 2u − v) for (u, v) ∈ B,

F−1(u, v) = (u + v , 2u + v) for (u, v) ∈ C ,

F−1(u, v) =
1

3
(v − u, 2u + v) for (u, v) ∈ D,
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Failure of formal implicit differentiation

F : R2 → R2 complies with Clarke’s inverse mapping theorem.

There exists M ∈ Jc
F−1 (0) such that M−1 6∈ Jc

F (0)
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In a nutshell

Conservative gradients / Jacobians:

Objects akin to Clarke’s subgradient / Jacobian (for locally Lipschitz functions).

A given function F : Rn → Rm has multiple conservative Jacobians
JF : Rn ⇒ Rm×n.

Compatible with compositional calculus rules
I JF : Rn ⇒ Rm×n conservative for F : Rn → Rm.
I JG : Rm ⇒ Rp×m conservative for G : Rm → Rp .
I Then x ⇒ JG (F (x))× JF (x) is conservative for G ◦ F .
I Sum rule, product rule, . . .

Conservative gradients have a minimizing behavior similar to subgradients in
optimization.

Bibliography:

Introduction / nonsmooth algorithmic differentiation: Bolte-Pauwels (2020).

Lazy gradient oracle: Bianchi-Hachem-Schechtman (2020).

Structure / residual: Lewis-Tian (2021).

Semi-smoothness: Davis-Drusvyatskiy (2021).
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Descent mechanism: chain rule along Lipschitz curves

f : Rp → R locally Lipschitz,

f (θk+1) ≤ f (θk)?

θk+1 = θk − αkvk ⇔ θk+1 − θk
αk

∈ −∂c f (θk)

vk ∈ ∂c f (θk).

Chain rule along Absolutely Continuous (AC) curves (Brézis, Valadier).
Hypothesis: For any AC curve γ : [0, 1] 7→ Rp

d

dt
f (γ(t)) = 〈v , γ̇(t)〉 ∀v ∈ ∂c f (γ(t)), a.e. t ∈ [0, 1]

= −‖γ̇(t)‖2, a.e. t ∈ [0, 1]

Suppose: γ̇(t) ∈ −∂c f (γ(t)) for almost all t ∈ [0, 1],

then t 7→ f (γ(t)) decreases, strictly if 0 6∈ ∂c f (γ(t)).

Benaim-Haufbauer-Sorin (2005) subgradient plus zero mean noise, under proper
assumptions:

Vanishing step sizes, almost surely all accumulation points are critical points: 0 ∈ ∂c f (θ̄).
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Hypothesis: For any AC curve γ : [0, 1] 7→ Rp

d

dt
f (γ(t)) = 〈v , γ̇(t)〉 ∀v ∈ ∂c f (γ(t)), a.e. t ∈ [0, 1]

= −‖γ̇(t)‖2, a.e. t ∈ [0, 1]

Suppose: γ̇(t) ∈ −∂c f (γ(t)) for almost all t ∈ [0, 1],
then t 7→ f (γ(t)) decreases, strictly if 0 6∈ ∂c f (γ(t)).

Benaim-Haufbauer-Sorin (2005) subgradient plus zero mean noise, under proper
assumptions:

Vanishing step sizes, almost surely all accumulation points are critical points: 0 ∈ ∂c f (θ̄).

20 / 34



Descent mechanism: chain rule along Lipschitz curves

f : Rp → R locally Lipschitz, f (θk+1) ≤ f (θk)?

θk+1 = θk − αkvk ⇔ θk+1 − θk
αk

∈ −∂c f (θk)

vk ∈ ∂c f (θk).

Chain rule along Absolutely Continuous (AC) curves (Brézis, Valadier).
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Generic triviality, generic rigidity

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz
function (in sup norm), then

∂c f is the unit ball everywhere (no chain rule, no subgradient algorithm).
local minimizers are dense: there is a local minimizer arbitrarily close to any argument.
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Let f be a tame locally Lipschitz function (“generic” in applications),

piecewise polynomial.
semi-algebraic.
definable.

Davis et .al. 2019, Bolte et. al. 2007: Subgradient projection formula implies chain
rule along AC curves.
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Conservative gradient

Conservative gradient (Bolte-Pauwels):
f : Rp → R locally Lipschitz
D : Rp ⇒ Rp,

closed graph, non empty valued, locally bounded,

For any AC curve γ : [0, 1] 7→ Rp

d

dt
f (γ(t)) = 〈v , γ̇(t)〉 ∀v ∈ D(γ(t)), a.e. t ∈ [0, 1]

f is path differentiable.

D is a conservative gradient for f .

Conservative Jacobians defined similarly

Results:

D(x) = {∇f (x)} for almost all x ∈ Rp.

∂c f (x) ⊂ conv(D(x)) for all x ∈ Rp.

Sum, linear combinations, compositions of conservative Jacobians are conservative.
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Conservative gradient and optimization

min
θ∈Rp

`(θ) :=
1

N

N∑
i=1

`i (θ) with `i = gi,L ◦ gi,L−1 ◦ . . . ◦ gi,1

Assumption: For i ∈ {1, . . . ,N} and j ∈ {1, . . . , L},
gi,j locally Lipschitz, conservative Jacobian Ji,j , semialgebraic (or definable).

For i ∈ {1, . . . ,N}, set Di =
∏L

l=1 Ji,l .

Di is a conservative gradient for `i .

Algorithmic differentiation is an oracle for Di .

Algorithmic differentiation + stochastic approximation: fix θ0 ∈ Rp, (Ik)k∈N i.i.d.
uniform in {1, . . . ,N},

θk+1 − θk
αk

∈ −DIk (θk)

Step size:
∑+∞

k=1 αk = +∞ and αk = o(1/ log(k)).
Boundedness: there exists M > 0, ‖θk‖ ≤ M almost surely.
Almost surely, `(θk) converges, accumulation points satisfy 0 ∈

∑N
i=1 conv(Di (θ̄))

For “most” such sequences, accumulation points are Clarke critical 0 ∈ ∂c`(θ).
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In a nutshell

Conservative gradients / Jacobians:

Objects akin to Clarke’s subgradient / Jacobian.

Compatible with compositional calculus rules

Have a minimizing behavior similar to subgradients in optimization.
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Nonsmooth inverse mapping calculus

Clarke’s inverse mapping theorem:

F : Rn → Rn locally Lipschitz

Clarke Jacobian Jc
F : Rn ⇒ Rn×n

x̄ ∈ Rn such that Jc
F (x̄) ⊂ Rn×n only contains nonsingular matrices.

Then there exists U ⊂ Rn a neighborhood of x̄ such that FU is a bi-Lipschitz homeo-
morphism.

Failure of formal differentiation

Jc
F−1 (y) 6= Jc

F (F−1(y))−1 :=
{
M−1, M ∈ Jc

F (F−1(y))
}

Conservative calculus:

y ⇒ Jc
F (F−1(y))−1 :=

{
M−1, M ∈ Jc

F (F−1(y))
}

is a conservative Jacobian for F−1 (in a neighborhood of F (x̄)).
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Lipschitz implicit function theorem (Hiriart Urruty 1979, Clarke 1976)

F : Rn × Rm → Rm locally Lipschitz

Clarke Jacobian Jc
F : Rn × Rm ⇒ Rm×(n+m)

(x̄ , ȳ) ∈ Rn × Rm such that F (x̄ , ȳ) = 0.

∀[A B] ∈ Jc
F (x̄ , ȳ), B is invertible

then ∃U ⊂ Rn a neighborhood of x̄ and a locally Lipschitz function G(x) so that

F (x ,G(x)) = 0 ∀x ∈ U,

and y = G(x) is the unique such solution in a neighborhood of ȳ .

Nonsmooth implicit differentiation:

x ⇒
{
−B−1A : [A B] ∈ Jc

F (x ,G(x))
}
.

is a conservative Jacobian for G in a neighborhood of x̄ .

27 / 34



Lipschitz implicit function theorem (Hiriart Urruty 1979, Clarke 1976)

F : Rn × Rm → Rm path differentiable

Clarke Jacobian Jc
F : Rn × Rm ⇒ Rm×(n+m)

(x̄ , ȳ) ∈ Rn × Rm such that F (x̄ , ȳ) = 0.
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F (x̄ , ȳ), B is invertible

then ∃U ⊂ Rn a neighborhood of x̄ and a locally Lipschitz function G(x) so that

F (x ,G(x)) = 0 ∀x ∈ U,

and y = G(x) is the unique such solution in a neighborhood of ȳ .
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Nonsmooth implicit differentiation:

x ⇒
{
−B−1A : [A B] ∈ JF (x ,G(x))

}
.

is a conservative Jacobian for G in a neighborhood of x̄ .

27 / 34



Conservative gradient and optimization

min
θ∈Rp

`(θ) :=
1

N

N∑
i=1

`i (θ) with `i = gi,L ◦ gi,L−1 ◦ . . . ◦ gi,1

Assumption: For i ∈ {1, . . . ,N} and j ∈ {1, . . . , L},
gi,j locally Lipschitz, conservative Jacobian Ji,j , semialgebraic (or definable).

Extends to implicitely defined input output relations.

Preserved by inversion / implicit definition.

⇒ convergence of small step first order methods.
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Bilevel programming

How to differentiate the solution of an optimization problem?

Assumption: ` and f locally Lipschitz. For any θ,

the inner argmin is a singleton

min
θ∈Rp

`(x(θ))

s.t. x(θ) ∈ argmin
x∈Rm

f (x , θ)

Example: Lasso hyperparameter optimization (Bertrand et. al. 2020).

x(θ) ∈ argmin
x∈Rm

1

2
‖Ax − b‖2

2 + θ‖x‖1, θ > 0

(A, b) ∈ Rn×m × Rn, training data , ` loss on held out data

x = proxsθ‖·‖1
(x − sAT (Ax − b)) s > 0

Equicorrelation set: E := {j ∈ {1, . . . ,m} : |AT
j (b − Ax(θ))| = θ}.

If AT
EAE has full rank, nonsmooth implicit differentiation applies.

⇒ recover LARS algorithm + convergence of small step first order methods.
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Compositional models

Neural networks:
Compositional models,

elementary blocks called layers (parametric functions).

Image courtesy: implicit-layers-tutorial.org

Examples: Equilibrium networks (Bai et. al. 2019), implicit networks (El Ghaoui et. al.
2019) declarative networks (Gould et. al. 2019), optimization layers (Agrawal et. al. 2019)

Monotone operator DEQs: Winston et. al. 2020,
σ : Rm → Rm proximal operator (convex function), W ∈ Rm×m such that W +W T � I .

z = σ(Wz + b) ∀b ∈ Rm, unique solution z(b).

Jc
σ : Rm ⇒ Rm×m Clarke Jacobian for σ (assumed path differentiable).

then (I − JW ) invertible for all J ∈ Jc
σ(Wz + b)

⇒ invertibility condition for nonsmooth implicit differentiation
⇒ convergence of small steps training algorithms.
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Pathological Examples - Cyclic “gradient” orbits

Implicit differentiation applied to:

min
x,y,s

`(x , y , s) := (x − s1)2 + 4(y − s2)2

s.t. s ∈ arg max{(a + b)(−2x + y + 2) : a ∈ [0, 3], b ∈ [0, 5]}.

Fixed point of projected gradient (linear over a box)

Invertibility condition outside of the line y = 2x − 2.

Discontinuity of the solution map.

Globally affects dynamics (not of gradient type) although line never met.

Generic: robust to perturbation of problem data.
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Conclusion

Nonsmooth implicit differentiation

Does Lipschitz implicit function theorem come with a calculus?

Using Clarke’s Jacobian: No.
I Inverses of Clarke Jacobians are not Clarke Jacobians

Using Conservative Jacobian: Yes.
I Inverses of Conservative Jacobians are conservative Jacobians

Practical implications:

Extends the domain of validity of stochastic learning algorithm / compositional
modeling.

Applications in ML (bilevel hyperparameter tuning, implicit neural networks . . . ).

Improvements:

Do pathologies occur in practice? How to check?

How to check invertibility condition?

Jérôme Bolte, Tâm Lê, Edouard Pauwels, Antonio Silveti-Falls
https://arxiv.org/abs/2106.04350

Thanks.
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