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What this talk is about.

Stochastic optimization with state-dependent distributions

min  E [l(z,2)] + r(z)

T z~D(x)
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What this talk is about.

Stochastic optimization with state-dependent distributions
min  E [l(z,2)] + r(z)

T z~D(x)

Building on framework Perdomo-Zrnic-Diinner-Hardt:

» “Performative prediction” (ICML 2020)

» “Stochastic optimization for performative prediction” (NeurlPS 2020)
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Introduction
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Pipeline of Supervised Learning

Phase I: Training

Phase II: Deployment
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Pipeline of Supervised Learning

Phase I: Training

Phase II: Deployment

Training data
s5& P

Learning Rule
zeR?

earning system
(Algorithm)

Learning Rule
z eR?

Key Assumption: Both test data and training data drawn from P
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Learning systems do not exist in isolation. ..

Training data earning system Learning Rule
g iidp (Algorithm) zeR?
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Learning systems do not exist in isolation. ..

. Training data i Learning Rul
Phase I: Training giidp e?;?;i:ﬂ':)em e‘jnemé . e

Learning Rule

Phase II: Deployment
zeR?

Example (passive interaction):

Bank loan approval influences debt/credit score/#tloans.

Example (active interaction): [strategic behavior/gaming]
Individuals alter features to increase likelihood of loan approval.
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Learning systems do not exist in isolation. ..
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Learning Rule

Phase II: Deployment
zeR?

Example (passive interaction):

Bank loan approval influences debt/credit score/#tloans.

Example (active interaction): [strategic behavior/gaming]
Individuals alter features to increase likelihood of loan approval.

Perdomo-Zrnic-Diinner-Hardt '20 call this setting performative prediction
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Optimization model

Stochastic optimization with state-dependent distributions

min E >[Z(az, 2)] + r(x)

T z~D(x
where

® D(x) are state-dependent distributions accessible by sampling
® {(-,z) is a convex loss

® r(-) is convex structure-inducing regularizer
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Optimization model

Stochastic optimization with state-dependent distributions

min E >[Z(az, 2)] + r(x)

T z~D(x
where
® D(x) are state-dependent distributions accessible by sampling

® {(-,z) is a convex loss

® r(-) is convex structure-inducing regularizer

‘ Decision « is judged according to D(z). ‘

Bad news: nonsmooth, nonconvex
Two paths forward:
1. Impose “smoothness” or “structure” on D(-) and solve.
e.g. Ahmed '00, Dupalova '06, Goel-Grossman '06, Hassani et al. '20

2. Settle for a related and efficiently computable solution concept.
Perdomo-Zrnic-Diinner-Hardt '20
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Equilibrium
Notation:

fylx)y= E {(z,2) and Viy(x)= E Vi(z,z)

z~D(y) z~D(y)
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Equilibrium

Notation:

fylx)y= E {(z,2) and Viy(x)= E Vi(z,z)

z~D(y) z~D(y)
Definition (Perdomo et al '20)
A point Z is at equilibrium for D(-) if

z=argmin E {(z,2)+r(x)
@ z~D(Z)

"

“No incentive to alter Z based only on response D(Z)
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Equilibrium
Notation:

fylx)y= E {(z,2) and Viy(x)= E Vi(z,z)

z~D(y) z~D(y)

Definition (Perdomo et al '20)
A point Z is at equilibrium for D(-) if

Z = argmin fz(x) + r(z)

“No incentive to alter T based only on response D(Z)."
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Equilibrium

Notation:

fylx)y= E {(z,2) and Viy(x)= E Vi(z,z)

z~D(y) z~D(y)

Definition (Perdomo et al '20)
A point Z is at equilibrium for D(-) if

Z = argmin fz(x) + r(z)

"

“No incentive to alter Z based only on response D(Z)

Algorithmically: these are fixed points of the map
S(y) := argmin f,(x) + r(z).
= suggests a fixed-point algorithm
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Performative prediction

Repeated minimization:

T¢y1 = argmin
xT

E

z~D(wt)

[6(z, 2)] + r(z)
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Performative prediction

Repeated minimization:

T¢y1 = argmin
xT

E

2~D(wt)

[6(z, 2)] + r(z)

Algorithms for static problems heuristically generalize.

Example: Proximal stochastic gradient

Sample z; ~ D(z¢)
Set xy41 = proxw(xt —nVil(x, zt))

Similar for dual averaging, prox-point, clipped gradient, fast gradient, ...
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Performative prediction

Repeated minimization:

T¢y1 = argmin
xT

E

2~D(wt)

[£(2, 2)] +r(z)

Algorithms for static problems heuristically generalize.

Example: Proximal stochastic gradient

Sample z; ~ D(z¢)
Set xy41 = proxm(a:t —nVil(x, zt))

Similar for dual averaging, prox-point, clipped gradient, fast gradient, ...

Perdomo et al. '20:

1
2
3.
4

. Proposed this framework

. Existence of equilibria

Convergence of repeated minimization

. Convergence of (stochastic) projected gradient method

6/26



Our contribution

Meta Thm: Algorithms that sample according to D(x+) can be viewed
as the same algorithms applied to the static problem

min E I)[Z(:c, 2)] + r(x)

x zr

where “bias”"— 0O linearly as x+ — .
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Our contribution

Meta Thm: Algorithms that sample according to D(x+) can be viewed
as the same algorithms applied to the static problem
min E )[Z(:c, 2)] + r(x)

x zr

where “bias”"— 0O linearly as x+ — .

Recipe:

algorithms for static problems «—  “mildly dynamic”

7/26



Numerical illustration

Chasing the mean:

i E —2|)? h D =N T
min E |z — 2|l where (1, 72) (p(v2,21),T)

Equilibrium point T = (0, 0).
‘fo(a:) and Vf;c(x)‘
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Numerical illustration

Chasing the mean:

min  E |z —z|° where D(z1,z2) = N(p(z2,21),1)

z€R2 2~D(z)

Equilibrium point z = (0, 0).
| Vfolw) and Vfs(a)]

Figure: p = 0.25
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Numerical illustration

Chasing the mean:

min  E |z —z|° where D(z1,z2) = N(p(z2,21),1)

z€R2 2~D(z)

Equilibrium point z = (0, 0).
| Vfolw) and Vfs(a)]

Figure: p = 0.5
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Numerical illustration

Chasing the mean:

min  E |z —z|° where D(z1,z2) = N(p(z2,21),1)

z€R2 2~D(z)

Equilibrium point z = (0, 0).

Figure: p = 0.99
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Numerical illustration

Chasing the mean:

min  E |z —z|° where D(z1,z2) = N(p(z2,21),1)

z€R2 2~D(z)

Equilibrium point z = (0, 0).

Figure: p = 1.25
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Numerical illustration

Chasing the mean:

min  E |z —z|° where D(z1,z2) = N(p(z2,21),1)
z€R2  z~D(x)

Equilibrium point z = (0, 0).

107

9%, = ix)

103

0 2000 000 8000 8000 10000
iteration t

Figure: Stochastic gradient method (fixed 7 > 0)

Conclusion: meta-theorem seems valid when p € (0, 1)
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v

Outline

Notation and assumptions

Two deviation inequalities

Reduction to online convex optimization

Stochastic (accelerated) gradient

Model-based algorithms
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Notation:

b Fix £: R? x Z — R where Z is a metric space

» P = {probability measures on Z} with Wasserstein-1 distance W1 (y, v/)

Assumption:

> (smoothness/convexity) Loss £(-, z) is a-strongly convex and

IVE(z, 2) = Ve(z,2')|| < B-d(z,2)
IVe(z,2) = Ve’ 2)|| < L - [lw — ]|

> (sensitivity) It holds:
Wi (D(x), D(y)) <7 - [lz -y

Conditioning measures:
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Interesting regime is p € (0,1)
Recall repeated minimization:

ZTe41 = argmin fo, (z) + r(x)

x

Theorem (Perdomo et al. '20)

If p < 1, then repeated minimization converges to T at linear rate p.

If p > 1, then repeated minimization may diverge.
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Interesting regime is p € (0,1)
Recall repeated minimization:

ZTe41 = argmin fo, (z) + r(x)

x

Theorem (Perdomo et al. '20)

If p < 1, then repeated minimization converges to T at linear rate p.

If p > 1, then repeated minimization may diverge.
True for wider class of algorithms including proximal point method

. 1
Te41 = argmin fo, (z) +7(z) + %Hx - |?

T

Theorem (D-Xiao '20)

If p < 1, then prox-point method converges to & at linear rate 1 — ——2

1+(am)—L-
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Interesting regime is p € (0, 1)
Recall repeated minimization:

ZTe41 = argmin fo, (z) + r(x)

x

Theorem (Perdomo et al. '20)

If p < 1, then repeated minimization converges to T at linear rate p.

If p > 1, then repeated minimization may diverge.
True for wider class of algorithms including proximal point method

. 1
Te41 = argmin fo, (z) +7(z) + %Hx - |?

T

Theorem (D-Xiao '20)

If p < 1, then prox-point method converges to & at linear rate 1 — ——2

1+(am)—L-

Advantage: prox-point is always “distributionally stable”
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[P, ()]

Regularization experimentally helps!
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Figure: Strategic classification with p > 1.
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Two deviation inequalities
Define

fy(@)= E L(z,2) and gy(x,:v') = fy(z) - fy(w,)~

2~D(y)
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Two deviation inequalities
Define
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Two deviation inequalities
Define
fy(@) == % Uz, z) and Gy(z,2") := fy(x) — fy(2).
z~D(y)

Question: how do V f, and G, vary with y?

Lemma (Gradient deviation)

For all z,y € R? it holds:

sup ||Vfy(z) = Viy @) <v8-lly—|

z€R4
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Two deviation inequalities
Define
fy(@) == % Uz, z) and Gy(z,2") := fy(x) — fy(2).
z~D(y)

Question: how do V f, and G, vary with y?

Lemma (Gradient deviation)

For all z,y € R? it holds:

sup ||Vfy(z) = Viy @) <v8-lly—|

zcRd
Implication: Bias(z) := [|[Vfz(z) = Vfz(2)|| <8 - ||z — Z||.

Lemma (Gap deviation)

All z,2' € RY and y,y' € R? satisfy:

Gy(z,2') = Gy (z,2") <AB- |l — || - ly — /|l
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Two deviation inequalities
Define

fy(@) = E Llz,2) and Gy (=, w') = fy(z) - fy(w,)~

z~D(y)

Question: how do V f, and G, vary with y?

Lemma (Gradient deviation)

For all z,y € R? it holds:

sup ||Vfy(z) = Viy @) <v8-lly—|

zcRd
Implication: Bias(z) := [|[Vfz(z) = Vfz(2)|| <8 - ||z — Z||.

Lemma (Gap deviation)

All z,2' € RY and y,y' € R? satisfy:
Gy(z,2') = Gy (x,2") <AB-lz —2|| - ly = ¥/ll

Implication:  G.(z,%) — Gz(z,%) < B - ||z — Z||* offset by strong convexity
14/26



Reduction to online convex optimization

Online convex optimization is a repeated game:

Round ¢t > 1:

» Player chooses x; € domr
» Nature reveals function ¢; and player pays £;(x¢)

Player’s goal: Minimize the regret

t

R: = Z(&(wl) + r(xl)) — msz(&(m) + r(m)),

i=1

Algorithms: prox-grad. (Duchi-Singer '09), dual averaging (Xiao '10),
Follow-The-Regularized-Leader (FTRL) (McMahan '11)

Guarantees:

l; are a-strongly convex on domr G?logt
= R=0(—=-
¢ are G-Lipschitz on dom r «
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Reduction to online convex optimization

Recall the equilibrium problem:

mzin o(z) == fz(x) + r(x) where fz(x)= E [z, 2)].

z~D(Z)
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Reduction to online convex optimization

Recall the equilibrium problem:

mzin o(z) == fz(x) + r(x) where fz(x)= E [z, 2)].

z~D(Z)

Theorem (D-Xiao '20)

Suppose p € (0, 1). Run an online algorithm where in iteration t, nature draws
z¢+ ~ D(x¢) and declares 0i(x+) = €(x+, 2t). Then

1 ¢ _ E[R;
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Reduction to online convex optimization

Recall the equilibrium problem:

mzin o(z) == fz(x) + r(x) where fz(x)= E [z, 2)].

z~D(Z)

Theorem (D-Xiao '20)

Suppose p € (0, 1). Run an online algorithm where in iteration t, nature draws
z¢+ ~ D(x¢) and declares 0i(x+) = €(x+, 2t). Then

t
1 _ E[R:]
E - i | — € —=d
(4300 -] <
Downside: Requires strong assumptions (bounded domain, Lipschitz loss)

Instead, we analyze algorithms directly.

Assumption: (Finite variance) There is a constant o > 0 satisfying

E ||[Vlz,z) — Vi(x)|]* <o V.

z~D(z)
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Proximal stochastic gradient (SG)

Sample z; ~ D(z¢)
Set xy41 = proxm(a’t —nViLl(xe, 2¢))

Algorithm:
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Proximal stochastic gradient (SG)

Sample z; ~ D(z¢)
Set xy41 = proxm(a’t —nViLl(xe, 2¢))

Theorem (D-Xiao '20, Dinner '20)

Algorithm:

If p < %, proximal SG finds = with E[p(z) — ¢(z)] < & using

@ (Fi - log (M) + Zi) samples.
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Proximal stochastic gradient (SG)

Sample z; ~ D(z¢)
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Theorem (D-Xiao '20, Dinner '20)

Algorithm:

If p < %, proximal SG finds z with E[p(z) — ¢(Z)] < € using
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Proximal stochastic gradient (SG)

Sample z; ~ D(z¢)
Set xy41 = proxm(xt —nViLl(xe, 2¢))

Theorem (D-Xiao '20, Dinner '20)

Algorithm:

If p < %, proximal SG finds z with E[p(z) — ¢(Z)] < € using

@ (Fi - log (M) + Zi) samples.

If p < 1, proximal SG finds = with ||z — Z|*> < & using
a2 2
@ </<c - log (onx||> + 0-2> samples.
€ a’e

Remark:

1. Reduces to classical rate if p = 0 (Lan '10)

2. Last iterate convergence if r = d¢ in (Diinner-Perdomo-Zrnic-Hardt '20)
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Proof sketch: grad deviation controls bias

Recall fo(z) = E {(z,z2) = Bias(z) = ||V /fz(z) — Vfz(2)||

z~D(x)
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Proof sketch: grad deviation controls bias

Recall fz(z) = E )4(:6,2) = Bias(z) = ||V /fz(z) — Vfz(2)||

z~D(x

Gradient deviation = Bias(z) < fvy- |z —Z||
= (Vfe(x),2— ) > [fz(z) — fz(@)] + 29522 |z — z||?
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Proof sketch: grad deviation controls bias

Recall fz(z) = E )4(:6,2) = Bias(z) = ||V /fz(z) — Vfz(2)||

z~D(x

Gradient deviation = Bias(z) < fvy- |z —Z||
= (Vhel@),o =) > [fs(2) - fo(@)] + 20522 o — 2|
Lemma: (One-step progress) It holds:
WE[p(041) — @(@)] < (1 — an) Blje, — 31]° — Elzest — 72 + O(r?),

where & = a1l — 2p).
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Proof sketch: grad deviation controls bias

Recall fz(z) = E )4(:6,2) = Bias(z) = ||V /fz(z) — Vfz(2)||

z~D(x

Gradient deviation = Bias(z) < fvy- |z —Z||
= (Vfe(@)w = 5) > [fa(2) = fo(@)] + 2472 2 — 2
Lemma: (One-step progress) It holds:
20E[p(2e41) — ¢(2)] < (1 - an) Ellze — 2|* — Ellzers —2l* + O(n),
where & = a1 — 2p). Combining with strong convexity get
E|lzes1 — 2)* < (1 - an) Ellze — z)|* + O(n),

where & ~ a(1 — p).

. the rest is standard
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Proximal accelerated stochastic gradient (ASG)

Algorithm: (Kulunchakov-Mairal '19)

Sample z; ~ D(yi—1) and set gr = VE(y¢—1, 2¢),
Set x; = prox,, . (yi—1 — ngt),

Set y, = @y + V120200

Tt — Tt—1).
14++4/na(1—2p) )

Remark: first proximal ASG due to Ghadimi-Lan '13
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Proximal accelerated stochastic gradient (ASG)

Algorithm: (Kulunchakov-Mairal '19)

Sample z; ~ D(yi—1) and set gr = VE(y¢—1, 2¢),
Set x; = prox,, . (yi—1 — ngt),

Set y, = @y + V120200

Tt — Tt—1).
14++4/na(1—2p) )

Remark: first proximal ASG due to Ghadimi-Lan '13

Theorem (D-Xiao '20)
If p < k=%, proximal ASG finds x satisfying E[p(z) — ¢(Z)] < € using

(@ (\/E log <M> + 02) samples.

ag

Proof: technical using stoch. estimate sequences (Kulunchakov-Mairal '19)
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Model-based algorithms

Uy, {(y,
Ca(y)
L(y) ‘ 1 1
prox—point gradient clipped gradient
L (y) = £(y) La(y) = L@) + (V@) y — o) La(y) = (L) + (VL(z),y — =) T

» clipped gradient model introduced in Asi-Duchi '19
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Model-based algorithms

Uy, {(y,
Ca(y)
L(y) ‘ 1 1
prox—point gradient clipped gradient
L (y) = £(y) La(y) = L@) + (V@) y — o) La(y) = (L) + (VL(z),y — =) T

» clipped gradient model introduced in Asi-Duchi '19

Algorithm:
Sample z¢ ~ D(x¢)

. 1
Set 411 = argmin lq, (y, z¢) + 7(y) + %Hy - :ct\|2
Y
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Model-based algorithms

Assumption: There exist a1, az > 0 such that with z ~ D(z) have

1. (Convexity) (-, z) is convex and £ (-, z) + r is ai-strongly convex.

2. (Bias/variance) It holds:
E[Viy(z, 2)] = Viz(2) and E ||Vl (z,2) — Vfe(2)]* < 0.
3. (Accuracy) The estimates holds:

Elle(w,2)] = fo(z)  and  Ella(y,2)] + %Hw —ylI* < faly)-

z
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Model-based algorithms

Assumption: There exist a1, az > 0 such that with z ~ D(z) have

1. (Convexity) (-, z) is convex and £ (-, z) + r is ai-strongly convex.

2. (Bias/variance) It holds:
E[Viy(z, 2)] = Viz(2) and E ||Vl (z,2) — Vfe(2)]* < 0.
3. (Accuracy) The estimates holds:

Elle(w,2)] = fo(z)  and  Ella(y,2)] + %Hw —ylI* < faly)-

z

Remark:

» Similar assumptions in Davis-Drusvyatskiy '19, Asi-Duchi '19
» tighter models yield better algorithms Ryu-Boyd 14, Asi-Duchi '19
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Model-based algorithms

Theorem (D-Xiao '20)

2L <1

a1tag 2K

L (o)~ o@ o’
© <a1 + a2 log ( € + (o1 + a2)e samples.

algorithm finds x with E[p(z) — ¢(Z)] < € using
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Model-based algorithms

Theorem (D-Xiao '20)

2L <1

a1tag 2K

algorithm finds x with E[p(z) — ¢(Z)] < € using

L (o) 0@ o’
@) <a1 T o log ( - 4F (a1 +o2)e samples.

5 o 5 —n2 5
If aﬂfaz < 1, algorithm finds x with ||z — Z||* < € using

L lzo — Z|2 o?
-1 L
O (051 . og ( . + (o1 + 02)%c samples
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Model-based algorithms

Theorem (D-Xiao '20)

If 22 < 1, algorithm finds x with E[p(z) — ¢(Z)] < € using

altasz

L (o) 0@ o’
@) <a1 T o log ( - 4F (a1 +o2)e samples.

5 5 5 —n2 q
If (111{3&2 < 1, algorithm finds x with ||z — Z||* < € using

L lzo — Z|2 o?
-1 L
O (051 . og ( . + (o1 +oa)%e samples

Rates for stochastic proximal point and clipped gradient follow immediately.
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Proof sketch: function gap deviation

Lemma: (One-step progress on ., ) For every y it holds:

29[z, (141)~ 02, ()] < (1—c2n)E||z—y|* ~(1+a1nE|zrs1 —y|*+O ("),
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Proof sketch: function gap deviation

Lemma: (One-step progress on ., ) For every y it holds:
20E (s, (Ter1) =P, (y)] < (1—azmE|z:—y||* — (1+a1n)E|zer1 —y[|*+O0(n*),
Gap deviation —

oy (Te+1) — 0, (T) > @z(we11) — @z (T) — YBllxe41 — Z|| - lze — Z|]

B - B -
> pz(Te+1) — 0z (Z) — 7||9Ct+1 - )% - 7”% - 7%,
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Proof sketch: function gap deviation

Lemma: (One-step progress on ., ) For every y it holds:
20E[pa, (¢e41)—pa, ()] < (1—2n)Elze—y||* —(1+ainE|zer —y[I*+O(n*),
Gap deviation —
Py (Te41) = 02, (T) 2 pa(Te41) — 02 (T) — VBllwe1 — Z| - [z — Z|
> (i) = p(@) = Llforss — a1 = L for — 3],
Combining with Lemma:
20E[pz (2141) =02 (y)] < (1—Gan)E||z: —2||* = (1+a1n)E|zerr —2|* +O0(n°),

where &1 = a1 — 0 and &2 = a2 — 0

... the rest is standard
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Inexact repeated minimization (IRM)

In typical applications:

t
“deployment of a learning rule” CO;S “sampling”

Diinner-Perdomo-Zrnic-Hardt '20:

establish “deployments/samples” trade-off for IRM w/ projected SG method

Theorem (D-Xiao '20)

If p < 1, can implement IRM with all previous algorithms with same sample

efficiency and only flp log(1/e) deployments.

25/26



Details in the paper:
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