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The nearest correlation matrix model

Let us start with a simple Nearest Correlation Matrix (NCM) problem (a
terminology coined by Nick Higham in 2002)

min
1

2
‖X −G‖2F

s.t. Xii = 1 , i = 1, . . . , n ,

X � 0 ,

which is a special case of the best approximation problem

min
1

2
‖x− c‖2

s.t. Ax ∈ b+Q ,

x ∈ K ,

where X is a finite-dimensional real Hilbert space equipped with a scalar
product 〈·, ·〉 and its induced norm ‖ · ‖
A : X → <m is a linear operator

Q = {0}p ×<q+ is a polyhedral convex cone, 1 ≤ p ≤ m, q = m− p, and
K is a closed convex cone in X .
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The dual formulation

The dual of the best approximation problem is in the form of

max −θ(y) := −
[

1

2
‖ΠK(c+A∗y)‖2 − 〈b, y〉 − 1

2
‖c‖2

]
s.t. y ∈ Q∗ ,

where Q∗ = <p ×<q+.

One can solve the above dual by solving the following nonsmooth equation

F (y) := y −ΠQ∗ [y − (AΠK(c+A∗y)− b)] = 0, y ∈ <m .

For the NCM problem,
• A(X) = diag(X), a vector consisting of all diagonal entries of X.
• A∗(y) = diag(y), the diagonal matrix.
• b = e, the vector of all ones in <n and K = Sn+

F (y) = AΠSn
+

(G+A∗y)− b.

3



Solving the NCM with a semismooth Newton method

Let X ∈ Sn have the following spectral decomposition

X = PΛPT ,

where Λ is the diagonal matrix of eigenvalues of X arranged in the
non-increasing order and P is a corresponding orthogonal matrix of
orthonormal eigenvectors.

Then

X+ := ΠSn
+

(X) = PΛ+P
T .

When X is nonsingular, ΠSn
+

(·) is continuously differentiable near X with

Π′Sn
+

(X)(∆X) = P [Ω ◦ PT (∆X)P ]PT ∀∆X ∈ Sn,

where

Ωij =
max(0, λi)−max(0, λj)

λi − λj
if λi 6= λj & Ωij = (max(0, λi))

′ otherwise.
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We have

• ‖X+‖2 is continuously differentiable with

∇
(1

2
‖X+‖2

)
= X+,

but is not twice continuously differentiable (good news!).

• X+ is not piecewise smooth unless n = 1, but strongly
semismooth1: for any X ∈ Sn, ΠSn

+
is directionally differentiable at X and

it holds for X that

ΠSn
+

(Y )−ΠSn
+

(X)−Π′Sn
+

(Y )(Y −X) = O(‖Y −X‖2)

for any Y ∈ Sn such that ΠSn
+

(·) is differentiable at Y and Y → X.

1S. and J. Sun, Semismooth matrix valued functions. Math of OR 27 (2002)
150–169.
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Numerical efficiency

We test the efficiency of a quadratically convergent Newton’s method
designed by Houduo Qi and S. 2 The written code is called
CorrelationMatrix.m on randomly generated pseudo correlation matrix.
The code (in other languages too) is publically available in my webpage.
All the experiments are done on the ThinkStation Desktop with Intel (R)
Core(TM) i7-8700 processor.

Observations: 1. In addition to the strong convexity of the objective
function, the key point for the semismooth Newton method to work is the
primal constraint non-degeneracy (transversality, generalized LICQ). 2. Ω
can be very sparse to reduce computational costs substantially.

2H.D. Qi and S., A quadratically convergent Newton method for computing the
nearest correlation matrix. SIAM J. Matrix Analysis and Applications 28 (2006)
360–385.
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Inequality constraints

If we have lower and upper bounds on X, F takes the form

F (y) = y −ΠQ∗ [y − (AΠSn
+

(G+A∗y)− b)] ,

which involves double layered projections over convex cones.

A quadratically convergent smoothing Newton method is designed by Yan
Gao and S.3.

Again, highly efficient if the constraint non-degeneracy holds!

3Y. Gao and S., Calibrating least squares covariance matrix problems with equality
and inequality constraints, SIAM J on Matrix Analysis and Applications 31 (2009),
1432–1457.
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Second order cone + PSD cone reformulation

One may write the NCM as a symmetric cone programming with both
SDP cone and SOC cone constraints:

min t

s.t. Xii = 1, i = 1, . . . , n,

y + svec(X) = svec(G) ,

X ∈ Sn+ , t ≥ ‖y‖2.

Then, we can solve the problem with interior point methods (IPMs).
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Numerical comparison with SDPT3

We compare our algorithm with the state-of-the-art IPM based software
SDPT34.

x means SDPT3 is out of memory (117.8 GB memory is required).

4R.H Tutuncu, K.C. Toh, and M.J. Todd, Solving semidefinite-quadratic-linear
programs using SDPT3, Mathematical Programming Ser. B, 95 (2003), pp. 189-217.
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First order method

The dual problem of the NCM is an unconstrained optimization problem:

max −θ(y) := −
[
1
2‖ΠSn

+
(G+A∗y)‖2F − 〈b, y〉 − 1

2‖G‖
2
F

]
,

with
∇θ(y) = AΠSn

+
(G+A∗y)− b.

Then, it is natural to apply the accelerated proximal gradient (APG)
method to solve this dual problem:

zk+1 = xk −∇θ(yk),
xk+1 = (1− 2

k+2 )xk + 2
k+2z

k,

yk+1 = (1− 2
(k+1)+2 )xk+1 + 2

(k+1)+2z
k+1,

where x0 = z0 = y0 and y0 is the given initial point.
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Numerical comparison with APG

We compare the APG with the semismooth Newton method on a
randomly generated data, for the given integer n, set

G := rand(n, n), G = 0.5∗ (G+G′)−diag(diag(0.5∗ (G+G′))) + eye(n).

We set the maximum iterations for APG to be 1, 000 and the tolerance to
be 1e− 6.
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Numerical comparison with APG (2)

To see the robustness of APG, we also test

G := rand(1000, 1000), G = G+G′ − diag(diag(G+G′)) + eye(1000).

We set the maximum iterations for APG to be 1, 000 and the tolerance to
be 1e− 6.

This motivates us to use semismooth Newton methods to solve
semidefinite programming (SDP) under the framework of proximal point
algorithms (PPAs).
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Linear conic programming

Now we can turn to the following linear conic programming

min 〈c, x〉

s.t. Ax = b,

x ∈ K

where A : X → <m, b ∈ <m, c ∈ X , X is a finite-dimensional real Hilbert
space and K ⊆ X is a closed convex cone, e.g., the second-order-cone or
the PSD (positive and semidefinte) cone. Define the Lagrange function as
follows:

L(x; y, s) := 〈c, x〉+ 〈y, b−Ax〉 − 〈s, x〉.
Let K∗ be the dual cone of K. Then the (Lagrange) dual of linear conic
programming is defined as

max
y∈<m,s∈K∗

{
inf
x∈X

L(x; y, s)

}
.
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Lagrange dual of linear conic programming

By noting that for any (x, y, s) ∈ X × <m ×Xn,

L(x; y, s) := 〈x, c−A∗y − s〉+ 〈y, b〉

we get an explicit formula for the dual problem as in the following

max 〈b, y〉

s.t. A∗y + s = c,

s ∈ K∗

or equivalently

max 〈b, y〉

s.t. c−A∗y ∈ K∗

No one will question the above (Lagrange) dual!
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Convex composite quadratic programming

Now consider the convex composite quadratic programming (CCQP)

min
x∈X

{1

2
〈x,Qx〉+ 〈c, x〉+ ψ(x)

∣∣∣ Ax = b
}

X and Y are two finite-dimensional real Hilbert spaces

ψ : X → (−∞,+∞] is a closed proper convex function, e.g.,
ψ(·) = δP (·), the indicator function over a closed convex set P

Q : X → X satisfying Q = Q∗, Q � 0

A : X → Y is a given linear mapping

b ∈ Y and c ∈ X are given vectors
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Convex quadratic programming (continued)

Equivalently,

min
u,x∈X

{
ψ(u) + 〈c, x〉+

1

2
〈x,Qx〉

∣∣∣ u− x = 0, Ax = b
}

The corresponding Lagrange function is

L(u, x; y, s) := ψ(u) + 〈c, x〉+ 1
2 〈x,Qx〉+ 〈s, u− x〉+ 〈y, b−Ax〉

= 〈y, b〉+ ψ(u) + 〈s, u〉+ 1
2 〈x,Qx〉+ 〈x, c−A∗y − s〉

and the Lagrange dual of CCQP takes the form of

max
y∈Y,s∈X

{
inf

u∈X ,x∈X
L(u, x; y, s)

}
or

max
y∈Y,s∈X

{
〈y, b〉+ inf

u∈X

{
ψ(u)+〈s, u〉

}
+ inf
x∈X

{1

2
〈x,Qx〉+〈x, c−A∗y−s〉

}}

16



Wolfe dual

By simplifications, we get the following Lagrange dual

max
y∈Y,s∈X

{
− ψ∗(−s) + 〈y, b〉+ θ(y, s)

}
,

where

θ(y, s) := inf
x∈X

{1

2
〈x,Qx〉+ 〈x, c−A∗y − s〉

}
and ψ∗(·) is the Fenchel conjugate of ψ defined by

ψ∗(z) := sup
u∈X
{〈z, u〉 − ψ(u)}.

Since the computation of θ(y, s) is complicated, instead one normally
considers the following Wolfe dual [Wolfe, Quart. Appl. Math 1961]

max
s∈X ,x∈X ,y∈Y

{
− ψ∗(−s)− 1

2
〈x,Qx〉+ 〈y, b〉

∣∣∣ s−Qx+A∗y = c
}
.
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Limitations of the Wolfe dual

Note that in the Wolfe dual (in the minimization format)

min
s∈X ,x∈X ,y∈Y

{
ψ∗(−s) +

1

2
〈x,Qx〉 − 〈y, b〉

∣∣∣ s−Qx+A∗y = c
}
,

the primal variable x is also involved. But more seriously, its solution set,
if nonempty, is always unbounded as long as Q � 0 (the null space of Q is
uncontrollable). It differs substantially from linear conic programming
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Primal and dual properties of SDP

For Linear Semidefinite Programming:

The primal (dual, respectively) constraint nondegeneracy is equivalent
to the dual (primal, respectively) strong second order sufficient
condition (SSOSC) [Chan and S., SIOPT (2008)]
The generalized Clarke Jacobian (or the B-subdifferential) of the
nonsmooth Karush- Kuhn-Tucker (KKT) solution mapping is
nonsingular iff the primal and dual constraint non-degeneracies hold
[Chan and S., SIOPT (2008)]
The primal (dual, respectively) strict Robinson constraint qualification
is equivalent to the dual (primal, respectively) second order sufficient
condition (SOSC) [Chao Ding, S., Liwei Zhang, SIOPT (2017)]

The software SDPNAL for SDP [Xinyuan Zhao, S., Toh, SIOPT
2010] is applied to the dual (low rank or high rank property used)

Convex quadratic SDP with the Wolfe dual: the above key theoretical
connections hold only if Q � 0 [Houduo Qi, MOR (2009)]

Hard, if possible at all, to design an analogue of the software
SDPNAL for the Wolfe dual if Q � 0
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The restricted Wolfe dual

Our remedy is to consider the following restricted Wolfe dual (in the
minimization format)

min
s∈X ,x′∈X ′,y∈Y

{
ψ∗(−s) +

1

2
〈x′,Qx′〉 − 〈y, b〉

∣∣∣ s−Qx′ +A∗y = c
}
,

where X ′ is the range space of Q, i.e.,

X ′ := Range (Q).

One can easily check that Q : X ′ → X ′ is self-adjoint and positive definite
even if Q : X → X is not positive definite. Note that if Q = 0, then
X ′ = {0} (in this case Q is still positive definite on X ′ – using definition
to verify it!).

Also note that x′ in the dual is differen from x in the primal, which does
not need to stay in Range (Q).
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Nice properties of the restricted Wolfe dual

Different from the Wolfe dual, the restricted Wolfe dual possesses the
following nice properties:

It unifies with linear conic programming

The wonderful equivalent connections between the primal and dual for
SDP are now kept [Ying Cui, Chao Ding, 2019 (under revision)]

The software QSDPNAL5 for the restricted Wolfe dual of the convex
quadratic SDP is developed [Xudong Li, S., Toh, MPC 2018]

In a word, both theory and computation favor the restricted Wolfe
dual

Too good to be true? — the key is to keep x′ in Range (Q). But, how?
Implementable?

5Publicly available at https://blog.nus.edu.sg/mattohkc/softwares/qsdpnal/

and https://github.com/MatOpt/QSDPNAL
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Augmented Lagrange function of restricted Wolfe dual

For given σ > 0, the augmented Lagrange function of the restriced Wolfe
dual of the CCQP can be written as

Lσ(s, x′, y;x) := ψ∗(−s) + 1
2 〈x
′,Qx′〉 − 〈y, b〉

+〈x, s−Qx′ +A∗y − c〉+ σ
2 ‖s−Qx

′ +A∗y − c‖2,

which, fixing the dual variable x, is a proper closed convex (non-separable)
function in the first block variable s plus a convex quadratic function in
terms of (s, x′, y).

Note that y can be further split into many pieces as you please:
y = [y1; y2; . . . ; yp]. No need to decompose s while x′ must be kept as
one block if the range space is used: a total of 1 + (1 + p) blocks
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Augmented Lagrange function of the primal CCQP

For given σ > 0, the augmented Lagrange function of the CCQP (primal)

min
u,x∈X

{
ψ(u) + 〈c, x〉+

1

2
〈x,Qx〉

∣∣∣ u− x = 0, Ax = b
}

takes the form of

Lσ(u, x; y, s) := ψ(u) + 1
2 〈x,Qx〉+ 〈c, x〉+ 〈y, b−Ax〉+ 〈s, u− x〉

+σ
2 ‖b−Ax‖

2 + σ
2 ‖u− x‖

2,

which, fixing the dual variables y and s, is a proper closed convex function
in the first block variable u plus a convex quadratic (non-separable)
function in terms of (u, x).

Note that x can be further split into as many pieces as you like:
x = [x1;x2; . . . ;xq]. There are a total of 1 + q blocks.

The introduction of u is not only necessary for the restricted Wolfe
dual but also crucial for computations: not a computationally good
idea to split x into multiple parts without u even if ψ(·) is separable.
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Two observations

Note that the augmented Lagrange function for the CCQP in the
primal form does not contain a nonsmooth term for x even if it is
non-separable for x.

The (mysterious?) forms of the two augmented Lagrange functions
lead to the discovery of the symmetric Gauss-Seidel decomposition
theorem!
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Convex composite quadratic programming (II)

Actually, we can consider more general convex composite quadratic
programming (CCQP)

min
x∈X

{
ψ(x) +

1

2
〈x,Qx〉 − 〈c, x〉

∣∣∣ AEx = bE , AIx− bI ∈ K
}

ψ : X → (−∞,+∞] is a closed proper convex function [simple]

Q : X → X satisfying Q = Q∗, Q � 0

AE : X → Z1 and AI : X → Z2, given linear mappings

b = (bE ; bI) ∈ Z := Z1 ×Z2, given vector

c ∈ X is given.

K ⊆ Z2 is a closed convex set (cone) [simple]

X , Z1, and Z2 are finite-dimensional real Hilbert spaces
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CCQP and its restricted Wolfe dual (II)

Equivalently,

min
x∈X ,x′∈Z2

{
ψ(x) + δK(x′) +

1

2
〈x,Qx〉 − 〈c, x〉

∣∣∣ (AE 0
AI −I

)(
x
x′

)
= b
}
,

whose restricted Wolfe dual (in the minimization format) is

min
s∈Y,z∈Z

y′∈Range(Q)

{
p(s) +

1

2
〈y′,Qy′〉 − 〈b, z〉

∣∣∣ s+

(
Q
0

)
y′ −

(
A∗E A∗I
0 −I

)
z =

(
c
0

)}

s := (u, v) ∈ Y := X × Z2

p(s) := p(u, v) = ψ∗(u) + δ∗K(v)

δK(·) is the indicator function over K
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A general form of symmetric Gauss-Seidel iteration

Consider the block vector
x = (x1,x2, . . . ,xs) ∈ X := X1 ×X2 × · · · × Xs. Given a positive
semidefinite linear operator Q such that

Qx ≡


Q11 Q12 · · · Q1s

Q∗12 Q22 · · · Q2s

...
...

. . .
...

Q∗1s Q∗2s · · · Qss




x1

x2

...
xs

 , Qii � 0.

Let p : X1 → (−∞,+∞] be a given closed proper convex function. Let
the quadratic function

q(x) := 1
2 〈x, Qx〉 − 〈r, x〉.
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An inexact block sGS iteration

Consider the following block decomposition:

Ux ≡


0 Q12 · · · Q1s

. . .
...

. . . Q(s−1)s
0




x1

x2

...
xs

 .

Then Q = U∗ +D + U , where Dx = (Q11x1, . . . ,Qssxs).

Let δ̂ ≡ (δ̂1, . . . , δ̂s) and δ+ ≡ (δ+1 , . . . , δ
+
s ) with δ̂1 = δ+1 being given error

tolerance vectors. Define

∆(δ̂, δ+) := δ+ + UD−1(δ+ − δ̂), T := UD−1U∗ (sGS decomp. op.).

Note that T � 0 is NOT positive definite. Let y ∈ X be given. Define

x+ := arg min
x∈X

{
p(x1) + q(x) +

1

2
‖x− y‖2T − 〈∆(δ̂, δ+), x〉

}
. (1)

(1) looks complicated, but is much easier to solve!
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An inexact block sGS decomposition theorem

Theorem (Xudong Li, S., Toh, MP 2019)

Given y. For i = s, . . . , 2, define

x̂i := arg min
xi

{ p(y1) + q(y≤i−1,xi, x̂≥i+1)− 〈δ̂i, xi〉}

= Q−1ii
(
ri + δ̂i −

∑i−1
j=1Q

∗
jiyj −

∑s
j=i+1Qijx̂j

)
computed in the backward GS cycle. The optimal solution x+ in (1)
can be obtained exactly via

x+
1 = arg min

x1

{ p(x1) + q(x1, x̂≥2)− 〈δ+1 , x1〉},

x+
i = arg min

xi

{ p(x+
1 ) + q(x+

≤i−1,xi, x̂≥i+1)− 〈δ+i , xi〉}

= Q−1ii (ri + δ+i −
∑i−1
j=1Q∗jix

+
j −

∑s
j=i+1Qijx̂j), i ≥ 2,

where x+
i , i = 1, 2, . . . , s, is computed in the forward GS cycle.

Reduces to the classical block sGS if both p(·) ≡ 0 and δ = 0.
Caution: this theorem (symmetric property) does not hold for GS even s = 2.
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CCQP

Consider the convex optimization model:

min θ(y1) + f(y1, y2, . . . , ys)

s.t. A∗1y1 +A∗2y2 + · · ·+A∗sys = c .
(2)

Linear mappings: Ai, i = 1, . . . , s, A∗y =
∑s
i=1A∗i yi, y := (y1, . . . , ys).

Closed proper convex function θ : Y1 → (−∞,+∞] and convex quadratic
function f(y) = 1

2 〈y, Qy〉 − 〈b, y〉. Then, (3) can be written compactly as

min{θ(y1) + f(y) | A∗y = c},

which is a very general CCQP.
Given σ > 0, the augmented Lagrangian function of the CCQP is

Lσ(y;x) = θ(y1) + f(y) + 〈x, A∗y − c〉+
σ

2
‖A∗y − c‖2︸ ︷︷ ︸

quadratic

.
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CCQP

The proximal augmented Lagrangian method (pALM) for the CCQP:

Given (y0, x0) in the domain and τ ∈ (0, 2). For k = 0, 1, . . .

Step 1. yk+1 ≈ arg minLσ(y;xk) +
1

2
‖y − yk‖2T

= arg min
y

{
θ(y1) + f(y) + 〈xk, A∗y− c〉+ σ

2
‖A∗y− c‖2 +

1

2
‖y− yk‖2T

}
.

Step 2. xk+1 = xk + τσ(A∗yk+1 − c).

T is the block sGS decomposition operator of Q+ σAA∗, which does
not need to be formulated explicitly. Note that T � 0 but T � 0. So
it is not a classical pALM, but a “semiproximal” ALM.

yk+1 is obtained via the inexact block sGS procedure [s blocks in
total].

In practice, the dual step-length τ is often chosen in [1.618, 1.95], e.g,
τ = 1.9.
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Linearly constrained CCQP (LCCQP-2)

Consider the LCCQP with two non-quadratic blocks:

min θ(y1) + q(y1, . . . , ys) + φ(z1) + h(z1, . . . , zt)

s.t. A∗1y1 + · · ·+A∗sys + B∗1z1 + · · ·+ B∗t zt = c
(3)

linear mappings: Ai, i = 1, . . . , s, A∗y =
∑s
i=1A

∗
i yi, y := (y1, . . . , ys)

linear mappings: Bj , j = 1, . . . , t, B∗z =
∑t
i=1 B

∗
i zi, z := (z1, . . . , zt)

closed proper convex functions θ : Y1 → (−∞,∞], φ : Z1 → (−∞,∞]
convex quadratics: q(y) = 1

2
〈y, Qy〉 − 〈b, y〉, h(z) = 1

2
〈z, Hz〉 − 〈d, z〉

Write (3) compactly as

min{θ(y1) + q(y) + φ(z1) + h(z) | A∗y + B∗z = c}.

Given σ > 0, the associate augmented Lagrangian function is

Lσ(y, z;x) = θ(y1) + q(y) + φ(z1) + h(z) +
σ

2
‖A∗y + B∗z − c+ x/σ‖2 − ‖x‖

2

2σ
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sGS-pADMM for multi-block LCCQP-2

Given (y0, z0, x0) in the domain. Iterate

Step 1. yk+1 ≈ arg miny
{
Lσ(y, zk;xk) + 1

2‖y − y
k‖2T

}
= arg min
y=(y1,y2,...,ys)

{
θ(y1) +

1

2
〈y, (Q+ σAA∗)y〉 − 〈rk, y〉+

1

2
‖y − yk‖2T

}
.

Step 2. zk+1 ≈ arg minz
{
Lσ(yk+1, z;xk) + 1

2‖z − z
k‖2S

}
= arg min
z=(z1,z2,...,zt)

{
φ(z1) +

1

2
〈z, (H+ σBB∗)z〉 − 〈sk, z〉+

1

2
‖z − zk‖2S

}
.

Step 3. xk+1 = xk + τσ(A∗yk+1 + B∗zk+1 − c), where step-length

τ ∈ (0, 1+
√
5

2 ).

T = block sGS operator of Q+ σAA∗,
S = block sGS operator of H+ σBB∗.
yk+1 = (y1, y2, . . . , ys)

k+1 is obtained via one cycle of the inexact
block sGS iteration. Similarly for zk+1 = (z1, z2, . . . , zt)

k+1.
sGS-pADMM has well developed convergence guarantee.
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Doubly nonnegative semidefinite programming (DNN-SDP)

Define N = {X ∈ Sn | X ≥ 0} (cone of nonnegative matrices)

min
{
〈C, X〉 | A(X) = b, X ∈ Sn+, X ∈ N

}
(dual) −min

{
δSn+(S)− 〈b, y〉+ δN (Z) | S +A∗y + Z = C

}
Input (y0, S0;X0). For l = 0, 1, . . . , let Ĉl = C − σ−1Xl

[1a] ŷl+1 ≈ argminy∈Rm{Lσ(y, Sl, Zl;Xl)} −→ solve AA∗y = rhs

[1b] Sl+1 = argminS∈Sn+
{Lσ(ŷl+1, S, Zl;Xl)} = ΠSn+(Ĉl −A∗ŷl+1 − Zl)

[1c] yl+1 ≈ argminy∈Rm{Lσ(y, Sl+1, Zl;Xl)} −→ solve AA∗y = rhs

[2] Zl+1 = argminZ∈N {Lσ(yl+1, Sl+1, Z;Xl)} = ΠN (Ĉl −A∗yl+1 − Sl+1)

[3] Xl+1 = Xl + τσ(A∗yl+1 + Sl+1 + Zl+1 − C), τ ∈ (0, 1+
√

5
2

)

sGS-pADMM is a convergent enhancement [S., Toh, Liuqin Yang, SIOPT
2015] of the sequential Gauss-Seidel ADMM whose convergence is not
guaranteed. [one can swop the positions of S and Z]
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Numerical performance

Number of problems solved to the accuracy of 10−6 in relative KKT residual.

problem set (No.) \ solver sGS-ADMM SDPAD 2EBD ADMM3g
θ+ (58) 58 58 56 54
FAP ( 7) 7 7 7 7
QAP (95) 39 30 16 28
BIQ (134) 134 134 134 130
RCP (120) 120 114 109 113
Total (414) 358 343 322 332
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Numerical performance

Comparison of sGS-ADMM, SDPAD, ADMM3g and 2EBD
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Observations and Extensions

In the sGS procedure, the coefficient matrices of the linear systems to
be solved only need to be factorized once at the start of the
procedure. The additional costs of the repetitions are minimal and

can be offset by the larger step length τ ∈ (0, 2) or τ ∈ (0, 1+
√
5

2 ).

There are many applications that can be “solved” via block sGS +
pALM or block sGS+ pADMM if the solution accuracy is not a big
concern.

More extensions can be done. For example, for convex quadratic
semidefinite programming, and other convex composite conic
programming problems.

To make the algorithms even faster, we often introduce indefinite
proximal terms with guaranteed convergence [Liang Chen, S., Toh,
Ning Zhang, JCM 2019]

We need something more than the “sGS + pALM” (or “pADMM)” –
semismooth Newton methods (SDPNAL+ solves all the above 414
examples)
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One very simple example: a convex QP with Birkhoff
polytope constraintsConvex QP:

(P) min

{
1

2
〈X, QX〉+ 〈G, X〉 | X ∈ Bn

}
,

self-adjoint linear operator Q � 0 and the Birkhoff polytope:

Bn := {X ∈ <n×n | Xe = e, XT e = e,X ≥ 0}

e ∈ <n: the vector of all ones.

(D) min

{
δ∗Bn

(Z) +
1

2
〈W, QW 〉 | Z +QW +G = 0, W ∈ Range(Q)

}
δ∗Bn

: the conjugate of the indicator function δBn
[Li, S., Toh, MP 2020]

ALM function for (D), given σ > 0

Lσ(Z,W ;X) = δ∗Bn
(Z) +

1

2
〈W, QW 〉 − 〈X, Z +QW +G〉

+
σ

2
‖Z +QW +G‖2
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ALM for (D)

Algorithm ALM: An augmented Lagrangian method for (D).

Given σ0 > 0, iterates k = 0, 1, . . .

Step 1. Compute

(Zk+1,W k+1) ≈ argmin

{
Ψk(Z,W ) := Lσk

(Z,W ;Xk)

| (Z,W ) ∈ <n×n × Range(Q)

}
.

Step 2. Compute

Xk+1 = Xk − σk(Zk+1 +QW k+1 +G).

Update σk+1 ↑ σ∞ ≤ ∞.

Convex piecewise linear-quadratic minimization (SDP is more
complicated):

error bound holds =⇒ ALM converges asymptotically superlinearly
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Semismooth Newton-CG method for inner problem

For any W ∈ Range(Q),

ψ(W ) := inf
Z
Lσ(Z,W ; X̂), Z(W ) := X̂ − σ(QW +G)

Subproblem solution (Z,W ):

W = arg min {ψ(W ) |W ∈ Range(Q)} ,

Z = σ−1
(
Z(W )−ΠBn(Z(W ))

)
For all W ∈ Range(Q),

∇ψ(W ) = Q(W −ΠBn
(Z(W )))

Semismooth Newton CG solves nonsmooth piecewise affine equation

∇ψ(W ) = 0, W ∈ Range(Q).
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Semismooth Newton-CG method for inner problem

Given Ŵ , linear operator M : <n×n → <n×n

M(∆W ) := Q(I + σPHSQ)∆W, ∀∆W ∈ <n×n

PHS : the HS-Jacobian of ΠBn
at Z(Ŵ )

j-th iter., solve linear system (CG)

MjdW +∇ψ(W j) = 0, dW ∈ Range(Q)

Global convergence: Line search (using ψ(W ))

Local convergence:
positive definiteness of M on Range(Q) =⇒ at least superlinear
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Numerical results

Given A,B ∈ Sn, quadratic assignment problem (QAP):

min{〈X, AXB〉 | X ∈ {0, 1}n×n ∩Bn}

Convex relaxation [Anstreicher et al. MP, 2001]:

min{〈X, QX〉 | X ∈ Bn}

Self-adjoint linear operator Q(X) := AXB − SX −XT, Q � 0

Matrices S, T ∈ Sn obtained from [Anstreicher et al. MP, 2001]

Relative KKT residual:

η =
‖X −ΠBn(X −QX)‖

1 + ‖X‖+ ‖QX‖

Matrices A,B from QAPLIB
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Numerical results for QAP
“a”: Gurobi, “b”: ALM

iter η time

problem n a | b (itersub) a|b a|b
lipa80a 80 11 | 25 (68) 1.3-6 | 7.3-8 2:46 | 01

lipa90a 90 11 | 20 (54) 2.7-6 | 8.8-8 5:32 | 01

sko100a 100 14 | 26 (95) 8.5-6 | 8.5-8 2:06 | 11

tai100a 100 11 | 18 (52) 1.3-6 | 9.5-8 10:31 | 02

tai100b 100 11 | 27 (98) 1.3-6 | 9.1-8 10:31 | 13

tai80b 80 11 | 27 (98) 1.2-6 | 8.5-8 2:36 | 07

tai256c 256 * | 2 ( 4) * | 2.1-16 * | 00

tai150b 150 19 | 27 (94) 4.3-7 | 9.3-8 2:46:17 | 13

tho150 150 16 | 24 (96) 5.6-6 | 9.9-8 18:52 | 22

“*”: Gurobi out of memory (128 G RAM)

“tai150b”: Gurobi reports error, “small positive term” needed
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Conclusions

SDPNAL/SDPNAL+ and QSDPNAL: two-phase augmented
Lagrangian methods for solving large scale SDP and convex quadratic
SDPs, which are publically available.

Primal constraint non-degeneracy is the key for using the semismooth
Newton methods successfully (e.g., the NCM problem); the quadratic
growth condition is crucial for the fast convergence of the (dual)
ALM; and the primal-dual errors bounds can easily fail6

We are still at the very early stages of solving large scale SDPs and
beyond: more theory, more algorithms, and more software packages
are needed.

6Ying Cui and S., and Toh, “On the R-superlinear convergence of the KKT residuals
generated by the augmented Lagrangian method for convex composite conic
programming, Mathematical Programming 178 (2019) 381–415
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Thank you for your attention!
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