Subregular Recourse in Nonlinear Multistage Stochastic Optimization

Darinka Dentcheva

Stevens Institute of Technology

joint work with

Andrzej Ruszczyński

Rutgers University

One World Optimization Seminar June 14, 2021

- The Problem
- 2 Decomposable Sets
- **3** Subregular multifunctions
- 4 Causal Operators
- 5 Multistage Stochastic Optimization with Built-In Nonanticipativity
- 6 Multistage Stochastic Optimization with Nonanticipativity Constraints
- 7 Conclusions

Darinka Dentcheva and Andrzej Ruszczyński. "Subregular recourse in nonlinear multistage stochastic optimization." *Mathematical Programming* (2021): 1–22 DOI https://doi.org/10.1007/s10107-020-01612-z

Objective

Given a probability space (Ω, \mathcal{F}, P) , with $p \in [1, \infty)$, we consider optimization problems with decisions in the space $\mathcal{X} = \mathcal{L}_p(\Omega, \mathcal{F}, P; \mathbb{R}^n)$.

min $\varphi(x)$ s.t. $F(x) \in Y$ a.s., $x \in X$ a.s., $x \in \mathcal{N}$.

The objective function $\varphi : \mathcal{X} \to \mathbb{R}$ is a Lipschitz continuous functional. The constraints are given by a nonlinear operator $F : \mathcal{X} \to \mathcal{Y}$, where $\mathcal{Y} = \mathcal{L}_p(\Omega, \mathcal{F}, P; \mathbb{R}^m)$, multifunctions $X : \Omega \Rightarrow \mathbb{R}^n$ and $Y : \Omega \Rightarrow \mathbb{R}^m$, and a subspace $\mathcal{N} \subset \mathcal{X}$.

In stochastic optimization and control

$$F(x)(\omega) = f(x(\omega), \omega), \quad \omega \in \Omega,$$

where $f : \mathbb{R}^n \times \Omega \to \mathbb{R}^m$ describes the dynamics of the system.

Decomposable and Derivable Sets

Recall that the contingent cone to a closed set $A \subset \mathcal{X}$ at $x \in A$ is the set

$$\mathcal{T}_A(x) = \big\{ v \in \mathcal{X} : \liminf_{\tau \downarrow 0} \frac{1}{\tau} \operatorname{dist}(x + \tau v, A) = 0 \big\}.$$

Definition

A set $A \subset \mathcal{X}$ is derivable at $x \in A$ if for every $v \in \mathcal{T}_A(x)$

$$\lim_{\tau \downarrow 0} \frac{1}{\tau} \operatorname{dist} \chi(x + \tau v, A) = 0.$$

Definition

A set $\mathcal{K} \subset \mathcal{X}$ is decomposable if a measurable multifunction $K : \Omega \rightrightarrows \mathbb{R}^n$ exists, such that $\mathcal{K} = \{x \in \mathcal{X} : x(\omega) \in K(\omega) \text{ a.s.}\}.$

Lemma (Aubin & Frankowska 2009)

Suppose $A \subset \mathfrak{X}$ is decomposable and $A(\omega)$ are closed and derivable sets for *P*-almost all $\omega \in \Omega$. Then

$$\mathcal{T}_{A}(x) = \{ v \in \mathcal{X} : \text{ for } P\text{-almost all } \omega, \ v(\omega) \in \mathcal{T}_{A(\omega)}(x(\omega)) \}.$$

Recall that for a cone $\mathcal{K} \subset \mathcal{X}$ its polar cone is defined as follows:

$$\mathcal{K}^{\circ} = \{ y \in \mathcal{X}^* : \langle y, x \rangle \leq 0 \text{ for all } x \in \mathcal{K} \}.$$

Here $\mathcal{X}^* = \mathcal{L}_q(\Omega, \mathcal{F}, P; \mathbb{R}^n), 1/p + 1/q = 1$ and

$$\langle y, x \rangle = \int_{\Omega} y(\omega)^{\top} x(\omega) P(d\omega), \quad y \in \mathcal{X}^*, \quad x \in \mathcal{X}.$$

Lemma

The polar cone \mathcal{K}° of a convex decomposable cone $\mathcal{K} \subset \mathcal{X}$ is a convex decomposable cone, and $K^{\circ}(\omega) = (K(\omega))^{\circ}$ a.s.

Consider $0 \in \mathfrak{H}(x)$ where $\mathfrak{H} : \mathfrak{X} \Rightarrow \mathfrak{Y}$ and \mathfrak{Y} is a Banach space.

Definition

The multifunction \mathfrak{H} is subregular at $\hat{x} \in \mathcal{X}$ with $0 \in \mathfrak{H}(\hat{x})$, if $\delta > 0$ and C > 0 exist such that for all $x \in \mathcal{X}$ with $||x - \hat{x}||_{\mathcal{X}} \le \delta$ a point \tilde{x} exists such that

$$0 \in \mathfrak{H}(\widetilde{x})$$
 and $\|\widetilde{x} - x\|_{\mathfrak{X}} \leq C \operatorname{dist}(0, \mathfrak{H}(x)).$

For $F(x) \in Y$ ($\mathfrak{H} = F(x) - Y$) where \mathcal{Y} is an \mathcal{L}_p -space, $F : \mathcal{X} \to \mathcal{Y}$ is Lipschitz continuous, and $Y \subset \mathcal{Y}$ is a closed convex set, subregularity means that a constant C exists, such that for all x in a neighborhood of \hat{x} ,

$$\operatorname{dist}(x, F^{-1}(Y)) \leq C \operatorname{dist}(F(x), Y).$$

It is equivalent to the calmness of the multifunction

$$M(z) = \left\{ x : F(x) \in Y - z \right\}$$

at the point $(0, \hat{x})$ with calmness being defined by Robinson in 1979 under the name of the "upper Lipschiz property".

Causal Operators

For a probability space (Ω, \mathcal{F}, P) with filtration $\{\emptyset, \Omega\} = \mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots \subset \mathcal{F}_T = \mathcal{F}$, we define the spaces $\mathcal{X}_t = \mathcal{L}_p(\Omega, \mathcal{F}_t, P; \mathbb{R}^n)$ and $\mathcal{Y}_t = \mathcal{L}_p(\Omega, \mathcal{F}_t, P; \mathbb{R}^m)$ with $p \in [1, \infty)$. Let $\mathcal{X} = \mathcal{X}_1 \times \cdots \times \mathcal{X}_T$ and $\mathcal{Y} = \mathcal{Y}_1 \times \cdots \times \mathcal{Y}_T$. We use $x_{1:t} = (x_1, \dots, x_t)$, and $\mathcal{X}_{1:t} = \mathcal{X}_1 \times \cdots \times \mathcal{X}_t$.

Definition

An operator $F : \mathcal{X} \to \mathcal{Y}$ is causal, if functions $f_t : \mathbb{R}^{nt} \times \Omega \to \mathbb{R}^m$ exist, such that for all $t = 1 \dots T$, $f_t(\cdot, \cdot)$ is superpositionally measurable and

$$F_t(x)(\omega) = f_t(x_{1:t}(\omega), \omega), \quad \omega \in \Omega.$$

Assumption A

For all $t = 1, \ldots, T$:

- (i) $f_t(\xi, \cdot)$ is an element of \mathcal{Y}_t for all $\xi \in \mathbb{R}^{nt}$;
- (ii) For almost all $\omega \in \Omega$, $f_t(\cdot, \omega)$ is continuously differentiable, with the Jacobian $f'_t(\cdot, \omega)$;

(iii) A constant C_f exists, such that $||f'_t(\cdot, \omega)|| \leq C_f$, almost surely.

Lemma

A causal operator $F(\cdot)$ satisfying Assumption A is Gâteaux differentiable with the derivative F'(x) defined by

$$[F'(x) h](\omega) = f'(x(\omega), \omega) h(\omega), \quad \omega \in \Omega.$$

Theorem

Suppose $F(\cdot)$ is a causal operator satisfying Assumption A and $\rho: \mathcal{Y} \to \mathbb{R}$ is a convex subdifferentiable functional. Then the Clarke subdifferential of the composition has the form:

$$\partial(\rho \circ F)(x) = [F'(x)]^* \partial\rho(F(x))$$

where $[F'(x)]^*$ is the adjoint operator to the Gâteaux derivative F'(x).

Corollary Suppose additionally $Y \subset \mathcal{Y}$ is convex and closed, $F(x) \in Y$. Then),

$$\partial \operatorname{dist} (F(x), Y) = [F'(x)]^* (N_Y(F(x)) \cap \mathbb{B}_{y*})$$

where $\mathbb{B}_{\mathcal{Y}^*}$ is the closed unit ball in \mathcal{Y}^* .

Example: Nonlinear causal operators are not Fréchet differentiable

Let $\Omega = [0, 1]$ and *P* be the Lebesgue measure on [0, 1]. We define the spaces $\mathcal{X} = \mathcal{Y} = \mathcal{L}_1(\Omega, \mathcal{F}, P)$, and the operator $F : \mathcal{X} \to \mathcal{Y}$ given by

$$F(x)(\omega) = f(x(\omega), \omega) = \begin{cases} (x(\omega))^2 & \text{if } -1 \le x(\omega) \le 1, \\ 2|x(\omega)| - 1 & \text{otherwise.} \end{cases}$$

Note that $||F(x)|| \le 2||x||$, and thus indeed $F : \mathcal{X} \to \mathcal{Y}$. $F(\cdot)$ is not Fréchet differentiable at 0.

The Gâteaux derivative of *F* at 0 is 0, and, thus, the Fréchet derivative, if it existed, would be F'(0) = 0. Consider the sequence of functions

$$x_n(\omega) = \begin{cases} 1 & \text{if } 0 \le \omega \le \frac{1}{n}, \\ 0 & \text{otherwise,} \end{cases} \qquad n = 1, 2, \dots$$

We have $||x_n|| = \frac{1}{n}$ and thus $x_n \to 0$. By construction, $F(x_n) = x_n$, F(0) = 0, and then, by the definition of the Fréchet derivative, we would have

$$0 = \lim_{n \to \infty} \frac{F(x_n) - F(0) - F'(0)x_n}{\|x_n\|} = \lim_{n \to \infty} \frac{x_n}{\|x_n\|}.$$

This is a contradiction.

Multistage Stochastic Optimization with Built-In Nonanticipativity

$$\min \varphi(x_{1:T}) \tag{1}$$

s.t.
$$F_t(x_{1:t}) \in Y_t$$
 a.s., $t = 1, ..., T$, (2)

$$x_t \in X_t \quad \text{a.s.}, \quad t = 1, \dots, T. \tag{3}$$

Due to the causality of $F(\cdot)$ and the decomposability of Y, (2) can be written as

$$f_t(x_{1:t}(\omega), \omega) \in Y_t(\omega), \quad t = 1, \dots, T, \quad \omega \in \Omega.$$

 $X_t: \Omega \Rightarrow \mathbb{R}^n$ are \mathcal{F}_t -measurable mulitifunctions with closed convex images.

Sub-regular recourse definition

$$f_t(\zeta_{1:t-1},\xi,\omega) \in Y_t(\omega),\tag{4}$$

$$\xi \in X_t(\omega). \tag{5}$$

admits a complete subregular recourse, if a constant *C* exist, such that for almost all $\omega \in \Omega$, every $\zeta_{1:t-1} \in X_{1:t-1}(\omega)$ and every $\eta \in \mathbb{R}^n$, a solution ξ exists, satisfying

$$\|\xi - \eta\| \le C \big(\mathsf{d}(f_t(\zeta_{1:t-1}, \eta, \omega), Y_t(\omega)) + \mathsf{d}(\eta, X_t(\omega)) \big)$$

 $\zeta_{1:t-1}$ represents the history of decisions at the particular elementary event.

Optimality conditions

Under Assumption A, we denote: $F'_t(\hat{x}_{1:t}) = A_t = (A_{t,1}, \dots, A_{t,t}), \quad t = 1, \dots, T$, with partial Jacobians $A_{t,\ell} : \mathcal{X}_\ell \to \mathcal{Y}_t, A_{t,\ell} = \frac{\partial F_t(\hat{x}_{1:\ell})}{\partial x_\ell}, \quad \ell = 1, \dots, t, \quad t = 1, \dots, T.$ These linear operators are defined pointwise:

$$A_{t,\ell}(\omega) = \frac{\partial f_t(\hat{x}_{1:t}(\omega), \omega)}{\partial x_\ell(\omega)}, \quad \ell = 1, \dots, t, \quad t = 1, \dots, T, \quad \omega \in \Omega.$$

Theorem

If the system (4)–(5) admits complete subregular recourse, then the system (2)–(3) is subregular at any feasible point $\hat{x} = (\hat{x}_1, \ldots, \hat{x}_T)$. If the policy \hat{x} is a local minimum of problem (1)–(3), then a subgradient $\hat{g} \in \partial \varphi(\hat{x})$, multipliers $\hat{\psi}_t \in N_{Y_t}(F_t(\hat{x}_{1:t}))$, and normal elements $\hat{n}_t \in N_{X_t}(\hat{x}_t)$, exist, such that for *P*-almost all $\omega \in \Omega$ we have:

$$\hat{g}_t + A_{t,t}^{\mathsf{T}} \hat{\psi}_t + \mathbb{E}_t \bigg[\sum_{\ell=t+1}^T A_{\ell,t}^{\mathsf{T}} \hat{\psi}_\ell \bigg] + \hat{n}_t = 0, \quad t = 1, \dots, T.$$
 (6)

Multistage Optimization with Nonanticipativity Constraints

We consider extended spaces $\widetilde{\mathcal{X}}_t = \mathcal{L}_p(\Omega, \mathcal{F}, P; \mathbb{R}^n), t = 1, ..., T$ and a relaxed policy $x = (x_1, ..., x_T) \in \widetilde{\mathcal{X}}_1 \times \cdots \times \widetilde{\mathcal{X}}_T = \widetilde{\mathcal{X}}$. The nonaticipativity constraint defines a closed subspace \mathcal{N} in $\widetilde{\mathcal{X}}$:

$$x_t = \mathbb{E}[x_t|\mathcal{F}_t], \quad t = 1, \dots, T.$$
 (7)

We denote by $\tilde{\varphi} : \tilde{X} \to \mathbb{R}$ a Lipschitz continuous extension of φ , that is, $\tilde{\varphi}(x) = \varphi(x)$ for all $x \in \mathcal{N}$. A causal operator $F(\cdot)$ has value space $\tilde{\mathcal{Y}} = \tilde{\mathcal{Y}}_1 \times \cdots \times \tilde{\mathcal{Y}}_T$ with $\tilde{\mathcal{Y}}_t = \mathcal{L}_p(\Omega, \mathcal{F}, P; \mathbb{R}^m)$. The decomposable sets X_t and Y_t are viewed as subsets \tilde{X}_t of \tilde{X}_t and \tilde{Y}_t of $\tilde{\mathcal{Y}}_t$:

$$\begin{split} \widetilde{X}_t &= \{ x_t \in \widetilde{\mathcal{X}}_t : x_t(\omega) \in X_t(\omega) \text{ a.s.} \}, \\ \widetilde{Y}_t &= \{ y_t \in \widetilde{\mathcal{Y}}_t : y_t(\omega) \in Y_t(\omega) \text{ a.s.} \}, \quad t = 1, \dots, T. \end{split}$$

$$\min \widetilde{\varphi}(x_1, \dots, x_T) \tag{8}$$

s.t.
$$x_t - \mathbb{E}_t x_t = 0$$
 a.s., $t = 1, ..., T$, (9)

$$F_t(x_{1:t}) \in \widetilde{Y}_t$$
 a.s., $t = 1, \dots, T$, (10)

$$x_t \in \widetilde{X}_t$$
 a.s., $t = 1, \dots, T$. (11)

Theorem

If the system (4)–(5) admits complete subregular recourse, then the system (9)–(11) is subregular at any feasible point $\hat{x} = (\hat{x}_1, \ldots, \hat{x}_T)$. Additionally, if a policy \hat{x} is a local minimum of problem (8)–(11), then a subgradient $\tilde{g} \in \partial \tilde{\varphi}(\hat{x})$, multipliers $\lambda_t \in \tilde{X}_t^*$, $\tilde{\psi}_t \in N_{\tilde{Y}_t}(F_t(\hat{x}_{1:t}))$, $t = 1, \ldots, T$, and normal elements $\tilde{n}_t \in N_{\tilde{X}_t}(\hat{x}_t)$, $t = 1, \ldots, T$, exist, such that for *P*-almost all $\omega \in \Omega$ we have:

$$\tilde{g}_t + \lambda_t + \sum_{\ell=t}^T A_{\ell,t}^\top \tilde{\psi}_\ell + \tilde{n}_t = 0, \quad t = 1, \dots, T,$$
$$\mathbb{E}_t [\lambda_t] = 0, \quad t = 1, \dots, T.$$

Corollary

The subgradient $\hat{g} \in \partial \varphi(\hat{x})$ given by $\hat{g}_t = \mathbb{E}_t[\tilde{g}_t], t = 1, ..., T$, together with the multipliers $\hat{\psi}_t = \mathbb{E}_t[\tilde{\psi}_t], t = 2, ..., T$, and normal vectors $\hat{n}_t = \mathbb{E}_t[\tilde{n}_t]$ satisfy the optimality conditions (6).

Conclusion and Future Work

- The concept of subregular recourse allows for the verification of the subregularity in abstract spaces by establishing subsegularity of finite-dimensional systems associated with each stage and each elementary event.
- The Clarke subdifferential of a composition of the distance function and a causal operator allows for exact subdifferentiation of the penalty function associated with system's dynamics.
- This approach has potential in addressing nonlinear stochastic dynamic optimization problems.
- Focus on specific dynamic risk measures and exploit their specific structure to obtain specific optimality conditions.
- Adopt Kruger-Mordukhovich calculus by restricting the spaces X and Y to those with p ∈ (1,∞). This would allow for the treatment of non-convex sets X_t and Y_t, and more accurate subdifferentials of non-convex objective functionals. The main challenge is to derive the explicit form of the coderivative of the operator F(·) describing the dynamics of the system.
- The necessary conditions of optimality are a prerequisite for the development of numerical methods.