Subregular Recourse in Nonlinear Multistage

Stochastic Optimization

Darinka Dentcheva
Stevens Institute of Technology

joint work with

Andrzej Ruszczynski
Rutgers University

One World Optimization Seminar June 14, 2021



The Problem

Decomposable Sets

Subregular multifunctions

Causal Operators

Multistage Stochastic Optimization with Built-In Nonanticipativity
Multistage Stochastic Optimization with Nonanticipativity Constraints

Conclusions

Darinka Dentcheva and Andrzej Ruszczynski. “Subregular recourse in nonlinear
multistage stochastic optimization” Mathematical Programming (2021): 1-22
DOI https://doi.org/10.1007/s10107-020-01612-z

Dentcheva & Ruszczynski Subregularity in Nonlinear Multi tochastic Optimization



Given a probability space (£2, ¥, P), with p € [1, 00), we consider
optimization problems with decisions in the space X = £,(£2, ¥, P; R").

min ¢(x)

st. F(x) € Y as,
x € X as.,
x € N.

The objective function ¢ : X — R is a Lipschitz continuous functional.
The constraints are given by a nonlinear operator F : X — ¥, where

Y =&£,(82,F,P; R™), multifunctions X : 2 = R"and Y : 2 = R",
and a subspace N C X.

In stochastic optimization and control

Fx) (@) = f(x(0). @), o €2,

where f : R" x £ — R™ describes the dynamics of the system.
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Decomposable and Derivable Sets

Recall that the contingent cone to a closed set A C X at x € A'is the set
1
Talx) = {v € X :liminf — dist(x + 7v, A) = O}.
o T
Definition
Aset A C X is derivable at x € A if for every v € T4(x)

1
lim — dist x(x + tv, A) = 0.
0T

Definition

A set X C X is decomposable if a measurable multifunction K : 2 = R”
exists, such that X = {x € X : x(w) € K(w) a.s.}.

Lemma (Aubin & Frankowska 2009)

Suppose A C X is decomposable and A(w) are closed and derivable sets
for P-almost all ® € £2. Then

Talx) = {v € X : for P-almost all w, v(w) € ’TA(w)(X(w))}.
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Polar cones of Decomposable Cones

Recall that for a cone K C X its polar cone is defined as follows:
K° = {ye X* :{y,x) <0forall x € J{}

Here X* = £,(£2,%,P:R"),1/p+1/q= 1and

{y,x) = ];2 y(@) " x(@) P(dw), yeX* xeX.

Lemma

The polar cone K° of a convex decomposable cone X C X is a convex
decomposable cone, and K°(w) = (K(a)))o a.s.
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Subregular Multifunctions

Consider 0 € $(x) where  : X = ¥ and ¥ is a Banach space.
Definition

The multifunction $) is subregular at X € X with 0 € H(x), if § > 0 and
C > 0 exist such that for all x € X with ||x — x|l < § a point X exists
such that

0€H(Kx) and |x—x|lx < C dist(0, H(x)).

For F(x) € Y ($ = F(x) — Y) where ¥ is an &£,-space, F : XX — Y is
Lipschitz continuous, and Y C ¥ is a closed convex set, subregularity
means that a constant C exists, such that for all x in a neighborhood of x,

dist (x, F7'(Y)) < C dist (F(x). Y).
It is equivalent to the calmness of the multifunction
M(z) = {x tF(x) € Y—z}

at the point (0, x) with calmness being defined by Robinson in 1979 under
the name of the “upper Lipschiz property”.
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Causal Operators

For a probability space (§2, ¥, P) with filtration

(0,2} =F1 CF, C--- C Fr = F, we define the spaces
Xe=&,(82,F, P;R") and ¥, = £,(82, F¢, P; R™) with p € [1, 00).
Llet X =Xy x--xXrand ¥y =¥Y; x--- x Yr.

We use xi:; = (xq,..., %), and Xq.p = X7 X -+ X X4

Definition

An operator F : X — ¥ is causal, if functions f; : R™ x £ — R™ exist,
such that forall t = 1... T, fi(:,-) is superpositionally measurable and

Fi(x)(0) = fi(xt(@), ), € 2.

Assumption A
Forallt=1,...,T:
(i) fi(&,-) is an element of Y, for all § € R™;
(if) For almost all w € £2, f;(-, ®) is continuously differentiable, with the
Jacobian f{ (-, ®);
(i) A constant G exists, such that ||f/(-, w)|| < G, almost surely.
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Differentiability of Causal Operators

Lemma

A causal operator F(-) satisfying Assumption A is Gateaux differentiable
with the derivative F'(x) defined by

[F/(x) h](0) = f' (x(w), ) h(w), o € 2.

Theorem

Suppose F(-) is a causal operator satisfying Assumption Aand p : ¥ — R
is a convex subdifferentiable functional. Then the Clarke subdifferential of
the composition has the form:

I(p o F)(x) = [F'(x)]" Ip(F(x))
where [F’(x)]* is the adjoint operator to the Gateaux derivative F'(x).
Corollary Suppose additionally Y C ¥ is convex and closed, F(x) € Y.
Then D ST
ddist (F(x), Y) = [F ()] (Ny(F(x)) N Byx).

where By~ is the closed unit ball in ¥*.
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Example: Nonlinear causal operators are not Fréchet differentiable

Let £2 = [0, 1] and P be the Lebesgue measure on [0, 1]. We define the
spaces X =¥ = £,(£2, F, P), and the operator F : X — ¥ given by

(@) if —1=x@) <1,
2|x(a))| — 1 otherwise.

F(x)(w) = f(x(w),w) = {

Note that | F(x)|| < 2|x||, and thus indeed F : X — ¥.

F(-) is not Fréchet differentiable at 0.

The Gateaux derivative of F at 0 is 0, and, thus, the Fréchet derivative, if it
existed, would be F'(0) = 0. Consider the sequence of functions

©) 1 ifo<w<i, o
xp(w) = n=12,...
" 0 otherwise,

We have Hx,,” = %’ and thus x, — 0. By construction, F(x,) = x,
F(0) = 0, and then, by the definition of the Fréchet derivative, we would

have
F(Xn) - F(O) - F/(O)Xn T Xn

00 [Ial oo x|l

This is a contradiction.
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Multistage Stochastic Optimization with Built-In Nonanticipativity

min ¢(x1:7) (1)
st. Fi(xt) € Yy as., t=1,...,T, (2
xt € Xy as., t=1,...,T. (3)

Due to the causality of F(-) and the decomposability of Y, (2) can be written as
fixit(@),w) € Yi(w), t=1,....,T, wef.
Xt 1 £2 = R" are Ft-measurable mulitifunctions with closed convex images.

Sub-regular recourse definition

fiGr:t—1, 8, 0) € Yi(w), 4)
£ € X(w). (5)

admits a complete subregular recourse, if a constant C exist, such that for almost
allw € £2, every {1:—1 € X1:t—1(w) and every n € R", a solution £ exists, satisfying

I =l < C(d(fe(Grim1. 1. @), Ye(@)) + d(1. Xe(@)))

{1:t—1 represents the history of decisions at the particular elementary event.
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Optimality conditions

Under Assumption A, we denote:

Fl(x) = Ay = (Am, e At,t), t=1,..., T, with partial Jacobians
At,gIX4—>yt,At,z=%;2"), L=1,...,t, t=1,...,T.
These linear operators are defined pointwise:

Ife(Xr:¢(w), @)

, b=1,...,t, t=1,....,T, weES.
Ixg(w)

Ane(w) =

Theorem

If the system (4)—(5) admits complete subregular recourse, then the system
(2)-(3) is subregular at any feasible point x = (x1,. .., X7). If the policy x is
a local minimum of problem (1)-(3), then a subgradient g € dp(X),
multipliers &t € Ny, (F:(x1:t)), and normal elements n; € Ny, (X;), exist,
such that for P-almost all v € £2 we have:

.
§t+AI,%+JEt[ Z Azt&e}-q-ﬁt:o, t=1,...,T. (6)
{=t+1
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Multistage Optimization with Nonanticipativity Constraints

We consider extended spaces DZt =L(2,F,P;R"),t=1,...,Tand a

relaxed policy x = (xy,...,x7) € Xy x+-- x X7 = X.

The nonaticipativity constraint defines a closed subspace N in X:
Xt:E[thff’v[], t:1,,T (7)

We denote by ¢ : X —>Ra Lipschitz continuous extension of ¢, that is,
@(x) = p(x) forall x € N. o 5

A causal operator F(-) has value space ¥ = ¥; x --- x Y1 with

gt = £,(82,F, P; R™). The decomposable sets X; and Y; are viewed as

subsets X; of %t and Y, of gt:
X = {x € X : x(0) € Xe(w) as.},
Yi={vie Y, y(0) € Y(w)as}, t=1,...,T.

min @(xi, ..., X7) ®)
S.t.Xt—EtXt=0 a.s., t = 1,...,T, (9)
Fi(xix) €Yy as, t=1,...,T, (10)
xt €X; as., t=1,...,T. (11)

Dentcheva & Ruszczynski Subregularity in Nonlinear Multistage Stochastic Optimization



Optimality conditions

Theorem

If the system (4)-(5) admits complete subregular recourse, then the system
(9)-(11) is subregular at any feasible point x = (x1, ..., xr). Additionally, if
a policy x is a local minimum of problem (8)—(11), then a subgradient

g € 0p(x), multipliers A, € 56:‘, U, € Ny, (Fi(a:), t=1,..., T, and
normal elements n; € Ny(t(f(t), t=1,...,T,exist, such that for P-almost
all w € £2 we have:

;
B+ Al Yu+h=0 t=1..T,
=t
Efr]=0, t=1,...,T.

Corollary

The subgradient g € dp(x) given by g = Eg) t=1,...,T,together
with the multipliers ¥, = E ¥ ¢],t = 2,..., T, and normal vectors
ny = E[n;] satisfy the optimality conditions (6).
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Conclusion and Future Work

> The concept of subregular recourse allows for the verification of the
subregularity in abstract spaces by establishing subsegularity of
finite-dimensional systems associated with each stage and each
elementary event.

» The Clarke subdifferential of a composition of the distance function
and a causal operator allows for exact subdifferentiation of the
penalty function associated with system’s dynamics.

P This approach has potential in addressing nonlinear stochastic
dynamic optimization problems.

» Focus on specific dynamic risk measures and exploit their specific
structure to obtain specific optimality conditions.

» Adopt Kruger-Mordukhovich calculus by restricting the spaces X and
Y to those with p € (1, 00). This would allow for the treatment of
non-convex sets X; and Y;, and more accurate subdifferentials of
non-convex objective functionals. The main challenge is to derive the
explicit form of the coderivative of the operator F(-) describing the
dynamics of the system.

» The necessary conditions of optimality are a prerequisite for the
development of numerical methods.

Dentcheva & Ruszczynski Subregularity in Nonlinear Multistage Stochastic Optimization



	Outline
	The Problem
	Decomposable Sets
	Subregular multifunctions
	Causal Operators
	Multistage Stochastic Optimization with Built-In Nonanticipativity
	Multistage Stochastic Optimization with Nonanticipativity Constraints
	Conclusions

