A General Framework For Optimal
Data-Driven Optimization

Tobias Sutter,!) Bart Van Parys,2) Daniel Kuhn 1)

1) Risk Analytics and Optimization Chair, EPFL
www.epfl.ch/labs/rao/

2) MIT Sloan School of Management
web.mit.edu/vanparys/www/

e @ Zcuctlzamation cPrL

Swiss NATIONAL SCIENCE FOUNDATION


https://www.epfl.ch/labs/rao/
https://web.mit.edu/vanparys/www/
https://www.epfl.ch/labs/rao/
https://web.mit.edu/vanparys/www/

@tochastic opti-
mization problem

minimize c(x,0)
xeX

Data-Driven Decision-Making



Data-Driven Decision-Making

-

amily of proba-
bility measures

{]P)QZGE@}

@tochastic opti-
mization problem

minimize c(x,0)
xeX




Data-Driven Decision-Making

-

amily of proba-
bility measures

{]P)QZGE@}

D

@tochastic opti-
mization problem

ata-generating
process

{$tHen

minimize c(x,0)
xeX




Data-Driven Decision-Making

Gtochastic opti-
mization problem

minimize c(x,0)
xeX

Examples:



Data-Driven Decision-Making

Gtochastic opti-
mization problem

minimize c(x,0)
xeX

Examples:

> Expected loss c(x,0) =

|
LJ.
D
~
~—~
X
—




Data-Driven Decision-Making

Gtochastic opti-
mization problem

minimize c(x,0)
xeX

Examples:

» Expected loss c(x,0) =Egll(x, &)

» Risk of loss c(x,0) = pgll(x, &)



Data-Driven Decision-Making

rStochastic: opti-
mization problem

minimize c(x,0)
xeX

Examples:

> Expected loss c(x,0) =Egll(x, &)

> Risk of loss c(x,0) = pgll(x, &)

» Covariate information c(x,0) =Egll(x, ¢)|CE € B




Data-Driven Decision-Making

Gtochastic opti-
mization problem

minimize c(x, 6)
xeX

Examples:

> Expected loss

» Risk of loss

» Covariate information

» Long-run average loss

c(x,6) = Eq[f(x, §)
c(x, 0) = pgll(X, §)
c(x,0) = Eg|(x, §)
c(x,0) = T|l_>m ;'ZtT_
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Examples:

> Finite-state i.1.d. processes

> Finite-state Markov chains

» Vector-autoregressive processes

> |.1.d. processes with parametric distribution functions
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Abstract

‘We propose a statistically optimal approach to construct data-driven decisions for stochastic opti-
mization problems. Fundamentally, a data-driven decision is simply a function that maps the available
training data to a feasible action. It can always be expressed as the minimizer of a surrogate optimizati

model constructed from the data. The quality of a data-driven decision is measured by its out-of-sample
risk. An additional quality measure is its out-of-sample disappointment, which we define as the prob-
ability that the out-of-sample risk exceeds the optimal value of the surrogate optimization model. The
crux of data-driven optimization is that the data-generating probability measure is unknown. An ideal
imultaneously with respect to ev-

data-driven decision should therefore minimize the out-of-sample ri
ery conceivable probability measure (and thus in particular with respect to the unknown true measure).
Unfortunately, such ideal data-driven decisions are generally unavailable. This prompts us to seek data-
ons that minimize the out-of-sample risk subject to an upper bound on the out-of

t to every conceivable probability measure. We prove
that such Pareto-dominant data-driven decisions exist under conditions that allow for interesting appli-
cations: the unknown data-generating probability measure must belong to a parametric ambiguity set,
and the corresponding parameters must admit a sufficient statistic that satisfies a large deviation princi-
ple. If these conditions hold, we can further prove that the surrogate optimization model generating the
optimal data-driven decision must be a distributionally robust optimization problem constructed from
the sufficient statistic and the rate function of its large deviation principle. This shows that the optimal
method for mapping data to decisions is, in a rigorous statistical sense, to solve a distributionally robust
optimization model. Maybe surprisingly, this result holds irrespective of whether the original stochastic
optimization problem is convex or not and holds even when the training data is non-i.i.d. As a byproduct,
our analysis reveals how the structural properties of the data-generating stochastic process impact the
shape of the ambiguity set underlying the optimal distributionally robust optimization model.

driven decis
disappointment—again simultaneously with res

Data-driven decision-making, stochastic optimization, robust optimization, large deviations

Keywords

1 Introduction

A fundamental challenge in data-driven decision-making is to construct estimators for the optimal solutions
of stochastic optimization problems based on limited training data. We address this challenge within a well-
defined framework that is sufficiently general to support a broad spectrum of applications. The primitives

of this framework are a stochastic optimization problem representing the ground truth against which the

estimators will be assessed, a family of probability measures that captures prior structural knowledge and a

stochastic process that generates training samples. The stochastic optimization problem minimizes a generic
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Surrogate Optimization Models

Surrogate optimization problem:

mir;(iergize c7(x)
Construction of c:
> Sample average approximation?)
> Regularized nominal model?)
> Predict-then-optimize approach3)
> Neural network model4)
> Distributionally robust optimization model>)
- efc.

1) Shapiro, Annals of Statistics, 1989; 2) Hoerl & Kennard, Technometrics, 1970; 3) Elmach-
toub & Grigas, Management Science, 2021; 4 Donti et al., NIPS, 2017; ) Delage & Ye, Op-
erations Research, 2010; Mohajerin Esfahani & Kuhn, Mathematical Programming, 2018.
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Terminology

Definitions:

» Data-driven predictor ¢t

» Data-driven prescriptor X1 € argmin cr(x)
xeX

Performance measures:

In-sample risk ¢r(x7)
Out-of-sample risk c(xr, 6)

P 2

Out-of-sample disappointment Pg [C(S\(T, 0) > CT(XT)]
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S

CT(X) = C(X, 97‘)

1) Shapiro, Annals of Statistics, 1989.
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1) Delage & Ye, Operations Research, 2010.
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Model 4: DRO model with Wasserstein ambiguity set!)

Sr(x) = sup {c(x, 0) : dw(67]|6) < r}
CISO)

1) Mohajerin Esfahani & Kuhn, Mathematical Programming, 2018.
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6cO

0(x,0) : D (67]|6) < r}

\

1) Ben-Tal et al., Management Science, 2013.
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1) Ben-Tal et al., Management Science, 2013.
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risk
C(XT’, 61) : e(XT, 65)
c(xr, 62) oy

@ @ C(XT7 95)
C<XT7 93) C(XT7 64)

theoretical
(0] (0] . .
mi)r(1 c(x, 61) o : : o Z(TIEIQ c(x, Bg)MnIMUm
e : . min:c(x, 6
Q‘Q (X 02) min c(X, 03) minic(x, 64) xeX (%, 65)

xeX xeX
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Eg, [c7(X7)] In-sample risk
(0}

E95 [ET()?T)]

Ep, [CT(X o
2 [ OT( T)] E93 [EJ(/)?T)] IE’94 [C.T(XT>]
out-of-sample
risk
c(%7, 67) — ’ e(%7 65)
C(XT7 62) ~¢ e C(/)?T, 95)
C<XT7 93) C(XT7 64)
theoretical
0} (@] e
mi)r(1 c(x, 61) 0 : : o Z(TIEIQ c(x, 6)Mmnimum
Xe - , min.c(x, 6
Q‘Q (X 02) min c(X, 03) minic(x, 64) xeX (%, 65)
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Pareto-Dominant Solutions

2

lim Eq[Cr(XT)]
T— o0

dominated predictors ¢

6

¢ minimizes the in-sample risk simultaneously for every 6



Meta-Optimization Problem (MOP)

MOP optimizes over all surrogate optimization models

minimize { im Eg [ET()A(T)}}
Cr.X7 =09 €O

1 ~ ~
subject to limsup 7_Iog Py [c(X1,6) > Cr(X7)| < —r VO €O
T—o00

Strengths:

> proxy for optimizing the out-of-sample risk

> errs on the side of caution

> admits a Pareto dominant solution in closed form

> facilitates separation of estimation and optimization



Meta-Optimization Problem (MOP)

MOP optimizes over all surrogate optimization models

minimize { im Eg [ET()A(T)}}
Cr.X7 =09 €O

1 ~ ~
subject to limsup 7_Iog Py [c(X1,6) > Cr(X7)| < —r VO €O
T—o0

Weaknesses:

> performance criteria are asymptotic
> choice of ris subjective
> why insist on exponential decay?

> feasible/optimal models are biased
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Data Compression

Compress the raw data to an estimator of 6

T.d
§1,62,---,67 ER _>l

\

—> compressed predictors depend on ¢, ¢,, ..., ¢ and
on T only indirectly through the summary statistic 6+



Compressed Predictors and Prescriptors

S

> Set c1(x) = ¢(x, 67) for some continuous function ¢

AN

> Set x7 = x(67) for some quasi-continuous function x with

A P

X(01) € argmin c¢(x, 671)
xeX



Restricted MOP

Restricted MOP over compressed predictors/prescriptors:

minimize {¢(x(6),6)}gcq
C,X
subject to limsup ;_Iog Pg {0(5((57), 0) > E:(S((@T),ér)] < —-r VOeO
T—o00



Large Deviation Principle (LDP)

Definition:?) The estimators 57, T € N, satisfy an LDP if there
exists a rate function /(8’, 8) such that for all Borel sets D C ©

1

i _log Pg(6r € D) < — inf (6

msup 7log Fy(0r € D) < — Inf 1(6.6)
1 o~

liminf —log Pg(67 € D) > — inf 1(6,6

o 1Y o(Or € D) = o &t D (9,6)

1) den Hollander, American Mathematical Society, 2008; Dembo & Zeitouni, Springer, 2009.



Large Deviation Principle (LDP)

Py(67 € D) = e+




DRO is Optimal

Assumption:
4 57 satisfies an LDP with a “regular” rate function

Theorem 1 (DRO is optimal): The following distributionally
robust compressed predictor is a Pareto-dominant solution
for the restricted MOP.

6cO

R { sup  c(x, 6)
s.t. /(/9\7', 9) <r




DRO is Optimal

Assumption:
4 57 satisfies an LDP with a “regular” rate function

Theorem 1 (DRO is optimal): The following distributionally
robust compressed predictor is a Pareto-dominant solution
for the restricted MOP.

6cO

R { sup ¢(x, 6)
S.1. /(/9\7', 9) <r

Note:
> The shape of the ambiguity set is determined by 07

> The “radius” of the ambiguity set is given by the decay rate r



Separation of Estimation and Optimization



Sufficient Statistic

Definition: 67 is a sufficient statistic for 6 if the distribution of
¢.,&5, ..., & conditional on 87 = 0’ is independent of 6 € O.

—> Lossless compression

”
| i

.
i
T.d > || = 2 d
iz /




DRO is Optimal

Assumptions:

b 57 IS a sufficient statistic for 6

4 57 satisfies an LDP with a “regular” rate function

Theorem 2 (DRO is optimal): The following distributionally
robust surrogate optimization model is a Pareto-dominant
solution for the original MOP.

R sup c¢(x,0)
s.t. /(97', 9) <r




DRO is Optimal

Assumptions:

> 57 IS a sufficient statistic for 6

> 57 satisfie
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Newsvendor Problem Revisited
“Compressing” the raw data:

demand observations empirical distribution
oo |

(§1:62,---,67) (ér)i = %2;1 Te—i
g 9

d d

2 2

11 2 ... oo T=-1T > 1 >GT

> Fisher-Neyman:") 67 is a sufficient statistic for 6
> Sanov:2) 57 satisfies an LDP with I(@T, 0) = DKL(5T |6)

) Lehmann & Casella, Springer, 1998;
2) Sanov, Matematicheskii Sbornik, 1957 .



Newsvendor Problem Revisited

» The separation principle holds

» The optimal data-driven predictor is

~ sup  ¢(x, 0)
CT(X) — CISC) R
s.t. Dk (67]6) <
N XTidge
“®Imoment .¢“‘- S~
« \ ‘. ~Wasserstein
oW s
S o -7 \
22 \ ~Kullback Leibler
u>)s 8 ..0’ :0:.’.0’
© L 8 3 5;'," biased SAA
¢
|

2% 5% 10%
decay rate of out-of-
sample disappointment



Finite-State Markov Chains

Assume that {¢;}ten is a Markov chainon {1,2,...,d}
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Finite-State Markov Chains

Assume that {¢;}ten is a Markov chainon {1,2,...,d}
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> all one-step transitions possible
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Finite-State Markov Chains

Assume that {¢;}ten is a Markov chainon {1,2,...,d}

()

> 0 = T“—>moo Po(S¢ =1, €1pq = J) ( \
> all one-step transitions possible

OGZQQ

© = {9 ER(rfl_d : Z,’je,-j: 1, ZI-G,-,-: ZJGI,V/}
— —

/

invariant probability of state i



Finite-State Markov Chains

Assume that {¢;}ten is a Markov chainon {1,2,...,d}

()

> 0 = T“—>moo Po(S¢ =1, €1pq = J) ( \
> all one-step transitions possible

OGZQQ

© = {9 ER(rfl_d : Z,’je,-j: 1, ZI-G,-,-: ZJGI,V/}
— —

\\

invariant probability of state /
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Finite-State Markov Chains

“Compressing” the raw data:

available observations } { empirical doublet distribution
NN P T
(61,62,--+,67) (67)i = 17th1 1(§t—17§t):(iaj)

> Fisher-Neyman:1) 67 is a sufficient statistic for 6
> Dembo & Zeitouni:? 67 satisfies an LDP with /(67, 6) = D¢(67 || 6)

Definition: Conditional relative entropy

De(6'[16) = 3,6} (log (7 ) — log (24 ))

) Lehmann & Casella, Springer, 1998;
2) Dembo & Zeitouni, Springer, 1998.



Autoregressive Gaussian Processes

Vector autoregressive processes with unknown drift:
> G q = 0+ A, + €11 stationary, driven by Gaussian noise

AN

> 0r = (I, — A) LS, €, satisfies LDP but is not sufficient?)

Scalar autoregressive processes with unknown coefficient:
> §i 1 = 66+ €441 stationary, driven by Gaussian noise

> Least squares and Yule-Walker estimators satisfy LDPs but
are not sufficient?)

1) Dembo & Zeitouni, Springer, 1998;
2) Bercu et al., Stochastic Processes and their Applications, 1997 .



|.I.D. Processes with Parametric CDFs

Assume that the {{; }ten are i.i.d. with any of the following CDFs:

> normal distribution with mean 6

> exponential distribution with rate parameter 6

> gamma distribution with scale parameter ©

> Poisson distribution with rate parameter 6

> Bernoulli distribution with success probability 6

> geometric distribution with success probability 6

> binomial distribution with success probability 6




|.I.D. Processes with Parametric CDFs

Then, 67 = %2;1 ¢; is sufficient!) and satisfies an LDP,2) where

> N\(A,0) =log Eg [exp(ATft)} is the log-MGF, and

> 1(8',0) =sup, 6'A— A(A,0) is a “regular” rate function.

) Lehmann & Casella, Springer, 1998;
2) Crameér, Actualités scientifiques et industrielles, 1938.



|.I.D. Processes with Parametric CDFs

Then, 67 = %2;1 ¢, is sufficient’) and satisfies an LDP,2) where

YLehmann & Casella, Springer, 1998;
2) Cramér, Actualités scientifiques et industrielles, 1938.



Summary & Conclusions



Summary

> Meta-optimization problem
¢ optimizes over surrogate optimization models
¢ balances in-sample risk vs. out-of-sample disappointment
¢ pushes down the out-of-sample risk

> Separation of estimation and optimization
¢ holds if 61 is a sufficient statistic that obeys an LDP
¢ reminiscent of Rao-Blackwell theorem

> Pareto-dominant solution is a DRO model
< ambiguity set is a rate-ball around 6
¢ radius = decay rate of the out-of-sample disappointment
¢ invariant under homeomorphic transformations



Conclusions

> Data efficiency
¢ Pareto dominance reminiscent of Bahadur efficiency

> Generality of results
¢ hold even for non-convex decision problems
¢ hold even for non-i.i.d. data processes

> Theoretical justification of DRO

¢ shape of ambiguity set depends on the data process
¢ radius of ambiguity set has physical interpretation

> Computation
¢ customized algorithms for new DRO models?)

DLlietal., ICML, 2021.
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Optimizing over Optimization Problems

Restricted MOP for a fixed decision:

minimize  {¢(0)}sco

C
subject to Iimsup1
T— o0 T

AN

log P [c(e) > &(er)} < -rveco

Pareto-dominant solution:

. sup ¢(6)
&*(QT) — 6cO R
S.1. /(97', 9) <r
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Theorem: c¢” is feasible in the MOP.

AN

c(6) > &*(6r) — c(6) > sup {c(e’) 1(67,6') < r}

6'cO
— I(/éT, 9) >Tr




Feasibility

Theorem: ¢* is feasible in the MOP.

c(8) > &*(6r) — ¢(B) > sup {c(e’) . 1(67,0') < r}
6'cO

— I(@T, 9) >Tr

— P, [c(e)

> C
{/(977 ]

H/_/
<e oM vyp e @

“(6r)
6) >




Optimality

Theorem: If r > 0, then ¢* is Pareto-dominant in the MOP.
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Assume that there is ¢ feasible in MOP and 6 with ¢(64) < ¢*(64)

= €(61) <sup{c(0):1(61,6) <r}
e
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Optimality
Theorem: If r > 0, then ¢* is Pareto-dominant in the MOP.

Assume that there is ¢ feasible in MOP and 6 with ¢(64) < ¢*(64)

—> ¢(01) <sup{c(0):1(64,6) <r}
6O

— 46, : &(91) < 0(92) and 1(91, 92) =l <Tr

— Py, |€(02) > &(57)} > g1 T+o(l)

_. ¢infeasible in MOP %




Appendix: Data-Driven Control



From Data to Controllers?

Closed-loop LTI system: x;,1 = 6x; + w;

—1

T T
Least squares estimator: 07 = (Z?&;ﬂ) (Z?ﬂ?ﬁ)
=1

t=1

Theorem: The modified least squares estimator 6 + v/T (57 — 0)
satisfies a moderate deviations principle with rate function

I(6',6) = 3tr (Sw (6" — 6)Se(6' — 6) 7).,

where S; solves the Lyapunov equation Sy = 6S,07 + S,,.

—> DRO bounds on J(8) = Iim 1 Z T [X{ (Q+ K' RK)x{]



