

A General Framework For Optimal Data-Driven Optimization

Tobias Sutter,¹⁾ Bart Van Parys,²⁾ Daniel Kuhn ¹⁾

1) Risk Analytics and Optimization Chair, EPFL www.epfl.ch/labs/rao/

2) MIT Sloan School of Management web.mit.edu/vanparys/www/

Stochastic optimization problem

 $\underset{x \in X}{\mathsf{minimize}} \quad c(x, \theta)$

Stochastic optimization problem

 $\underset{x \in X}{\mathsf{minimize}} \quad c(x, \theta)$

Family of probability measures

 $\{\mathbb{P}_{\boldsymbol{\theta}}: \boldsymbol{\theta} \in \boldsymbol{\Theta}\}$

Stochastic optimization problem

 $\underset{x \in X}{\mathsf{minimize}} \quad c(x, \theta)$

Family of probability measures

 $\{\mathbb{P}_{\boldsymbol{\theta}}: \boldsymbol{\theta} \in \boldsymbol{\Theta}\}$

Data-generating process

 $\{\boldsymbol{\xi}_t\}_{t\in\mathbb{N}}$

Stochastic optimization problem

 $\underset{x \in X}{\mathsf{minimize}} \quad c(x, \theta)$

Family of probability measures

 $\{\mathbb{P}_{\boldsymbol{\theta}}: \boldsymbol{\theta} \in \boldsymbol{\Theta}\}$

Data-generating process

 $\{\boldsymbol{\xi}_t\}_{t\in\mathbb{N}}$

Stochastic optimization problem

 $\underset{x \in X}{\mathsf{minimize}} \quad c(x, \theta)$

Family of probability measures

$$\{\mathbb{P}_{\boldsymbol{\theta}}: \boldsymbol{\theta} \in \boldsymbol{\Theta}\}$$

Data-generating process

 $\{\boldsymbol{\xi}_t\}_{t\in\mathbb{N}}$

Examples:

Expected loss

$$c(\mathbf{x}, \boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{\theta}}[\ell(\mathbf{x}, \boldsymbol{\xi})]$$

Stochastic optimization problem

 $\underset{x \in X}{\mathsf{minimize}} \quad c(x, \boldsymbol{\theta})$

Family of probability measures

 $\{\mathbb{P}_{\boldsymbol{\theta}}: \boldsymbol{\theta} \in \boldsymbol{\Theta}\}$

Data-generating process

 $\{\boldsymbol{\xi}_t\}_{t\in\mathbb{N}}$

- Expected loss
- Risk of loss

$$c(\mathbf{x}, \boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{\theta}}[\ell(\mathbf{x}, \boldsymbol{\xi})]$$

$$c(x, \theta) = \rho_{\theta}[\ell(x, \xi)]$$

Stochastic optimization problem

 $\underset{x \in X}{\mathsf{minimize}} \quad c(x, \boldsymbol{\theta})$

Family of probability measures

$$\{\mathbb{P}_{\boldsymbol{\theta}}: \boldsymbol{\theta} \in \boldsymbol{\Theta}\}$$

Data-generating process

 $\{\boldsymbol{\xi}_t\}_{t\in\mathbb{N}}$

- Expected loss
- Risk of loss
- Covariate information

$$c(\mathbf{x}, \boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{\theta}}[\ell(\mathbf{x}, \boldsymbol{\xi})]$$

$$c(x, \theta) = \rho_{\theta}[\ell(x, \xi)]$$

$$c(x, \theta) = \mathbb{E}_{\theta}[\ell(x, \xi) | C\xi \in B]$$

Stochastic optimization problem

 $\underset{x \in X}{\mathsf{minimize}} \quad c(x, \boldsymbol{\theta})$

Family of probability measures

$$\{\mathbb{P}_{\boldsymbol{\theta}}: \boldsymbol{\theta} \in \boldsymbol{\Theta}\}$$

Data-generating process

 $\{\boldsymbol{\xi}_t\}_{t\in\mathbb{N}}$

- Expected loss
- Risk of loss
- Covariate information
- Long-run average loss

$$c(x, \theta) = \mathbb{E}_{\theta}[\ell(x, \xi)]$$

$$c(x, \theta) = \rho_{\theta}[\ell(x, \xi)]$$

$$c(x, \theta) = \mathbb{E}_{\theta}[\ell(x, \xi) | C\xi \in B]$$

$$c(x, \theta) = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{\theta}[\ell(\pi_{x}(s_{t}), s_{t})]$$

Stochastic optimization problem

 $\underset{x \in X}{\mathsf{minimize}} \quad c(x, \theta)$

Family of probability measures

 $\{\mathbb{P}_{\boldsymbol{\theta}}: \boldsymbol{\theta} \in \boldsymbol{\Theta}\}$

Data-generating process

 $\{\boldsymbol{\xi}_t\}_{t\in\mathbb{N}}$

Assumptions:

Stochastic optimization problem $\min_{x \in X} c(x, \theta)$

Family of probability measures

 $\{\mathbb{P}_{\boldsymbol{\theta}}: \boldsymbol{\theta} \in \boldsymbol{\Theta}\}$

Data-generating process

 $\{\boldsymbol{\xi}_t\}_{t\in\mathbb{N}}$

Assumptions:

▶ All measures defined on (Ω, \mathcal{F})

Stochastic optimization problem minimize $c(x, \theta)$ $x \in X$

Family of probability measures

 $\{\mathbb{P}_{\boldsymbol{\theta}}: \boldsymbol{\theta} \in \boldsymbol{\Theta}\}$

Data-generating process

 $\{\boldsymbol{\xi}_t\}_{t\in\mathbb{N}}$

Assumptions:

- ▶ All measures defined on (Ω, \mathcal{F})
- \triangleright $\Theta \subseteq \mathbb{R}^d$ open and convex

Stochastic optimization problem

minimize $c(x, \theta)$

Family of probability measures

 $\{\mathbb{P}_{\boldsymbol{\theta}}: \boldsymbol{\theta} \in \boldsymbol{\Theta}\}$

Data-generating process

 $\{\boldsymbol{\xi}_t\}_{t\in\mathbb{N}}$

Stochastic optimization problem minimize $c(x, \theta)$ $x \in X$

Family of probability measures

 $\{\mathbb{P}_{\boldsymbol{\theta}}: \boldsymbol{\theta} \in \boldsymbol{\Theta}\}$

Data-generating process

 $\{\boldsymbol{\xi}_t\}_{t\in\mathbb{N}}$

Examples:

Finite-state i.i.d. processes

Stochastic optimization problem minimize $c(x, \theta)$ $x \in X$

Family of probability measures

 $\{\mathbb{P}_{\boldsymbol{\theta}}: \boldsymbol{\theta} \in \boldsymbol{\Theta}\}$

Data-generating process

 $\{\boldsymbol{\xi}_t\}_{t\in\mathbb{N}}$

- Finite-state i.i.d. processes
- Finite-state Markov chains

Stochastic optimization problem minimize $c(x, \theta)$ $x \in X$

Family of probability measures

 $\{\mathbb{P}_{\boldsymbol{\theta}}: \boldsymbol{\theta} \in \boldsymbol{\Theta}\}$

Data-generating process

 $\{\boldsymbol{\xi}_t\}_{t\in\mathbb{N}}$

- Finite-state i.i.d. processes
- Finite-state Markov chains
- Vector-autoregressive processes

Stochastic optimization problem minimize $c(x, \theta)$ $x \in X$

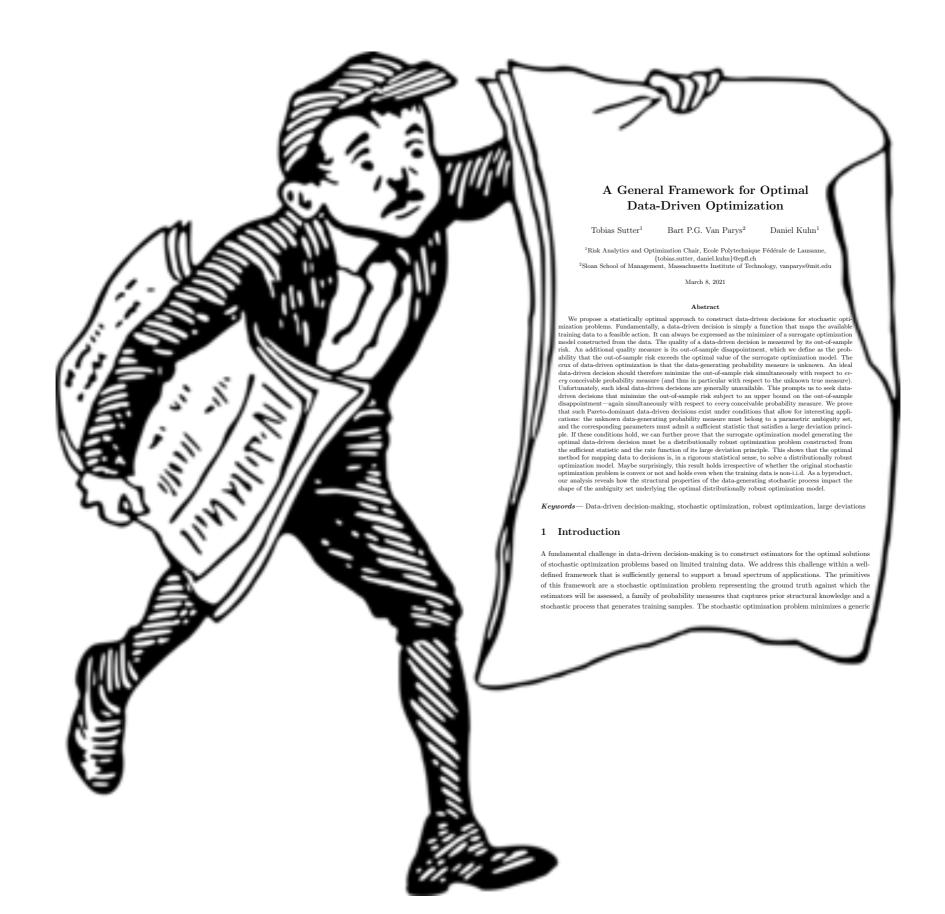
Family of probability measures

 $\{\mathbb{P}_{\boldsymbol{\theta}}: \boldsymbol{\theta} \in \boldsymbol{\Theta}\}$

Data-generating process

 $\{\boldsymbol{\xi}_t\}_{t\in\mathbb{N}}$

- Finite-state i.i.d. processes
- Finite-state Markov chains
- Vector-autoregressive processes
- I.i.d. processes with parametric distribution functions



Stochastic optimization problem

 $\underset{x \in X}{\mathsf{minimize}} \quad c(x, \theta)$

Stochastic optimization problem

 $\underset{x \in X}{\mathsf{minimize}} \quad c(x, \boldsymbol{\theta})$

▶ Order quantities $x \in X = \{1, ..., d\}$

Stochastic optimization problem

 $\underset{x \in X}{\mathsf{minimize}} \quad c(x, \boldsymbol{\theta})$

- ▶ Order quantities $x \in X = \{1, ..., d\}$
- ▶ Demand $\xi \in \Xi = \{1, ..., d\}$

Stochastic optimization problem

 $\underset{x \in X}{\mathsf{minimize}} \quad c(x, \boldsymbol{\theta})$

- ▶ Order quantities $x \in X = \{1, ..., d\}$
- ▶ Demand $\xi \in \Xi = \{1, ..., d\}$
- ▶ Expected cost $c(x, \theta) = \mathbb{E}_{\theta} [kx p \min\{x, \xi\}]$

Stochastic optimization problem

minimize $c(x, \theta)$

- ▶ Order quantities $x \in X = \{1, ..., d\}$
- ▶ Demand $\xi \in \Xi = \{1, ..., d\}$
- $Expected cost c(x, \theta) = \mathbb{E}_{\theta} [kx p \min\{x, \xi\}]$

wholesale retail price

Stochastic optimization problem

minimize $c(x, \theta)$

- ▶ Order quantities $x \in X = \{1, ..., d\}$
- ▶ Demand $\xi \in \Xi = \{1, ..., d\}$
- Expected cost $c(x, \theta) = \mathbb{E}_{\theta} [kx p \min\{x, \xi\}]$ order sales

quantity

Stochastic optimization problem

 $\underset{x \in X}{\mathsf{minimize}} \quad c(x, \boldsymbol{\theta})$

Data-generating process

$$\{\boldsymbol{\xi}_t\}_{t\in\mathbb{N}}$$

Example: Newsvendor Problem

- ▶ Order quantities $x \in X = \{1, ..., d\}$
- ▶ Demand $\xi \in \Xi = \{1, ..., d\}$
- ▶ Expected cost $c(x, \theta) = \mathbb{E}_{\theta}[kx p \min\{x, \xi\}]$

Stochastic optimization problem

 $\underset{x \in X}{\mathsf{minimize}} \ \ c(x, \boldsymbol{\theta})$

Data-generating process

$$\{\boldsymbol{\xi}_t\}_{t\in\mathbb{N}}$$

▶ Order quantities $x \in X = \{1, ..., d\}$

- ▶ Demand $\xi \in \Xi = \{1, ..., d\}$
- ▶ Expected cost $c(x, \theta) = \mathbb{E}_{\theta}[kx p \min\{x, \xi\}]$

▶ Historical demands $\xi_t \in \Xi$

Stochastic optimization problem

 $\underset{x \in X}{\mathsf{minimize}} \quad c(x, \boldsymbol{\theta})$

Data-generating process

 $\{\boldsymbol{\xi}_t\}_{t\in\mathbb{N}}$

Family of probability measures

$$\{\mathbb{P}_{\boldsymbol{\theta}}: \boldsymbol{\theta} \in \boldsymbol{\Theta}\}$$

Example: Newsvendor Problem

- ▶ Order quantities $x \in X = \{1, ..., d\}$
- ▶ Demand $\xi \in \Xi = \{1, ..., d\}$
- ▶ Expected cost $c(x, \theta) = \mathbb{E}_{\theta} [kx p \min\{x, \xi\}]$

▶ Historical demands $\xi_t \in \Xi$

Stochastic optimization problem

 $\underset{x \in X}{\mathsf{minimize}} \quad c(x, \boldsymbol{\theta})$

Data-generating process

$$\{\boldsymbol{\xi}_t\}_{t\in\mathbb{N}}$$

Family of probability measures

$$\{\mathbb{P}_{\boldsymbol{\theta}}: \boldsymbol{\theta} \in \boldsymbol{\Theta}\}$$

▶ Order quantities $x \in X = \{1, ..., d\}$

▶ Demand $\xi \in \Xi = \{1, \ldots, d\}$

▶ Expected cost $c(x, \theta) = \mathbb{E}_{\theta} [kx - p \min\{x, \xi\}]$

▶ Historical demands $\xi_t \in \Xi$

 $\triangleright \{\xi_t\}_{T\in\mathbb{N}}$ i.i.d. process under \mathbb{P}_{θ}

Stochastic optimization problem

 $\underset{x \in X}{\mathsf{minimize}} \quad c(x, \boldsymbol{\theta})$

Data-generating process

$$\{\boldsymbol{\xi}_t\}_{t\in\mathbb{N}}$$

▶ Order quantities $x \in X = \{1, ..., d\}$

▶ Demand $\xi \in \Xi = \{1, ..., d\}$

▶ Expected cost $c(x, \theta) = \mathbb{E}_{\theta} [kx - p \min\{x, \xi\}]$

▶ Historical demands $\xi_t \in \Xi$

Family of probability measures

$$\{\mathbb{P}_{\boldsymbol{\theta}}: \boldsymbol{\theta} \in \boldsymbol{\Theta}\}$$

 $\triangleright \{\xi_t\}_{T\in\mathbb{N}}$ i.i.d. process under \mathbb{P}_{θ}

$$\mathbb{P}_{\theta}[\xi_t = i] = \theta_i \text{ for } i \in \Xi$$

Original optimization problem:

$$\underset{x \in X}{\mathsf{minimize}} \ c(x, \theta)$$

Surrogate optimization problem:

$$\underset{x \in X}{\mathsf{minimize}} \ c(x, \widehat{\theta}_T)$$

$$\xi_1, \xi_2, \dots, \xi_T \longrightarrow \widehat{\theta}_T$$

Surrogate optimization problem:

$$\underset{x \in X}{\text{minimize}} \quad \widehat{\mathbf{c}}_{\mathsf{T}}(x)$$

$$\xi_1, \xi_2, \dots, \xi_T \longrightarrow \widehat{c}_T$$

Data-
Driven SP

Surrogate optimization problem:

$$\underset{x \in X}{\mathsf{minimize}} \quad \widehat{\mathbf{c}}_{\mathsf{T}}(x)$$

Construction of \hat{c}_T :

- Sample average approximation¹⁾
- Regularized nominal model²⁾
- Predict-then-optimize approach³⁾
- ▶ Neural network model⁴⁾
- Distributionally robust optimization model⁵⁾
- etc.

¹⁾ Shapiro, *Annals of Statistics*, 1989; ²⁾ Hoerl & Kennard, *Technometrics*, 1970; ³⁾ Elmachtoub & Grigas, *Management Science*, 2021; ⁴⁾ Donti et al., *NIPS*, 2017; ⁵⁾ Delage & Ye, *Operations Research*, 2010; Mohajerin Esfahani & Kuhn, *Mathematical Programming*, 2018.

Terminology

Definitions:

- ▶ Data-driven predictor \hat{c}_T
- ▶ Data-driven prescriptor $\hat{x}_T \in \underset{x \in X}{\operatorname{argmin}} \hat{c}_T(x)$

Terminology

Definitions:

- Data-driven predictor c_T
- ▶ Data-driven prescriptor $\hat{x}_T \in \underset{x \in X}{\operatorname{argmin}} \hat{c}_T(x)$

determines the surrogate optimization model

Definitions:

- ▶ Data-driven predictor \hat{c}_T
- ▶ Data-driven prescriptor $\hat{x}_{7} \in \operatorname{argmin} \hat{c}_{7}(x)$ ▶ $x \in X$

any function that maps
$$\xi_1, \xi_2, \dots, \xi_T$$
 to X

Definitions:

- ▶ Data-driven predictor \hat{c}_T
- ▶ Data-driven prescriptor $\hat{x}_T \in \underset{x \in X}{\operatorname{argmin}} \hat{c}_T(x)$

Performance measures:

Definitions:

- ▶ Data-driven predictor \hat{c}_T
- ▶ Data-driven prescriptor $\hat{x}_T \in \underset{x \in X}{\operatorname{argmin}} \hat{c}_T(x)$

Performance measures:

In-sample risk $\widehat{c}_T(\widehat{x}_T)$

Definitions:

- ▶ Data-driven predictor \hat{c}_T
- ▶ Data-driven prescriptor $\hat{x}_T \in \underset{x \in X}{\operatorname{argmin}} \hat{c}_T(x)$

Performance measures:

In-sample risk $\widehat{c}_T(\widehat{x}_T)$

Out-of-sample risk $c(\hat{x}_T, \theta)$

Definitions:

- Data-driven predictor c_T
- ▶ Data-driven prescriptor $\hat{x}_T \in \underset{x \in X}{\operatorname{argmin}} \hat{c}_T(x)$

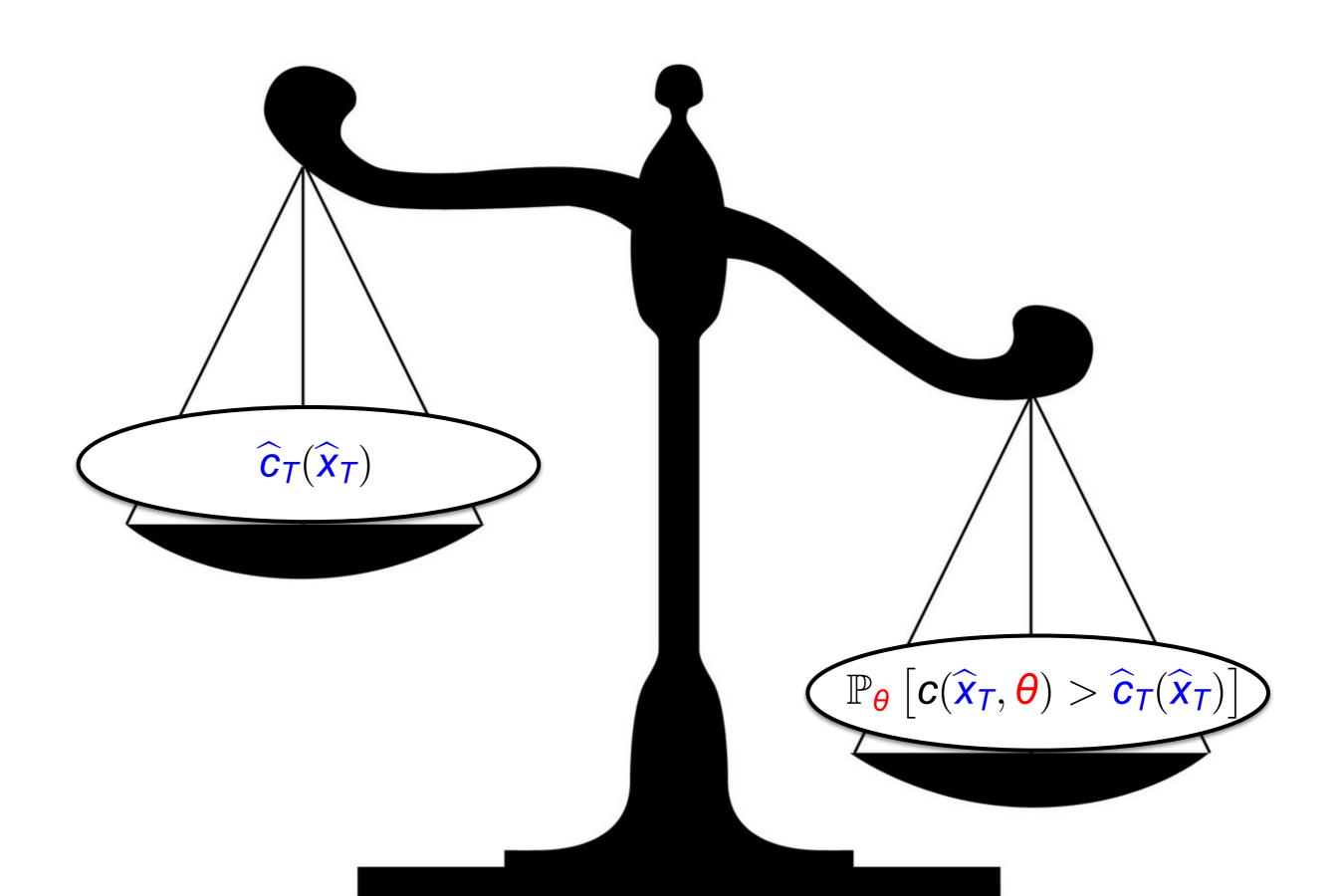
Performance measures:

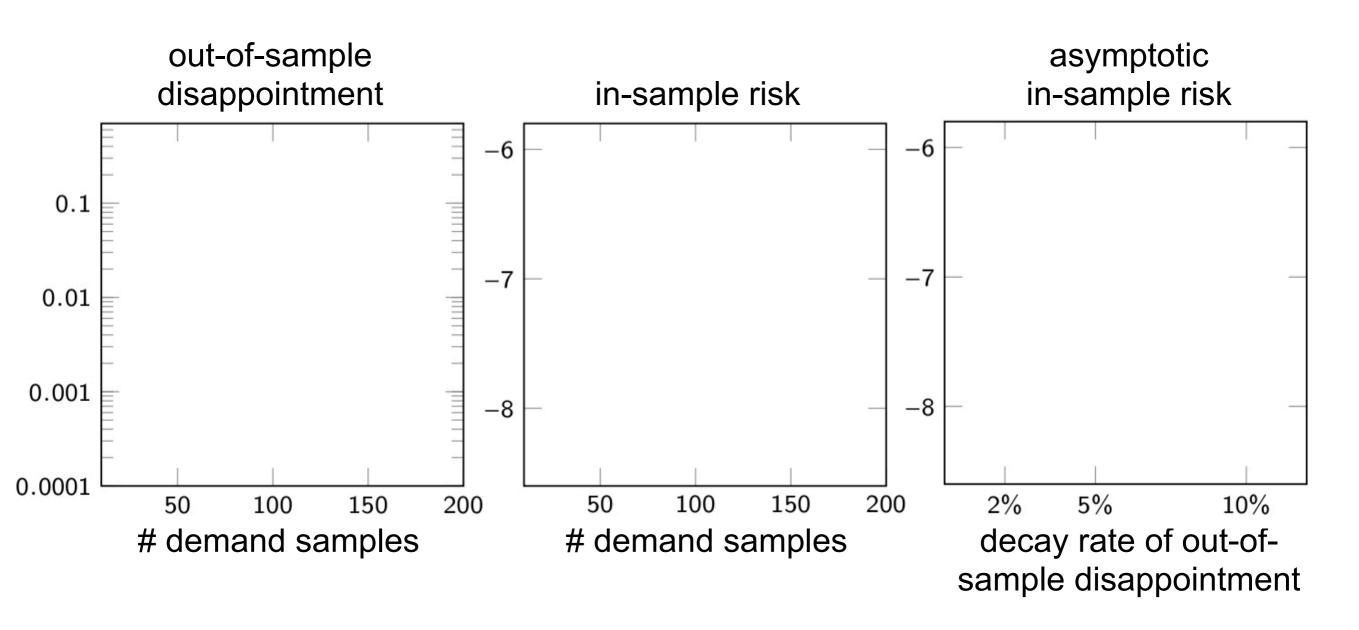
In-sample risk $\widehat{c}_T(\widehat{x}_T)$

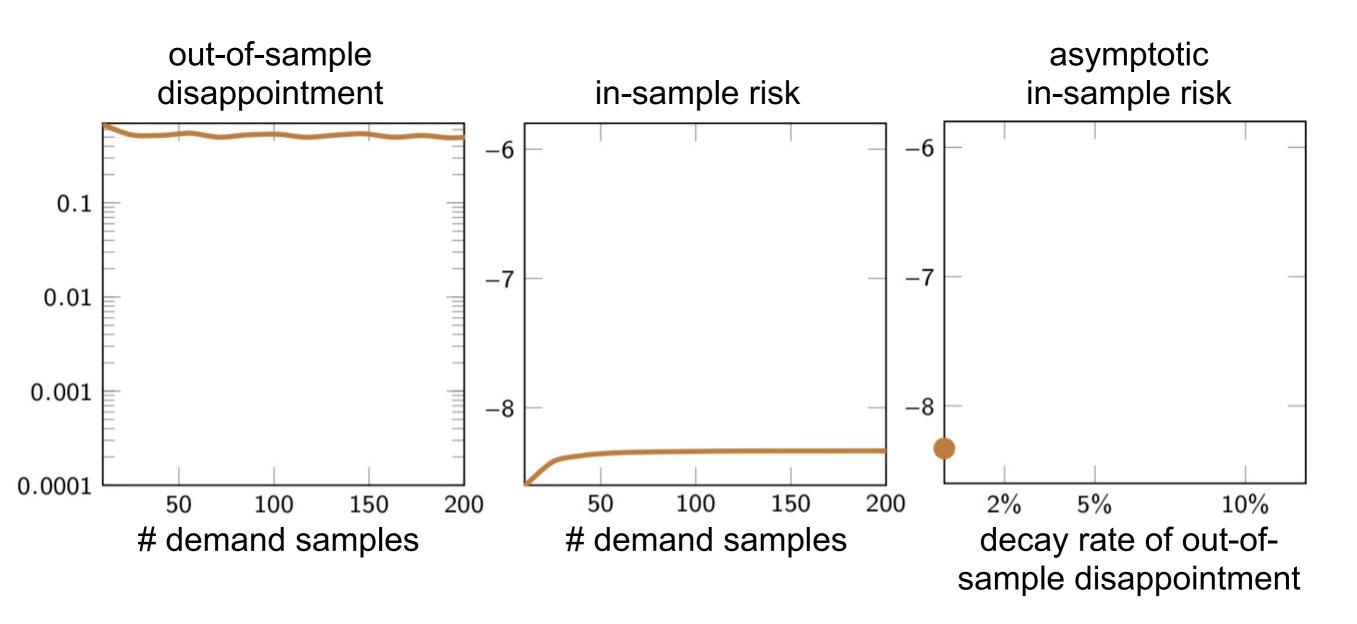
Out-of-sample risk $c(\hat{x}_{7}, \theta)$

Out-of-sample disappointment $\mathbb{P}_{\theta}\left[c(\widehat{\mathbf{x}}_{\mathsf{T}}, \boldsymbol{\theta}) > \widehat{\mathbf{c}}_{\mathsf{T}}(\widehat{\mathbf{x}}_{\mathsf{T}})\right]$

A Basic Trade-Off



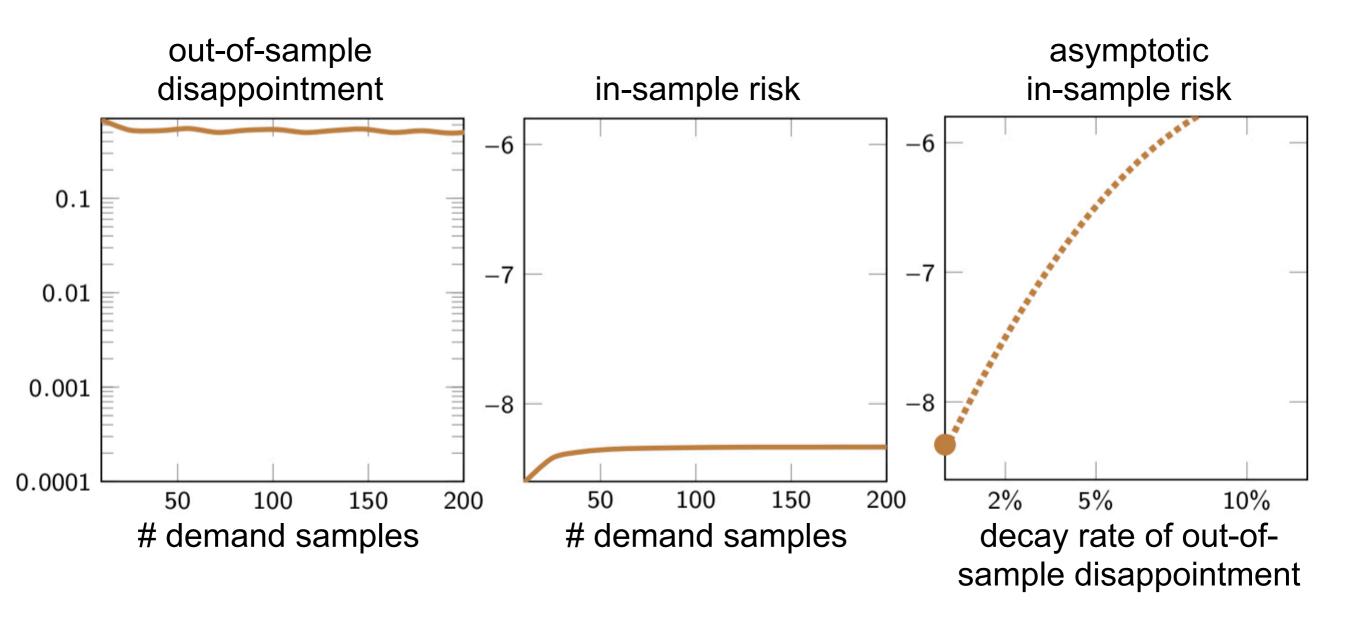




Model 1: SAA model¹⁾

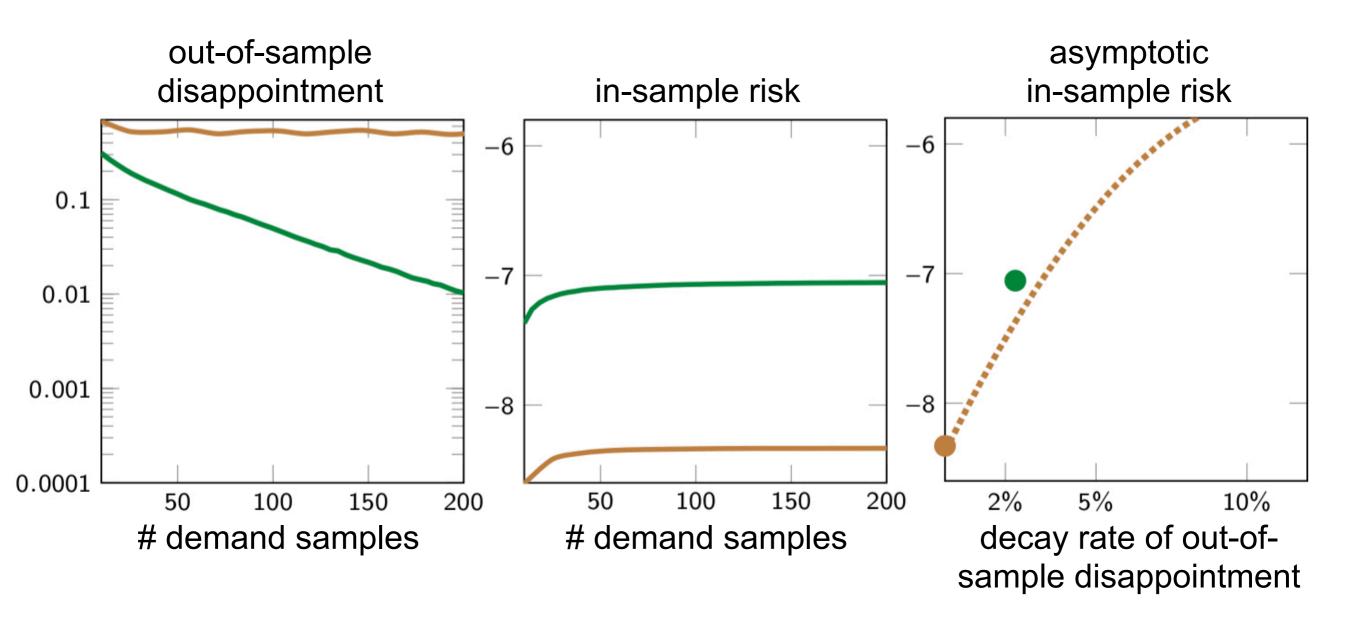
$$\widehat{\mathbf{c}}_{\mathsf{T}}(\mathbf{x}) = \mathbf{c}(\mathbf{x}, \widehat{\boldsymbol{\theta}}_{\mathsf{T}})$$

¹⁾ Shapiro, *Annals of Statistics*, 1989.



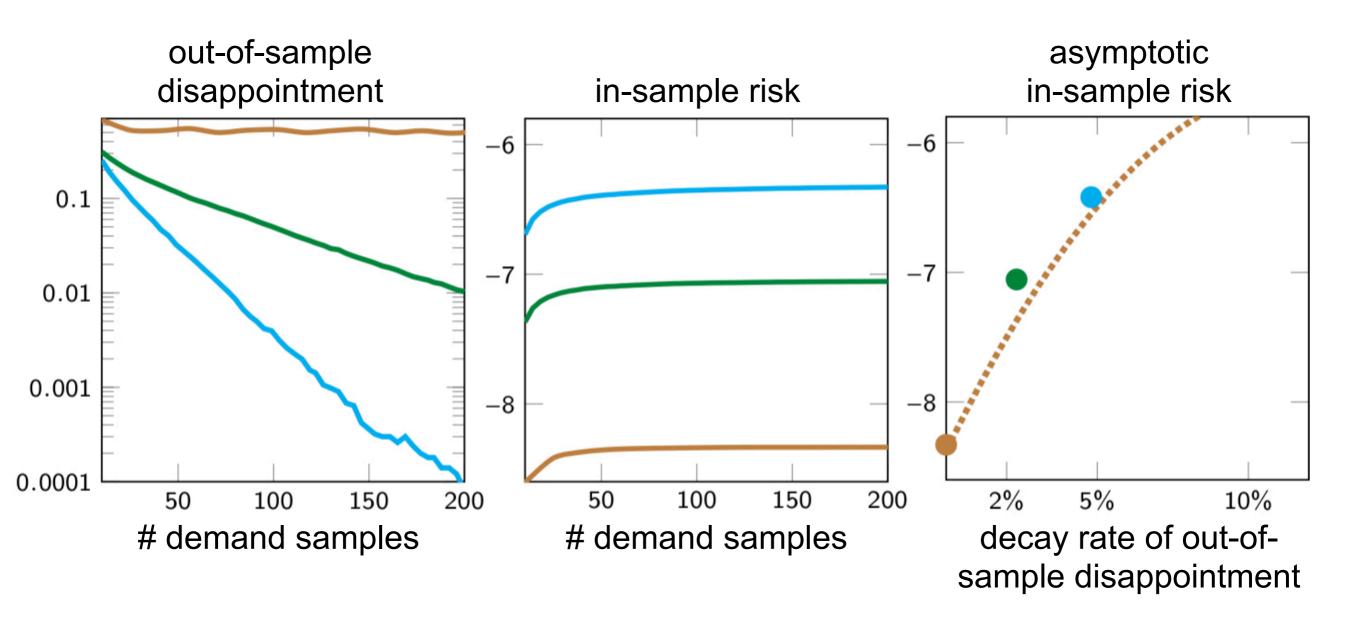
Model 2: SAA model with offset

$$\widehat{c}_T(x) = c(x, \widehat{\theta}_T) + r$$



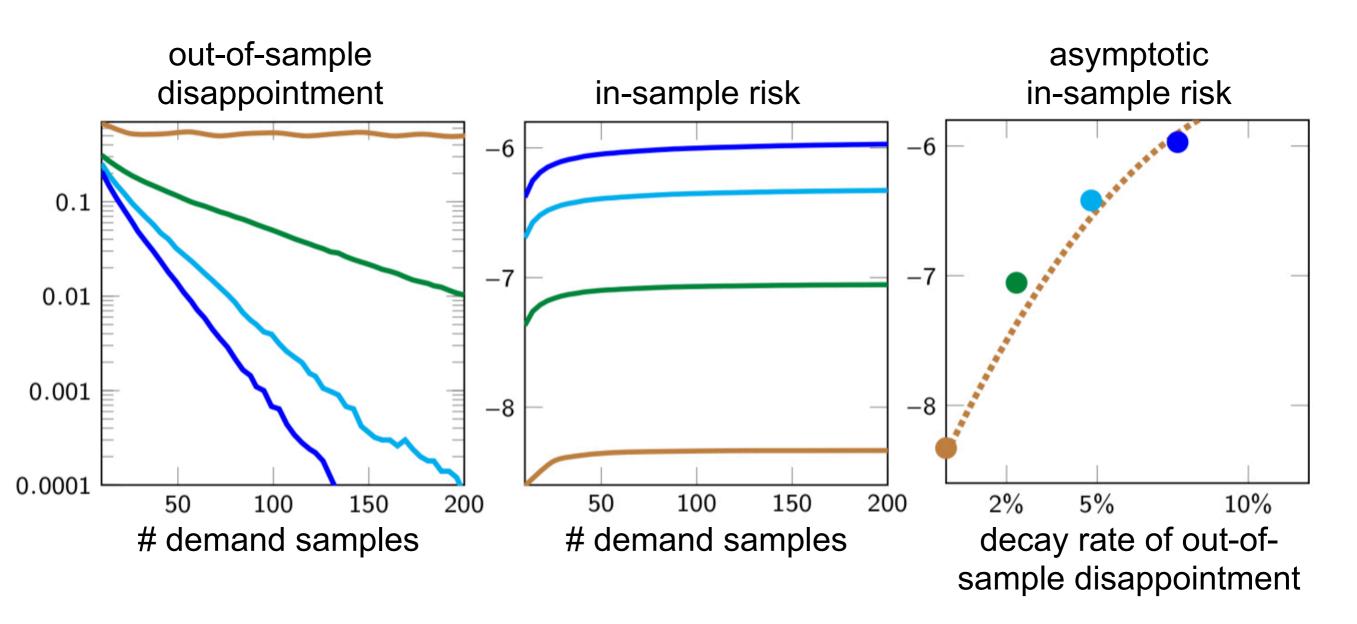
$$\widehat{\mathbf{c}}_{T}(\mathbf{x}) = \sup_{\boldsymbol{\theta} \in \Theta} \left\{ \mathbf{c}(\mathbf{x}, \boldsymbol{\theta}) : \left| \mathbb{E}_{\widehat{\boldsymbol{\theta}}_{T}}[\boldsymbol{\xi}^{j}] - \mathbb{E}_{\boldsymbol{\theta}}[\boldsymbol{\xi}^{j}] \right| \le r \, \forall j = 1, \dots, 4 \right\}$$

¹⁾ Delage & Ye, Operations Research, 2010.



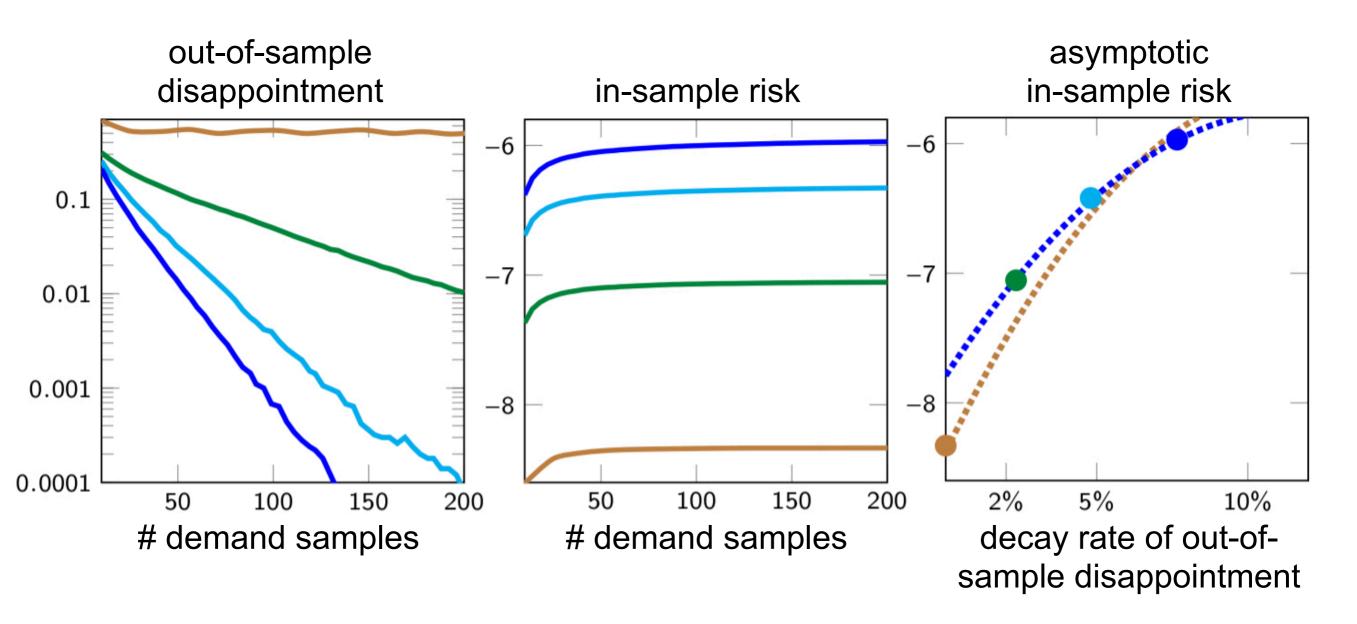
$$\widehat{\mathbf{c}}_{T}(\mathbf{x}) = \sup_{\boldsymbol{\theta} \in \Theta} \left\{ \mathbf{c}(\mathbf{x}, \boldsymbol{\theta}) : \left| \mathbb{E}_{\widehat{\boldsymbol{\theta}}_{T}}[\boldsymbol{\xi}^{j}] - \mathbb{E}_{\boldsymbol{\theta}}[\boldsymbol{\xi}^{j}] \right| \le r \, \forall j = 1, \dots, 4 \right\}$$

¹⁾ Delage & Ye, Operations Research, 2010.



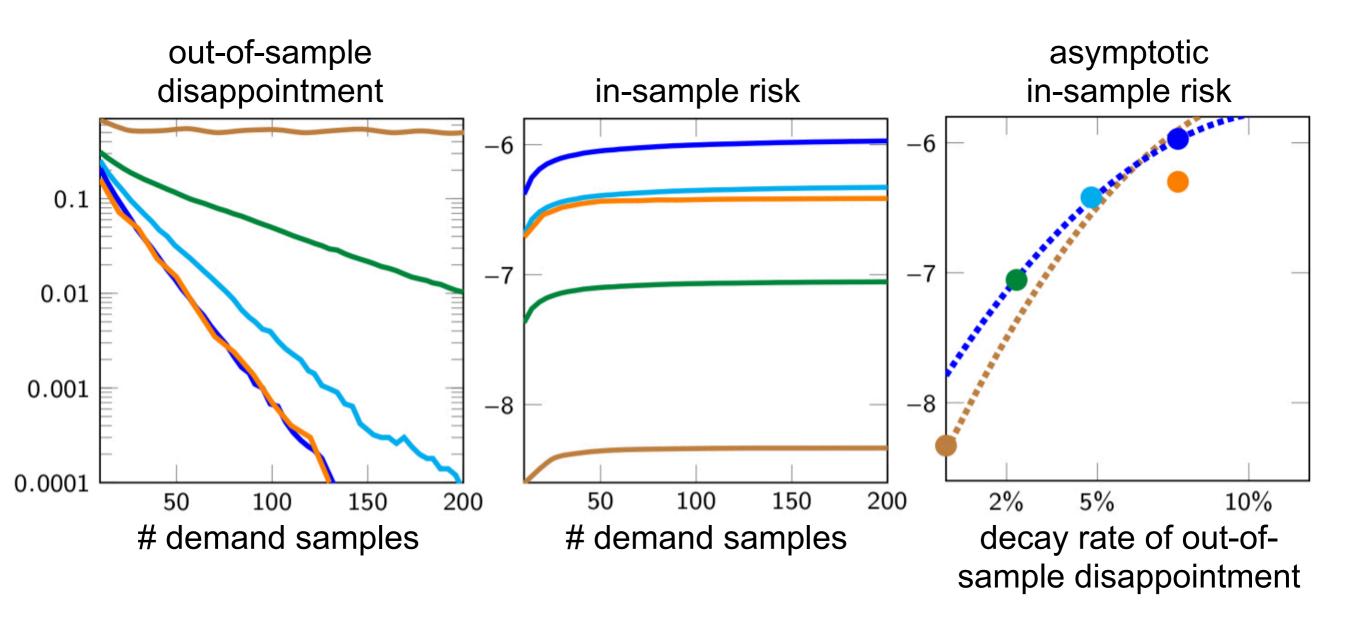
$$\widehat{\mathbf{c}}_{\mathsf{T}}(x) = \sup_{\boldsymbol{\theta} \in \Theta} \left\{ \mathbf{c}(x, \boldsymbol{\theta}) : \left| \mathbb{E}_{\widehat{\boldsymbol{\theta}}_{\mathsf{T}}}[\boldsymbol{\xi}^j] - \mathbb{E}_{\boldsymbol{\theta}}[\boldsymbol{\xi}^j] \right| \le r \, \forall j = 1, \dots, 4 \right\}$$

¹⁾ Delage & Ye, Operations Research, 2010.



$$\widehat{\mathbf{c}}_{T}(\mathbf{x}) = \sup_{\boldsymbol{\theta} \in \Theta} \left\{ \mathbf{c}(\mathbf{x}, \boldsymbol{\theta}) : \left| \mathbb{E}_{\widehat{\boldsymbol{\theta}}_{T}}[\boldsymbol{\xi}^{j}] - \mathbb{E}_{\boldsymbol{\theta}}[\boldsymbol{\xi}^{j}] \right| \le r \, \forall j = 1, \dots, 4 \right\}$$

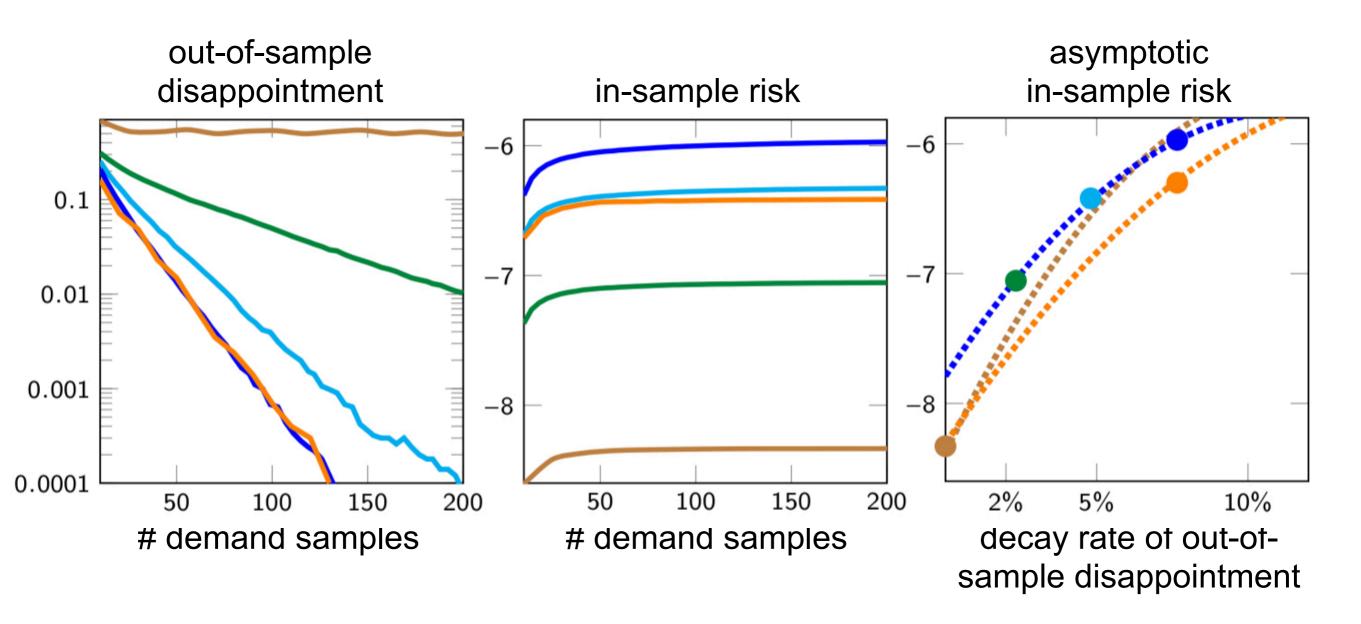
¹⁾ Delage & Ye, Operations Research, 2010.



Model 4: DRO model with Wasserstein ambiguity set¹⁾

$$\widehat{c}_{T}(x) = \sup_{\theta \in \Theta} \left\{ c(x, \theta) : d_{W}(\widehat{\theta}_{T} || \theta) \le r \right\}$$

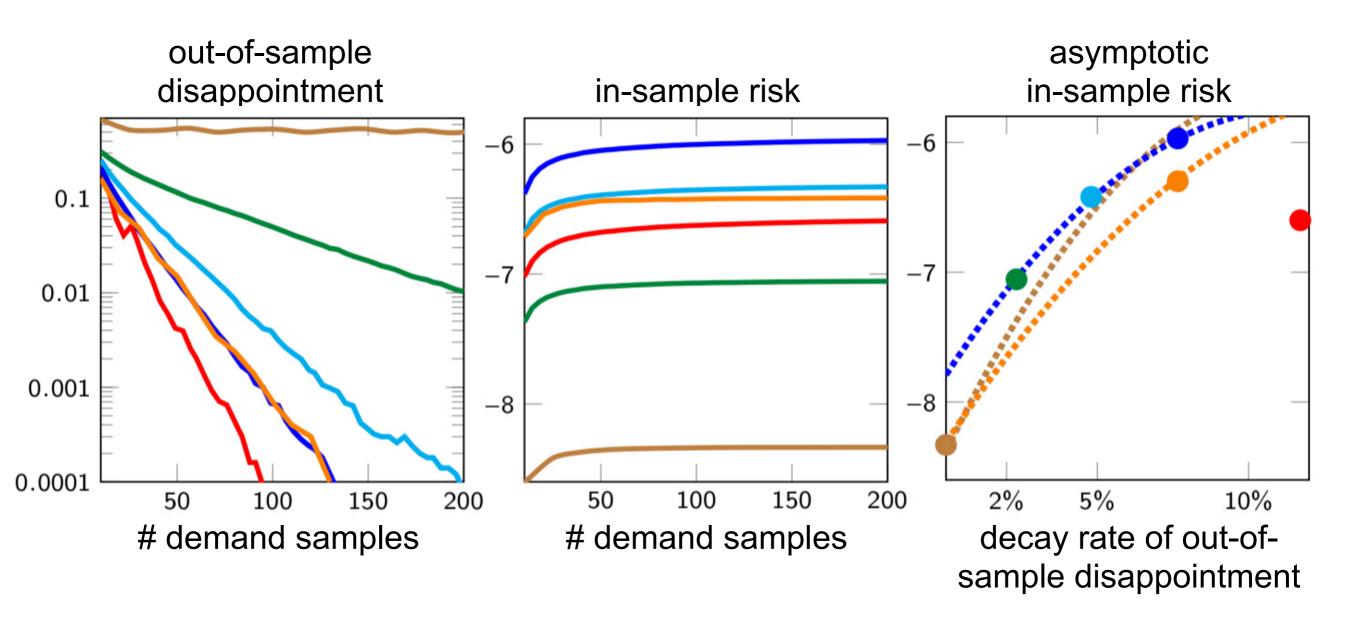
¹⁾ Mohajerin Esfahani & Kuhn, *Mathematical Programming*, 2018.



Model 4: DRO model with Wasserstein ambiguity set¹⁾

$$\widehat{c}_{T}(x) = \sup_{\theta \in \Theta} \left\{ c(x, \theta) : d_{W}(\widehat{\theta}_{T} || \theta) \le r \right\}$$

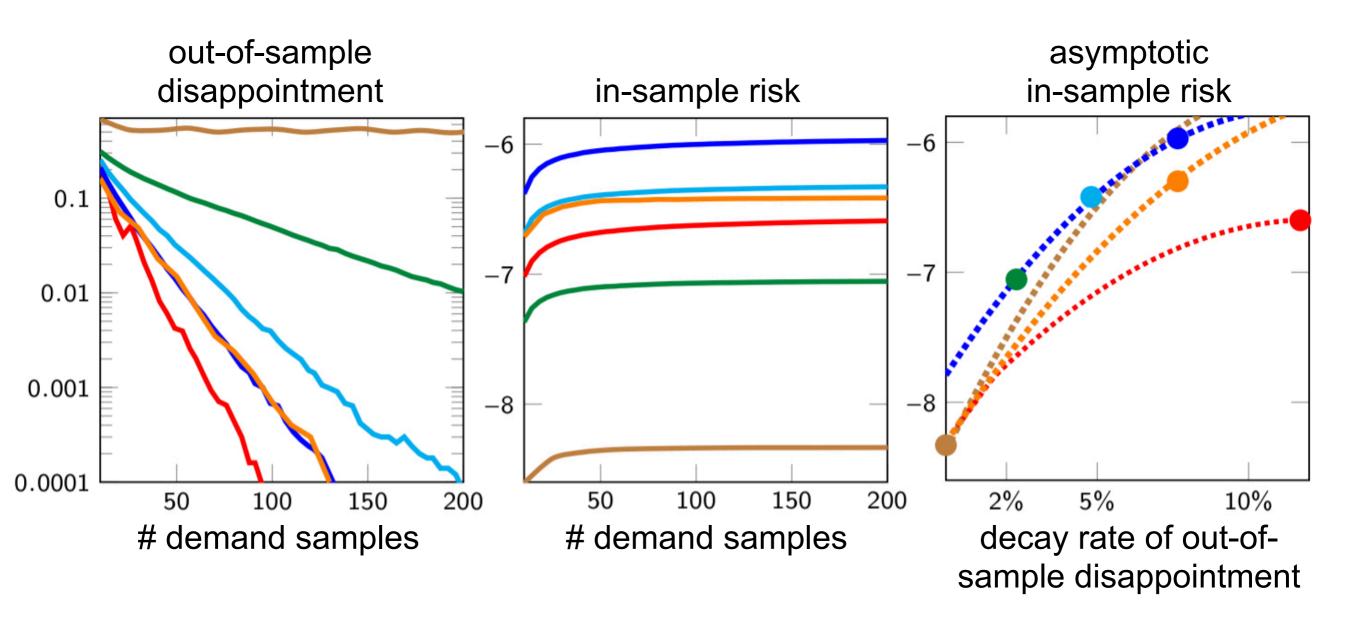
¹⁾ Mohajerin Esfahani & Kuhn, Mathematical Programming, 2018.



Model 5: DRO model with KL ambiguity set¹⁾

$$\widehat{\mathbf{c}}_{\mathsf{T}}(\mathbf{x}) = \sup_{\boldsymbol{\theta} \in \Theta} \left\{ \mathbf{c}(\mathbf{x}, \boldsymbol{\theta}) : D_{\mathsf{KL}}(\widehat{\boldsymbol{\theta}}_{\mathsf{T}} \| \boldsymbol{\theta}) \le r \right\}$$

¹⁾ Ben-Tal et al., *Management Science*, 2013.

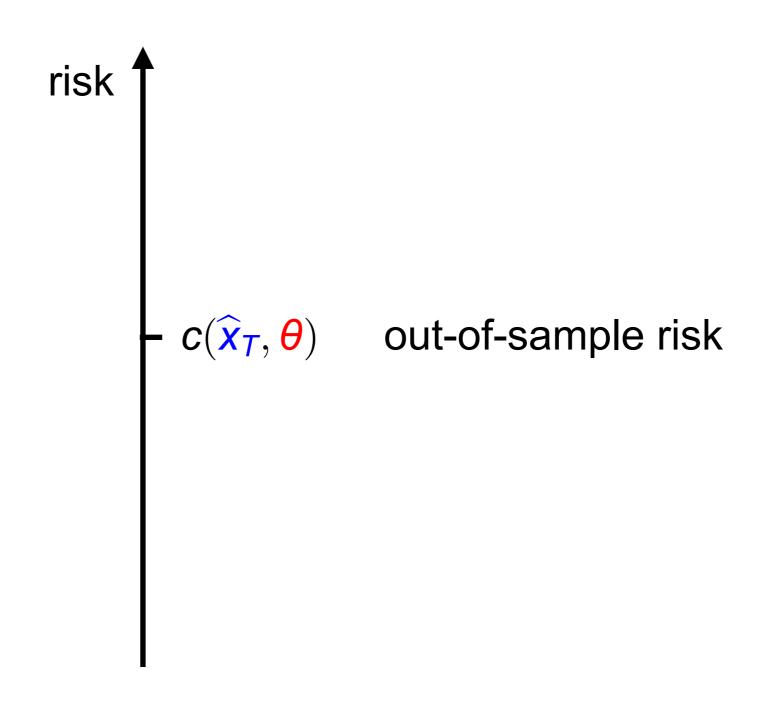


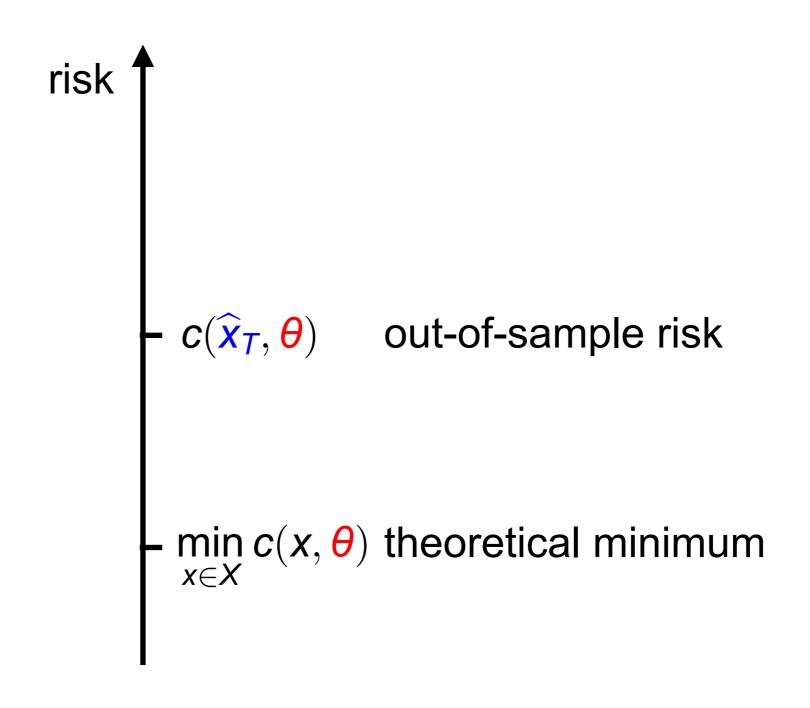
Model 5: DRO model with KL ambiguity set¹⁾

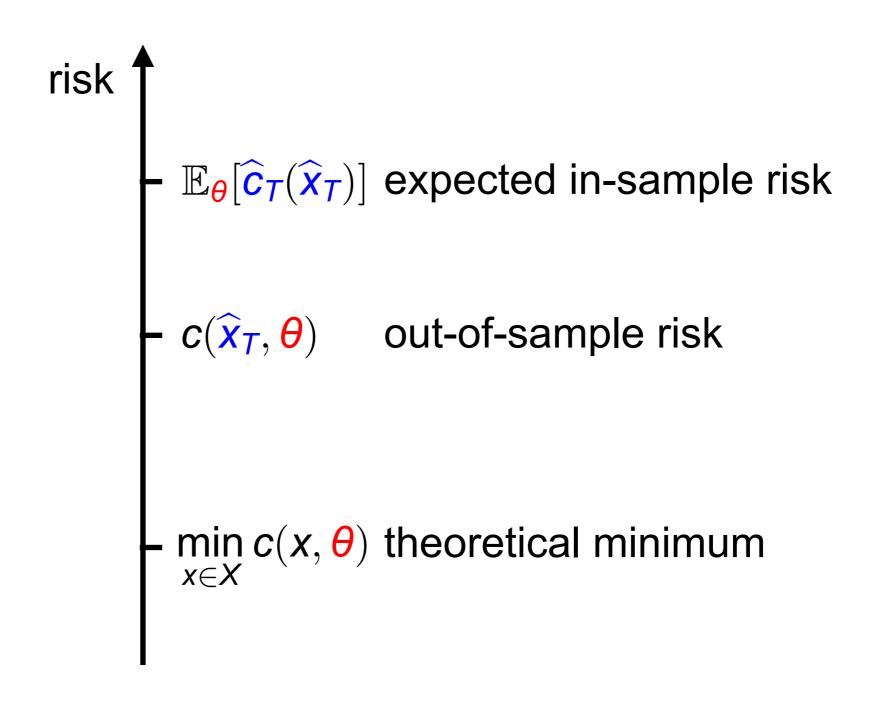
$$\widehat{\mathbf{c}}_{\mathsf{T}}(\mathbf{x}) = \sup_{\boldsymbol{\theta} \in \Theta} \left\{ \mathbf{c}(\mathbf{x}, \boldsymbol{\theta}) : D_{\mathsf{KL}}(\widehat{\boldsymbol{\theta}}_{\mathsf{T}} \| \boldsymbol{\theta}) \le r \right\}$$

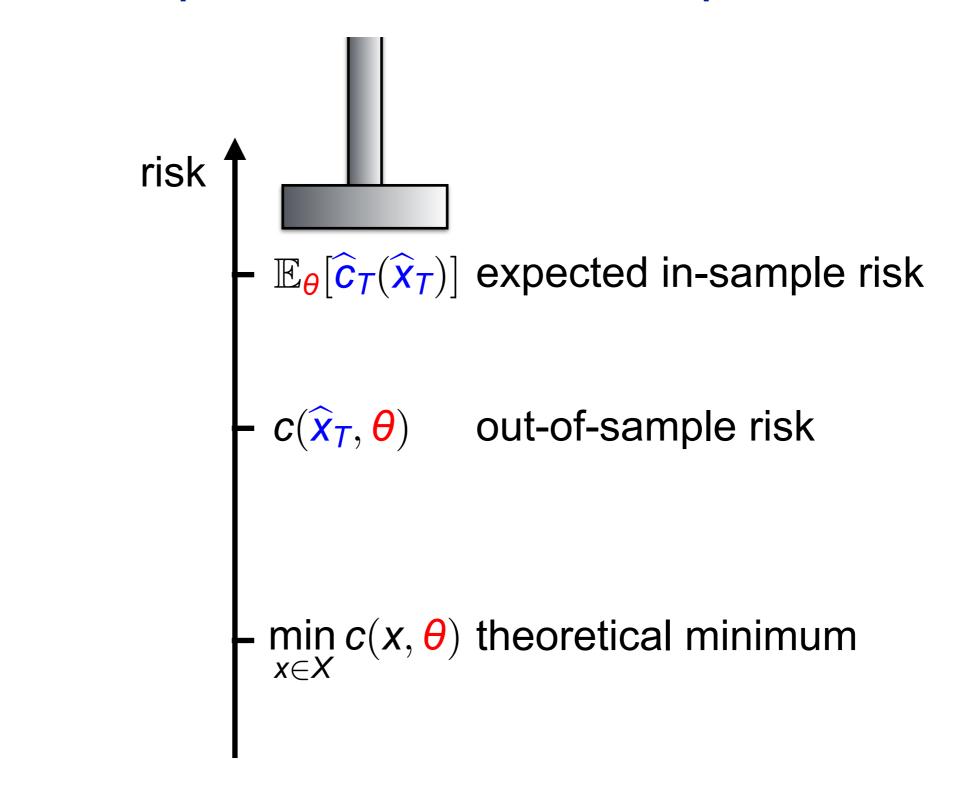
¹⁾ Ben-Tal et al., *Management Science*, 2013.

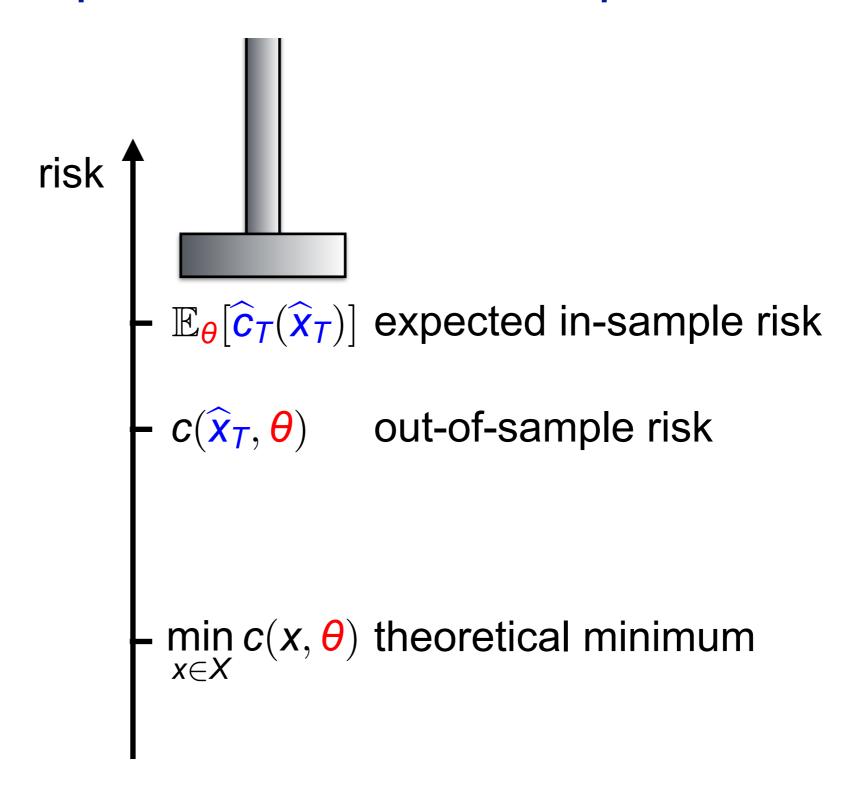
Constructing "Optimal" Surrogate Optimization Models

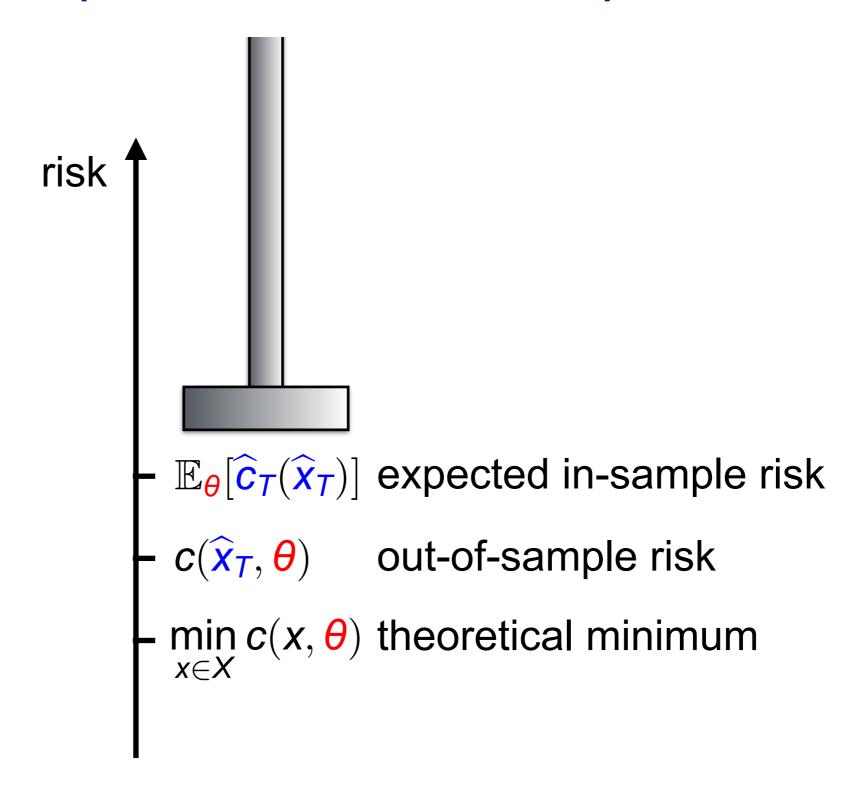


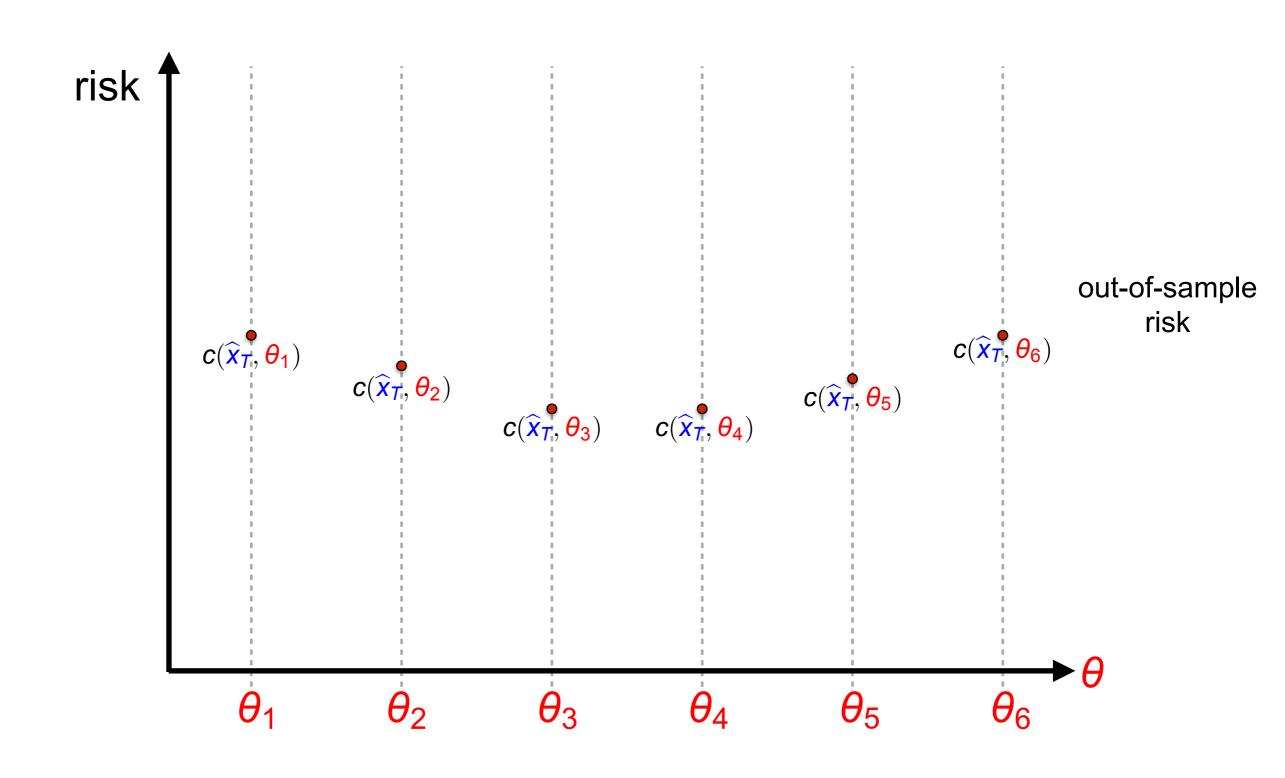




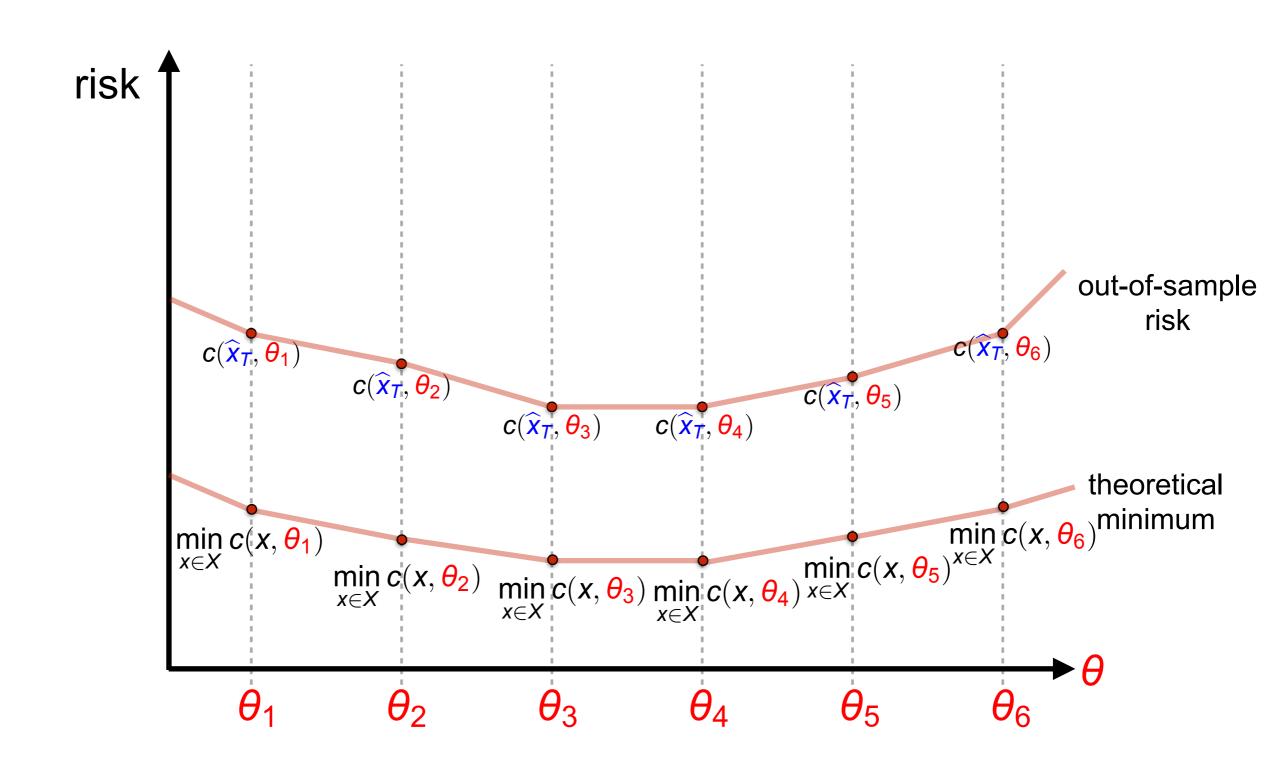


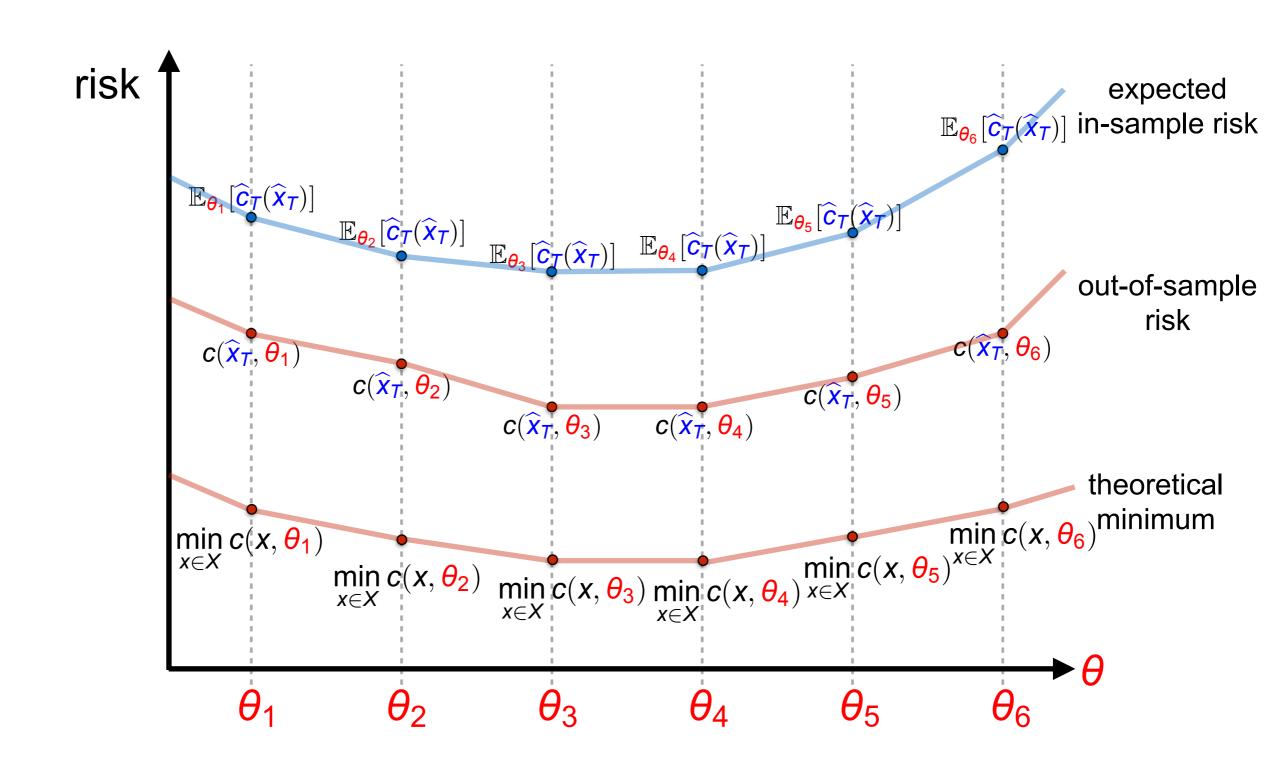


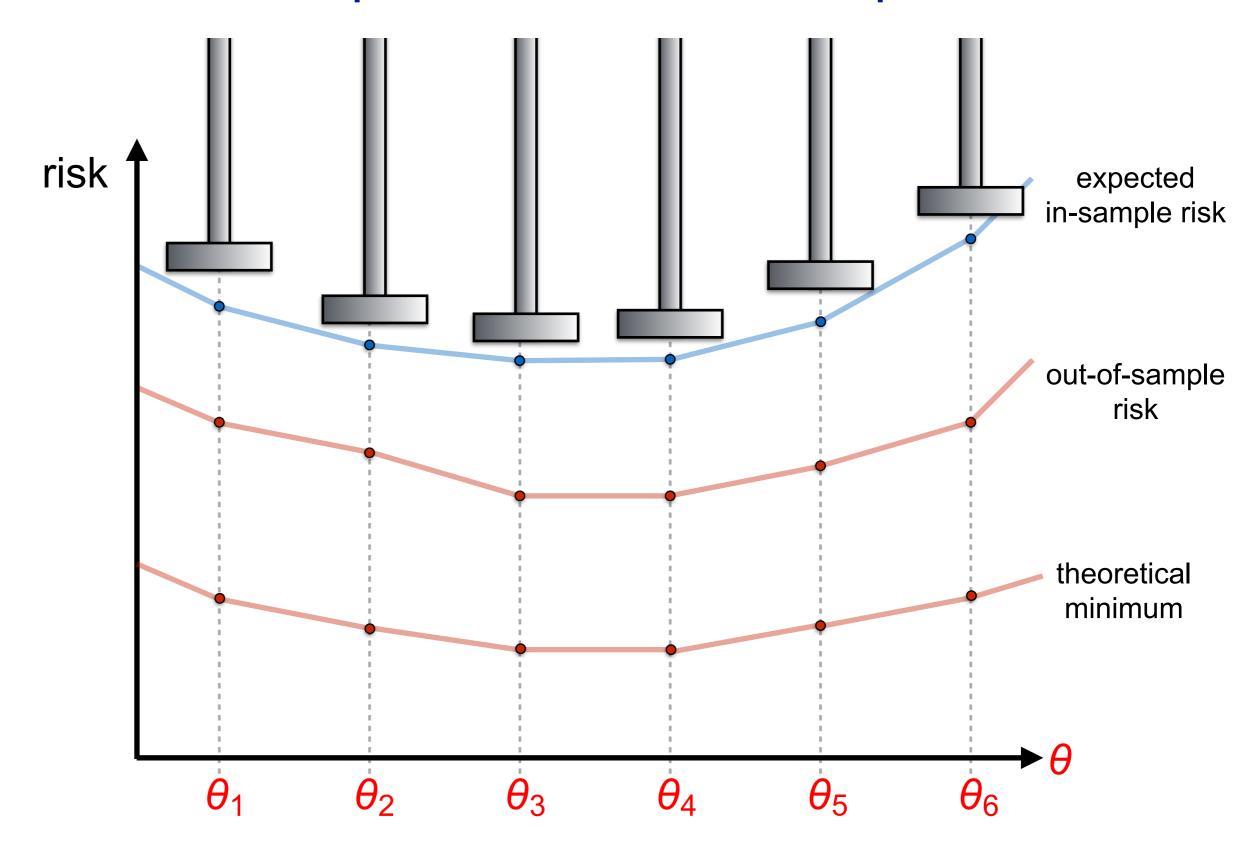


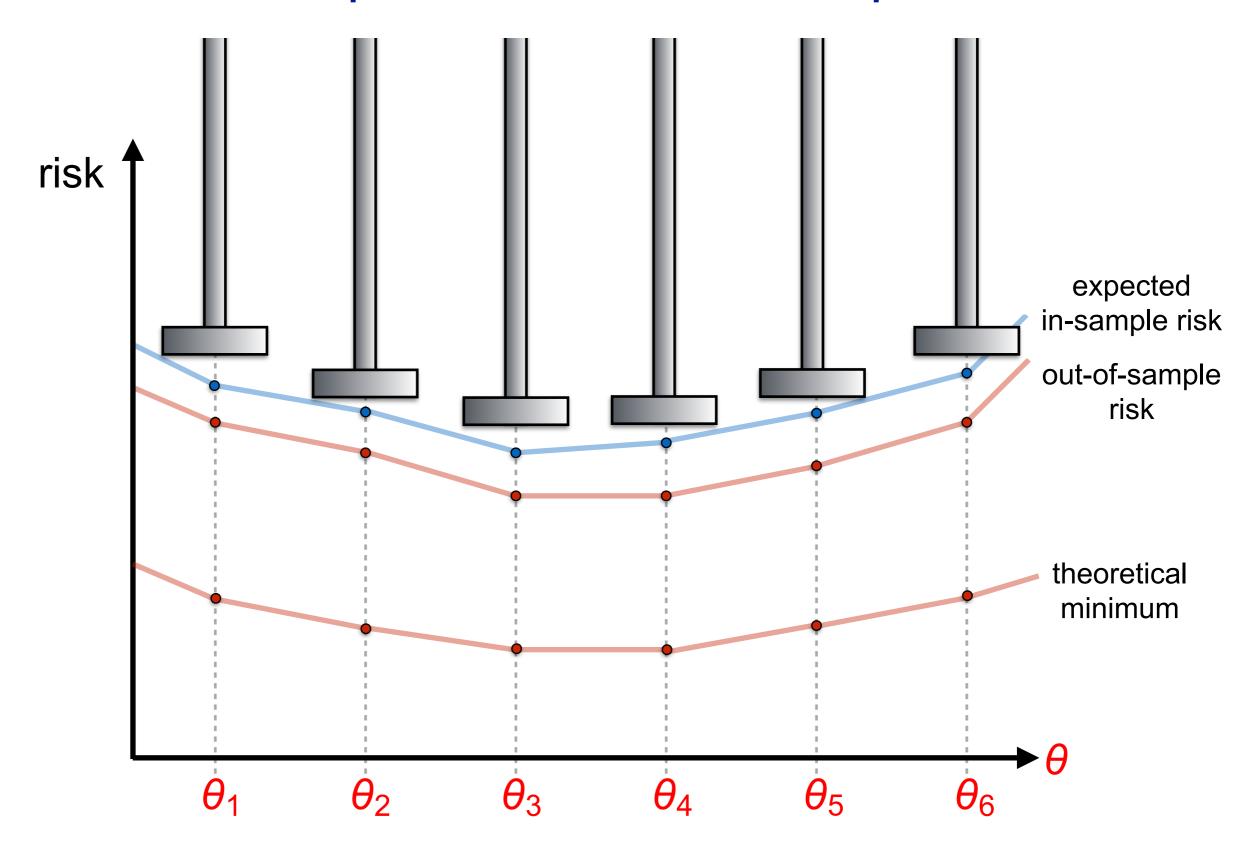


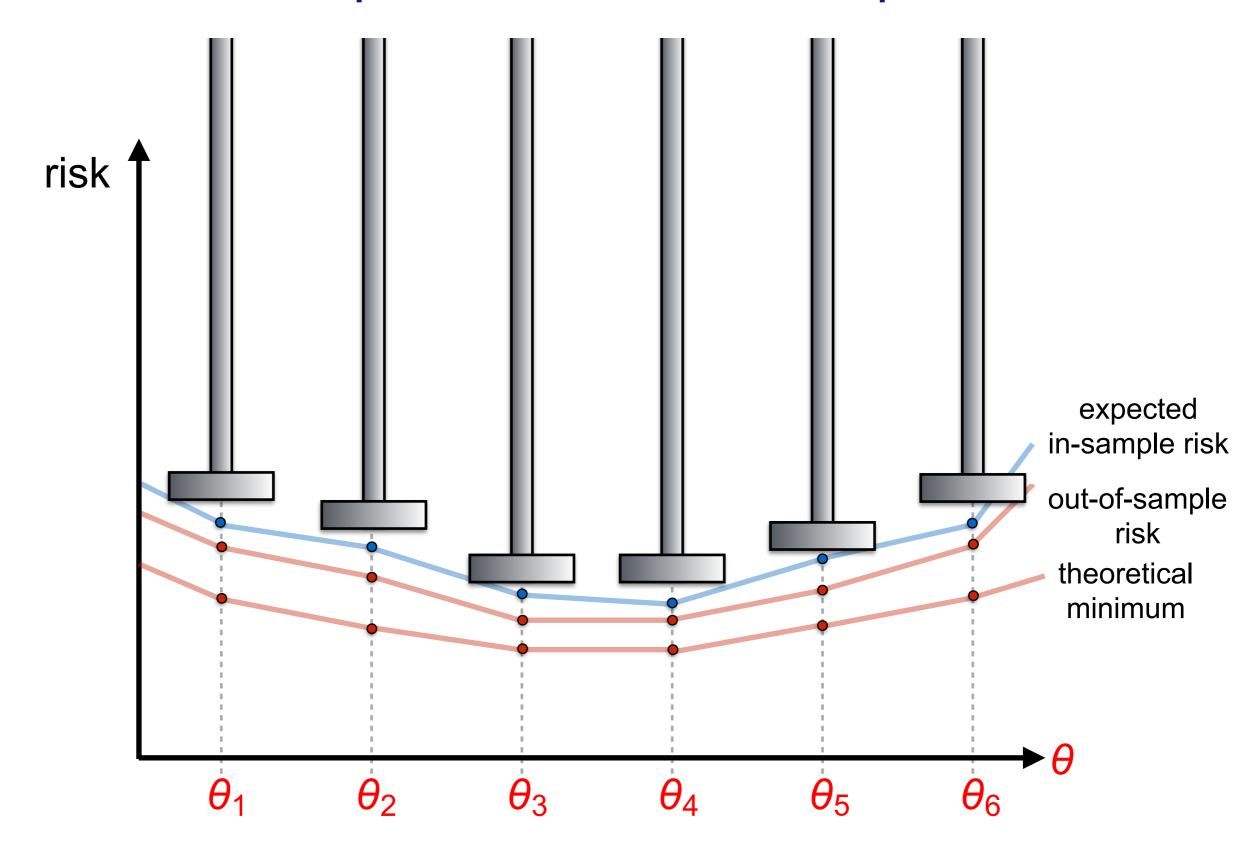






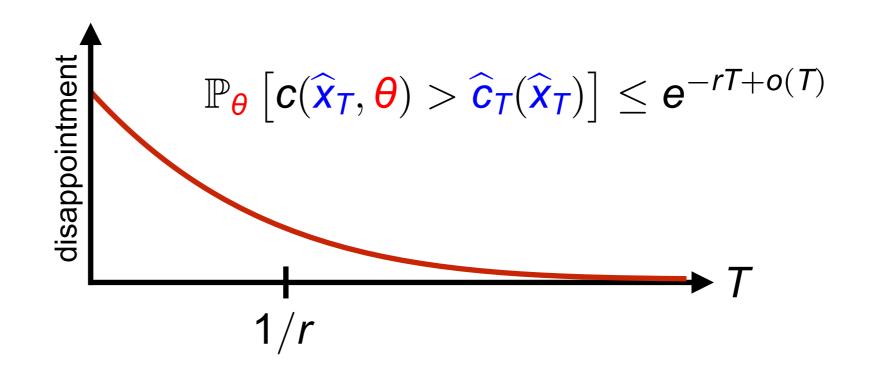


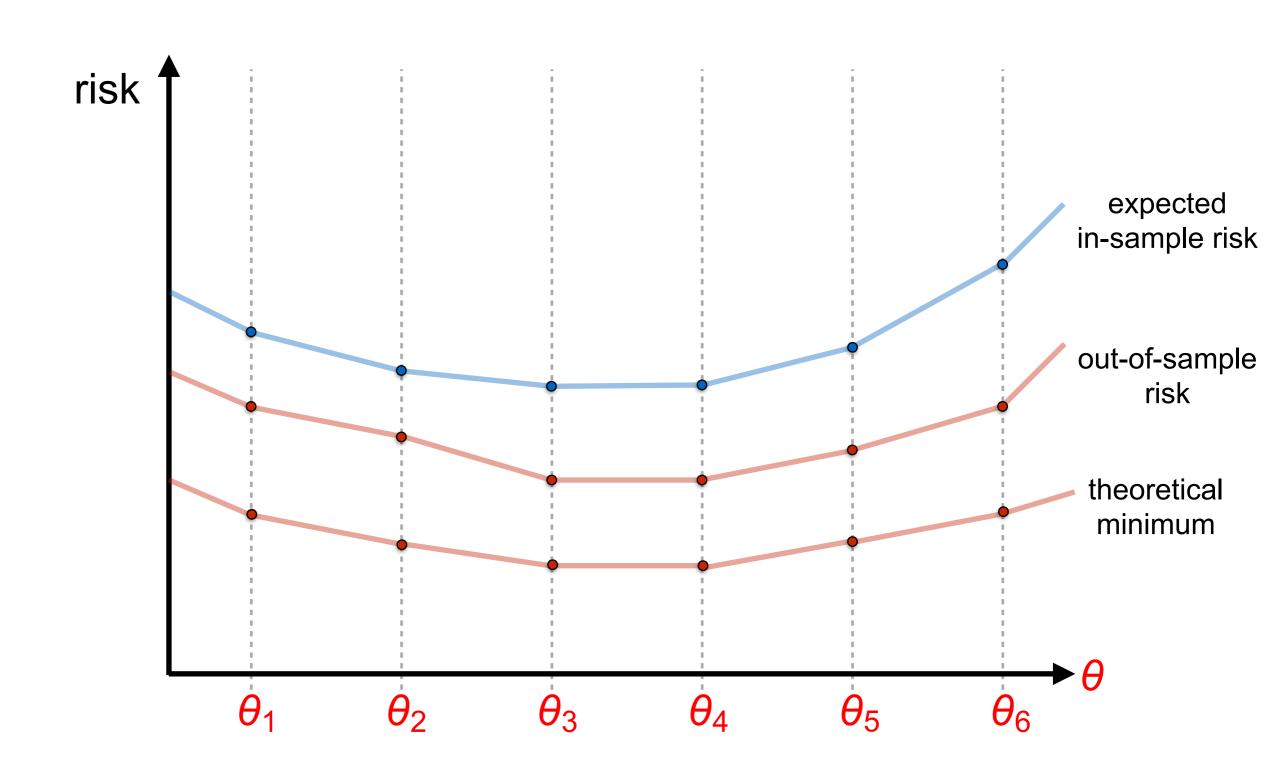


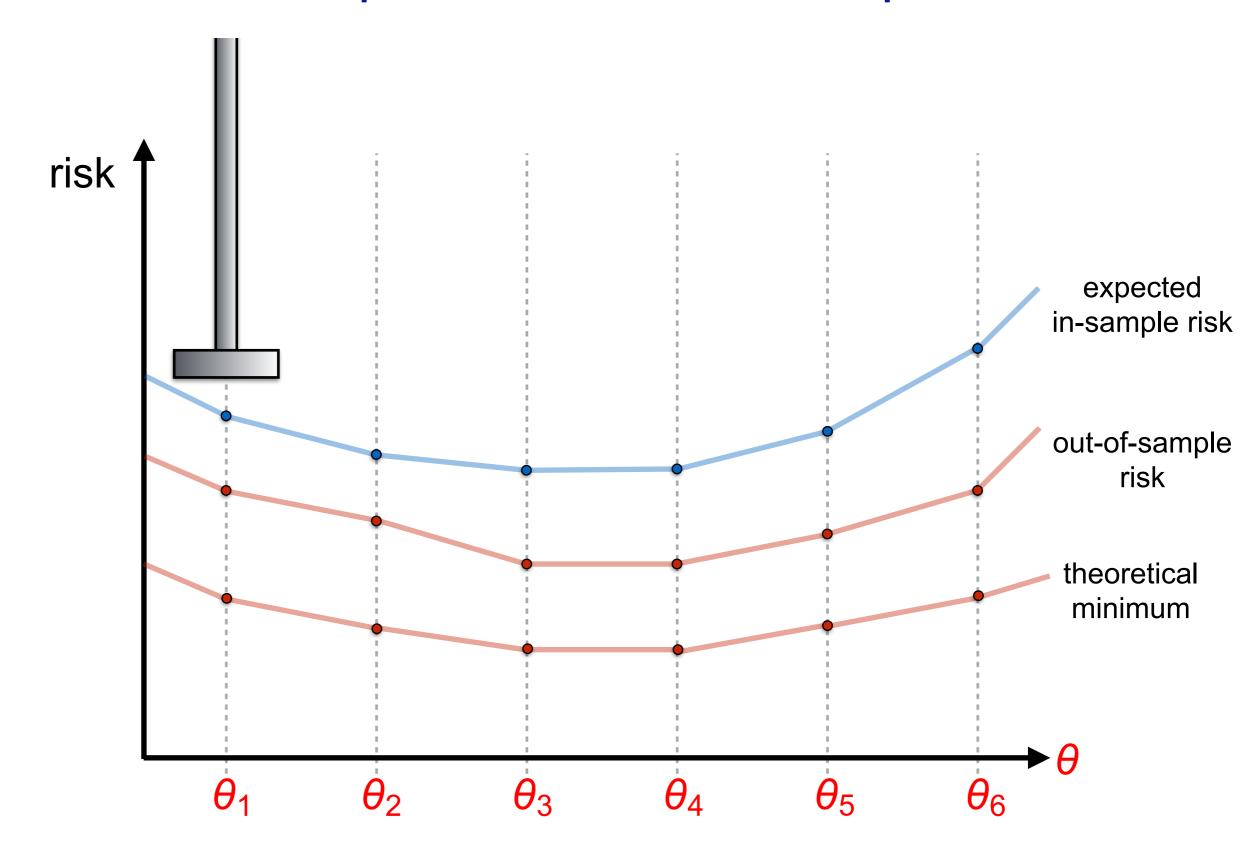


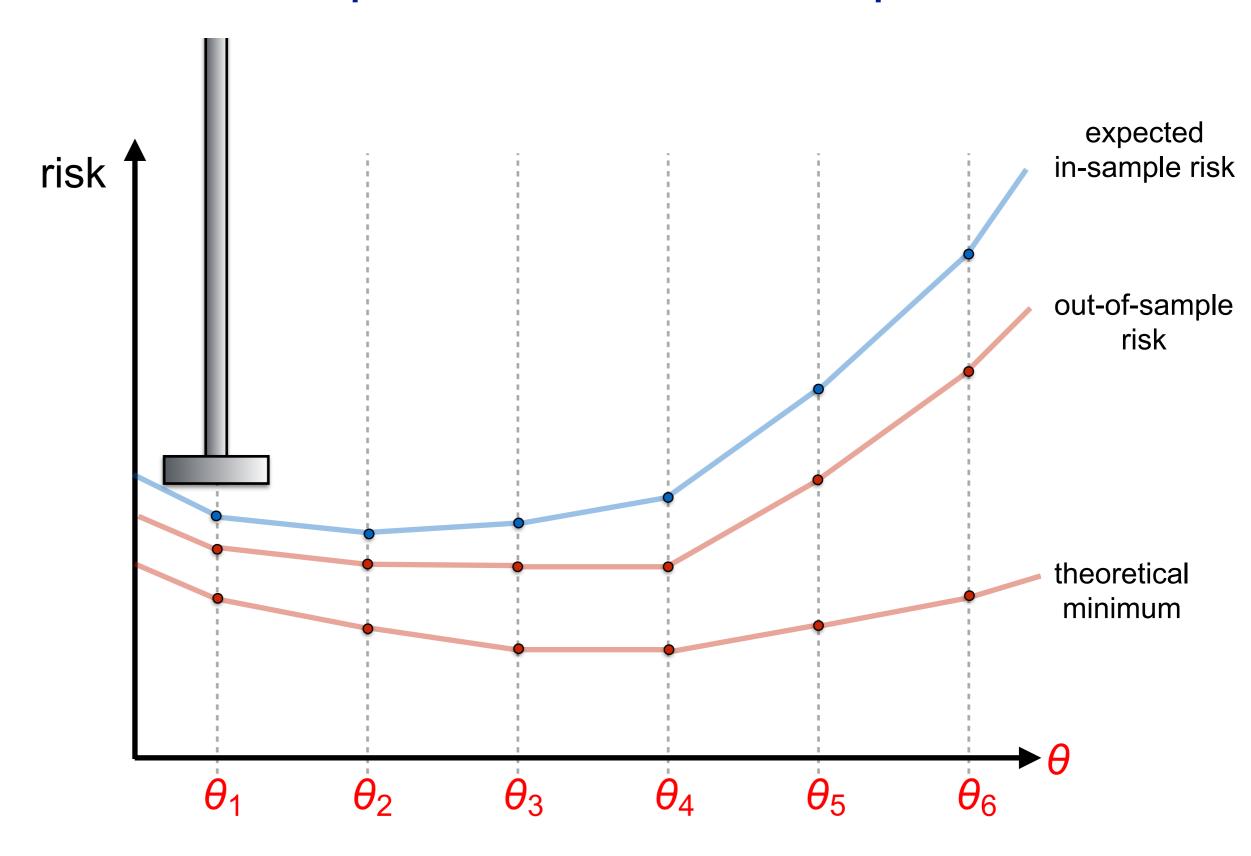
Minimize the in-sample risk and require that the out-of-sample disappointment decays exponentially at rate *r*

Minimize the in-sample risk and require that the out-of-sample disappointment decays exponentially at rate *r*

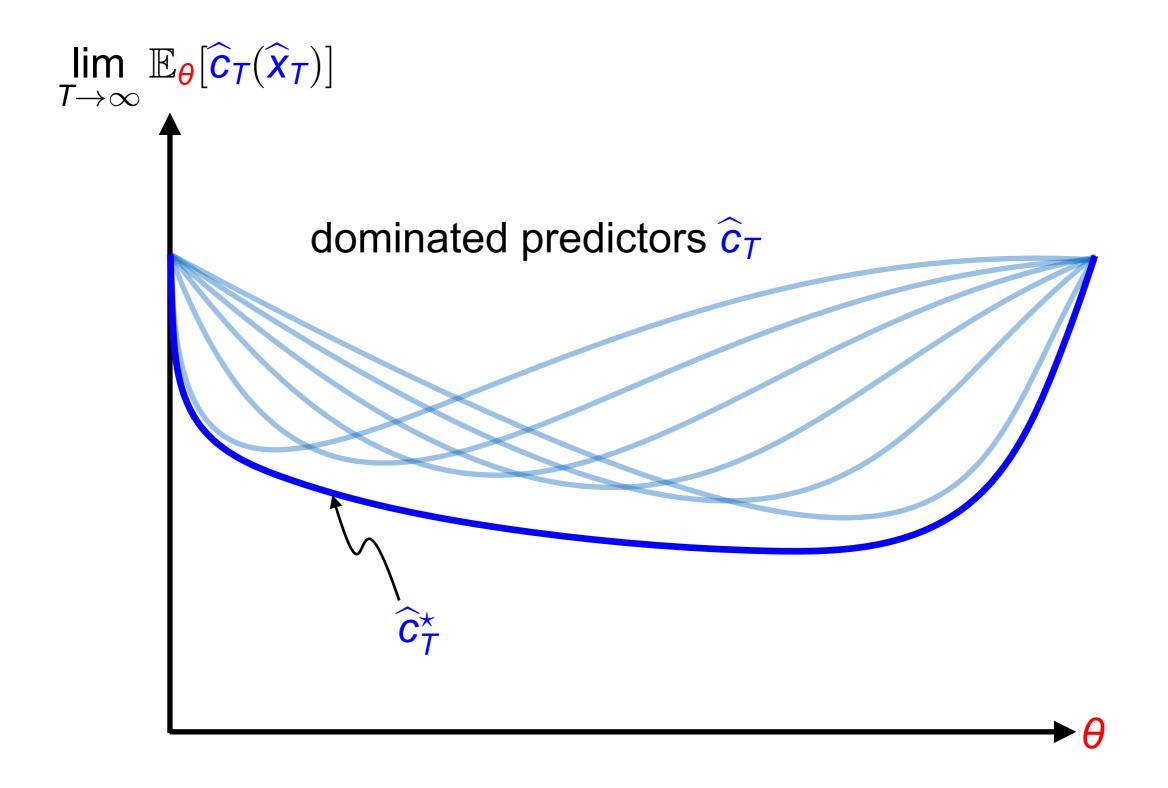








Pareto-Dominant Solutions



 \hat{c}_{7}^{\star} minimizes the in-sample risk simultaneously for every θ

Meta-Optimization Problem (MOP)

MOP optimizes over *all surrogate optimization models*

Strengths:

- proxy for optimizing the out-of-sample risk
- errs on the side of caution
- admits a Pareto dominant solution in closed form
- facilitates separation of estimation and optimization

Meta-Optimization Problem (MOP)

MOP optimizes over *all surrogate optimization models*

Weaknesses:

- performance criteria are asymptotic
- choice of r is subjective
- why insist on exponential decay?
- feasible/optimal models are biased

Restricted Meta-Optimization Problems

Data Compression

Compress the raw data to an estimator of θ

$$\xi_1, \xi_2, \dots, \xi_T \in \mathbb{R}^{T \cdot d}$$
 \longrightarrow $\widehat{\theta}_T \in \mathbb{R}^d$

 \implies compressed predictors depend on $\xi_1, \xi_2, \dots, \xi_T$ and on T only indirectly through the summary statistic $\widehat{\theta}_T$

Compressed Predictors and Prescriptors

- ▶ Set $\hat{c}_T(x) = \tilde{c}(x, \hat{\theta}_T)$ for some continuous function \tilde{c}
- ▶ Set $\hat{x}_T = \tilde{x}(\hat{\theta}_T)$ for some quasi-continuous function \tilde{x} with

$$\tilde{x}(\widehat{\boldsymbol{\theta}_T}) \in \underset{x \in X}{\operatorname{argmin}} \ \tilde{c}(x, \widehat{\boldsymbol{\theta}_T})$$

Restricted MOP

Restricted MOP over compressed predictors/prescriptors:

Large Deviation Principle (LDP)

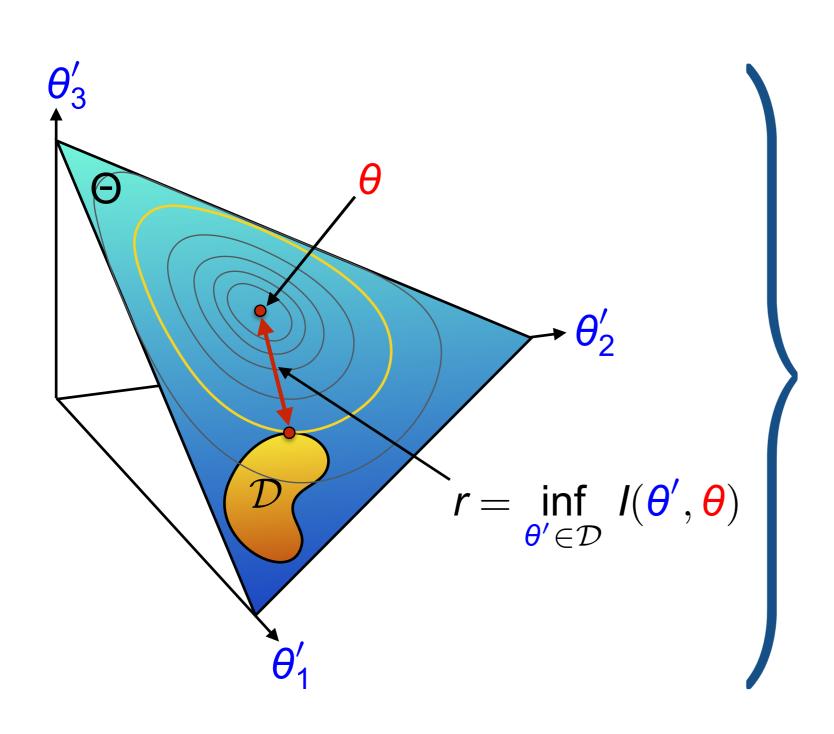
Definition:¹⁾ The estimators $\widehat{\theta}_T$, $T \in \mathbb{N}$, satisfy an LDP if there exists a rate function $I(\underline{\theta}', \underline{\theta})$ such that for all Borel sets $\mathcal{D} \subseteq \Theta$

$$\limsup_{T\to\infty} \frac{1}{T} \log \mathbb{P}_{\boldsymbol{\theta}}(\widehat{\boldsymbol{\theta}}_T \in \mathcal{D}) \leq -\inf_{\boldsymbol{\theta}' \in \mathsf{cl}\,\mathcal{D}} I(\boldsymbol{\theta}', \boldsymbol{\theta})$$

$$\liminf_{T\to\infty} \frac{1}{T} \log \mathbb{P}_{\boldsymbol{\theta}}(\widehat{\boldsymbol{\theta}}_T \in \mathcal{D}) \geq -\inf_{\boldsymbol{\theta}' \in \text{int } \mathcal{D}} I(\boldsymbol{\theta}', \boldsymbol{\theta})$$

¹⁾ den Hollander, American Mathematical Society, 2008; Dembo & Zeitouni, Springer, 2009.

Large Deviation Principle (LDP)



$$\mathbb{P}_{\boldsymbol{\theta}}(\widehat{\boldsymbol{\theta}_T} \in \mathcal{D}) = \mathbf{e}^{-rT + o(T)}$$

DRO is Optimal

Assumption:

 \triangleright $\widehat{\theta}_T$ satisfies an LDP with a "regular" rate function

Theorem 1 (DRO is optimal): The following distributionally robust compressed predictor is a Pareto-dominant solution for the <u>restricted MOP</u>.

$$\tilde{c}^{\star}(x, \widehat{\boldsymbol{\theta}}_{T}) = \begin{cases} \sup_{\boldsymbol{\theta} \in \Theta} c(x, \boldsymbol{\theta}) \\ \theta \in \Theta \\ \text{s.t.} \quad I(\widehat{\boldsymbol{\theta}}_{T}, \boldsymbol{\theta}) \leq r \end{cases}$$

DRO is Optimal

Assumption:

 \triangleright $\widehat{\theta}_T$ satisfies an LDP with a "regular" rate function

Theorem 1 (DRO is optimal): The following distributionally robust compressed predictor is a Pareto-dominant solution for the <u>restricted</u> MOP.

$$\tilde{c}^{\star}(x, \widehat{\boldsymbol{\theta}}_{T}) = \begin{cases} \sup_{\boldsymbol{\theta} \in \Theta} c(x, \boldsymbol{\theta}) \\ \sup_{\boldsymbol{\theta} \in \Theta} c(x, \boldsymbol{\theta}) \\ \text{s.t.} \quad I(\widehat{\boldsymbol{\theta}}_{T}, \boldsymbol{\theta}) \leq r \end{cases}$$

Note:

- ▶ The shape of the ambiguity set is determined by $\widehat{\theta}_T$
- The "radius" of the ambiguity set is given by the decay rate r

Sufficient Statistic

Definition: $\widehat{\theta}_T$ is a sufficient statistic for θ if the distribution of $\xi_1, \xi_2, \dots, \xi_T$ conditional on $\widehat{\theta}_T = \theta'$ is independent of $\theta \in \Theta$.

→ Lossless compression

$$\xi_1, \xi_2, \dots, \xi_T \in \mathbb{R}^{T \cdot d} \longrightarrow \widehat{\theta}_T \in \mathbb{R}^d$$

DRO is Optimal

Assumptions:

- \triangleright $\widehat{\theta}_T$ is a sufficient statistic for θ
- \triangleright $\widehat{\theta}_T$ satisfies an LDP with a "regular" rate function

Theorem 2 (DRO is optimal): The following distributionally robust surrogate optimization model is a Pareto-dominant solution for the <u>original</u> MOP.

$$\widehat{\mathbf{c}}_{T}^{\star}(\mathbf{x}) = \begin{cases} \sup_{\boldsymbol{\theta} \in \Theta} c(\mathbf{x}, \boldsymbol{\theta}) \\ \mathbf{\theta} \in \Theta \\ \text{s.t.} \quad I(\widehat{\boldsymbol{\theta}}_{T}, \boldsymbol{\theta}) \leq r \end{cases}$$

DRO is Optimal

Assumptions:

- $\widehat{\theta}_{T}$ is a sufficient statistic for θ
- θ_T satisfies an LDD

Separation of estimation and optimization:

- 1) Evaluate the estimator
- 2) Solve the DRO problem

Data-Generating Processes

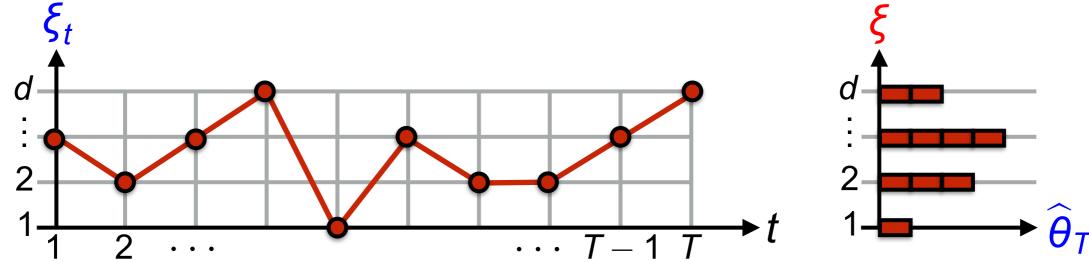
Newsvendor Problem Revisited

"Compressing" the raw data:

demand observations $\{\xi_1, \xi_2, \dots, \xi_T\}$ $\{\widehat{\theta}_T\}_i = \frac{1}{T} \sum_{t=1}^T \mathbf{1}_{\xi_t = i}$

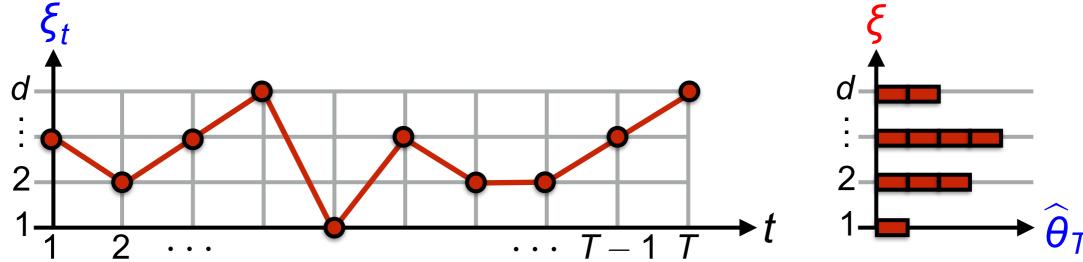
$$\{\xi_1, \xi_2, \dots, \xi_T\}$$

$$\{(\widehat{\boldsymbol{\theta}}_T)_i = \frac{1}{T} \sum_{t=1}^T \mathbf{1}_{\xi_t=i}\}$$



Newsvendor Problem Revisited

"Compressing" the raw data:



- ▶ Fisher-Neyman: 1) $\widehat{\theta}_T$ is a sufficient statistic for θ
- ▶ Sanov:2) $\widehat{\theta}_T$ satisfies an LDP with $I(\widehat{\theta}_T, \theta) = D_{\mathsf{KL}}(\widehat{\theta}_T || \theta)$

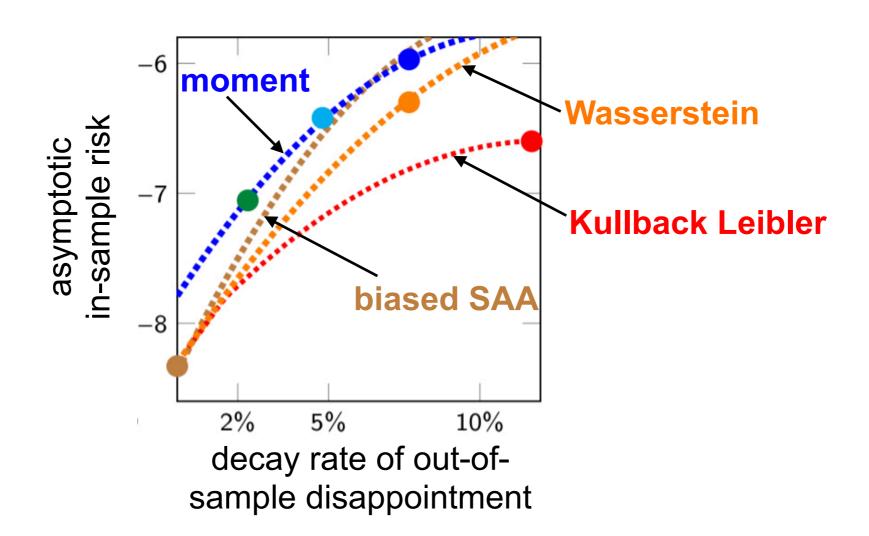
¹⁾ Lehmann & Casella, *Springer*, 1998;

²⁾ Sanov, *Matematicheskii Sbornik*, 1957.

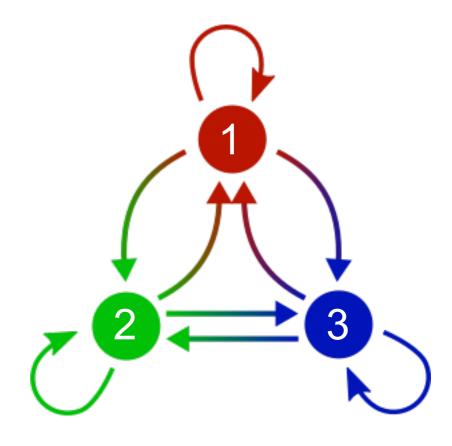
Newsvendor Problem Revisited

- The separation principle holds
- The optimal data-driven predictor is

$$\widehat{c}_{T}(x) = \begin{cases} \sup_{\theta \in \Theta} c(x, \theta) \\ \sup_{\theta \in \Theta} c(x, \theta) \\ \text{s.t.} \quad D_{\mathsf{KL}}(\widehat{\theta}_{T} || \theta) \leq r \end{cases}$$



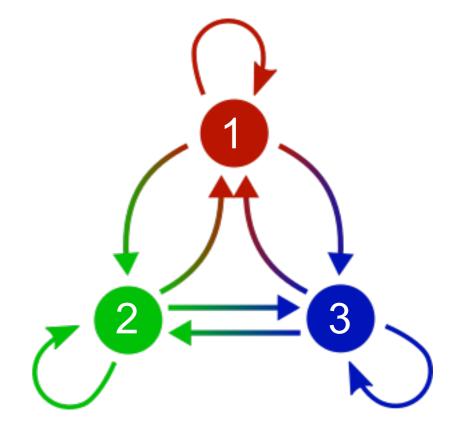
Assume that $\{\xi_t\}_{t\in\mathbb{N}}$ is a Markov chain on $\{1, 2, \dots, d\}$



Assume that $\{\xi_t\}_{t\in\mathbb{N}}$ is a Markov chain on $\{1, 2, \dots, d\}$

$$\triangleright \theta_{ij} = \lim_{T \to \infty} \mathbb{P}_{\theta}(\xi_t = i, \, \xi_{t+1} = j)$$

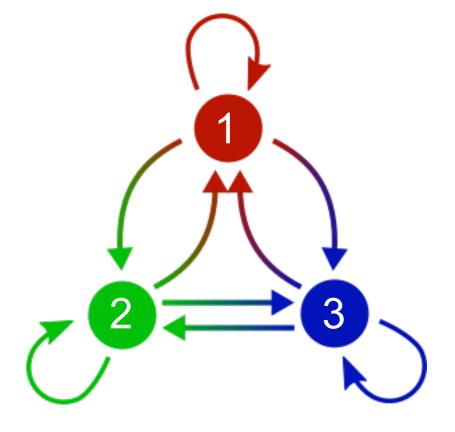
all one-step transitions possible



Assume that $\{\xi_t\}_{t\in\mathbb{N}}$ is a Markov chain on $\{1, 2, \dots, d\}$

$$\triangleright \theta_{ij} = \lim_{T \to \infty} \mathbb{P}_{\theta}(\xi_t = i, \, \xi_{t+1} = j)$$

all one-step transitions possible

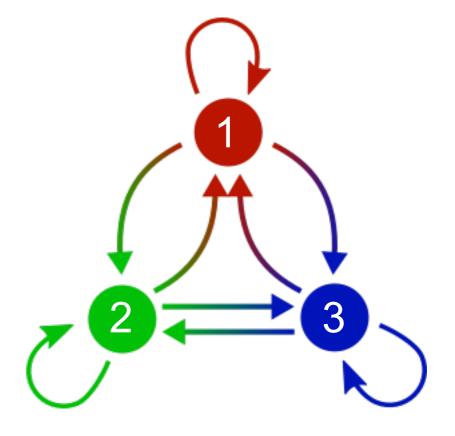


$$\Theta = \left\{ \boldsymbol{\theta} \in \mathbb{R}_{++}^{d \times d} : \sum_{i,j} \boldsymbol{\theta}_{ij} = 1, \ \sum_{j} \boldsymbol{\theta}_{ij} = \sum_{j} \boldsymbol{\theta}_{ji} \ \forall i \right\}$$

Assume that $\{\xi_t\}_{t\in\mathbb{N}}$ is a Markov chain on $\{1, 2, \dots, d\}$

$$\triangleright \theta_{ij} = \lim_{T \to \infty} \mathbb{P}_{\theta}(\xi_t = i, \, \xi_{t+1} = j)$$

all one-step transitions possible

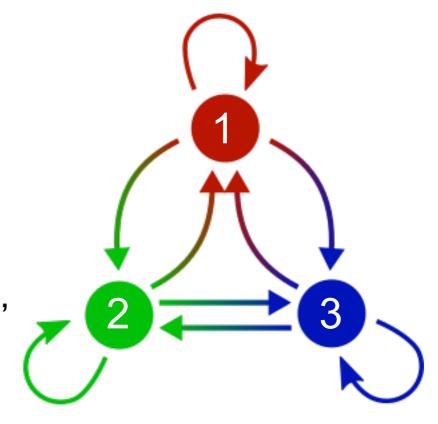


$$\Theta = \left\{ oldsymbol{ heta} \in \mathbb{R}_{++}^{d imes d} : \sum_{i,j} oldsymbol{ heta}_{ij} = 1, \sum_{j} oldsymbol{ heta}_{ij} = \sum_{j} oldsymbol{ heta}_{ji} \ orall i
ight\}$$

all transitions have probability > 0

Assume that $\{\xi_t\}_{t\in\mathbb{N}}$ is a Markov chain on $\{1, 2, \dots, d\}$

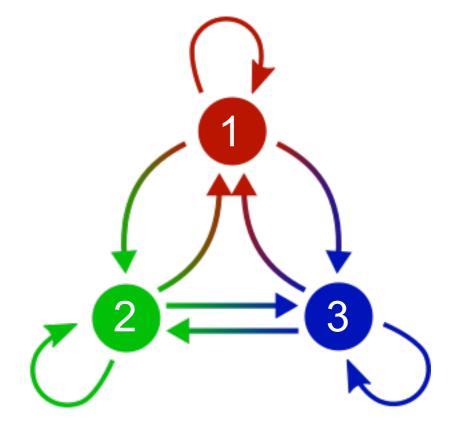
all one-step transitions possible sum of all entries =1,



$$\Theta = \left\{ \mathbf{\theta} \in \mathbb{R}_{++}^{d \times d} : \underbrace{\sum_{i,j} \mathbf{\theta}_{ij}}_{ij} = \mathbf{1}, \sum_{j} \mathbf{\theta}_{ij} = \sum_{j} \mathbf{\theta}_{ji} \ \forall i \right\}$$
normalization

Assume that $\{\xi_t\}_{t\in\mathbb{N}}$ is a Markov chain on $\{1, 2, \dots, d\}$

all one-step transitions possible



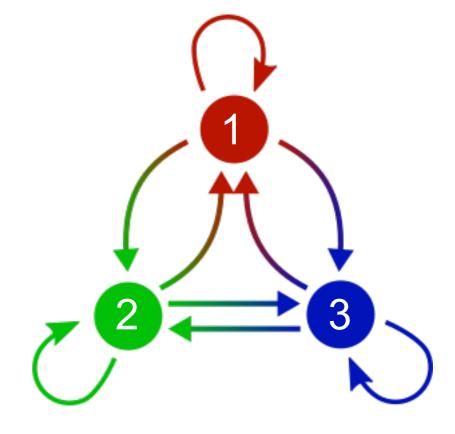
$$\Theta = \left\{ \boldsymbol{\theta} \in \mathbb{R}_{++}^{d \times d} : \sum_{i,j} \boldsymbol{\theta}_{ij} = 1, \sum_{j} \boldsymbol{\theta}_{ij} = \sum_{j} \boldsymbol{\theta}_{ji} \ \forall i \right\}$$

invariant probability of state i

Assume that $\{\xi_t\}_{t\in\mathbb{N}}$ is a Markov chain on $\{1, 2, \dots, d\}$

$$\triangleright \theta_{ij} = \lim_{T \to \infty} \mathbb{P}_{\theta}(\xi_t = i, \, \xi_{t+1} = j)$$

all one-step transitions possible



$$\Theta = \left\{ oldsymbol{ heta} \in \mathbb{R}_{++}^{d imes d} : \sum_{i,j} oldsymbol{ heta}_{ij} = 1, \ \sum_{j} oldsymbol{ heta}_{ij} = \sum_{j} oldsymbol{ heta}_{ji} \ orall i
ight\}$$

invariant probability of state i

"Compressing" the raw data:

available observations
$$\left\{ \begin{array}{l} \text{empirical doublet distribution} \\ (\xi_1, \xi_2, \dots, \xi_T) \end{array} \right\} \iff \left\{ \begin{array}{l} \text{empirical doublet distribution} \\ (\widehat{\boldsymbol{\theta}}_T)_{ij} = \frac{1}{T} \sum_{t=1}^T \mathbf{1}_{(\xi_{t-1}, \xi_t) = (i, j)} \end{array} \right.$$

"Compressing" the raw data:

available observations
$$\{ (\xi_1, \xi_2, \dots, \xi_T) \} \iff \{ (\widehat{\boldsymbol{\theta}}_T)_{ij} = \frac{1}{T} \sum_{t=1}^T \mathbf{1}_{(\xi_{t-1}, \xi_t) = (i, j)} \}$$

- ▶ Fisher-Neyman: 1) $\widehat{\theta}_T$ is a sufficient statistic for θ
- ▶ Dembo & Zeitouni:2) $\widehat{\theta}_T$ satisfies an LDP with $I(\widehat{\theta}_T, \theta) = D_c(\widehat{\theta}_T || \theta)$

Definition: Conditional relative entropy

$$D_{c}(\boldsymbol{\theta}' \parallel \boldsymbol{\theta}) = \sum_{i,j} \boldsymbol{\theta}'_{ij} \left(\log \left(\frac{\boldsymbol{\theta}'_{ij}}{\sum_{k} \boldsymbol{\theta}'_{ik}} \right) - \log \left(\frac{\boldsymbol{\theta}_{ij}}{\sum_{k} \boldsymbol{\theta}_{ik}} \right) \right)$$

¹⁾ Lehmann & Casella, *Springer*, 1998;

²⁾ Dembo & Zeitouni, *Springer*, 1998.

Autoregressive Gaussian Processes

Vector autoregressive processes with unknown drift:

- $\triangleright \xi_{t+1} = \theta + A\xi_t + \varepsilon_{t+1}$ stationary, driven by Gaussian noise
- $\widehat{\boldsymbol{\theta}}_T = (\mathbb{I}_d A) \frac{1}{T} \sum_{t=1}^T \boldsymbol{\xi}_t$ satisfies LDP but is *not* sufficient¹⁾

Scalar autoregressive processes with unknown coefficient:

- $\triangleright \xi_{t+1} = \theta \xi_t + \varepsilon_{t+1}$ stationary, driven by Gaussian noise
- Least squares and Yule-Walker estimators satisfy LDPs but are not sufficient²⁾

¹⁾ Dembo & Zeitouni, *Springer*, 1998;

²⁾ Bercu et al., Stochastic Processes and their Applications, 1997.

I.I.D. Processes with Parametric CDFs

Assume that the $\{\xi_t\}_{t\in\mathbb{N}}$ are i.i.d. with any of the following CDFs:

- ightharpoonup normal distribution with mean θ
- exponential distribution with rate parameter θ
- $ilde{}$ gamma distribution with scale parameter heta
- Poisson distribution with rate parameter θ
- Bernoulli distribution with success probability θ
- geometric distribution with success probability θ
- \triangleright binomial distribution with success probability θ

I.I.D. Processes with Parametric CDFs

Then, $\hat{\theta}_T = \frac{1}{T} \sum_{t=1}^{T} \xi_t$ is sufficient¹⁾ and satisfies an LDP,²⁾ where

- $\land (\lambda, \theta) = \log \mathbb{E}_{\theta} \left[\exp(\lambda^{\top} \xi_t) \right] \text{ is the log-MGF, and }$
- $\triangleright I(\theta', \theta) = \sup_{\lambda} \theta^{\top} \lambda \Lambda(\lambda, \theta)$ is a "regular" rate function.

¹⁾ Lehmann & Casella, *Springer*, 1998;

²⁾ Cramér, Actualités scientifiques et industrielles, 1938.

I.I.D. Processes with Parametric CDFs

Then, $\hat{\theta}_T = \frac{1}{T} \sum_{t=1}^T \xi_t$ is sufficient¹⁾ and satisfies an LDP,²⁾ where

Many convex uncertainty sets can be constructed in this way and are thus optimal for some i.i.d. process!

¹⁾ Lehmann & Casella, Springer, 1998;

²⁾ Cramér, Actualités scientifiques et industrielles, 1938.

Summary & Conclusions

Summary

Meta-optimization problem

- optimizes over surrogate optimization models
- balances in-sample risk vs. out-of-sample disappointment
- pushes down the out-of-sample risk

Separation of estimation and optimization

- reminiscent of Rao-Blackwell theorem

Pareto-dominant solution is a DRO model

- ambiguity set is a rate-ball around $\overrightarrow{\theta}_T$
- radius = decay rate of the out-of-sample disappointment
- invariant under homeomorphic transformations

Conclusions

Data efficiency

Pareto dominance reminiscent of Bahadur efficiency

Generality of results

- hold even for non-convex decision problems
- hold even for non-i.i.d. data processes

Theoretical justification of DRO

- shape of ambiguity set depends on the data process
- radius of ambiguity set has physical interpretation

Computation

customized algorithms for new DRO models¹⁾

This Talk is Based on...

- [1] M. Li, T. Sutter and D. Kuhn. Distributionally Robust Optimization Based on Markovian Data. ICML, 2021.
- [2] T. Sutter, W. Jongeneel, S. Shafieezadeh Abadeh and D. Kuhn. From Moderate Deviations Theory to Distributionally Robust Optimization: Learning from Correlated Data. *Working paper*, 2021.
- [3] T. Sutter, B. Van Parys and D. Kuhn. **A General Framework for Optimal Data- Driven Optimization**. *arXiv:2010.06606*, 2020
- [4] B. Van Parys, P. Mohajerin Esfahani and D. Kuhn. From Data to Decisions: Distributionally Robust Optimization is Optimal. Management Science, 2020.

Appendix: Proof Ideas

Optimizing over Optimization Problems

Restricted MOP for a fixed decision:

Optimizing over Optimization Problems

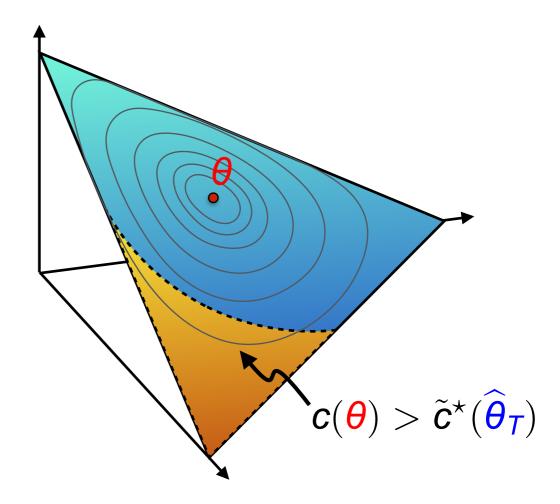
Restricted MOP for a fixed decision:

Pareto-dominant solution:

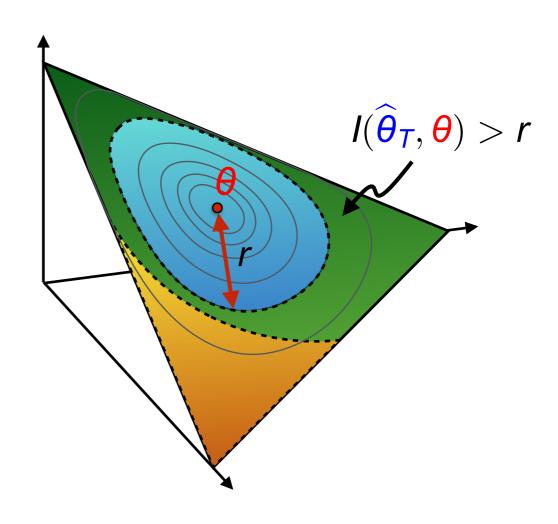
$$\tilde{c}^{\star}(\widehat{\boldsymbol{\theta}}_{T}) = \begin{cases} \sup_{\boldsymbol{\theta} \in \Theta} c(\boldsymbol{\theta}) \\ \text{s.t.} \quad l(\widehat{\boldsymbol{\theta}}_{T}, \boldsymbol{\theta}) \leq r \end{cases}$$

$$c(\boldsymbol{\theta}) > \tilde{c}^{*}(\widehat{\boldsymbol{\theta}}_{T}) \implies c(\boldsymbol{\theta}) > \sup_{\boldsymbol{\theta}' \in \Theta} \left\{ c(\boldsymbol{\theta}') : I(\widehat{\boldsymbol{\theta}}_{T}, \boldsymbol{\theta}') \leq r \right\}$$
$$\implies I(\widehat{\boldsymbol{\theta}}_{T}, \boldsymbol{\theta}) > r$$

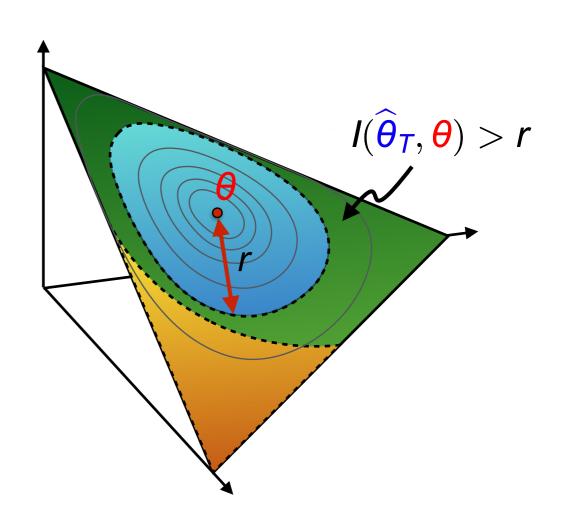
$$c(\boldsymbol{\theta}) > \tilde{c}^{\star}(\widehat{\boldsymbol{\theta}}_{T}) \implies c(\boldsymbol{\theta}) > \sup_{\boldsymbol{\theta}' \in \Theta} \left\{ c(\boldsymbol{\theta}') : I(\widehat{\boldsymbol{\theta}}_{T}, \boldsymbol{\theta}') \leq r \right\}$$
$$\implies I(\widehat{\boldsymbol{\theta}}_{T}, \boldsymbol{\theta}) > r$$



$$c(\boldsymbol{\theta}) > \tilde{c}^{\star}(\widehat{\boldsymbol{\theta}}_{T}) \qquad \Longrightarrow \qquad c(\boldsymbol{\theta}) > \sup_{\boldsymbol{\theta}' \in \Theta} \left\{ c(\boldsymbol{\theta}') : I(\widehat{\boldsymbol{\theta}}_{T}, \boldsymbol{\theta}') \leq r \right\}$$
$$\implies \qquad I(\widehat{\boldsymbol{\theta}}_{T}, \boldsymbol{\theta}) > r$$



$$c(\boldsymbol{\theta}) > \tilde{c}^{\star}(\widehat{\boldsymbol{\theta}}_{T}) \implies c(\boldsymbol{\theta}) > \sup_{\boldsymbol{\theta}' \in \Theta} \left\{ c(\boldsymbol{\theta}') : I(\widehat{\boldsymbol{\theta}}_{T}, \boldsymbol{\theta}') \leq r \right\}$$
$$\Longrightarrow I(\widehat{\boldsymbol{\theta}}_{T}, \boldsymbol{\theta}) > r$$



Theorem: If r > 0, then \tilde{c}^* is Pareto-dominant in the MOP.

Theorem: If r > 0, then \tilde{c}^* is Pareto-dominant in the MOP.

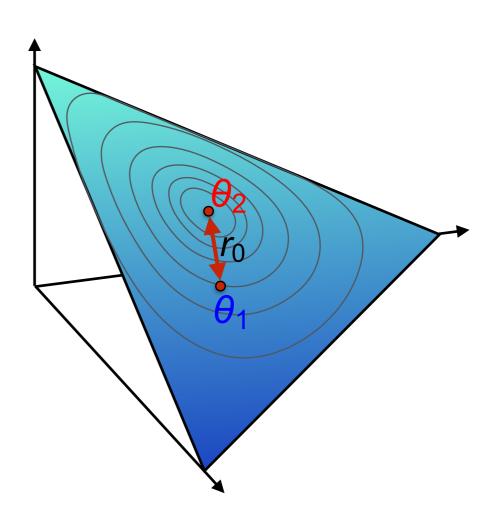
Theorem: If r > 0, then \tilde{c}^* is Pareto-dominant in the MOP.

$$\implies \tilde{c}(\theta_1) < \sup_{\theta \in \Theta} \{c(\theta) : I(\theta_1, \theta) \le r\}$$

Theorem: If r > 0, then \tilde{c}^* is Pareto-dominant in the MOP.

$$\implies \tilde{c}(\theta_1) < \sup_{\theta \in \Theta} \{c(\theta) : I(\theta_1, \theta) \le r\}$$

$$\implies \exists \theta_2 : \ \tilde{c}(\theta_1) < c(\theta_2) \ \text{and} \ I(\theta_1, \theta_2) = r_0 < r$$

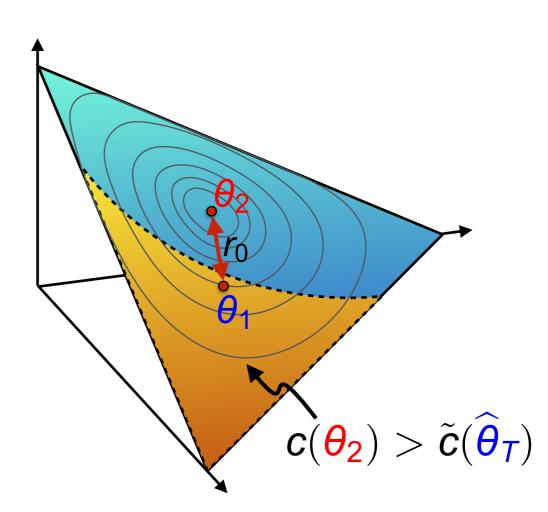


Theorem: If r > 0, then \tilde{c}^* is Pareto-dominant in the MOP.

$$\implies \tilde{c}(\theta_1) < \sup_{\theta \in \Theta} \{ c(\theta) : I(\theta_1, \theta) \le r \}$$

$$\implies \exists \theta_2 : \ \tilde{c}(\theta_1) < c(\theta_2) \ \text{and} \ I(\theta_1, \theta_2) = r_0 < r$$

$$\implies \mathbb{P}_{\boldsymbol{\theta_2}}\left[\boldsymbol{c}(\boldsymbol{\theta_2}) > \tilde{\boldsymbol{c}}(\widehat{\boldsymbol{\theta}_T})\right] \geq e^{-r_1 T + o(T)}$$



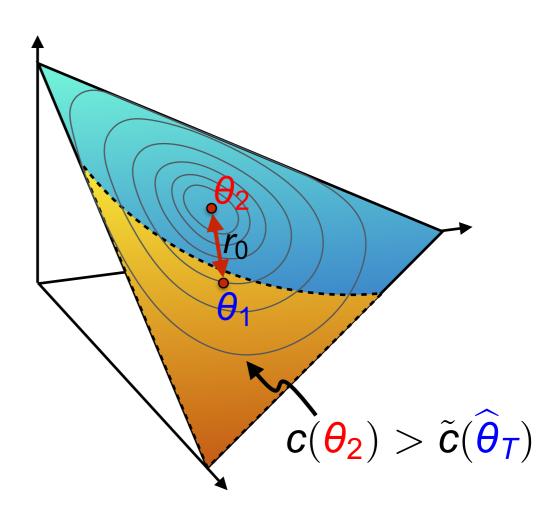
Theorem: If r > 0, then \tilde{c}^* is Pareto-dominant in the MOP.

$$\implies \tilde{c}(\theta_1) < \sup_{\theta \in \Theta} \{c(\theta) : I(\theta_1, \theta) \le r\}$$

$$\implies \exists \theta_2 : \ \tilde{c}(\theta_1) < c(\theta_2) \ \text{and} \ I(\theta_1, \theta_2) = r_0 < r$$

$$\implies \mathbb{P}_{\boldsymbol{\theta_2}}\left[\boldsymbol{c}(\boldsymbol{\theta_2}) > \tilde{\boldsymbol{c}}(\widehat{\boldsymbol{\theta}_T})\right] \geq e^{-r_1 T + o(T)}$$

$$\implies \tilde{c}$$
 infeasible in MOP \checkmark



Appendix: Data-Driven Control

From Data to Controllers?

Closed-loop LTI system: $x_{t+1} = \theta x_t + w_t$

Least squares estimator:
$$\widehat{\boldsymbol{\theta}}_T = \left(\sum_{t=1}^T \widehat{\boldsymbol{x}}_t \, \widehat{\boldsymbol{x}}_{t-1}^\top\right) \left(\sum_{t=1}^T \widehat{\boldsymbol{x}}_{t-1} \, \widehat{\boldsymbol{x}}_{t-1}^\top\right)^{-1}$$

Theorem: The modified least squares estimator $\theta + \sqrt[4]{T}(\hat{\theta}_T - \theta)$ satisfies a moderate deviations principle with rate function

$$I(\boldsymbol{\theta}', \boldsymbol{\theta}) = \frac{1}{2} \operatorname{tr} \left(S_{\boldsymbol{W}}^{-1} (\boldsymbol{\theta}' - \boldsymbol{\theta}) S_{\boldsymbol{\theta}} (\boldsymbol{\theta}' - \boldsymbol{\theta})^{\top} \right),$$

where S_{θ} solves the Lyapunov equation $S_{\theta} = \theta S_{\theta} \theta^{\top} + S_{w}$.

$$\implies \mathsf{DRO} \; \mathsf{bounds} \; \mathsf{on} \; J(\boldsymbol{\theta}) = \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} \; \mathbb{E}_{\boldsymbol{\theta}} \left[\mathbf{x}_t^\top (\mathbf{Q} + \mathbf{K}^\top R \mathbf{K}) \mathbf{x}_t \right]$$