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Low-Rank Matrix Recovery

min
X∈Rm×n: rank(X)≤r

f(X) or min
X∈Sn: X�0, rank(X)≤r

f(X)

f(X) is (usually) convex, but not necessarily differentiable.

Applications:

matrix completion

robust principal component analysis

sparse principal component analysis

phase retrieval / synchronization

matrix sensing

NP-Hard in general.

Rank-constrained problem is often not tackled directly.
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Related work: nonconvex gradient methods

min
X∈Rm×n: rank(X)≤r

f(X) =⇒ min
U∈Rm×r, V∈Rm×r

f(UV>)

Unconstrained, but objective is nonconvex.

Could be approached via simple gradient descent (when f(·) is diff.)

Many exciting works in recent years on provable convergence of
gradient methods to local/global minimum

Strong results (efficient convergence to global minimum) often hold
for very specific instances — specific choice of loss and strong
assumptions on underlying data (e.g., follows some statistical model),
and analysis is often quite involved.
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Convex Relaxations

min
X∈Rm×n: rank(X)≤r

f(X) =⇒ min
‖X‖∗≤τ

f(X)

‖X‖∗ =
∑min{m,n}

i=1 σi(X) – sum of singular values (Trace/Nuclear norm).

‖·‖∗ is convex surrogate for rank-sparsity in matrices in same way as ‖·‖1
is convex surrogate for (entrywise) sparsity for vectors in Rn.

Have been studied extensively in past ∼ 15 years

In many cases well understood in terms of statistical theory and yield
state-of-the-art recovery bounds (i.e., provable recovery of “ground
truth” matrix under proper assumptions)

Often yield strong empirical results in practice (recovery error,
low-rank solutions)

Easy to apply well-understood machinery for convex optimization and
across various paradigms (stochastic, online, distributed, etc.)
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Related work: conditional gradient for convex relaxation

{X ∈ Rm×n | ‖X‖∗ ≤ 1} = conv{uv> | ‖u‖2 = ‖v‖2 = 1}

Admit the following simple iterations:

(ut,vt)← arg min
‖u‖2=‖v‖2=1

u>∇f(Xt)v

Xt+1 ← (1− ηt)Xt + ηtτutv
>
t , ηt ∈ [0, 1]

Efficient iterations - rank-one SVD (runtime ∝ nnz(∇f))

Suboptimal rates - O(β/t), β — smoothness of f(·)
When number of iterations is moderately high require to store in
memory high-rank matrices
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Projected gradient methods for for convex relaxation

Methods such as Projected Grad, Accelerated Grad., FISTA, rely on the
projected gradient mapping:

Xt → Π‖·‖∗≤1[Xt −
1

β
∇f(Xt)]

Enjoy optimal first-order convergence rates (Acc. Grad. / FISTA)

Require in worst case to store high-rank matrices and compute SVDs
of high-rank matrices (for the projection) —
O(min{m,n}2 max{m,n}) runtime per iteration
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Convex relaxations — a wishful thinking

We solve convex relaxation to obtain low-rank solutions.

While it is plausible to assume that optimal solutions are indeed low-rank,
it does not prevent standard first-order methods from going though
high-rank matrices during the optimization process.

Question: can we expect, that under some plausible and quite general
conditions, standard first-order methods will require to store and
manipulate only low-rank matrices?

@ Dan Garber (Technion) Projection-Efficient Low-Rank Optimization One World Optimization Seminar 7 / 32



Euclidean projection onto nuclear norm ball

Lemma

Let X ∈ Rm×n with SVD X =
∑min{m,n}

i=1 σiuiv
>
i , σ1 ≥ · · · ≥ σn. If

‖X‖∗ ≥ 1, then the Euclidean projection of X onto unit nuclear norm ball
is given by

Π‖·‖∗≤1[X] =

min{m,n}∑
i=1

max{σi − σ, 0}uiv>i ,

where σ ≥ 0 is unique solution to the equation
∑

i max{σi − σ, 0} = 1.

Projection thresholds to zero lower singular values

If rank(Π‖·‖∗≤1[X]) = r, then only top r component in SVD of X are
required.
In particular, can be computed in time ∝ rmn << SVD time, when
r << min{m,n}
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A simple approach (or wishful thinking)

Suppose convex relaxation indeed admits low-rank solutions.

We saw Euclidean projection cuts lower components of SVD

We know that rank(Π‖·‖∗≤1[X
∗ − 1

β∇f(X∗)]) = rank(X∗)

Question: Focusing on projection-based methods, can we argue that, at
least in neighborhoods of optimal solutions, the projected gradient
mapping is guaranteed to be low-rank?

What is the size of this neighborhood? How low is the rank?
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Part 1: smooth minimization over unit nuclear norm ball

min{f(X) | ‖X‖∗ ≤ 1}

f(·) is convex and β-smooth

∇f 6= 0 over feasible set — optimal solutions do not perfectly fit data

Based on: D. Garber, On the convergence of projected-gradient methods
with low-rank projections for smooth convex minimization over trace-norm
balls and related problems, SIAM Journal on Optimization 2021 .
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Structure of optimal solutions

Lemma

Let X∗ be an optimal solution, rank(X∗) = r∗, and write its SVD
X∗ =

∑r∗

i=1 σiuiv
>
i . Then, for all i = 1, . . . , r∗ it holds that

u>i ∇f(X∗)vi = −σ1(∇f(X∗)).

In particular: rank(X∗) ≤ #σ1(∇f(X∗)) — mult. of largest sing. value.

Equality need not hold in general:

min
‖X‖∗≤1

‖X− diag(1 + σ, σ, . . . , σ)‖2F =⇒ X∗ = E11,∇f(X∗) = σI

Note that in highly popular case: f(X) = g(AX) + 〈C,X〉, g(·)
str.convex, ∇f is constant over optimal set.
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Can we expect that #σ1(∇f(X∗)) = rank(X∗)?

For any f(·) convex and differentiable with ∇f 6= 0 over unit nuclear norm
ball, for any η > 0, and ζ > 0 small enough:

When rank(X∗) < #σ1(∇f(X∗)) convex relaxation highly sensitive to
arbitrary small misspecification of nuclear norm bound.
Suggests relaxation is ill-posed for low-rank matrix recovery.
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Main result

Fix optimal solution X∗ and denote σi, i = 1, 2, . . . the singular values of
∇f(X∗). Let #σ1 denote number of sing. vals equal σ1(∇f(X∗)).

Inside ball it suffices to compute rank-r SVD, for r ≥ #σ1 in order to
compute projected gradient map.
If #σ1 = rank(X∗) only rank(X∗)-SVD required.

Tightness: Lower bound (worst-case) tight up to factor 4
√

2.
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Main result - generalized

Fix optimal solution X∗ and denote σi, i = 1, 2, . . . the singular values of
∇f(X∗). Let #σ1) denote number of sing. vals equal σ1(∇f(X∗)). For
all r ≥ #σ1 and η > 0:

Increasing rank of SVD computations can increase neighborhood in which
projection is low-rank significantly
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Proof sketch for r = #σ1(∇f(X∗))

Lemma

Let X ∈ Rm×n with SVD X =
∑min{m,n}

i=1 σiuiv
>
i , σ1 ≥ · · · ≥ σn. If

‖X‖∗ ≥ 1, then

Π‖·‖∗≤1[X] =

min{m,n}∑
i=1

max{σi − σ, 0}uiv>i ,

where σ ≥ 0 is unique solution to the equation
∑

i max{σi − σ, 0} = 1.

Lemma implies sufficient condition

r∑
i=1

σi(X) ≥ 1 + rσr+1(X) =⇒ rank(Π‖·‖∗≤1[X]) ≤ r
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Proof sketch for r = #σ1(∇f(X∗))

Let X∗ be an optimal solution. Since singular vectors of X∗ align with
(minus) singular vectors of ∇f(X∗) we have

σi(X
∗ − η∇f(X∗)) =

{
σi(X

∗) + ησ1(∇f(X∗)) if i ≤ r;
ησi(∇f(X∗)) if i > r.

r∑
i=1

σi(X
∗ + η∇f(X∗)) =

r∑
i=1

σi(X
∗) + ησ1(∇f(X∗)) = 1 + ηrσ1(∇f(X∗))

= 1 + rσr+1(X∗ − η∇f(X∗)) + rη(σ1(∇f(X∗))− σr+1(∇f(X∗)))

=⇒ for X∗ sufficient condition holds with positive slack.

Given some X, apply smoothness and perturbation bounds for sing. vals
(Ky Fan, Weyl) to replace X∗ with X, and obtain sufficient cond. holds
for all X close enough to X∗.

@ Dan Garber (Technion) Projection-Efficient Low-Rank Optimization One World Optimization Seminar 16 / 32



What if rank(X∗) < #σ1(∇f(X∗))?

Should we still use SVD rank ≥ #σ1(∇f(X∗))?

Theorem

Fix rank r, spectral gap σ > 0, and ζ > 0 small enough. There exists a
1-smooth convex f(·) and feasible points X∗,X such that X∗ is a
minimizer of f(·) over unit nuclear norm ball, rank(X∗) = rank(X) = r,
and

1 #σ1(∇f(X∗)) = r + 1, σr+1(∇f(X∗)− σr+2(∇f(X∗) = σ

2 ‖X−X∗‖ ≤ ζ
3 ∀η ∈ (0, 1]:

rank(Π‖·‖∗≤1[X− η∇f(X)]) = #σ1(∇f(X∗)) > rank(X∗)
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Some algorithmic implications

Methods converge with original convergence rates while requiring only
rank-r SVD to compute projection.
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Practice?

In practice, when computing the SVD, if we choose some SVD-rank
parameter r, then as long as the projections have rank at most r, then we
are guaranteed the projected gradient steps are accurate and method
converges “correctly”.

Let X ∈ Rm×n, σi = σi(X− η∇f(X)), and fix r ∈ {1, . . . ,min{m,n}}.
From structure of Euclid. projection:

rank(Π‖·‖∗≤1[X− η∇f(X)]) ≤ r ⇐⇒ σr+1 = 0 or

r∑
i=1

σi ≥ 1 + σr+1

Thus, suffices to compute rank-(r + 1) SVD to verify if low-rank
projection is indeed correct.
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Globally-convergent method via mix with Frank-Wolfe

Choose rank parameter r. On any iteration t:
1 compute (possibly in parallel):

1 rank-(r + 1) SVD of Xt − η∇f(Xt). Denote singular vals by
σ1, . . . , σr+1

2 (ut,vt) - leading singular vectors of ∇f(Xt)

2 If σr+1 = 0 or
∑r

i=1 ≥ 1 + σr+1: take proj. grad step:
Xt+1 ← Π‖·‖∗≤1[Xt − η∇f(Xt)] (using above computed SVD).

3 Else: take Frank-Wolfe step: Xt+1 ← (1− αt)Xt − αtutv>t for some
αt ∈ [0, 1]

Guarantees:

1 From any feasible initialization, method converges with rate O(β/t).

2 Once ‖Xt −X∗‖F ≤ R(r) for some t, method only applies proj.
grad. steps — maintains only a rank-r matrix in memory.
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Empirical motivation from low-rank matrix completion

min
‖X‖∗≤τ

∑
(i,j)∈S

(Xij − rij)2

S is the set of observed entries and rij denotes observed value.

dataset trace rank(X∗) #σ1(∇f∗) FISTA rank PGD rank MSE gap

ML100k
943x1682

2500 3 3 3 3 1.3589 5.5844

3000 10 10 10 10 0.9871 0.3234

3500 41 41 42 41 0.7573 0.0456

4000 70 70 71 70 0.5846 0.0227

5000 117 117 118 117 0.3314 0.0148

ML1M
6040x3952

10000 3 3 3 3 1.2184 3.2861

12000 12 12 12 12 0.9043 1.2056

14000 74 74 75 74 0.7236 0.0698

16000 155 155 157 155 0.5918 0.0119
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Part 2: nonsmooth minimization

min{g(X) | X � 0,Tr(X) = 1}

Denote Sn = {X ∈ Sn | X � 0,Tr(X) = 1} – the spectrahedron

g(·) is convex and nonsmooth

0 /∈ ∂f over feasible set — optimal solutions do not perfectly fit data

Based on: D. Garber and A.Kaplan, Low-rank extragradient method for
nonsmooth and low-rank matrix optimization problems, NeurIPS 2021 .
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Structure of optimal solutions

Definition

Let X∗ be an optimal solution and let G∗ ∈ ∂g(X∗). If G∗ satisfies:
∀X ∈ Sn : 〈X−X∗,G∗〉 ≥ 0 (there always exists such G∗), we call G∗ a
special subgradient at X∗. .

Lemma

Let X∗ be an optimal solution with eigen-decomposition as
X∗ =

∑r∗

i=1 λiviv
T
i . Then, for any special subgradient G∗ ∈ ∂g(X∗), the

set of vectors {vi}r
∗
i=1 is a set of eigenvectors of G∗ corresponding to the

eigenvalue λn(G∗).

In particular: rank(X∗) ≤ #λn(G∗).
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Low-rank projected subgradient descent?

Projected Subgradient Descent is arguably the simplest and most general
first-order method.
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Failure of low-rank projected subgradient descent

Theorem

Consider the sparse-PCA problem

min
X∈Sn

{g(X) := −
〈
zz> + z⊥z

>
⊥,X

〉
+

1

2k
‖X‖1},

z = (1/
√
k, . . . , 1/

√
k, 0, . . . , 0)>,

z⊥ = (0, . . . , 0, 1/
√
n− k, . . . , 1/

√
n− k)>,k ≤ n/4. Then, zz> is a

(unique) rank-one optimal solution and #λn(G∗) = rank(zz>) = 1.
However, for any η < 2

3 and any v ∈ Rn such that ‖v‖ = 1,
supp(v) ⊆ supp(z), and ‖vv> − zz>‖F ≤ 1

k , it holds that

rank
(

ΠSn [vv> − ηGvv> ]
)
> 1,

where Gvv> = −zz> − z⊥z
>
⊥ + 1

2k sign(vv>) ∈ ∂g(vv>).
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Saddle-point approach

Consdier nonsmooth g(·) of the strucutre:

g(X) = max
y∈K

f(X,y) = h(X) + max
y∈K

y>(AX− b)

h(·) is smooth and convex, K convex and compact

Lemma

X∗ is minimizer of g(·) over Sn with special subgradient G∗ if and only if
there exists y∗ ∈ K such that (X∗,y∗) is saddle point and
∇Xf(X∗,y∗) = G∗.

Solve via smooth convex-concave saddle-point methods.
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Extragradient method [Korpelevich 76, Nemirovski 05]

min
X∈Sn

max
y∈K

f(X,y)

Zt+1 ← ΠSn [Xt − η∇Xf(Xt,yt)], wt+1 ← ΠK[yt + η∇yf(Xt,yt)]

Xt+1 ← ΠSn [Xt − η∇Xf(Zt+1,wt+1)], yt+1 ← ΠK[yt + η∇yf(Zt+1,wt+1)]

Theorem

For η ≤ min
{

1
βX+βXy

, 1
βy+βyX

, 1
βX+βyX

, 1
βy+βXy

}
we have

1

T

T∑
t=1

max
y∈K

f(Zt+1,y)− 1

T

T∑
t=1

min
X∈Sn

f(X,wt+1) ≤
D2

2ηT
,

where D := sup(X,y),(X̃,ỹ)∈Sn×K ‖(X,y)− (X̃, ỹ)‖F .

For g(X) = maxy∈K f(X,y) implies mint∈[T ] g(Zt)− g∗ = O(1/T ).
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Main result for nonsmooth

Let X∗ be optimal solution to

min
X∈Sn

{h(X) + max
y∈K

y>(AX− b)}

Let G∗ be special subgradient at X∗ with eigenvalues λn ≤ λn−1... ≤ λ1.

For all r ≥ #λn(G∗) we have:

Drawback: need “warm start” init. for X and y
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Empirical evidence - Sparse PCA

min
Tr(X)=1,

X�0

〈X,−M〉+ λ‖X‖1 = min
Tr(X)=1,

X�0

max
‖Y‖∞≤1

{〈X,−M〉+ λ〈X,Y〉},

M = zz> + c
2(N + N>)

dimension (n) 100 200 400 600

↓ SNR = 1 ↓
λ 0.006 0.003 0.0015 0.001

initialization error 0.1584 0.1464 0.1443 0.1411

recovery error 0.0059 0.0033 0.0019 0.0015

dual gap 8.6× 10−4 0.0031 0.0053 0.0060

λn−1(∇Xf(X
∗,y∗))− λn(∇Xf(X

∗,y∗)) 0.8406 0.8869 0.9178 0.9331

↓ SNR = 0.05 ↓
λ 0.04 0.02 0.01 0.005

initialization error 1.6701 1.6620 1.6542 1.6610

recovery error 0.0502 0.0234 0.0137 0.0109

dual gap 1.9× 10−5 0.0041 0.0534 0.0409

λn−1(∇Xf(X
∗,y∗))− λn(∇Xf(X

∗,y∗)) 0.2200 0.4076 0.5460 0.6788

All projections w.r.t. matrix variables are rank-one
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Empirical evidence - Robust PCA

min
Tr(X)=τ,

X�0

‖X−M‖1 = min
Tr(X)=τ,

X�0

max
‖Y‖∞≤1

〈X−M,Y〉,

M = rZ0Z
>
0 + 1

2(N + N>)

dimension (n) 100 200 400 600

↓ r = rank(Z0Z
>
0 ) = 1 ↓

SNR 0.0021 7.2× 10−4 2.5× 10−4 1.3× 10−4

initialization error 1.3511 1.3430 1.2889 1.2606
recovery error 0.0084 0.0107 0.0109 0.0107
dual gap 0.0016 0.0029 0.0044 0.0069
λn−r(∇Xf(X

∗,y∗))− λn(∇Xf(X
∗,y∗)) 15.5944 41.2139 85.8117 140.5349

↓ r = rank(Z0Z
>
0 ) = 5 ↓

SNR 0.0110 0.0038 0.0013 6.9× 10−4

initialization error 1.5501 1.5527 1.5221 1.4833
recovery error 0.0092 0.0092 0.0087 0.0075
dual gap 0.0084 0.0390 0.1866 0.4721
λn−r(∇Xf(X

∗,y∗))− λn(∇Xf(X
∗,y∗)) 7.6734 26.2132 66.1113 108.7215

All projections w.r.t. matrix variables satisfy rank = rank(Z0Z
>
0 )

@ Dan Garber (Technion) Projection-Efficient Low-Rank Optimization One World Optimization Seminar 30 / 32



Empirical evidence - Low Rank & Sparse Recovery

min
Tr(X)=1,

X�0

1

2
‖X−M‖2F + λ‖X‖1 = min

Tr(X)=τ,
X�0

max
‖Y‖∞≤1

1

2
‖X−M‖2F + λ〈X,Y〉,

M = Z0Z0
> + c

2(N + N>)

dimension (n) 100 200 400 600

↓ r = rank(Z0Z
>
0 ) = 5, SNR = 2.4 ↓

λ 0.0012 0.0006 0.0003 0.0002

initialization error 0.2132 0.2103 0.1983 0.1907

recovery error 0.0641 0.0478 0.0349 0.0274

dual gap 9.0× 10−4 4.3× 10−4 1.4× 10−4 7.3× 10−5

λn−r(∇Xf(X
∗,y∗))− λn(∇Xf(X

∗,y∗)) 0.0148 0.0200 0.0257 0.0277

↓ r = rank(Z0Z
>
0 ) = 10, SNR = 4.8 ↓

λ 0.0007 0.0004 0.0002 0.0001

initialization error 0.1855 0.1661 0.1527 0.1473

recovery error 0.0702 0.0403 0.0268 0.0356

dual gap 4.9× 10−4 6.6× 10−4 4.2× 10−4 3.4× 10−5

λn−r(∇Xf(X
∗,y∗))− λn(∇Xf(X

∗,y∗)) 0.0072 0.0142 0.0187 0.0160

All projections w.r.t. matrix variables satisfy rank = rank(Z0Z
>
0 )
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Additional results

Lower bounds on neighborhoods scale with step-size η —
inappropriate for SGD which needs η ∝ ε — target accuracy.
D. Garber, On the convergence of stochastic gradient descent with
low-rank projections for convex low-rank matrix problems, COLT
2020 , gives alternative analysis independent of η. However requires
#λn(∇f(X∗)) = rank(X∗) (strict complementarity).

For PSD matrices (with unit trace), Euclidean norm often suboptimal.
Working with Bregman distance induced by von Neuman entropy
gives bounds which measure smoothness in spectral norm instead of
Frobenius. D. Garber and A.Kaplan, on the efficient implementation
of the matrix exponentiated gradient algorithm for low-rank matrix
optimization, In review , gives a highly non-trivial extension. Also
requires #λn(∇f(X∗)) = rank(X∗).
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