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Standard methods for nonconvex optimization

minimize
x∈Rn

f (x) where f is smooth.

• f has gradient vector ∇f (first derivatives) and Hessian matrix
∇2f (second derivatives).

−→ local minimizer x∗ with ∇f (x∗) = 0 (stationarity) and
∇2f (x∗) � 0 (local convexity).

Derivative-based methods:

I user-given x0 ∈ Rn, generate iterates xk , k ≥ 0.

I f (xk + s) ≈ mk(s) simple model of f at xk ;
mk linear or quadratic Taylor approximation of f .
sk → mins mk(s); sk → xk+1 − xk

I terminate within ε of optimality (small gradient values).
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Derivative-based local models

Choices of models

I linear : mk(s) = f (xk) +∇f (xk)T s
−→ sk steepest descent direction.

I quadratic : mk(s) = f (xk) +∇f (xk)T s + 1
2
sT∇2f (xk)s

−→ sk Newton-like direction.

Must safeguard sk to ensure method converges globally, from an
arbitrary starting point x0, to first/second order critical points.

Adaptive ‘globalization’ strategies:

I Linesearch (Cauchy?, Armijo (1966))

I Trust region (Fletcher, Powell (1970s))

I Regularization (Levenberg-Marquardt (’44, ’63), Griewank
(’83), Nesterov & Polyak (’06), C, Gould & Toint (’11), ...)
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Global efficiency of Newton’s method

Newton’s method: as slow as steepest descent

• may require
⌈
ε−2
⌉

evaluations/iterations, same as steepest
descent method
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Globally Lipschitz continuous gradient and Hessian

But Regularized Newton (ie, ARC) has better/optimal complexity.
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Worst-case evaluation complexity of methods

Global rates of convergence from any initial guess

Under sufficient smoothness assumptions on derivatives of f
(Lipschitz continuity), for any (ε1, ε2) > 0, the algorithms generate

‖∇f (xk)‖ ≤ ε1 (and λmin(∇2f (xk)) ≥ −ε2) in at most kalgε
iterations/evaluations:

1st, 2nd Criticality SD Newton/TR/LS ARC TR+/ LS+

‖∇f (xk)‖2 ≤ ε1 O(ε−2
1 ) O(ε−2

1 ) O
(
ε
− 3

2
1

)
O
(
ε
− 3

2
1

)
λmin(∇2f (xk)) ≥ −ε2 – O(ε−3

2 ) O(ε−3
2 ) O(ε−3

2 )

[TR+:Curtis et al,’17]

[LS+:Royer et al’18]

I O(·) contains f (x0)− flow, Lgrad or LHessian and algorithm
parameters.

I all bounds are sharp, ARC bound is optimal for second-order
methods [C, Gould & Toint,’10,’11, ’17; Carmon et al (’18)]
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Adaptive cubic regularization: ARC (=AR2)

[Griewank (’81, TR); Nesterov & Polyak (’06); Weiser et al (’07); C, Gould & Toint (’11)]

[Dussault (’15); Birgin et al (’17)]

I cubic regularization model at xk

mk(s) = f (xk) +∇f (xk)[s] + 1
2
∇f 2(xk)[s]2︸ ︷︷ ︸

T2(xk ,s)

+ 1
3
σk‖s‖32

where σk > 0 is a regularization weight. [Bk ≈ ∇f 2(xk ) allowed]

I compute sk : mk(sk) < f (xk), ‖∇smk(sk)‖ ≤ θ1‖sk‖22 and

λmin(∇2
smk(sk)) ≥ −θ2‖sk‖12 [no global model minimization required, but possible]

I compute ρk =
f (xk)− f (xk + sk)

f (xk)− T2(xk , sk)

I set xk+1 =

{
xk + sk if ρk > η = 0.1

xk otherwise

I σk+1 =
σk
γ1

= 2σk when ρk < η; else

σk+1 = max{γ2σk , σmin} = max{ 1
2
σk , σmin}
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Regularization methods with higher derivatives
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Adaptive pth order regularization: ARp

[Birgin et al (’17), C, Gould, Toint(’20)]

ARp proceeds similarly to ARC/AR2:
I pth order regularization model at xk

mk(s) = f (xk) +∇f (xk)[s] + . . .+
1

p!
∇pf (xk)[s]p︸ ︷︷ ︸

Tp(xk ,s)

+
1

(p + 1)!
σk‖s‖p+1

2

where σk > 0 is a regularization weight.
I compute sk : mk(sk) < f (xk), ‖∇smk(sk)‖ ≤ θ1‖sk‖p2 and

λmin(∇2
smk(sk)) ≥ −θ2‖sk‖p−1 [no global model minimization required]

I compute ρk =
f (xk)− f (xk + sk)

f (xk)− Tp(xk , sk)

I set xk+1 =

{
xk + sk if ρk > η = 0.1

xk otherwise

I σk+1 =
σk
γ1

= 2σk when ρk < η; else

σk+1 = max{γ2σk , σmin} = max{ 1
2
σk , σmin}
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Worst-case complexity of ARp for 1st/2nd-order criticality

[Birgin et al (’17), C, Gould, Toint(’20)]

Theorem: Let p ≥ 2, f ∈ Cp(Rn), bounded below by flow and with
the pth derivative Lipschitz continuous. Then ARp requires at
most ⌈

κ1,2 · (f (x0)− flow) ·max

[
ε
− p+1

p

1 , ε
− p+1

p−1

2

]
+ κ1,2

⌉
function and derivatives’ evaluations/iterations to ensure
‖∇f (xk)‖ ≤ ε1 and λmin(∇2f (xk)) ≥ −ε2.

1st, 2nd Criticality p=2 p=3 p=4 . . .p

‖∇f (xk)‖2 ≤ ε1 O(ε
−3/2
1 ) O(ε

−4/3
1 ) O

(
ε
−5/4
1

)
O
(
ε
−(p+1)/p
1

)
λmin(∇2f (xk)) ≥ −ε2 O(ε−3

2 ) O(ε−2
2 ) O(ε

−5/3
2 ) O(ε

−(p+1)/(p−1)
2 )

All bounds are sharp, and ARp 1st-order bound is optimal for pth order mthds.

[C, Gould & Toint,’20 Carmon et al (’18)]
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Worst-case complexity of ARp for 1st/2nd-order criticality

[Birgin et al (’17), C, Gould, Toint(’20)]Sketch of Proof (Theorem):
I Sufficient decrease on successful steps

f (xk)− f (xk+1) ≥ η[f (xk)− Tp(xk , sk)]

= f (xk)−mk(sk) + σk
(p+1)!‖sk‖

p+1

≥ σmin
(p+1)!‖sk‖

p+1

≥ cmin{ε(p+1)/p
1 , ε

(p+1)/(p−1)
2 } (∗)

I Long steps: first-order

‖sk‖ ≥ c1

(
∇f (xk + sk)

L + θ1 + σmax

)1/p

≥ c1ε
1/p
1

and second-order

‖sk‖ ≥ c2

(
λmin(∇2f (xk + sk))

L + θ2 + σmax

)1/(p−1)
≥ c2ε

1/(p−1)
2

where σk ≤ σmax = C · L. Summing up (*) over successful
iterations + counting unsuccessful iterations.
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ARp for 3rd-order criticality

In the model minimization, require also the 3rd order approximate
condition:

max
d∈Mk+1

∣∣∣∇3
smk(sk)[d ]3

∣∣∣ ≤ ‖sk‖p−2,
whenever
Mk+1 =

{
d | ‖d‖ = 1 and |∇2

smk(sk)[d ]2| ≤ ‖sk‖p−1
}
6= ∅.

Then under same conditions as Theorem, ARp takes at most⌈
κ1,2,3 · (f (x0)− flow) ·max

[
ε
− p+1

p

1 , ε
− p+1

p−1

2 , ε
− p+1

p−2

3

]
+ κ1,2,3

⌉
function and derivatives’ evaluations/iterations to ensure

‖∇f (xk)‖ ≤ ε1, λmin(∇2f (xk)) ≥ −ε2

and
∣∣∣∇3f (xk)[d ]3

∣∣∣ ≤ ε3, |∇2f (xk)[d ]2| ≤ ε2, for all d ∈Mk .

• Mk includes approximate objective’s Hessian null space if
subproblem is solved to local ε accuracy.
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Regularization methods for high order optimality

Coralia Cartis (University of Oxford) Tensor methods for nonconvex optimization problems



Beyond 3rd order: high(er)-order optimality conditions

[C, Gould, Toint(’18, J FoCM)]

Let x∗ be a local minimizer of f ∈ Cq(Rn). Consider (feasible)
descent arcs x(α) = x∗ +

∑q
i=1 α

i si + o(αq) where α > 0. Derive
necessary (and sometimes sufficient) optimality conditions.
[Hancock, Peano example of non-Taylor based arcs along which descent happens!]

For j ∈ {1, . . . , q}, the inequality

j∑
k=1

1

k!

 ∑
(`1,...,`k )∈P(j ,k)

∇k
x f (x∗)[s`1 , . . . , s`k ]

 ≥ 0

holds for all (s1, . . . , sj) such that, for i ∈ {1, . . . , j − 1},

i∑
k=1

1

k!

 ∑
(`1,...,`k )∈P(i ,k)

∇k
x f (x∗)[s`1 , . . . , s`k ]

 = 0,

where the index sets P(j , k) = {(`1, . . . , `k) ∈ {1, . . . , j}k |
∑k

i=1 `i = j}.
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Beyond 3rd order: high(er)-order optimality conditions

[C, Gould, Toint(’18, J FoCM)]

I Convex constraints (and suitable constraint qualifications) can
be incorporated.

I Usual first, second and third order optimality conditions can
be derived.

I But, starting at fourth-order and beyond, necessary conditions
above involve a mixture of derivatives of different orders and
cannot/should not be separated/disentangled.

Example: Peano variant: minx∈IR2 f (x) = x22 − κ1x21x2 + κ2x
4
1 ,

where κ1 and κ2 are specified parameters.

Fourth-order condition (κ1 large):
ker1[∇1

x f (0)] = <
2, ker2[∇2

x f (0)] = e1, ker
3[∇3

x f (0)] = e1 ∪ e2.

1
2
∇2

x f (0)[s2]2 + 1
2
∇3

x f (0)[s1, s1, s2] + 1
24
∇4

x f (0)[s1]4 ≥ 0

implies the much weaker ∇4
x f (x∗)[s1]4 ≥ 0 on ∩3i=1 keri [∇i

x f (x∗)].
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Beyond 3rd order: high(er)-order optimality conditions

[C, Gould, Toint(’20, arXiv)]

Challenge: find a (necessary) optimality measure for qth order
criticality for f that is sufficiently accurate and useful in ARp ?
For j ∈ {1, . . . , q}, a jth order criticality measure for f is: for some
δ ∈ (0, 1], let

φδf ,j(x) = f (x)− globmin‖d‖≤δTj(x , d).

−→ a robust notion of criticality.

I φδf ,j(x) is continuous in x and δ for all orders q.

I φδf ,1(x) = ‖∇f (x)‖δ
I φδf ,2(x) = max{0,−λmin(∇2f (x))}δ2.

If x is a local minimizer of f , then for j ∈ {1, . . . , q},

lim
δ→0

φδf ,j(x)

δj
= 0,

and this limit also implies the involved necessary conditions before.
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ARqp: a high order regularization and criticality framework

[C, Gould, Toint(’20, arXiv)]

I Let q ≤ p. The pth order regularization model at xk

mk(s) = Tp(xk , s) +
1

(p + 1)!
σk‖s‖p+1

2 .

I compute (sk , δs): mk(sk) < f (xk),

φδsmk ,j
(sk) ≤ θεjδjs , j ∈ {1, . . . , q}.

I compute ρk =
f (xk)− f (xk + sk)

f (xk)− Tp(xk , sk)
I set xk+1 = xk + sk and δk+1 = δs if ρk > η = 0.1; else

xk+1 = xk and δk+1 = δk .

I σk+1 =
σk
γ1

= 2σk when ρk < η; else

σk+1 = max{γ2σk , σmin} = max{ 1
2
σk , σmin}
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ARqp: a high order regularization and criticality framework

[C, Gould, Toint(’20, arXiv)]

Theorem: Let p ≥ q ≥ 1, f ∈ Cp(Rn), bounded below by flow and
with derivatives ∇j f Lipschitz continuous for j ∈ {1, . . . , p}.
Terminate ARqp when

φδkf ,j(xk) ≤ εjδjk for all j ∈ {1, . . . , q}

for some δk that is either 1 (q = 1, 2) or at least Cε = C (εi )i=1,q

[achievable for ARqp]. Until termination, ARqp requires at most

I q = 1, 2 :

⌈
κ1,2 · (f (x0)− flow) · max

j=1,q
ε
− p+1

p−j+1

j + κ1,2

⌉
[same as ARp]

I q > 2:

⌈
κq · (f (x0)− flow) · max

j=1,q
ε
− q(p+1)

p

j + κq

⌉
function and derivatives’ evaluations/iterations.

All bounds are sharp [C, Gould, Toint,’20]
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ARqp: a high order regularization and criticality framework

[C, Gould, Toint(’20, arXiv)]

Sketch of Proof (Theorem): Same ingredients as for ARp
complexity proof:

Sufficient decrease on successful steps

f (xk)− f (xk+1) ≥ σmin

(p + 1)!
‖sk‖p+1

Long steps: much more challenging when q > 2!

‖sk‖ ≥ cq

(
1− θ

L + σmax

)1/p

ε
j/p
j

for some j ∈ {1, . . . , q}, where σk ≤ σmax = C · L.
Lower bound on sk : (1− θ)εjδ

j
k ≤ (L + σmax)

∑j
l=1 δ

l
k‖sk‖p−l+1

Summing up (*) over successful iterations + counting unsuccessful
iterations.
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Higher order methods

A few remarks...

I ARqp with weaker optimality condition: φδkf ,j ≤ εjδk , j = 1, q,

satisfies complexity bound O
(

maxj=1,q ε
− p+1

p−j+1

j

)
.

I TRq (Trust-region detecting qth order criticality) satisfies the

weaker complexity bound: O(maxj=1,q ε
−(q+1)
j ).

I Convex constraints can be incorporated into ARp and ARqp
without affecting the complexity.
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Universal regularization methods
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Universal ARp for first order criticality

[C, Gould, Toint (’19)]

Universal ARp (U-ARp) employs regularized local models

mk(s) = Tp(xk , s) +
σk
r
‖s‖r2,

where r > p ≥ 1, r real, and Tp(xk , s) as in ARp.
U-ARp proceeds similarly to ARp:
I compute sk : mk(sk) < f (xk) and ‖∇smk(sk)‖ ≤ θ‖sk‖r−1

I ρk =
f (xk)− f (xk + sk)

f (xk)− Tp(xk , sk)
I update σk

But U-ARp has an additional crucial ingredient: if ρk ≥ η [i.e., k
successful], check whether

σk‖sk‖r−1 ≥ αε1 (*)

where α ∈ (0, 1
3
] is a user-chosen constant.

U-ARp allows xk+1 = xk + sk (and σk decrease) only when both
ρk ≥ η and (*) hold. Else, σk is increased.
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Beyond Lipschitz continuity, towards non-smoothness

f ∈ Cp,βp(Rn): f ∈ Cp(Rn) and ∇pf is Hölder continuous on the
path of the iterates (and trial points), namely,

‖∇pf (y)−∇pf (xk)‖ ≤ L‖y − xk‖βp

holds for all y ∈ [xk , xk + sk ], k ≥ 0.
Lp > 0 and βp ∈ [0, 1] for any p ≥ 1.

I βp = 0: ∇pf uniformly bounded.

I βp ∈ (0, 1): ∇pf continuous but not differentiable.

I βp = 1: ∇pf Lipschitz continuous (and differentiable).

I βp > 1: f reduces to polynomials.

−→ Hölder continuity : a bridging case between smooth and
non-smooth problems [Nemirovskii & Yudin (’83), Nesterov (’13), Devolder (’13), Grapiglia &

Nesterov (’16)]
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Worst-case complexity of UARp

Let r ≥ p ≥ 1, r real and p integer.
Let f ∈ Cp,βp(Rn).
If r ≥ p + βp [e.g., r = p + 1], then U-ARp requires at most⌈

κ1 · (f (x0)− flow) · ε
− p+βp

p+βp−1

1

⌉

function/derivative evaluations and iterations to ensure
‖∇f (xk)‖ ≤ ε1.

r ≥ p + βp [e.g., r = p + 1]: the bound is ’universal’, adapting to
landscape smoothness without knowing βp/smoothness of f ,
independent of r .
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Smooth or nonsmooth?

Sharpness example: the ragged landscape of a f ∈ C 1,β1

Ratio of |∇f (x)−∇f (y)|/|x − y|β
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