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Standard methods for nonconvex optimization

minimize f(x) where f is smooth.
x€R"

e f has gradient vector Vf (first derivatives) and Hessian matrix
V2f (second derivatives).

— local minimizer x, with Vf(x.) = 0 (stationarity) and
V2f(x) = 0 (local convexity).

Derivative-based methods:
P> user-given xop € R", generate iterates xi, k > 0.

» f(xx+5s)~ my(s) simple model of f at xg;
my linear or quadratic Taylor approximation of f.
Sk — ming mg(S); Sk — Xk+1 — Xk

> terminate within € of optimality (small gradient values).
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Derivative-based local models

Choices of models
> linear : my(s) = f(xk) + VF(xx)Ts
—> sy steepest descent direction.
» quadratic : my(s) = f(xx) + VF(xk) s + 1sTV2f(xk)s
— s, Newton-like direction.

Must safeguard s, to ensure method converges globally, from an
arbitrary starting point xp, to first/second order critical points.

Adaptive ‘globalization’ strategies:
» Linesearch (Cauchy?, Armijo (1966))
» Trust region (Fletcher, Powell (1970s))

» Regularization (Levenberg-Marquardt ('44, '63), Griewank
('83), Nesterov & Polyak ('06), C, Gould & Toint ('11), ...)
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Global efficiency of Newton's method

Newton's method: as slow as steepest descent

e may require [6*21 evaluations/iterations, same as steepest
descent method

Globally Lipschitz continuous gradient and Hessian

But Regularized Newton (ie, ARC) has better/optimal complexity.
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Worst-case evaluation complexity of methods

Global rates of convergence from any initial guess

Under sufficient smoothness assumptions on derivatives of f
(Lipschitz continuity), for any (e1,€2) > 0, the algorithms generate
IVF(x)|l < €1 (and Amin(V2F(x()) > —e€2) in at most k™
iterations/evaluations:

1st, 2nd Criticality SD NeWton/TR/LS ARC TR+/ LS+
Vi)l <a |0 | oG | o ( ) 0 ( )
Amin (V2 (x0)) > —2 - O0(e; %) O(e; ) O(e;”)

[TR+:Curtis et al,’17]

[LS+:Royer et al'18]

» O(-) contains f(Xg) — fiow, Lgrad OF LHessian and algorithm

parameters.

» all bounds are sharp, ARC bound is optimal for second-order

methods
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Adaptive cubic regularization: ARC (=AR2)

[Griewank ('81, TR); Nesterov & Polyak ('06); Weiser et al ('07); C, Gould & Toint ("11)]

[Dussault ('15); Birgin et al ('17)]
» cubic regularization model at x;

mi(s) = F(xk) + VF(x)[s] + 1VF2(xi)[s]* +1oxlls]3

] ) Tz_(Xk,S) ]
where o, > 0 is a regularization weight. [g, ~ v(x) allowed]

» compute s @ my(sk) < f(xk), [|[Vsmr(sk)| < (91||skH§ and

)\min(vgmk(sk)) > —05||sk H% [0 global model minimization required, but possible]
f(Xk) — f(Xk + Sk)
f(Xk) — Tz(Xk, Sk)
Xk + Sk if pp >n=0.1
Xk otherwise

> compute px =

> set X1 = {

Ok
> k41 = 7 = 20y when py < n; else
1
Ok41 = Max{Y20k, Omin} = max{1ok, Omin}
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Regularization methods with higher derivatives

Coralia Cartis (University of Oxford) Tensor methods for nonconvex optimization problems



Adaptive pth order regularization: ARp

[Birgin et al ("17), C, Gould, Toint('20)]

ARp proceeds similarly to ARC/AR2:
» pth order regularization model at x

+1
aillsll

mi(s) = F(xi) + VF(xi)s] + ... + ;vpf(xk)[s]p+(p+1 .

Tp(xk,s)
where o, > 0 is a regularization weight.

> compute sk : mi(sk) < F(xk), [Vsmi(si)ll < 01llskll5 and
)\min(vgmk(sk)) > —0, ||S;(Hp_1 [0 global model minimization required]
f(Xk) — f(Xk + Sk)
f(Xk) — Tp(Xk, Sk)
Xk + Sk if pp >n=0.1
X otherwise

> compute px =

> set X411 = {

g
> oK1 = Tk _ 20 when py < 7); else

Ok+1 = Max{V20k, Omin} = max{iok, Omin}
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Worst-case complexity of ARp for 1st/2nd-order criticality

[Birgin et al ("17), C, Gould, Toint('20)]
Theorem: Let p > 2, f € CP(R"), bounded below by fiy and with
the pth derivative Lipschitz continuous. Then ARp requires at
most

_ptl _ptl
{’ill - (f(x0) = fiow) - max [el P ey Pl} + 51,4

function and derivatives' evaluations/iterations to ensure
”Vf(Xk)H S €1 and )\m;n(V2f(xk)) Z —€7.

1st, 2nd Criticality p=2 p=3 p=4 ...p
IVFel < | o) [ o@*?) | o(a”) | o(q®7P)
Anin(VF(x) > —&2 | O(°) | O(g?) | O(e;°7) | O V07Y)

All bounds are sharp, and ARp 1st-order bound is optimal for pth order mthds.

[C, Gould & Toint,’20 Carmon et al ('18)]
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Worst-case complexity of ARp for 1st/2nd-order criticality

Sketch of Proof (Theorem): [Birgin et al ('17), C, Gould, Toint("20)]
» Sufficient decrease on successful steps

F) — FOk1) = nlf(xk) — Tp(xk, s¢)]

= f(xk) — mi(sk) + prllsell P
i
> Cmin{egp+1)/p7 6gP'H)/(P—l)} (%)

» Long steps: first-order
V(x4 sk) P 1/p
> D e ——— >
HSkH =a (L + 91 + O max o C1€1
and second-order
sl > e (mn(T2F st s))
kil =52 L+ 02 + omax

where ) < omax = C - L. Summing up (*) over successful
iterations + counting unsuccessful iterations.

> CQE;/(pil)
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ARp for 3rd-order criticality

In the model minimization, require also the 3rd order approximate
condition:

maX
dEMk+1

Vimi(sldl| < llsel” 2,

whenever
M1 ={d|[|d]| =1 and [Vim(s)[d]?] < [[sllP~*} # 0.

Then under same conditions as Theorem, ARp takes at most
_ptl  _pil  _pil
—1 )
[51,2,3 - (f(x0) = fiow) - max [61 P e e " } + 51’24
function and derivatives' evaluations/iterations to ensure
IV (x| < €1, Amin(V2F(xk)) > —€2

and ‘V3f(xk)[d]3‘ < €3, [V2F(x)[d]?] < eo, for all d € M.

e M includes approximate objective's Hessian null space if
subproblem is solved to local € accuracy.
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Regularization methods for high order optimality
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Beyond 3rd order: high(er)-order optimality conditions

[C. Gould, Toint('18, J FoCM)]
Let x, be a local minimizer of f € C(R"). Consider (feasible)
descent arcs x(a) = x. + Y1, &'s; + o(ad) where a > 0. Derive
necessary (and sometimes sufficient) optimality conditions.
[Hancock, Peano example of non-Taylor based arcs along which descent happens!]

For j € {1,...,q}, the inequality

J
1 k
kf Z . fo(x*)[sfp EEER sfk] >0
k=1 (l1,...,L)EP(j k)
holds for all (s1, ..., s;) such that, for i € {1,...,j — 1},

i

1
Zﬂ Z vﬁf(x*)[sel,...,sa] =0,

k=1 " \(l1,....0)€P(i,k)

where the index sets P(j, k) = {(£1,...,0k) € {1,...,j}* | 2K i = j}.

Coralia Cartis (University of Oxford) Tensor methods for nonconvex optimization problems



)-order optimality conditions

[C, Gould, Toint('18, J FoCM)]

» Convex constraints (and suitable constraint qualifications) can
be incorporated.

» Usual first, second and third order optimality conditions can
be derived.

» But, starting at fourth-order and beyond, necessary conditions
above involve a mixture of derivatives of different orders and
cannot/should not be separated/disentangled.

: g o 2 2 4
Example: Peano variant: min,c2 f(x) = x5 — k1xjx2 + KoX{,

where k1 and k2 are specified parameters.

Fourth-order condition (k1 large):
ker! [V1F(0)] = R?, ker?[V2£(0)] = e1, ker’ [V3£(0)] = e; U e2.

IVLF(0)[s2]® + 1VEF(0)[s1, 51, 2] + & Vif(0)[si]* > 0

implies the much weaker V4f(x.)[s1]* > 0 on N?_; ker' [V f(x.)].
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Beyond 3rd order: high(er)-order optimality conditions

[C, Gould, Toint('20, arXiv)]
Challenge: find a (necessary) optimality measure for gth order
criticality for f that is sufficiently accurate and useful in ARp ?
For j € {1,...,q}, a jth order criticality measure for f is: for some
5 € (0,1], let

7 j(x) = f(x) — globmin g <5 Ti(x, d).
— a robust notion of criticality.

> qucd.(x) is continuous in x and § for all orders q.
> 971 (x) = IVF(x)llo
> ¢‘;72(x) = max{0, —Amin(V2£(x))}62.
If x is a local minimizer of f, then for j € {1,...,q},
§
(x
lim gbf,]( )

6—0 &)

=0,

and this limit also implies the involved necessary conditions before.
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ARqgp: a high order regularization and criticality framework

[C, Gould, Toint('20, arXiv)]
Let g < p. The pth order regularization model at x;
p+1

1
ngusm

compute (sk, ds): my(sk) < f(xk),

my(s) = Tp(xk,s) +

e i(sk) <00l jefl,... q}.

f(Xk) — f(Xk + Sk)
f(xk) = Tp(xk, Sk)
set Xx11 = Xk + Sk and dx1 = s if px > n =0.1; else

Xk+1 = Xk and 5k+1 = 5k-
Ok
Okt1 = 7 = 20, when py < n; else
1
Ok+1 = maX{’YzUM Umin} = max{%akv Umin}

compute py =
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ARqgp: a high order regularization and criticality framework

[C, Gould, Toint('20, arXiv)]
Theorem: Let p> g > 1, f € CP(R"), bounded below by fi,, and
with derivatives V/f Lipschitz continuous for j € {1,..., p}.
Terminate ARgp when

o%i(x) < €6 forall j€{1,....q}

for some Jj that is either 1 (g = 1,2) or at least Ce = C(€;),_15
[achievable for ARqp]. Until termination, ARqgp requires at most

__ptl
> g=12: ’751,2 - (f(x0) — fiow) - maxe; P + '“51,2-‘
Jj=lq
[same as ARp]
_a(p+1)
> g>2 [ch-(f(xo)— low) - maxe; " +/<aq-‘
Jj=1q

function and derivatives' evaluations/iterations.
All bounds are sharp [c, Gould, Toint,'20]
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ARqgp: a high order regularization and criticality framework

[C, Gould, Toint('20, arXiv)]
Sketch of Proof (Theorem): Same ingredients as for ARp
complexity proof:

Sufficient decrease on successful steps

Omin
f(xk) — f(xkr1) > m\lsﬂl””

Long steps: much more challenging when g > 2!
19 \P )/

> — e’
||Sk|| = Cq <L+Jmax> J

for some j € {1,...,q}, where oy < omax = C - L.
Lower bound on si: (1 — 0)e;6} < (L4 omax) Sy 0k ||se]/P~"+

Summing up (*) over successful iterations + counting unsuccessful
iterations.
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Higher order methods

A few remarks...

> ARqgp with weaker optimality condition: QS(;Z- <€idk, j=1,q,

p+1
satisfies complexity bound O (maszl € p;+1>.

» TRq (Trust-region detecting gth order criticality) satisfies the

. —(g+1
weaker complexity bound: O(max;_i¢; (aF1)).

» Convex constraints can be incorporated into ARp and ARqgp
without affecting the complexity.
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Universal regularization methods
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Universal ARp for first order criticality

[C, Gould, Toint ('19)]

Universal ARp (U-ARp) employs regularized local models
Ok
mi(s) = Tp(xk: ) + —~lIsll2,

where r > p > 1, r real, and Tp,(xk, s) as in ARp.
U-ARp proceeds similarly to ARp:
> compute sg: mi(sk) < f(xk) and [[Vsmy(se)ll < Ol sil "
. f(Xk) — f(Xk + Sk)
F(xi) = Tp(xk: k)
> update oy
But U-ARp has an additional crucial ingredient: if px > [i.e., k
successful], check whether
okllsll"t > aer (¥)

where a € (0, 1] is a user-chosen constant.
U-ARp allows xx+1 = xx + sk (and oy decrease) only when both
pk > n and (*) hold. Else, oy is increased.
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Beyond Lipschitz continuity, towards non-smoothness

f € CPP(R™): f € CP(R") and VPf is Holder continuous on the
path of the iterates (and trial points), namely,

IVPF(y) = VPF(xi)ll < Llly — x|

holds for all y € [xk, xk + sk], kK > 0.
L, >0 and 3, € [0,1] for any p > 1.

» B, = 0: VPf uniformly bounded.

> [p € (0,1): VPf continuous but not differentiable.

» [p =1: VPf Lipschitz continuous (and differentiable).
» B, > 1: f reduces to polynomials.

— Holder continuity : a bridging case between smooth and
non-smooth prob|ems [Nemirovskii & Yudin ('83), Nesterov ('13), Devolder ('13), Grapiglia &

Nesterov (’16)]
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Worst-case complexity of UARp

Let r > p > 1, r real and p integer.
Let f € CPP(R").
If r>p+ Bp [e.g., r = p+1], then U-ARp requires at most

_ P+Bp
1
{”’1 (F(x0) — fiow) 61 77 W

function/derivative evaluations and iterations to ensure
IVEGa) < ex

r>p+pp [e.g., r=p+1]: the bound is 'universal’, adapting to
landscape smoothness without knowing (,/smoothness of f,
independent of r.
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Smooth or nonsmooth?

Sharpness example: the ragged landscape of a f € CLA

Ratio of [V f(x) — VF(y)|/|x — y|?
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