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C. Zălinescu Interiority notions in convex analysis



Motivation and Aim

The main objects in Convex analysis are the conjugate and the
subdifferential of convex functions. Having in view the definition of
a convex function, the natural framework is that of real locally
convex spaces.

Someone could say that the natural framework is that of linear
spaces without topology, and that a topology could be added
depending on the problem to be addressed.

This is true, but the framework is not (too) restrictive because
always we may endow a linear space with the finest locally convex
topology, that is the one induced by all the seminorms defined on
it.

So, in the sequel, all the considered linear spaces are real Hausdorff
locally convex space if not mentioned explicitly otherwise.
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Why consider interiority conditions in Convex analysis and/or
convex optimization?

Which are more useful?

Are all necessary?

We try to answer during our talk to these questions, at least
partially.
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Most problems in convex optimization are of the following type:

(P1) minimize f (x) + g(Ax), s.t. x ∈ X ,

(P2) minimize f (x) s.t. x ∈ {u ∈ X | g1(u) ≤ 0, ..., gm(u) ≤ 0},

(P3) minimize f (x) s.t. x ∈ {u ∈ X | G (u) ≤K 0},

where f , g1, ..., gm : X → R, g : Y → R are convex functions,

A ∈ L(X ,Y ), that is L : X → Y is a continuous linear operator,

G : X → Y • := Y ∪ {∞K} is a K -convex function with K ⊂ Y a
convex cone, y1 ≤K y2 if y1, y2 ∈ Y are such that y2− y1 ∈ K , and
y ≤K ∞K for y ∈ Y .
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Each of the above problems can be written as

(P) minimize Φ(x , 0) s.t. x ∈ X

with Φ : X × Y → R, where

Φ(x , y) := f (x) + g(Ax + y) for (P1),

while for (P2) (with Y := Rm) and (P3),

Φ(x , y) :=

{
f (x) if g1(x) ≤ y1, ..., gm(x) ≤ ym,
∞ otherwise,

Φ(x , y) :=

{
f (x) if G (x) ≤K y ,
∞ otherwise,

respectively.
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We shall see that using the conjugate and the subdifferential of the
function Φ it is possible, under some additional conditions (called,
generally, constraint qualification conditions), to have good
calculus for these objects for functions obtained by operations
which preserve convexity, and to obtain necessary and/or sufficient
optimality condition for several types of convex minimization
problems.
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Notations and some preliminary results on convex functions

• X ,Y , ... – non trivial real Hausdorff locally convex spaces (LCS)

• f : X → R := R ∪ {−∞,∞}; f is convex if

f
(
λx + (1− λ)x ′

)
≤ λf

(
x) + (1− λ)f (x ′

)
∀x , x ′ ∈ X , λ ∈ [0, 1]

with (−∞) +∞ :=∞+ (−∞) :=∞ and 0 · ∞ :=∞,
0 · (−∞) := 0

• dom f := {x ∈ X | f (x) <∞} – the domain of f

• f is proper if dom f 6= ∅ and f (x) 6= −∞ for x ∈ X

• epi f := {(x , t) ∈ X × R | f (x) ≤ t} – the epigraph of f

• Λ(X ) – the class of proper and convex functions defined on X

• Γ(X ) (:= Γτ (X )) – the class of (τ -) lower semicontinuous (lsc)
convex functions defined on (X , τ)
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Clearly,

• f is convex ⇔ epi f is convex

• If f is convex and f (x0) = −∞ for some x0 ∈ X , then
f (x) = −∞ for all x ∈ icr(dom f )

• f is lsc ⇔ [epi f is a closed subset of X × R], Rn (n ∈ N∗) being
(always) endowed with its usual topology τ0

• If f is lsc and f (x0) = −∞ for some x0 ∈ X , then f (x) = −∞
for all x ∈ dom f
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• X ′ := {ϕ : X → R | ϕ linear} – the algebraic dual of X

• X ∗ := {x∗ ∈ X ′ | x∗ continuous} – the topological dual of
(X , τ); X ∗ is endowed with its weakly-star topology w∗ if not
mentioned explicitly otherwise

• 〈x , x∗〉 := x∗(x) – when x ∈ X and x∗ ∈ X ∗

• f ∗ : X ∗ → R, f ∗(x∗) := sup{〈x , x∗〉 − f (x) | x ∈ X} – the
conjugate of f : X → R; f ∗ is convex and w∗-lsc

• h∗ : X → R, h∗(x) := sup{〈x , x∗〉 − h(x∗) | x∗ ∈ X ∗} – the
conjugate of h : X ∗ → R; h∗ is convex and lsc

• ∂εf (x0) := {x∗ ∈ X ∗ | 〈x − x0, x
∗〉 ≤ f (x)− f (x0) + ε ∀x ∈ X}

for f (x0) ∈ R, ε ∈ R+ , and ∂εf (x0) := ∅ and ∂εf (x0) := ∅ if
f (x0) /∈ R – the ε-subdifferential of f at x0;
∂εf (x0) is convex and w∗-closed

• ∂f (x0) := ∂0f (x0) – the subdifferential of f at x0
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Clearly

• f (x) + f ∗(x∗) ≥ 〈x , x∗〉 for all x ∈ X , x∗ ∈ X ∗ – the
Fenchel–Young inequality

• x∗ ∈ ∂εf (x) ⇔ f (x) + f ∗(x∗) ≤ 〈x , x∗〉+ ε

• x∗ ∈ ∂εf (x) ⇔ f (x) + f ∗(x∗) ≤ 〈x , x∗〉

For ∅ 6= A ⊂ X with X a linear space

• spanA, aff A, convA – the linear hull, affine hull and convex hull
of A

• lin0 A – the linear subspace parallel to aff A, that is
lin0 A = span(A− A) (= span(A− a) ∀a ∈ A)
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Interiority notions

• corA := {a ∈ A | ∀x ∈ X , ∃δ > 0, ∀λ ∈ [0, δ] : a + λx ∈ A} –
the algebraic interior or core of A

• icrA := {a ∈ A | ∀x ∈ lin0 A, ∃δ > 0, ∀λ ∈ [0, δ] : a + λx ∈ A}
– the relative algebraic interior or intrinsic core of A ⊂ X

For (X , τ) a topological vector space (TVS) and ∅ 6= A ⊂ X :

• intA (:= intτ A), clA (:= clτ A) – the interior and closure of A

• rintA – the interior of A wrt (the trace topology on) aff A

• riA – rintA if aff A is closed, and ∅ otherwise

• briA – icrA if lin0 A is barreled wrt its trace topology, and ∅
otherwise

• criA – icrA if aff A is closed, and ∅ otherwise (denoted by icA
when A is convex in [Z87]1)

1[Z87] C. Z.: Solvability results for sublinear functions and operators, Z.
Oper. Res. Ser. A 31 (1987), 79–101.
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If, moreover, A is convex:

• qiA := {x ∈ A | cl (R+(A− x)) = X} – the quasi interior of A

• qriA := {x ∈ A | cl (R+(A− x)) is a linear space} – the quasi
relative interior of A (see [BL92]2)

• sqriA := criA – the strong quasi relative interior of A (see
[J90]3)

Some relations among the interiority notions for A convex:

aff A = X ⇒ [riA = rintA = intA ∧ criA = icrA = corA],

cl(aff A) = X ⇒ qiA = qriA,

aff A 6= X ⇒ [coreA = intA = ∅], cl(aff A) 6= X ⇒ sqriA = ∅,
riA ⊂ rintA ⊂ icrA ⊂ qriA, [aff A = cl(aff A)⇒ riA = rintA]

2[BL92] J.M. Borwein, A. Lewis: Partially finite convex programming, Part
I: Quasi relative interiors and duality theory, Math. Program. 57 (1992),
15–48] (preprint version in 1987 or 1988).

3[J90] V. Jeyakumar, Duality and infinite dimensional optimization,
Nonlinear Analysis, TMA, 15 (1990), 1111–1122.
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The properties of convex sets with nonempty interior are well
known, and those for int replaced by cor, icr, rint, ri, bri and cri are
similar (being themselves interiors of convex sets wrt to certain
linear topologies).

We also introduce the conditions (Hx) and (Hwx) below, where Y
is another TVS and A ⊂ X × Y , “x” in (Hx), (Hwx) referring to
the component x ∈ X :

(Hx) If the sequences
(
(xn, yn)

)
n≥1
⊂ A and (λn)n≥1 ⊂ R+ are

such that
∑

n≥1 λn = 1,
∑

n≥1 λnyn has sum y and∑
n≥1 λnxn is Cauchy, then the series

∑
n≥1 λnxn is

convergent and its sum x ∈ X verifies (x , y) ∈ A.

(Hwx) If the sequences
(
(xn, yn)

)
n≥1
⊂ A and (λn)n≥1 ⊂ R+ are

such that
(
(xn, yn)

)
is bounded,

∑
n≥1 λn = 1,

∑
n≥1 λnyn has

sum y , then the series
∑

n≥1 λnxn is convergent and its sum
x ∈ X verifies (x , y) ∈ A.
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Two open mapping theorems

The interest for these notions (less sqri and qri) and conditions is
given by the following “open mapping theorems”, in which X is a
LCS and Y is a TVS:
The next result is Simons theorem established in [S90]4

Theorem 1 (Simons)

Let X and Y be first countable and Γ : X ⇒ Y . Assume that X is
a locally convex space, gph Γ satisfies condition (Hwx),
y0 ∈ bri(Im Γ) and x0 ∈ Γ−1(y0). Then y0 ∈ rint Γ(U) for every
U ∈ NX (x0). In particular bri(Im Γ) = rint(Im Γ) if bri(Im Γ) 6= ∅.

4[S90] S. Simons: The occasional distributivity of ◦ over
e
+ and the change

of variable formula for conjugate functions, Nonlinear Anal. 14 (1990),
1111–1120.
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The next result is Ursescu theorem established in [U75]5; when X
and Y are Banach spaces and aff(Im Γ) = Y , this result is known
as Robinson–Ursescu theorem.

Theorem 2 (Ursescu)

Let X be a complete semi-metrizable locally convex space and
Γ : X ⇒ Y be a closed convex multifunction. Assume that
y0 ∈ bri(Im Γ) and x0 ∈ Γ−1(y0). Then y0 ∈ rint Γ(U) for every
U ∈ NX (x0). In particular bri(Im Γ) = rint(Im Γ) if bri(Im Γ) 6= ∅.

5[U75] C. Ursescu: Multifunctions with convex closed graph, Czechoslovak
Math. J. 25(100) (1975), 438–441.
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Perturbed minimization problems

Let X ,Y be TVSs, Φ : X × Y → R be a function and

h : Y → R, h(y) := inf{Φ(x , y) | x ∈ X}

be the marginal function associated to Φ; h is also called the
value or performance function associated to Φ. It is easy to verify
that dom h = PrY (dom Φ) and h is convex when Φ is so.

It is useful to consider the following (minimization) problem

(P) min Φ(x , 0), x ∈ X ,

called the primal problem, and the following one, called the dual
problem of (P):

(D) max (−Φ∗(0, y∗)) , y∗ ∈ Y ∗.
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It is obvious that (D) is equivalent to the convex programming
problem

(D ′) min Φ∗(0, y∗), y∗ ∈ Y ∗.

The equivalence has to be understood in the sense that the
problems (D) and (D ′) have the same (ε-)solutions; moreover
v(D ′) = −v(D) (of course, for a maximization problem the
notions of (ε-)solution, local solution and value are defined dually
to those for minimization problems).

It is nice to observe that (D ′) and (P) are of the same type.

In the following results we mention some properties which connect
the problems (P), (D) and the function h. Most of these
assertions can be found in I. Ekeland and R. Temam’s book
[ET74]6; its statemnt is quoted from [Z02].7

6[ET74] I. Ekeland, R. Temam: Analyse convexe et problèmes variationnels,
Dunod, Paris (1974).

7[Z02] C. Z.: Convex Analysis in General Vector Spaces, World Scientific,
River Edge, NJ (2002).
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Theorem 3 (to be continued)

Let Φ : X × Y → R and h : Y → R be the marginal function
associated to Φ. Then:

(i) h∗(y∗) = Φ∗(0, y∗) for every y∗ ∈ Y ∗.

(ii) Let (x , y) ∈ X × Y be such that Φ(x , y) ∈ R. Then

(0, y∗) ∈ ∂Φ(x , y) ⇔ h(y) = Φ(x , y) and y∗ ∈ ∂h(y).

(iii) v(P) = h(0) and v(D) = h∗∗(0). Therefore v(P) ≥ v(D);
hence weak duality holds.

(iv) Suppose that Φ is proper, x ∈ X and y∗ ∈ Y ∗. Then
(0, y∗) ∈ ∂Φ(x , 0) ⇔ [x is a solution of problem (P), y∗ is a
solution of (D) and v(P) = v(D) ∈ R].
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Theorem 3 (continued)

Assume, moreover, that Φ is convex. Then

(v) [h(0) ∈ R and h is lsc at 0] ⇔ v(P) = v(D) ∈ R; hence, in
this case, strong duality holds;

(vi) [h(0) ∈ R and ∂h(0) 6= ∅] ⇔ [v(P) = v(D) ∈ R and (D) has
optimal solutions]. In this situation S(D) = ∂h(0); hence (P) is
stable in this case.

(vii) Furthermore, assume that Φ is proper. TFAE: (a) h is proper;
(b) h∗ is proper]; (c) h is minorized by an affine continuous
functional; (c)

∃ y∗ ∈ Y ∗, ∃α ∈ R, ∀ (x , y) ∈ X × Y : Φ(x , y) ≥ 〈y , y∗〉+ α,

where h : Y → R is such that epi h := cl(epi h).
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In the sequel we are interested only by the case in which Φ is
convex.

So, let Φ ∈ Λ(X × Y ) be such that 0 ∈ dom h = PrY (dom Φ); set

Y0 := aff (PrY (dom Φ)) = lin0 (PrY (dom Φ)) = lin0(dom h).

It is known that h∗∗ = −∞ if h is not proper, and h = h∗∗ if h is
proper (see, e.g., [Z02, Th. 2.3.4]).

The most important case is when (P) is stable, that is, when
h(0) ∈ R and ∂h(0) 6= ∅, then the case in which strong duality
holds, that is, h(0) = h(0) ∈ R.
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Because h is a convex function, the following results can be applied
for the subdifferentiability of h at 0:

Proposition 4

Let (X , τ) be a TVS and f : X → R a convex function. TFAE:
(a) there exists x0 ∈ dom f such that f is continuous at x0; (b) f is
bounded above on some nonempty open subset of dom f ;
(c) int(epi f ) 6= ∅.

Proposition 5

Let (X , τ) be a LCS and let the convex function f : X → R and
x0 ∈ X be such that f |X0 is continuous and finite at x0, where
X0 := aff(dom f ) is endowed with the trace topology. Then
∂f (x0) 6= ∅.
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In the case in which f |X0 is continuous and finite at x0,
automatically icr(dom f ) 6= ∅, but there are many situations (e.g.,
entropy optimization problems, when X is often Lp(I ) or `p with
p ∈ [1,∞[) when such a condition is not satisfied.

Having in view that A := PrY (epi Φ) (⊂ Y × R) is a set of
epigraph type, that is, A = A + {0} × R+, and
h(y) = ϕA(y) := inf{t ∈ R | (y , t) ∈ A} for y ∈ Y ,
in such a situation, the following result (see [Z15, Prop. 8]8) could
be applied:

Proposition 6

Let A ⊂ Y × R be a nonempty convex set of epigraph type and let
y ∈ PrY (A) = domϕA be such that α := ϕA(y) ∈ R.
(i) If y ∈ qri(cl(PrY (A))) and (y , α) /∈ qri(clA), then ∂ϕA(y) 6= ∅.
(ii) If ∂ϕA(y) 6= ∅ then (y , α) /∈ qri(clA).

8[Z15] C. Z.: On the use of the quasi-relative interior in optimization,
Optimization 64 (2015), 1795–1823.
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Of course, from the above result one deduces rapidly Proposition 5.
Observe that assertions (i) and (ii) are very close to each other,
and both are close to the subdifferentiability of ϕA at y , in order to
be very effective.

This is also seen from the following properties of the quasi relative
interior, where ∅ 6= C ⊂ X is convex:
qriC = C ∩ qri(clC ) and

x0 ∈ C \ qriC ⇔ [∃x∗ ∈ X ∗ : sup x∗(C ) > inf x∗(C ) = 〈x0, x
∗〉]

The relation (FDF) in the conclusion of the following theorem is
very useful for obtaining important results in Convex analysis and
convex programming.
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Theorem 7 (to be continued)

Let Φ ∈ Λ(X × Y ) be such that 0 ∈ C := PrY (dom Φ) (= dom h)
and h(0) ∈ R. Consider Y0 := spanC . Suppose that one of the
following conditions is satisfied:

(i) there exists λ0 ∈ R such that
V0 := {y ∈ Y | ∃ x ∈ X , Φ(x , y) ≤ λ0} ∈ NY0(0);

(ii) there exist λ0 ∈ R and x0 ∈ X such that

∀U ∈ NX : {y ∈ Y | ∃ x ∈ x0 + U, Φ(x , y) ≤ λ0} ∈ NY0(0);

(iii) there exists x0 ∈ X such that (x0, 0) ∈ dom Φ and Φ(x0, ·) is
continuous at 0;

(iv) X and Y are metrizable, epi Φ satisfies condition (Hwx) and
0 ∈ briC ;

(v) X is a Fréchet space, Y is metrizable, Φ is a li-convex function
and 0 ∈ briC ;
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Theorem 7 (continued)

(vi) X is a Fréchet space, Φ is lsc and 0 ∈ briC ;

(vii) X ,Y are Fréchet spaces, Φ is lsc and 0 ∈ sqriC ;

(viii) dimY0 <∞ and 0 ∈ icrC ;

(ix) there exists x0 ∈ X such that Φ(x0, ·) is quasi-continuous and
the sets{0}, C are united,

(x) 0 ∈ qriC and (0, h(0)) /∈ qri(cl (PrY×R(epi Φ))).

Then (P) is stable, that is,

inf
x∈X

Φ(x , 0) = max
y∗∈Y ∗

(
− Φ∗(0, y∗)

)
; (FDF)

moreover, if one of the conditions (i)–(ix) holds, then h|Y0 is
continuous at 0. Furthermore, x ∈ X is a minimum point for
Φ(·, 0) if and only if there exists y∗ ∈ Y ∗ such that
(0, y∗) ∈ ∂Φ(x , 0).

C. Zălinescu Interiority notions in convex analysis



The function g ∈ Λ(Y ) is quasi-continuous when Y1 := aff(dom g)
is closed, has finite codimension and g |Y1 is continuous on
rint(dom g) (assumed to be nonempty).

The convex sets ∅ 6= A,B ⊂ X are united if A and B cannot be
properly separated by a closed hyperplane.

Observe that (FDF) is true when h(0) = −∞, without any
condition on the involved functions, because h∗(y∗) =∞ for all
y∗ ∈ Y ∗.

Sketch of the proof:

By Proposition 6 one has ∂h(0) 6= ∅ when (x) holds, and so (FDF)
holds by Theorem 24.

If (i) holds, then h|Y0 is continuous at 0, being bounded above by
λ0 on V0, and so ∂h(0) 6= ∅.
(ii) ⇒ (i) is obvious;
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(iii) ⇒ (ii) One takes λ0 := Φ(x0, 0) + 1; then
V0 := [Φ(x0, ·) ≤ λ0] ∈ NY (0) (hence Y0 = Y ). Then
V0 ⊂ {y | ∃x ∈ x0 + U : Φ(x0, y) ≤ λ0} ∀U ∈ NX .

(iv) ⇒ (ii) One takes Γ : X × R ⇒ Y with
gph Γ := {(x , t, y) | (x , y , t) ∈ epi Φ}; then Γ satisfies (Hw(x , t)),
then one applies Simons’ theorem.

(v) ⇒ (ii), (vi) ⇒ (ii) The proofs are similar the preceding one,
using Simons theorem for the first implication (for another
multifunction) and Ursescu theorem for the other one.

(vii) implies (iv), (v) and (iv).

(viii) implies the continuity of h|Y0 (hence its differentiability) on
icr(dom h) because dimY0 <∞.
(ix) implies the continuity of h|Y0 on rint(dom h) (= icr(dom h)) by
[Z02, Props. 2.2.15, 2.1.8].
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Condition (iii) is classical for having (FDF), and can be found in
almost all books and articles dealing with perturbation functions;
condition (vii) is considered in this form in [Z87, Th. 6] and in
[J90, Prop. 3.1]; condition (x) is considered in [Z15, Prop. 19]; for
detailed historical notes on the other conditions see [Z99, Rem. 2]9.

Taking Φ(x , y) :=

{
f (x) if g1(x) ≤ y1, ..., gm(x) ≤ ym,
∞ otherwise,

where f , g1, ..., gm ∈ Λ(X ) are as in problem (P2), one get
Φ∗(0,−λ) = supx∈X [−L(x , λ)] for λ ∈ Rm

+, and Φ∗(0,−λ) =∞
otherwise. So, (FDF) becomes v(P2) = maxλ≥0 infx∈X L(x , λ),
and so Theorem 24 provides sufficient conditions for the existence
of Lagrange multipliers for (P2), the simplest one being the Slater
condition (there exist x0 ∈ dom f such that gk(x0) < 0 for
k ∈ 1,m), provided by condition (iii).

9[Z99] C. Zãlinescu: A comparison of constraint qualifications in infinite
dimensional convex programming revisited, J. Austral. Math. Soc. B 40
(1999), 353–378.
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In (other) applications, it is important to have conditions on Φ
which also ensure that the functions Φ̃,
Φ̃(x , y) := Φ(x , y)− 〈x , x∗〉 with x∗ ∈ X ∗, satisfy some of the
conditions mentioned in Theorem 7. Such conditions are
conditions (ii)–(ix) of Theorem 7, but this is not always true for
(i); we do not know if it is true or not for (x).

The next result is an instance of application of Theorem 7.
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Theorem 8 (to be continued)

Let f ∈ Λ(X ), g ∈ Λ(Y ) and A ∈ L(X ,Y ) be such that
0 ∈ C := A(dom f )− dom g ; set Y0 := spanC . Consider
ϕ ∈ Λ(X ) with ϕ(x) := f (x) + g(Ax) for x ∈ X . Assume that one
of the following conditions holds:

(i) there exist λ0 ∈ R, B ∈ BX and V0 ∈ NY0 such that

V0 ⊂ A ([f ≤ λ0] ∩ B)− [g ≤ λ0];

(ii) for every U ∈ NX there exist λ > 0 and V ∈ NY0 such that

V ⊂ A ([f ≤ λ] ∩ λU)− [g ≤ λ];

(iii) there exists x0 ∈ dom f ∩ A−1(dom g) such that g is
continuous at Ax0;

(iv) X ,Y are metrizable, 0 ∈ briC , f and g have proper
conjugates, either f , g are cs-closed and gphA is cs-complete, or
f , g are cs-complete;
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Theorem 8 (continued)

(v) X is a Fréchet space, Y is metrizable, f , g are li-convex
functions and 0 ∈ briC ;

(vi) X is a Fréchet space, f , g are lsc and 0 ∈ briC ;

(vii) X ,Y are Fréchet spaces, f , g are lsc and 0 ∈ sqriC ;

(viii) dimY0 <∞ and 0 ∈ icrC ;

(ix) g is quasi-continuous and A(dom f ) and dom g are united;

(x) Y = Rn, qri(dom f ) 6= ∅ and A
(
qri(dom f )

)
∩ icr(dom g) 6= ∅.

Then for every x∗ ∈ X ∗, x ∈ domϕ and ε ≥ 0 we have:

ϕ∗(x∗) = min{f ∗(x∗ − A∗y∗) + g∗(y∗) | y∗ ∈ Y ∗}, (*)

∂εϕ(x) =
⋃
{∂ε1f (x) + A∗(∂ε2g(Ax)) | ε1, ε2 ≥ 0, ε1 + ε2 = ε},

∂ϕ(x) = ∂f (x) + A∗(∂g(Ax)).
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In what concerns the proof, it is sufficient to prove the (good)
formula (*) for ϕ∗; having (*), one gets easily the formula for
∂εϕ(x) using the fact that x∗ ∈ ∂εϕ(x) iff (〈x , x∗〉 ≤)
ϕ(x) + ϕ∗(x∗) ≤ 〈x , x∗〉+ ε.

In fact J.-B. Hiriart-Urruty (see [H82]10) used such good formulae
for the conjugates of f1 + f2, g ◦ A, max{f1, ..., fm}, etc. for getting
their ε-subdifferentials.

Because the inequality
ϕ∗(x∗) ≤ inf{f ∗(x∗ − A∗y∗) + g∗(y∗) | y∗ ∈ Y ∗} is true without
any supplementary condition on f , g , A, it is sufficient to take
x∗ ∈ domϕ∗ and to prove the existence of some y∗ ∈ Y ∗ such
that ϕ∗(x∗) = f ∗(x∗ − A∗y∗) + g∗(y∗). For this, one considers
Φ : X × Y → R defined by Φ(x , y) := f (x) + g(Ax − y)− 〈x , x∗〉 .

10[H82] J.-B. Hiriart-Urruty: ε-subdifferential calculus, In: Convex analysis
and optimization (London, 1980), Pitman, Boston, pp. 43–92 (1982).
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One verifies easily that the corresponding conditions from the
preceding theorem are verified by this Φ, and so the existence of
the desired y∗ is provided by (FDF).

For x∗ := 0, the relation (*) becomes the well known
Fenchel–Rockafellar duality formula:

inf{f (x)+g(Ax) | x ∈ X} = max{−f ∗(A∗y∗)−g∗(−y∗) | y∗ ∈ Y ∗}.
(**)

For Y := Rn, (**) is proved in [BL, Th. 4.2(i), Cor. 4.3] under
conditions (viii) and (x), respectively. Applying Theorem 8 under
condition (x) for Φ(x , y) := f (x) + g(Ax − y) (hence x∗ = 0), one
obtains [BCW08, Th. 3.14]11.

For detailed historical notes on the conditions (i)–(x) from
Theorem 8 see [Z99, Rem. 9].

11[BCW08] R.I. Boţ, E.R. Csetnek, G. Wanka: Regularity conditions via
quasi-relative interior in convex programming, SIAM J. Optim. 19 (2008),
217–233.
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In [GT90]12, M.S. Gowda and M. Teboulle discussed several
sufficient conditions for the validness of (**) when f , g are lsc and
X ,Y are Banach spaces. More precisely, setting
C := A(dom f )− dom g , one discusses (and compares) the
conditions (S) 0 ∈ intC , (R) 0 ∈ corC , (RR) 0 ∈ riC when
Y := Rn, (GCQ) 0 ∈ sqriC , the last one being the most general;
however, for the proof of (**) under (GCQ), one reduces the
problem to one in which (R) is satisfied using a similar argument
to the standard proof of Proposition 4.

When X (= Y ) is a Banach space and A := IdX , that is the case
of the sum of two functions, condition (vii) is nothing else than the
Attouch–Brezis condition for (**) from [AB86, Th. (1.1)]13.

12[GT90] M.S. Gowda, M. Teboulle: A comparison of constraint
qualifications in infinite-dimensional convex programming, SIAM J. Control
Optim. 28 (1990), 925–935.

13[AB86] H. Attouch, H. Brezis, Duality for the sum of convex functions in
general Banach spaces, in Aspects of Mathematics and its Applications, J. A.
Barroso, ed., pp. 125–133, Elsevier Science, Amsterdam (1986).
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Thank you for your attention!
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