Revisiting Augmented Lagrangian Duals

Marcelo Cordova(cordova.m@posgrad.ufsc.br) Welington de Oliveira(welington.oliveira@mines-paristech.fr) Claudia Sagastizábal(sagastiz@unicamp.br)

Claudia Sagastizábal IMECC-UNICAMP Brazil

One World Optimization Seminar

UniVie, June 22nd, 2020

problems too difficult to solve directly

problems with partial separable structure

problems of problems



problems too difficult to solve directly mixed 0-1, linear, quadratic, or nonlinear programs

- problems too difficult to solve directly
 mixed 0-1, linear, quadratic, or nonlinear programs
- problems with partial separable structure complicating variables: block diagonal 2nd-stage constraints, coupled with 1st stage

- problems too difficult to solve directly
 mixed 0-1, linear, quadratic, or nonlinear programs
- problems with partial separable structure complicating variables: block diagonal 2nd-stage constraints, coupled with 1st stage complicating constraints, separable objective

- problems too difficult to solve directly
 mixed 0-1, linear, quadratic, or nonlinear programs
- problems with partial separable structure
 complicating variables: block diagonal 2nd-stage constraints, coupled with 1st stage
 complicating constraints, separable objective
 problems of problems

equilibrium problems, games, variational inequalities

- problems too difficult to solve directly
 mixed 0-1, linear, quadratic, or nonlinear programs
- problems with partial separable structure
 complicating variables: block diagonal 2nd-stage constraints, coupled with 1st stage
 complicating constraints, separable objective
 problems of problems
 equilibrium problems, games, variational inequalities

▶ information not accesible in ML, commercial oracles

Which decomposition method?

Which decomposition method?

Decomposition: what and how? 🛹

Decomposition: what and how?

Decomposition: what and how?

Decomposition: what and how?

It all depends on the output of interest

Illustration with a simple example

 $\begin{cases} \min & f_T(y_T) + f_H(y_H) \\ \text{s.t.} & y_T \in \mathcal{S}_T, y_H \in \mathcal{S}_H \end{cases}$

Two power plants

 $egin{aligned} egin{aligned} egi$

 $egin{array}{l} egin{array}{l} egin{array}$

Illustration with a simple example

 $\begin{cases} \min & f_T(y_T) + f_H(y_H) \\ \text{s.t.} & y_T \in \boldsymbol{\mathcal{S}}_T, y_H \in \boldsymbol{\mathcal{S}}_H \end{cases}$

Two power plants

 $egin{aligned} egin{aligned} egi$

 $egin{array}{l} egin{array}{l} egin{array}$

Illustration with a simple example

min
$$f_T(y_T) + f_H(y_H)$$

s.t. $y_T \in \mathcal{S}_T, y_H \in \mathcal{S}_H$
 $y_T + y_H = d$

Two power plants

 $egin{aligned} egin{aligned} egi$

Two power plants

 $egin{aligned} & y_{\mathcal{T}} \in oldsymbol{\mathcal{S}}_{\mathcal{T}} \ & \langle oldsymbol{\mathcal{F}}, x
angle + f_{\mathcal{T}}(y_{\mathcal{T}}) \ & x \in \{0,1\} ext{ and } y_{\mathcal{T}} \leq x \, y^{up} \end{aligned}$

 $egin{aligned} egin{aligned} egi$

A less simple example

$$\begin{cases} \min \langle \mathcal{F}, x \rangle + f_{\mathcal{T}}(y_{\mathcal{T}}) + f_{\mathcal{H}}(y_{\mathcal{H}}) \\ \text{s.t.} \quad y_{\mathcal{T}} \in \mathcal{S}_{\mathcal{T}}, y_{\mathcal{H}} \in \mathcal{S}_{\mathcal{H}} \\ y_{\mathcal{T}} + y_{\mathcal{H}} = d \\ x \in \{0, 1\} \text{ and } y_{\mathcal{T}} \leq x y^{up} \iff (x, y_{\mathcal{T}}) \in \mathcal{S}_{\mathcal{T}} \\ \end{cases}$$
Two power plants

 $egin{aligned} y_T \in oldsymbol{\mathcal{S}}_T \ \langle oldsymbol{\mathcal{F}}, x
angle + f_T(y_T) \ x \in \{0,1\} ext{ and } y_T \leq x \, y^{up} \end{aligned}$

 $egin{array}{l} egin{array}{l} egin{array}$

Good, to split 0-1 variables from possible NLP relations

Good, to split 0-1 variables from possible NLP relations
 Bad, because all technologies dealt with together

Good, to split 0-1 variables from possible NLP relations **Bad**, because all technologies dealt with together for instance, $\begin{cases} \min \langle \mathcal{F}, x \rangle + f_T(y_T) + f_H(y_H) \\ \text{s.t.} \quad (x, y_T) \in \mathcal{S}_T, y_H \in \mathcal{S}_H \\ y_T + y_H = d \end{cases}$

 \implies operational subproblem in both y_T, y_H

for each given X_k (a master program defines x_{k+1})

Good, to split 0-1 variables from possible NLP relations
 Bad, because all technologies dealt with together

for instance,
$$\begin{cases} \min \langle \boldsymbol{\mathcal{F}}, \boldsymbol{x} \rangle + f_T(\boldsymbol{y}_T) + f_H(\boldsymbol{y}_H) \\ \text{s.t.} \quad (\boldsymbol{x}_k, \boldsymbol{y}_T) \in \boldsymbol{\mathcal{S}}_T, \boldsymbol{y}_H \in \boldsymbol{\mathcal{S}}_H \\ \boldsymbol{y}_T + \boldsymbol{y}_H = \boldsymbol{d} \end{cases}$$

 \implies operational subproblem in both y_T, y_H

for each given X_k (a master program defines x_{k+1})

To separate technologies we need **dual** scissors

Good, to split 0-1 variables from possible NLP relations
 Bad, because all technologies dealt with together

for instance, $\begin{cases} \min \langle \mathcal{F}, x \rangle + f_T(y_T) + f_H(y_H) \\ \text{s.t.} \langle x_k, y_T \rangle \in \mathcal{S}_T, y_H \in \mathcal{S}_H \\ y_T + y_H = d \end{cases}$

 \implies operational subproblem in both y_T, y_H -

for each given X_k (a master program defines x_{k+1})

To separate technologies we need **dual** scissors

acting on the demand constraint

$$\begin{array}{ll} \min & f_{\mathcal{T}}(x,y_{\mathcal{T}}) + f_{\mathcal{H}}(y_{\mathcal{H}}) \\ \text{s.t.} & (x,y_{\mathcal{T}}) \in \mathcal{S}_{\mathcal{T}} \\ & y_{\mathcal{H}} \in \mathcal{S}_{\mathcal{H}} \\ & y_{\mathcal{T}} + y_{\mathcal{H}} = d \qquad \leftrightarrow \mathbf{u} \end{array}$$

$$L(x,y,u) = f_T(x,y_T) + f_H(y_H) + \langle u, d - y_T - y_H \rangle$$

$$(x, y, u) = f_T(x, y_T) + f_H(y_H) + \langle u, d - y_T - y_H \rangle = L_T(x, y_T, u) + L_H(y_H, u) + \langle u, d \rangle$$

I

$$\begin{array}{ccc} \min & f_{\mathcal{T}}(x, y_{\mathcal{T}}) + f_{\mathcal{H}}(y_{\mathcal{H}}) \\ \text{s.t.} & (x, y_{\mathcal{T}}) \in \mathcal{S}_{\mathcal{T}} \\ & y_{\mathcal{H}} \in \mathcal{S}_{\mathcal{H}} \\ & y_{\mathcal{T}} + y_{\mathcal{H}} = d & \leftrightarrow \mathbf{u} \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

$$(x, y, u) = f_T(x, y_T) + f_H(y_H) + \langle u, d - y_T - y_H \rangle$$
$$= I_T(x, y_T, u) + I_U(y_U)$$

$$= L_T(x, y_T, u) + L_H(y_H, u) \\ + \langle u, d \rangle$$

$$\begin{array}{ll} \min & f_{\mathcal{T}}(x, y_{\mathcal{T}}) + f_{\mathcal{H}}(y_{\mathcal{H}}) \\ \text{s.t.} & (x, y_{\mathcal{T}}) \in \mathcal{S}_{\mathcal{T}} \\ & y_{\mathcal{H}} \in \mathcal{S}_{\mathcal{H}} \\ & y_{\mathcal{T}} + y_{\mathcal{H}} = d \qquad \leftrightarrow \mathbf{u} \end{array}$$

DUAL maxmin replaces minmax

$$\begin{cases} \max \min_{u} L(x, y, u) \\ \text{s.t.} (x, y_T) \in \mathcal{S}_T \\ y_H \in \mathcal{S}_H \end{cases}$$

$$L(x,y,u) = f_T(x,y_T) + f_H(y_H) + \langle u, d - y_T - y_H \rangle$$

$$= L_T(x, y_T, u) + L_H(y_H, u) \\ + \langle u, d \rangle$$

$$\begin{array}{ccc} \min & f_T(x, y_T) + f_H(y_H) \\ \text{s.t.} & (x, y_T) \in \mathcal{S}_T \\ & y_H \in \mathcal{S}_H \\ & y_T + y_H = d \end{array} \quad \leftrightarrow \mathbf{u} \end{array}$$

$$L(x, y, u) = f_T(x, y_T) + f_H(y_H) + \langle u, d - y_T - y_H \rangle$$

$$= L_T(x, y_T, u) + L_H(y_H, u) \\ + \langle u, d \rangle$$

DUAL maxmin replaces minmax

$$\begin{cases} \max_{u} \min_{y} L(x, y, u) \\ \text{s.t.} (x, y_{T}) \in \mathcal{S}_{T} \\ y_{H} \in \mathcal{S}_{H} \end{cases} \implies$$

$$\max_{u} \quad \theta_{T}(u) + \theta_{H}(u) + \langle u, d \rangle$$

m

$$\begin{array}{ccc} \min & f_{\mathcal{T}}(x,y_{\mathcal{T}}) + f_{\mathcal{H}}(y_{\mathcal{H}}) \\ \text{s.t.} & (x,y_{\mathcal{T}}) \in \mathcal{S}_{\mathcal{T}} \\ & y_{\mathcal{H}} \in \mathcal{S}_{\mathcal{H}} \\ & y_{\mathcal{T}} + y_{\mathcal{H}} = d \end{array} \quad \leftrightarrow \mathbf{u} \end{array}$$

DUAL maxmin replaces minmax

$$\begin{cases} \max \min_{u} L(x, y, u) \\ \text{s.t.} (x, y_T) \in \mathcal{S}_T \\ y_H \in \mathcal{S}_H \end{cases} \implies$$

$$L(x,y,u) = f_T(x,y_T) + f_H(y_H) + \langle u, d - y_T - y_H \rangle$$

$$= L_T(x, y_T, u) + L_H(y_H, u) + \langle u, d \rangle$$

$$\begin{array}{ll} \max_{u} & \theta_{T}(u) + \theta_{H}(u) + \langle u, d \rangle \\ & \theta_{T}(u) := \min L_{T}(x, y_{T}, u) : (x, y_{T}) \in \boldsymbol{\mathcal{S}}_{T} \\ \text{for} & \\ & \theta_{H}(u) := \min L_{H}(y_{H}, u) : y_{H} \in \boldsymbol{\mathcal{S}}_{H} \end{array}$$

b Dual scissors: Lagrangian relaxation **a** la bundle

$$\begin{cases} \min f_{T}(y_{T}) + f_{H}(y_{H}) \\ \text{s.t.} \quad x \in \{0, 1\}, y_{T} \in \mathcal{S}_{T} \\ y_{T} \leq x y^{up} \\ y_{H} \in \mathcal{S}_{H} \\ y_{T} + y_{H} = d \quad \leftrightarrow \mathbf{u} \end{cases} \Longrightarrow \\ \text{DUAL maxmin replaces minmax} \\ \begin{cases} \max \min_{u} L(x, y, u) \\ \text{s.t.} \quad (x, y_{T}) \in \mathcal{S}_{T} \\ y_{H} \in \mathcal{S}_{H} \end{cases} \Longrightarrow \end{cases}$$

$$L(y, u) = f_T(y_T) + f_H(y_H) + \langle u, d - y_T - y_H \rangle$$

$$= L_T(y_T, u) + L_H(y_H, u) \\ + \langle u, d \rangle$$

$$\max_{u} \quad \theta_{T}(u) + \theta_{H}(u) + \langle u, d \rangle$$

b Dual scissors: Lagrangian relaxation **a** la bundle

$$\begin{cases} \min f_{T}(y_{T}) + f_{H}(y_{H}) \\ \text{s.t.} \quad x \in \{0, 1\}, y_{T} \in \mathcal{S}_{T} \\ y_{T} \leq x y^{up} \\ y_{H} \in \mathcal{S}_{H} \\ y_{T} + y_{H} = d \quad \leftrightarrow \mathbf{u} \end{cases} \Longrightarrow \\ \textbf{DUAL} \text{ maxmin replaces minmax} \\ \begin{cases} \max \min_{u} L(x, y, u) \\ \text{s.t.} \quad (x, y_{T}) \in \mathcal{S}_{T} \\ y_{H} \in \mathcal{S}_{H} \end{cases} \Rightarrow \end{cases}$$

$$L(y, u) = f_T(y_T) + f_H(y_H) + \langle u, d - y_T - y_H \rangle$$

$$= L_T(y_T, u) + L_H(y_H, u) \\ + \langle u, d \rangle$$

$$\max_{u} \quad \theta_{T}(u) + \theta_{H}(u) + \langle u, d \rangle$$

for
$$\theta_{T}(u) \approx \min L_{T}(x, y_{T}, u) : (x, y_{T}) \in \mathcal{S}_{T}$$

$$\theta_{H}(u) \approx \min L_{H}(y_{H}, u) : y_{H} \in \mathcal{S}_{H}$$

Good, to separate technologies + inexact information

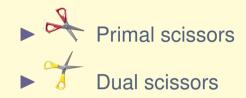
Good, to separate technologies + inexact information Good, if output of interest if *u* (shadow price)

- **Good**, to separate technologies + inexact information
- **Good**, if output of interest if *u* (shadow price)
- **Bad**, if output of interest is x, y: the final ones may be infeasible

- **Good**, to separate technologies + inexact information
- **Good**, if output of interest if *u* (shadow price)
- Bad, if output of interest is x, y: the final ones may be infeasible (dual approach solves the bi-dual of original problem)

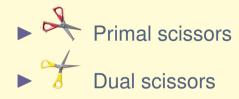
- **Good**, to separate technologies + inexact information
- **Good**, if output of interest if *u* (shadow price)
- Bad, if output of interest is x, y: the final ones may be infeasible (dual approach solves the bi-dual of original problem)

Scissor features



primal feasibility

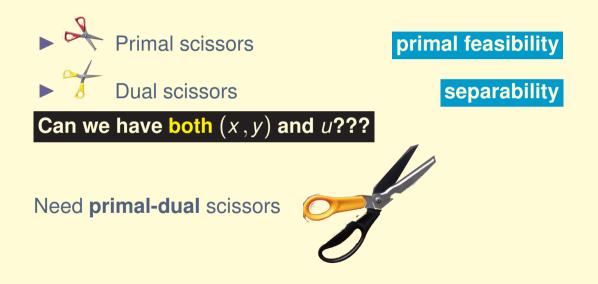
Scissor features



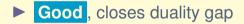
primal feasibility

Can we have both (x, y) and u???

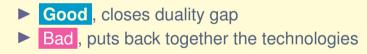
Scissor features



$$L_r(x, y, u) = L(x, y, u) + \frac{r}{2} \|d - y_T - y_H\|^2$$



$$L_r(x, y, u) = L(x, y, u) + \frac{r}{2} \|d - y_T - y_H\|^2$$



$$L_r(x, y, u) = L(x, y, u) + \frac{r}{2} ||d - y_T - y_H||^2$$

- Good, closes duality gap
- Bad, puts back together the technologies
- Also: inexact calculations make it difficult to manage parameter r

$$L_r(x, y, u) = L(x, y, u) + \frac{r}{2} ||d - y_T - y_H||^2$$

- Good, closes duality gap
- Bad, puts back together the technologies
- Also: inexact calculations make it difficult to manage parameter r

Need to sharpen our scissors

Primal-dual scissors: Sharp Augmented Lagrangians

$$L_r(x, y, u) = L(x, y, u) + \frac{r}{2} ||d - y_T - y_H||^2$$

- Good, closes duality gap
- Bad, puts back together the technologies
- Also: inexact calculations make it difficult to manage parameter r

Need to sharpen our scissors

$$L^{\#}(x, y, u, r) = L(x, y, u) + r|d - y_T - y_H|_1$$

Primal-dual scissors: Sharp Augmented Lagrangians

$$L_r(x, y, u) = L(x, y, u) + \frac{r}{2} ||d - y_T - y_H||^2$$

- Good, closes duality gap
- Bad, puts back together the technologies
- Also: inexact calculations make it difficult to manage parameter r

Need to sharpen our scissors

$$L^{\#}(x, y, u, \mathbf{r}) = L(x, y, u) + r|d - y_T - y_H|_1$$

r is a dual variable

$$\begin{cases} \min & \varphi(x) \\ \text{s.t.} & x \in X \\ h(x) = 0 \end{cases}$$

The perturbation function p

$$p(u) = \begin{cases} \inf f_T(x, y_T) + f_H(y_H) \\ \text{s.t.} & (x, y_T) \in \mathcal{S}_T, y_H \in \mathcal{S}_H \\ y_T + y_H = d + u \end{cases} \iff p(u) = \begin{cases} \inf \phi(x) \\ \text{s.t.} & x \in X \\ h(x) = u \end{cases}$$

The perturbation function p

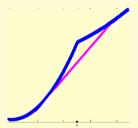
$$p(u) = \begin{cases} \inf f_T(x, y_T) + f_H(y_H) \\ \text{s.t.} & (x, y_T) \in \mathcal{S}_T, y_H \in \mathcal{S}_H \\ y_T + y_H = d + u \end{cases} \iff p(u) = \begin{cases} \inf \phi(x) \\ \text{s.t.} & x \in X \\ h(x) = u \end{cases}$$

If in the example $f_{T/H}$ are quadratic, p is the minimum of two quadratic functions

The perturbation function p

$$p(u) = \begin{cases} \inf f_T(x, y_T) + f_H(y_H) \\ \text{s.t.} & (x, y_T) \in \mathcal{S}_T, y_H \in \mathcal{S}_H \\ y_T + y_H = d + u \end{cases} \iff p(u) = \begin{cases} \inf \varphi(x) \\ \text{s.t.} & x \in X \\ h(x) = u \end{cases}$$

If in the example $f_{T/H}$ are quadratic, p is the minimum of two quadratic functions



The perturbation function p

$$p(u) = \begin{cases} \inf f_T(x, y_T) + f_H(y_H) \\ \text{s.t.} & (x, y_T) \in \mathcal{S}_T, y_H \in \mathcal{S}_H \\ y_T + y_H = d + u \end{cases} \iff p(u) = \begin{cases} \inf \varphi(x) \\ \text{s.t.} & x \in X \\ h(x) = u \end{cases}$$

If in the example $f_{T/H}$ are quadratic, p is the minimum of two quadratic functions

The perturbation function p

$$p(u) = \begin{cases} \inf f_T(x, y_T) + f_H(y_H) \\ \text{s.t.} & (x, y_T) \in \mathcal{S}_T, y_H \in \mathcal{S}_H \\ y_T + y_H = d + u \end{cases} \iff p(u) = \begin{cases} \inf \phi(x) \\ \text{s.t.} & x \in X \\ h(x) = u \end{cases}$$

If in the example $f_{T/H}$ are quadratic, p is the minimum of two quadratic functions

$$p \in S_H \iff p(u) = \begin{cases} \text{s.t. } x \in X \\ h(x) = u \end{cases}$$

$$p(0) \rightarrow p^{**}(0)$$

Need a "wedge" to close duality gap and bring magenta curve closer to blue one

$$p(u) = \begin{cases} \inf & \varphi(x) \\ \text{s.t.} & x \in X \\ & h(x) = u \end{cases}$$

$$p(u) = \begin{cases} \inf & \varphi(x) \\ \text{s.t.} & x \in X \\ h(x) = u \end{cases} = \inf_{x \in X} \underbrace{\left(\varphi(x) + \mathbb{I}_{\{h(x) - u = 0\}}(x)\right)}_{\mathcal{D}(x, u)}$$

$$p(u) = \begin{cases} \inf & \varphi(x) \\ \text{s.t.} & x \in X \\ h(x) = u \end{cases} = \inf_{x \in X} \underbrace{\left(\varphi(x) + \mathbb{I}_{\{h(x) - u = 0\}}(x)\right)}_{\mathcal{D}(x, u)}$$

 \blacktriangleright *p* as a marginal function of \mathcal{D}

$$p(u) = \begin{cases} \inf & \varphi(x) \\ \text{s.t.} & x \in X \\ h(x) = u \end{cases} = \inf_{x \in X} \underbrace{\left(\varphi(x) + \mathbb{I}_{\{h(x) - u = 0\}}(x)\right)}_{\mathcal{D}(x, u)}$$

- \blacktriangleright *p* as a marginal function of \mathcal{D}
- ▶ \mathcal{D} is the conjugate of the Lagrangian: $\mathcal{D}^* = L$

$$p(u) = \begin{cases} \inf & \varphi(x) \\ \text{s.t.} & x \in X \\ h(x) = u \end{cases} = \inf_{x \in X} \underbrace{\left(\varphi(x) + \mathbb{I}_{\{h(x) - u = 0\}}(x)\right)}_{\mathcal{D}(x, u)}$$

- \blacktriangleright *p* as a marginal function of \mathcal{D}
- ▶ \mathcal{D} is the conjugate of the Lagrangian: $\mathcal{D}^* = L$
- "Fix" \mathcal{D} adding a " σ -term"

$$\mathcal{D}_{\sigma} = \mathcal{D} + rac{1}{r}\sigma^{*}$$

$$p(u) = \begin{cases} \inf & \varphi(x) \\ \text{s.t.} & x \in X \\ h(x) = u \end{cases} = \inf_{x \in X} \underbrace{\left(\varphi(x) + \mathbb{I}_{\{h(x) - u = 0\}}(x)\right)}_{\mathcal{D}(x, u)}$$

- \blacktriangleright *p* as a marginal function of \mathcal{D}
- ▶ \mathcal{D} is the conjugate of the Lagrangian: $\mathcal{D}^* = L$
- "Fix" \mathcal{D} adding a " σ -term"

$$egin{array}{rll} \mathcal{D}_{\sigma} &=& \mathcal{D} + rac{1}{r}\sigma \ \mathcal{D}_{\sigma}^{*} &=& \mathcal{D}^{*} lac{1}{r}\sigma \end{array}$$

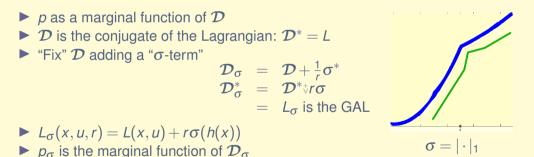
$$p(u) = \begin{cases} \inf & \varphi(x) \\ \text{s.t.} & x \in X \\ & h(x) = u \end{cases} = \inf_{x \in X} \underbrace{\left(\varphi(x) + \mathbb{I}_{\{h(x) - u = 0\}}(x)\right)}_{\mathcal{D}(x, u)}$$

- \blacktriangleright *p* as a marginal function of \mathcal{D}
- ▶ \mathcal{D} is the conjugate of the Lagrangian: $\mathcal{D}^* = L$
- Fix" \mathcal{D} adding a " σ -term"

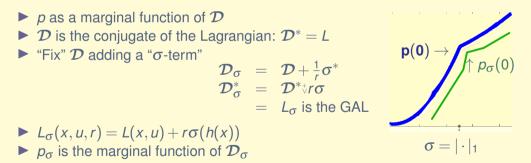
$$egin{array}{rll} \mathcal{D}_{\sigma} &=& \mathcal{D} + rac{1}{r} \sigma^{*} \ \mathcal{D}_{\sigma}^{*} &=& \mathcal{D}^{*} orall r \sigma \ &=& L_{\sigma} ext{ is the GAL} \end{array}$$

 $\blacktriangleright L_{\sigma}(x, u, r) = L(x, u) + r\sigma(h(x))$

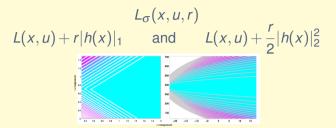
$$p(u) = \begin{cases} \inf & \varphi(x) \\ \text{s.t.} & x \in X \\ h(x) = u \end{cases} = \inf_{x \in X} \underbrace{\left(\varphi(x) + \mathbb{I}_{\{h(x) - u = 0\}}(x)\right)}_{\mathcal{D}(x, u)}$$

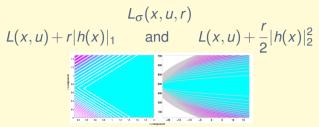


$$p(u) = \begin{cases} \inf & \varphi(x) \\ \text{s.t.} & x \in X \\ h(x) = u \end{cases} = \inf_{x \in X} \underbrace{\left(\varphi(x) + \mathbb{I}_{\{h(x) - u = 0\}}(x)\right)}_{\mathcal{D}(x, u)}$$

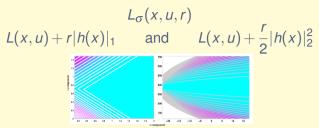


no duality gap!





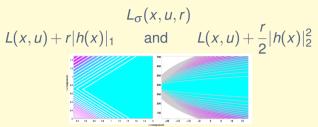
No duality gap, but two catches:



No duality gap, but two catches:

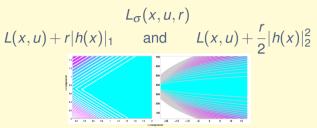
► separable
$$L(x, u) = L_T(x_T, u) + L_H(x_H, u)$$

turned into **non-separable** $L_{\sigma}(x, u, r) = L(x, u) + r|x_T + x_H - d|_1$



No duality gap, but two catches:

- separable $L(x, u) = L_T(x_T, u) + L_H(x_H, u)$
 - turned into **non-separable** $L_{\sigma}(x, u, r) = L(x, u) + r|x_T + x_H d|_1$
- ► requires exact evaluation of dual function $\theta_{\sigma}(u, r) = \min_{x \in X} L_{\sigma}(x, u, r)$ a global optimization problem



No duality gap, but two catches:

- ► separable $L(x, u) = L_T(x_T, u) + L_H(x_H, u)$ turned into **non-separable** $L_{\sigma}(x, u, r) = L(x, u) + r|x_T + x_H - d|_1$
- ► requires exact evaluation of dual function $\theta_{\sigma}(u, r) = \min_{x \in X} L_{\sigma}(x, u, r)$ a global optimization problem

Our work is a proposal to address these issues

Revisiting Augmented Lagrangian Duals

$$\text{GAL of} \begin{cases} \min & \varphi(x) \\ \text{s.t.} & x \in X \\ & h(x) = 0 \end{cases}$$

Revisiting Augmented Lagrangian Duals

0

$$\text{GAL of} \begin{cases} \min \ \varphi(x) \\ \text{s.t.} \ x \in X \\ h(x) = 0 \end{cases} \equiv \text{Lagrangian of} \begin{cases} \min \ \varphi(x) \\ \text{s.t.} \ x \in X \\ h(x) = 0 \\ \sigma(h(x)) < \end{cases}$$

$$\text{GAL of} \begin{cases} \min \ \varphi(x) \\ \text{s.t.} \ x \in X \\ h(x) = 0 \end{cases} \equiv \text{Lagrangian of} \begin{cases} \min \ \varphi(x) \\ \text{s.t.} \ x \in X \\ h(x) = 0 \\ \sigma(h(x)) \leq 0 \end{cases}$$

From now on we consider L(x, u, r) for problem on the right

$$\text{GAL of} \begin{cases} \min \ \varphi(x) \\ \text{s.t.} \ x \in X \\ h(x) = 0 \end{cases} \equiv \text{Lagrangian of} \begin{cases} \min \ \varphi(x) \\ \text{s.t.} \ x \in X \\ h(x) = 0 \\ \sigma(h(x)) \leq 0 \end{cases}$$

From now on we consider L(x, u, r) for problem on the right to examine relations of approximate solutions to $\min_x L(x, u, r)$

$$\text{GAL of} \left\{ \begin{array}{ll} \min & \varphi(x) \\ \text{s.t.} & x \in X \\ h(x) = 0 \end{array} \right. \quad \text{Lagrangian of} \left\{ \begin{array}{ll} \min & \varphi(x) \\ \text{s.t.} & x \in X \\ h(x) = 0 \\ \sigma(h(x)) \leq 0 \end{array} \right.$$

From now on we consider L(x, u, r) for problem on the right

to examine relations of approximate solutions to $\min_x L(x, u, r)$

- with ε -subgradients of the dual function $\theta(u, r)$
- with numerical schemes à la bundle
- with solutions to problem on the left

$$\begin{array}{c} \operatorname{GAL of} \left\{ \begin{array}{c} \min \ \varphi(x) \\ \mathrm{s.t.} \ x \in X \\ h(x) = 0 \end{array} \right. \\ \end{array} \right. \\ \left. \begin{array}{c} \min \ \varphi(x) \\ \mathrm{s.t.} \ x \in X \\ h(x) = 0 \\ \sigma(h(x)) \leq 0 \end{array} \right. \end{array}$$

From now on we consider L(x, u, r) for problem on the right

to examine relations of approximate solutions to $\min_x L(x, u, r)$

- with ε -subgradients of the dual function $\theta(u, r)$
- with numerical schemes à la bundle
- with solutions to problem on the left

GAL according to

From now on we consider L(x, u, r) for problem on the right

to examine relations of approximate solutions to $\min_x L(x, u, r)$

- with ε -subgradients of the dual function $\theta(u, r)$
- with numerical schemes à la bundle
- with solutions to problem on the left

Any CQ for original problem yields multipliers (u, r) for the σ -augmented problem

Fix (\tilde{u}, \tilde{r}) and consider evaluating $\theta(\tilde{u}, \tilde{r}) = \min_{x} L(x, \tilde{u}, \tilde{r})$, what primal problem is solved by minimizer \tilde{x} ?

Fix (\tilde{u}, \tilde{r}) and consider evaluating $\theta(\tilde{u}, \tilde{r}) = \min_{x} L(x, \tilde{u}, \tilde{r})$, what primal problem is solved by minimizer \tilde{x} ?

NLP Everett's: A stationary point \tilde{x} for $\theta(\tilde{u}, \tilde{r})$, i.e., solving

 $0 \in \partial_x L(x, \tilde{u}, \tilde{r}) + N_X(x)$, with $x \in X$

is a stationary point for the original problem $\implies h(\tilde{x}) = 0$

Fix (\tilde{u}, \tilde{r}) and consider evaluating $\theta(\tilde{u}, \tilde{r}) = \min_{x} L(x, \tilde{u}, \tilde{r})$, what primal problem is solved by minimizer \tilde{x} ?

NLP Everett's: A stationary point \tilde{x} for $\theta(\tilde{u}, \tilde{r})$, i.e., solving

 $0 \in \partial_x L(x, \tilde{u}, \tilde{r}) + N_X(x)$, with $x \in X$

is a stationary point for the original problem $\iff h(\tilde{x}) = 0$ *\varepsilon* **Everett's:** An \varepsilon -solution \vec{x} for $\theta(\tilde{u}, \tilde{r})$, i.e., satisfying

 $L(ilde{x}, ilde{u}, ilde{r}) \leq L(x, ilde{u}, ilde{r}) + arepsilon$ for all $x \in X$

approximately solves the original problem ($arphi(ilde{x}) \leq arphi^* + arepsilon$) $\iff h(ilde{x}) = 0$

Fix (\tilde{u}, \tilde{r}) and consider evaluating $\theta(\tilde{u}, \tilde{r}) = \min_{x} L(x, \tilde{u}, \tilde{r})$, what primal problem is solved by minimizer \tilde{x} ?

NLP Everett's: A stationary point \tilde{x} for $\theta(\tilde{u}, \tilde{r})$, i.e., solving

 $0 \in \partial_x L(x, \tilde{u}, \tilde{r}) + N_X(x)$, with $x \in X$

is a stationary point for the original problem $\iff h(\tilde{x}) = 0$ *\varepsilon* **Everett's:** An \varepsilon -solution \vec{x} for $\theta(\tilde{u}, \tilde{r})$, i.e., satisfying

 $L(ilde{x}, ilde{u}, ilde{r}) \leq L(x, ilde{u}, ilde{r}) + arepsilon$ for all $x \in X$

approximately solves the original problem ($arphi(ilde{x}) \leq arphi^* + arepsilon$) $\iff h(ilde{x}) = 0$

Fix (\tilde{u}, \tilde{r}) and consider evaluating $\theta(\tilde{u}, \tilde{r}) = \min_{x} L(x, \tilde{u}, \tilde{r})$, what primal problem is solved by minimizer \tilde{x} ?

NLP Everett's: A stationary point \tilde{x} for $\theta(\tilde{u}, \tilde{r})$, i.e., solving

 $0 \in \partial_x L(x, \tilde{u}, \tilde{r}) + N_X(x)$, with $x \in X$

is a stationary point for the original problem $\iff h(\tilde{x}) = 0$ *\varepsilon* **Everett's:** An \varepsilon -solution \vec{x} for $\theta(\tilde{u}, \tilde{r})$, i.e., satisfying

 $L(ilde{x}, ilde{u}, ilde{r}) \leq L(x, ilde{u}, ilde{r}) + arepsilon$ for all $x \in X$

approximately solves the original problem $(\varphi(\tilde{x}) \leq \varphi^* + \varepsilon) \iff h(\tilde{x}) = 0$

• Summing up:

• Augmentation (approximately) closes the duality gap, provided $h(\tilde{x}) = 0$

Fix (\tilde{u}, \tilde{r}) and consider evaluating $\theta(\tilde{u}, \tilde{r}) = \min_{x} L(x, \tilde{u}, \tilde{r})$, what primal problem is solved by minimizer \tilde{x} ?

NLP Everett's: A stationary point \tilde{x} for $\theta(\tilde{u}, \tilde{r})$, i.e., solving

 $0 \in \partial_x L(x, \tilde{u}, \tilde{r}) + N_X(x)$, with $x \in X$

is a stationary point for the original problem $\iff h(\tilde{x}) = 0$ *e*-Everett's: An *e*-solution \tilde{x} for $\theta(\tilde{u}, \tilde{r})$, i.e., satisfying

 $L(\tilde{x}, \tilde{u}, \tilde{r}) \leq L(x, \tilde{u}, \tilde{r}) + \varepsilon$ for all $x \in X$

approximately solves the original problem $(arphi(ilde{x}) \leq arphi^* + arepsilon)$ \iff $h(ilde{x}) = 0$

• Summing up:

Augmentation (approximately) closes the duality gap, provided h(x̃) = 0
 h(x) = 0 ⇔ σ(h(x)) = 0

Fix (\tilde{u}, \tilde{r}) and consider evaluating $\theta(\tilde{u}, \tilde{r}) = \min_{x} L(x, \tilde{u}, \tilde{r})$, what primal problem is solved by minimizer \tilde{x} ?

NLP Everett's: A stationary point \tilde{x} for $\theta(\tilde{u}, \tilde{r})$, i.e., solving

 $0 \in \partial_x L(x, \widetilde{u}, \widetilde{r}) + N_X(x)$, with $x \in X$

is a stationary point for the original problem $\iff h(\tilde{x}) = 0$ *e*-Everett's: An *e*-solution \tilde{x} for $\theta(\tilde{u}, \tilde{r})$, i.e., satisfying

 $L(\tilde{x}, \tilde{u}, \tilde{r}) \leq L(x, \tilde{u}, \tilde{r}) + \varepsilon$ for all $x \in X$

approximately solves the original problem $(\varphi(\tilde{x}) \leq \varphi^* + \varepsilon)$ \iff $h(\tilde{x}) = 0$

- Summing up:
 - Augmentation (approximately) closes the duality gap, provided $h(\tilde{x}) = 0$
 - $\blacktriangleright h(x) = 0 \iff \sigma(h(x)) = 0$
 - An inexact bundle method drives $\sigma(h(x^k))$ to 0

GAL and the $\sigma\text{-simplex}$

recall that $h(x) = 0 \iff \sigma(h(x)) = 0$

$$\begin{aligned} \theta(\tilde{u},\tilde{r}) &= \min_{x \in X} L(x,\tilde{u},\tilde{r}) = \min_{x \in X} \varphi(x) + \langle \tilde{u},h(x) \rangle + \tilde{r}\sigma(h(x)) \\ & \Longrightarrow \left(h(x^{\min}),\sigma(h(x^{\min})) \right) \in \partial_{\varepsilon}\theta(\tilde{u},\tilde{r}) \end{aligned}$$

$$\begin{split} \theta(\tilde{u},\tilde{r}) &= \min_{x \in X} L(x,\tilde{u},\tilde{r}) = \min_{x \in X} \varphi(x) + \langle \tilde{u}, h(x) \rangle + \tilde{r} \sigma(h(x)) \\ \implies \left(h(x^{\min}), \sigma(h(x^{\min})) \right) \in \partial_{\varepsilon} \theta(\tilde{u},\tilde{r}) \\ \text{Suppose } X \text{ compact} \\ \text{Explicit calculus rule in} \quad \varepsilon \text{-Optimal solutions in nondifferent} \end{split}$$

ε-Optimal solutions in nondifferentiable convex programming and some related questions

J. -J. Strodiot, V. Hien Nguyen & Norbert Heukemes

Mathematical Programming 25, 307-328(1983)

$$\theta(\tilde{u},\tilde{r}) = \min_{x \in X} L(x,\tilde{u},\tilde{r}) = \min_{x \in X} \varphi(x) + \langle \tilde{u}, h(x) \rangle + \tilde{r}\sigma(h(x))$$

$$\implies \left(h(x^{\min}), \sigma(h(x^{\min}))\right) \in \partial_{\varepsilon}\theta(\tilde{u},\tilde{r})$$

Suppose X compact

Explicit calculus rule in

ε-Optimal solutions in nondifferentiable convex programming and some related questions

J. -J. Strodiot, V. Hien Nguyen & Norbert Heukemes

Mathematical Programming 25, 307-328(1983)

 $\implies \sigma$ -simplex=conv $\left\{ \sigma(h(x^i)), x^i \text{ approximate minimizers} \right\}$

$$\begin{array}{l} \theta(\tilde{u},\tilde{r}) = \min_{x \in X} L(x,\tilde{u},\tilde{r}) = \min_{x \in X} \varphi(x) + \langle \tilde{u},h(x) \rangle + \tilde{r}\sigma(h(x)) \\ \Longrightarrow \left(h(x^{min}), \sigma(h(x^{min})) \right) \in \partial_{\varepsilon}\theta(\tilde{u},\tilde{r}) \\ \text{Suppose } X \text{ compact} \\ \text{Explicit calculus rule in} \quad \varepsilon \text{-Optimal solutions in nondifferent} \end{array}$$

ε-Optimal solutions in nondifferentiable convex programming and some related questions

J. -J. Strodiot, V. Hien Nguyen & Norbert Heukemes

Mathematical Programming 25, 307-328(1983)

 $\implies \sigma$ -simplex=conv $\left\{\sigma(h(x^i)), x^i \text{ approximate minimizers}\right\}$

Theorem: $0 \in \sigma$ -simplex is equivalent to

 \blacktriangleright 0 \in $\partial_{\varepsilon} \theta(ilde{u}, ilde{r})$

• One $x^{i_{best}}$ in the σ -simplex is primal feasible: $h(x^{i_{best}}) = 0$ $\implies x^{i_{best}}$ approximate solution for original problem

Init Choose (u^1, r^1) and compute $x^1 \approx \min_{x \in X} L(x, u^1, r^1)$ **Dual** Solve bundle QP with a model for θ to obtain (u^+, r^+)

Init Choose (u^1, r^1) and compute $x^1 \approx \min_{x \in X} L(x, u^1, r^1)$

Dual Solve bundle QP with a model for θ to obtain (u^+, r^+)

Noise? Adjust prox-parameter and go to Dual if too much noise

- **Dual** Solve bundle QP with a model for θ to obtain (u^+, r^+)
- **Noise?** Adjust prox-parameter and go to **Dual** if too much noise **Primal** Compute $x^+ \approx \min_{x \in X} L(x, u^+, r^+)$

- **Dual** Solve bundle QP with a model for θ to obtain (u^+, r^+)
- Noise? Adjust prox-parameter and go to Dual if too much noise
- **Primal** Compute $x^+ \approx \min_{x \in X} L(x, u^+, r^+)$
 - **Stop** if $\sigma(h(x^+))$ is small

- **Dual** Solve bundle QP with a model for θ to obtain (u^+, r^+)
- Noise? Adjust prox-parameter and go to Dual if too much noise
- **Primal** Compute $x^+ \approx \min_{x \in X} L(x, u^+, r^+)$
- **Stop** if $\sigma(h(x^+))$ is small
- **Bundle** Classify (u^+, r^+) as serious or null step, update the model

- **Dual** Solve bundle QP with a model for θ to obtain (u^+, r^+)
- Noise? Adjust prox-parameter and go to Dual if too much noise
- **Primal** Compute $x^+ \approx \min_{x \in X} L(x, u^+, r^+)$
 - **Stop** if $\sigma(h(x^+))$ is small
- **Bundle** Classify (u^+, r^+) as serious or null step, update the model **Loop** to **Dual**

Init Choose (u^1, r^1) and compute $x^1 \approx \min_{x \in X} L(x, u^1, r^1)$

- **Dual** Solve bundle QP with a model for θ to obtain (u^+, r^+)
- Noise? Adjust prox-parameter and go to Dual if too much noise
- **Primal** Compute $x^+ \approx \min_{x \in X} L(x, u^+, r^+)$

Stop if $\sigma(h(x^+))$ is small

Bundle Classify (u^+, r^+) as serious or null step, update the model

Loop to Dual

Theorem:

- 1. Noise attenuation loop is finite
- 2. There is a primal feasible limit point $\bar{x}^{i_{best}}$ that is approximately optimal
- 3. If the dual sequence has accumulation points, they solve approximately the dual problem
- 4. For existence of dual accumulation points, see "Convex proximal bundle methods in depth" MP2014

DC problems with explicit nonconvexity (exact solution of subproblems)

$$\begin{cases} \min_{x \in X = \mathbb{IR}^n} & \varphi(x) := \frac{1}{2} \langle x, Qx \rangle + \langle x, q \rangle - \max_{i \in \{1, \dots, N\}} \{ \langle x, \alpha_i \rangle + \beta_i \} \\ \text{s.t.} & h(x) := Ax - b = 0 \end{cases}$$

DC problems with explicit nonconvexity (exact solution of subproblems)

$$\begin{cases} \min_{x \in X = \mathbb{R}^n} & \varphi(x) := \frac{1}{2} \langle x, Qx \rangle + \langle x, q \rangle - \max_{i \in \{1, \dots, N\}} \{ \langle x, \alpha_i \rangle + \beta_i \} \\ \text{s.t.} & h(x) := Ax - b = 0 \end{cases}$$

augmented with $\sigma(\cdot) = \frac{1}{2} \|\cdot\|_2^2$ yields an easy dual function $\theta(u, r) = \min_{i \in \{1,...,N\}} \theta_i(u, r)$

DC problems with explicit nonconvexity (exact solution of subproblems)

$$\begin{cases} \min_{x \in X = \mathbb{R}^n} & \varphi(x) := \frac{1}{2} \langle x, Qx \rangle + \langle x, q \rangle - \max_{i \in \{1, \dots, N\}} \{ \langle x, \alpha_i \rangle + \beta_i \} \\ \text{s.t.} & h(x) := Ax - b = 0 \end{cases}$$

augmented with $\sigma(\cdot) = \frac{1}{2} \|\cdot\|_2^2$ yields an easy dual function $\theta(u, r) = \min_{i \in \{1, ..., N\}} \theta_i(u, r)$ Each θ_i is a QP having the same quadratic term for all *i*

$$\theta_i(u,r) = \min_x \frac{1}{2} \langle x, Qx \rangle + \langle x, q \rangle + \langle x, \alpha_i \rangle + \beta_i + \langle Ax - b, u \rangle + \frac{1}{2} r \|Ax - b\|_2^2$$

DC problems with explicit nonconvexity (exact solution of subproblems)

$$\begin{cases} \min_{x \in X = \mathbb{R}^n} & \varphi(x) := \frac{1}{2} \langle x, Qx \rangle + \langle x, q \rangle - \max_{i \in \{1, \dots, N\}} \{ \langle x, \alpha_i \rangle + \beta_i \} \\ \text{s.t.} & h(x) := Ax - b = 0 \end{cases}$$

augmented with $\sigma(\cdot) = \frac{1}{2} \|\cdot\|_2^2$ yields an easy dual function $\theta(u, r) = \min_{i \in \{1, ..., N\}} \theta_i(u, r)$ Each θ_i is a QP having the same quadratic term for all *i*

$\theta_i(u,r) = \min_x \frac{1}{2}$	$\frac{1}{2}\langle x,Qx angle + \langle x,q angle +$	$\langle x, \alpha_i \rangle + \beta_i + \langle Ax - b,$	$ u\rangle + \frac{1}{2}r Ax-b _2^2$
--------------------------------------	---	---	--

	PDBM		MSM	(Gas02)	ENUM	
	avg	stdev	avg	stdev	avg	stdev
$\Delta \varphi$	-1E-03	3E-03	-7E-02	3E-01	0	0
$h(\bar{x})$	4E-08	3E-08	1E-03	6E-03		
#primal	25	42	105	115		
CPU (s)	5	8	21	36	209	515

Unit-commitment problems (inexact solution of subproblems, using ADMM)

$$\left\{egin{array}{ll} \min & \sum\limits_{i\in I}\Bigl(\langle \mathcal{F}, x_i
angle + C_i(y_i)\Bigr) \ ext{s.t.} & (x_i, y_i)\in \mathcal{S}_i \ & \sum\limits_i y_i=D \end{array}
ight.$$

Unit-commitment problems (inexact solution of subproblems, using ADMM)

$$\begin{cases} \min \sum_{i \in I} \left(\langle \mathcal{F}, x_i \rangle + C_i(y_i) \right) \\ \text{s.t.} \quad (x_i, y_i) \in \mathcal{S}_i \\ \sum_i y_i = D \end{cases} \iff \begin{cases} \min \sum_{i \in I} \varphi_i(x_i, y_i) \\ \text{s.t.} \quad (x_i, y_i) \in \mathcal{S}_i \\ \sum_i z_i = D \\ b(x, y) = z - y = 0 \end{cases}$$

Unit-commitment problems (inexact solution of subproblems, using ADMM)

$$\begin{cases} \min \sum_{i \in I} \left(\langle \mathcal{F}, x_i \rangle + C_i(y_i) \right) \\ \text{s.t.} \quad (x_i, y_i) \in \mathcal{S}_i \\ \sum_i y_i = D \end{cases} \iff \begin{cases} \min \sum_{i \in I} \varphi_i(x_i, y_i) \\ \text{s.t.} \quad (x_i, y_i) \in \mathcal{S}_i \\ \sum_i z_i = D \\ h(x, y) = z - y = 0 \end{cases}$$

augmented with $\sigma(\cdot) = |\cdot|_1$ gives

 $L(x, y, z, u, r) = L_{0-1}(x, y, u) + L_{cont}(z, u) + r|y - z|_{1}$

Unit-commitment problems (inexact solution of subproblems, using ADMM)

$$\begin{cases} \min \sum_{i \in I} \left(\langle \mathcal{F}, x_i \rangle + C_i(y_i) \right) \\ \text{s.t.} \quad (x_i, y_i) \in \mathcal{S}_i \\ \sum_i y_i = D \end{cases} \iff \begin{cases} \min \sum_{i \in I} \varphi_i(x_i, y_i) \\ \text{s.t.} \quad (x_i, y_i) \in \mathcal{S}_i \\ \sum_i z_i = D \\ h(x, y) = z - y = 0 \end{cases}$$

augmented with $\sigma(\cdot) = |\cdot|_1$ gives

$$L(x, y, z, u, r) = L_{0-1}(x, y, u) + L_{cont}(z, u) + r|y - z|_{1}$$

$$\approx \underbrace{L_{0-1}(x, y, u) + \frac{r}{2}|y - z^{fixed}|_{1}}_{\approx} + \underbrace{L_{cont}(z, u) + \frac{r}{2}|y^{fixed} - z|_{1}}_{\leq}$$

Unit-commitment problems (inexact solution of subproblems, using ADMM)

$$\begin{cases} \min \sum_{i \in I} \left(\langle \mathcal{F}, x_i \rangle + C_i(y_i) \right) \\ \text{s.t.} \quad (x_i, y_i) \in \mathcal{S}_i \\ \sum_i y_i = D \end{cases} \iff \begin{cases} \min \sum_{i \in I} \varphi_i(x_i, y_i) \\ \text{s.t.} \quad (x_i, y_i) \in \mathcal{S}_i \\ \sum_i z_i = D \\ h(x, y) = z - y = 0 \end{cases}$$

augmented with $\sigma(\cdot) = |\cdot|_1$ gives

$$L(x, y, z, u, r) = L_{0-1}(x, y, u) + L_{cont}(z, u) + r|y - z|_{1}$$

$$\approx \underbrace{\frac{L_{0-1}(x, y, u) + \frac{r}{2}|y - z^{fixed}|_{1}}{\sum_{i} \min_{(x_{i}, y_{i}) \in S_{i}}} + \underbrace{\frac{L_{cont}(z, u) + \frac{r}{2}|y^{fixed} - z|_{1}}{\sum_{i} \min_{\Sigma_{i} z_{i} = D}}$$

Unit-commitment problems (inexact solution of subproblems, using ADMM)

Very good performance, provided r_0 is well chosen (not too large)

Results for 56 synthetic instances, horizon from 1 to 7 days, hourly discretization

	PDBM		MSM	(Gas02)
	avg	stdev	avg	stdev
<i>Gap</i> (%)	4.5	6.5	14.6	12.1
$h(\bar{x})$	4.5E-03	7.2E-04	5.3E-03	1.1E-03
#primal	105	52	208	131
CPU (s)	96	121	148	140

Some works on GAL

- E. Golshtein and N. Tretyakov, Modified Lagrangians and Monotone Maps in Optimization, Wiley 1996
- R. Rockafellar and R. Wets. Variational Analysis. Springer, 1998
- A. M. Rubinov, B. M. Glover and X. Q. Yang, "Decreasing Functions with Applications to Penalization", SiOPT 1999
- ▶ R. N. Gasimov. "Augmented Lagrangian Duality and Nondifferentiable Optimization Methods in Nonconvex Programming", JOGO 2002 ← MSM
- X. X. Huang and X. Q. Yang. "A Unified Augmented Lagrangian Approach to Duality and Exact Penalization", MOR 2003
- R. Burachik, R. Gasimov, N. Ismayilova, C. Kaya. "On a Modified Subgradient Algorithm for Dual Problems via Sharp Augmented Lagrangian", JOGO 2006
- R. Burachik and A. Rubinov. "Abstract Convexity and Augmented Lagrangians", SiOPT 2007
- A. Nedič, A. Ozdaglar, and A. Rubinov. "Abstract convexity for nonconvex optimization duality", OPT 2007
- R. Burachik, A. N. lusem, and J. G. Melo. "A primal dual modified subgradient algorithm with sharp Lagrangian", JOGO 2010
- R. Burachik. "On primal convergence for augmented Lagrangian duality", OPT 2011
- R. Burachik, A. Iusem, and J. Melo. "An Inexact Modified Subgradient Algorithm for Primal-Dual Problems via Augmented Lagrangians", JOTA 2013
- N. L. Boland and A. C. Eberhard. "On the augmented Lagrangian dual for integer programming", MP 2015
- M. J. Feizollahi, S. Ahmed, and A. Sun. "Exact augmented Lagrangian duality for mixed integer linear programming", MP 2017
- A. M. Bagirov, G. Ozturk, and R. Kasimbeyli, "A sharp augmented Lagrangian-based method in constrained non-convex optimization", OMS 2018
- X. Gu, S. Ahmed, and S. S. Dey. "Exact Augmented Lagrangian Duality for Mixed Integer Quadratic Programming", SiOPT 2020

Some works on GAL

- E. Golshtein and N. Tretyakov, Modified Lagrangians and Monotone Maps in Optimization, Wiley 1996
- R. Rockafellar and R. Wets. Variational Analysis. Springer, 1998
- A. M. Rubinov, B. M. Glover and X. Q. Yang, "Decreasing Functions with Applications to Penalization", SiOPT 1999
- ▶ R. N. Gasimov. "Augmented Lagrangian Duality and Nondifferentiable Optimization Methods in Nonconvex Programming", JOGO 2002 ← MSM
- X. X. Huang and X. Q. Yang. "A Unified Augmented Lagrangian Approach to Duality and Exact Penalization", MOR 2003
- R. Burachik, R. Gasimov, N. Ismayilova, C. Kaya. "On a Modified Subgradient Algorithm for Dual Problems via Sharp Augmented Lagrangian", JOGO 2006
- R. Burachik and A. Rubinov. "Abstract Convexity and Augmented Lagrangians", SiOPT 2007
- A. Nedič, A. Ozdaglar, and A. Rubinov. "Abstract convexity for nonconvex optimization duality", OPT 2007
- R. Burachik, A. N. lusem, and J. G. Melo. "A primal dual modified subgradient algorithm with sharp Lagrangian", JOGO 2010
- R. Burachik. "On primal convergence for augmented Lagrangian duality", OPT 2011
- R. Burachik, A. lusem, and J. Melo. "An Inexact Modified Subgradient Algorithm for Primal-Dual Problems via Augmented Lagrangians", JOTA 2013
- N. L. Boland and A. C. Eberhard. "On the augmented Lagrangian dual for integer programming", MP 2015
- M. J. Feizollahi, S. Ahmed, and A. Sun. "Exact augmented Lagrangian duality for mixed integer linear programming", MP 2017
- A. M. Bagirov, G. Ozturk, and R. Kasimbeyli, "A sharp augmented Lagrangian-based method in constrained non-convex optimization", OMS 2018
- X. Gu, S. Ahmed, and S. S. Dey. "Exact Augmented Lagrangian Duality for Mixed Integer Quadratic Programming", SiOPT 2020

