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Context: when to use decomposition methods?

I problems too difficult to solve directly mixed 0-1, linear, quadratic,
or nonlinear programs
stochastic UC with nonconvex HPF

I problems with partial separable structure complicating variables:
block diagonal 2nd-stage constraints,
coupled with 1st stage
complicating constraints, separable objective

I problems of problems equilibrium problems, games, variational
inequalities
energy markets

I information not accesible
big data, machine learning
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Illustration with a simple example 
min fT (yT ) + fH(yH)
s.t. yT ∈ ST ,yH ∈ SH

yT + yH = d

Two power plants

yT ∈ ST yH ∈ SH
〈F ,x〉+fT (yT ) fH(yH)

x ∈ {0,1} and yT ≤ x yup

yT + yH = d (demand)
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A less simple example


min 〈F ,x〉+ fT (yT ) + fH(yH)
s.t. yT ∈ ST ,yH ∈ SH

yT + yH = d
x ∈ {0,1} and yT ≤ x yup ⇐⇒ (x ,yT ) ∈ ST

Two power plants

yT ∈ ST yH ∈ SH
〈F ,x〉+ fT (yT ) fH(yH)

x ∈ {0,1} and yT ≤ x yup
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I Good , to split 0-1 variables from possible NLP relations
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Dual scissors: Lagrangian relaxation


min fT (x ,yT ) + fH(yH)
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L(x ,y ,u) = fT (x ,yT ) + fH(yH)
+〈u,d− yT − yH〉

= LT (x ,yT ,u) + LH(yH ,u)
+〈u,d〉

⇔
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u
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Dual scissors

I Good , to separate technologies + inexact information

I Good , if output of interest if u (shadow price)
I Bad , if output of interest is x ,y : the final ones may be infeasible

(dual approach solves the bi-dual of original problem)
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Primal-dual scissors: Augmented Lagrangians

Lr (x ,y ,u) = L(x ,y ,u) +
r
2
‖d− yT − yH‖2

I Good , closes duality gap

I Bad , puts back together the technologies
I Also: inexact calculations make it difficult to manage parameter r

Need to sharpen our scissors

L#(x ,y ,u, r) = L(x ,y ,u) +
r
2
‖d− yT − yH‖2 + r |d− yT − yH |1
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Primal-dual scissors: Sharp Augmented Lagrangians

Lr (x ,y ,u) = L(x ,y ,u) +
r
2
‖d− yT − yH‖2

I Good , closes duality gap
I Bad , puts back together the technologies
I Also: inexact calculations make it difficult to manage parameter r

Need to sharpen our scissors

L#(x ,y ,u, r ) = L(x ,y ,u) + r |d− yT − yH |1
r is a dual variable

parameter r



Generalized Augmented Lagrangians (GAL)
The perturbation function p

p(u) =

 min fT (x ,yT ) + fH(yH)
s.t. (x ,yT ) ∈ ST ,yH ∈ SH

yT + yH = d+u
⇐⇒ p(u) =

 min ϕ(x)
s.t. x ∈ X

h(x) = 0u

For the example,
p is the minimum
of two quadratic functions
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The GAL according to R&W

p(u) =

 inf ϕ(x)
s.t. x ∈ X

h(x) = u

=
inf
x∈X

(
ϕ(x) + I{h(x)−u=0}(x)

)
︸ ︷︷ ︸

D(x ,u)

I p as a marginal function of D
I D is the conjugate of the Lagrangian: D∗ = L
I “Fix” D adding a “σ -term”

Dσ = D+ 1
r σ∗

D∗σ = D∗+
∨rσ

= Lσ is the GAL

I Lσ (x ,u, r) = L(x ,u) + rσ(h(x))
I pσ is the marginal function of Dσ

σ = | · |1

p(0)→
↑ pσ (0)

no duality gap!
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Sharp and Proximal GAL according to R&W

Lσ (x ,u, r)

L(x ,u) + r |h(x)|1 and L(x ,u) +
r
2
|h(x)|22
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x-component

No duality gap, but two catches:
I separable L(x ,u) = LT (xT ,u) + LH(xH ,u)

turned into non-separable Lσ (x ,u, r) = L(x ,u) + r |xT + xH−d |1
I requires exact evaluation of dual function θσ (u, r) = minx∈X Lσ (x ,u, r)

a global optimization problem

Our work
is a proposal to address these issues
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GAL according to

GAL of


min ϕ(x)
s.t. x ∈ X

h(x) = 0

≡ Lagrangian of


min ϕ(x)
s.t. x ∈ X

h(x) = 0
σ(h(x))≤ 0

From now on we consider L(x ,u, r) for problem on the right

←←←←←

to examine relations of approximate solutions to minx L(x ,u, r)
I with ε-subgradients of the dual function θ (u, r)
I with numerical schemes à la bundle
I with solutions to problem on the left

Any CQ for original problem yields multipliers (u, r) for the σ -augmented problem
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Everett’s theorem σ continuous, non-negative with unique minimizer at 0

Fix (ũ, r̃) and consider evaluating θ (ũ, r̃) = minx L(x , ũ, r̃),

what primal problem is solved by minimizer x̃?

NLP Everett’s: A stationary point x̃ for θ (ũ, r̃), i.e., solving

0 ∈ ∂xL(x , ũ, r̃) + NX (x) , with x ∈ X

is a stationary point for the original problem ⇐⇒ h(x̃) = 0
ε-Everett’s: An ε-solution x̃ for θ (ũ, r̃), i.e., satisfying

L(x̃ , ũ, r̃)≤ L(x , ũ, r̃) + ε for all x ∈ X

approximately solves the original problem (ϕ(x̃)≤ ϕ∗+ ε) ⇐⇒ h(x̃) = 0
• Summing up:
I Augmentation (approximately) closes the duality gap, provided h(x̃) = 0
I h(x) = 0 ⇐⇒ σ(h(x)) = 0
I An inexact bundle method drives σ(h(xk )) to 0
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0 ∈ ∂xL(x , ũ, r̃) + NX (x) , with x ∈ X

is a stationary point for the original problem ⇐⇒ h(x̃) = 0

ε-Everett’s: An ε-solution x̃ for θ (ũ, r̃), i.e., satisfying
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0 ∈ ∂xL(x , ũ, r̃) + NX (x) , with x ∈ X

is a stationary point for the original problem ⇐⇒ h(x̃) = 0
ε-Everett’s: An ε-solution x̃ for θ (ũ, r̃), i.e., satisfying
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GAL and the σ -simplex recall that h(x) = 0 ⇐⇒ σ(h(x)) = 0

θ (ũ, r̃) = minx∈X L(x , ũ, r̃) = minx∈X ϕ(x) + 〈ũ,h(x)〉+ r̃σ(h(x))

=⇒
(

h(xmin),σ(h(xmin))
)
∈ ∂εθ (ũ, r̃)

Suppose X compact
Explicit calculus rule in
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=⇒ σ -simplex=conv
{

σ(h(x i)), x i approximate minimizers
}

Theorem: 0 ∈ σ -simplex is equivalent to
I 0 ∈ ∂εθ (ũ, r̃)
I One x ibest in the σ -simplex is primal feasible: h(x ibest ) = 0

=⇒ x ibest approximate solution for original problem
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PDBM: a primal-dual bundle method for GAL

Init Choose (u1, r1) and compute x1 ≈minx∈X L(x ,u1, r1)

Dual Solve bundle QP with a model for θ to obtain (u+, r+)

Noise? Adjust prox-parameter and go to Dual if too much noise

Primal Compute x+ ≈minx∈X L(x ,u+, r+)

Stop if σ(h(x+)) is small

Bundle Classify (u+, r+) as serious or null step, update the model

Loop to Dual
Theorem:
1. Noise attenuation loop is finite
2. There is a primal feasible limit point x̄ ibest that is approximately optimal
3. If the dual sequence has accumulation points, they solve approximately the

dual problem
4. For existence of dual accumulation points, see “Convex proximal bundle

methods in depth” MP2014
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Solving difficult problems with PDBM for GAL
DC problems with explicit nonconvexity ( exact solution of subproblems)

{
min

x∈X=IRn
ϕ(x) := 1

2 〈x ,Qx〉+ 〈x ,q〉− max
i∈{1,...,N}

{〈x ,αi〉+ βi}

s.t. h(x) := Ax−b = 0

augmented with σ(·) = 1
2‖ · ‖

2
2 yields an easy dual function θ(u, r) = mini∈{1,...,N} θi (u, r)

Each θi is a QP having the same quadratic term for all i

θi (u, r) = min
x

1
2
〈x ,Qx〉+ 〈x ,q〉+ 〈x ,αi〉+ βi + 〈Ax−b,u〉+ 1

2
r‖Ax−b‖2

2

PDBM MSM (Gas02) ENUM
avg stdev avg stdev avg stdev

∆ϕ -1E-03 3E-03 -7E-02 3E-01 0 0
h(x̄) 4E-08 3E-08 1E-03 6E-03
#primal 25 42 105 115
CPU (s) 5 8 21 36 209 515
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Solving difficult problems with PDBM for GAL
Unit-commitment problems ( inexact solution of subproblems, using ADMM)


min ∑

i∈I

(
〈F ,xi〉+ Ci (yi )

)
s.t. (xi ,yi ) ∈ Si

∑
i

yi = D

⇐⇒


min ∑

i∈I
ϕi (xi ,yi )

s.t. (xi ,yi ) ∈ Si

∑
i

zi = D

h(x ,y) = z− y = 0

augmented with σ(·) = | · |1 gives

L(x ,y ,z,u, r) =L0-1(x ,y ,u) + Lcont (z,u) + r |y− z|1

≈
L0-1(x ,y ,u) +

r
2
|y− zfixed |1︸ ︷︷ ︸ + Lcont (z,u) +

r
2
|yfixed − z|1︸ ︷︷ ︸

∑
i

min
(xi ,yi )∈Si

min
∑i zi =D
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Solving difficult problems with PDBM for GAL
Unit-commitment problems ( inexact solution of subproblems, using ADMM)

Very good performance, provided r0 is well chosen (not too large)

Results for 56 synthetic instances, horizon from 1 to 7 days, hourly discretization

PDBM MSM (Gas02)
avg stdev avg stdev

Gap(%) 4.5 6.5 14.6 12.1
h(x̄) 4.5E-03 7.2E-04 5.3E-03 1.1E-03
#primal 105 52 208 131
CPU (s) 96 121 148 140
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