Revisiting Augmented Lagrangian Duals

Marcelo Cordova(cordova.m@ posgrad.ufsc.br) Welington de Oliveira(welington.oliveira@ mines-paristech.fr) Claudia Sagastizábal(sagastiz @unicamp.br)
 Claudia Sagastizábal IMECC-UNICAMP Brazil
 One World Optimization Seminar

UniVie, June 22nd, 2020

Context: when to use decomposition methods?

- problems too difficult to solve directly
- problems with partial separable structure
- problems of problems
- information not accesible

Context: when to use decomposition methods?

- problems too difficult to solve directly mixed 0-1, linear, quadratic, or nonlinear programs

Context: when to use decomposition methods?

- problems too difficult to solve directly mixed 0-1, linear, quadratic, or nonlinear programs
- problems with partial separable structure complicating variables: block diagonal 2nd-stage constraints, coupled with 1st stage

Context: when to use decomposition methods?

- problems too difficult to solve directly
mixed 0-1, linear, quadratic, or nonlinear programs
- problems with partial separable structure complicating variables: block diagonal 2nd-stage constraints, coupled with 1st stage
complicating constraints, separable objective

Context: when to use decomposition methods?

- problems too difficult to solve directly
mixed 0-1, linear, quadratic, or nonlinear programs
- problems with partial separable structure complicating variables: block diagonal 2nd-stage constraints, coupled with 1st stage complicating constraints, separable objective
- problems of problems equilibrium problems, games, variational inequalities

Context: when to use decomposition methods?

- problems too difficult to solve directly
mixed 0-1, linear, quadratic, or nonlinear programs
- problems with partial separable structure complicating variables: block diagonal 2nd-stage constraints, coupled with 1st stage
complicating constraints, separable objective
- problems of problems equilibrium problems, games, variational inequalities
- information not accesible in ML, commercial oracles

It all depends on the output of interest!

Decomposition: what and how?

Primal

Decomposition: what and how?

Decomposition: what and how?

Primal

Decomposition: what and how?

Primal

Primal-Dual

It all depends on the output of interest

Illustration with a simple example

$$
\begin{cases}\min & f_{T}\left(y_{T}\right)+f_{H}\left(y_{H}\right) \\ \text { s.t. } & y_{T} \in \mathcal{S}_{T}, y_{H} \in \mathcal{S}_{H} \\ & \end{cases}
$$

Two power plants

$$
\begin{aligned}
& y_{T} \in \mathcal{S}_{T} \\
& f_{T}\left(y_{T}\right)
\end{aligned}
$$

$$
\begin{gathered}
y_{H} \in \mathcal{S}_{H} \\
f_{H}\left(y_{H}\right)
\end{gathered}
$$

Illustration with a simple example

$$
\begin{cases}\min & f_{T}\left(y_{T}\right)+f_{H}\left(y_{H}\right) \\ \text { s.t. } & y_{T} \in \mathcal{S}_{T}, y_{H} \in \mathcal{S}_{H} \\ & \end{cases}
$$

Two power plants

$$
\begin{aligned}
& y_{T} \in \mathcal{S}_{T} \\
& f_{T}\left(y_{T}\right)
\end{aligned}
$$

$$
\begin{gathered}
y_{H} \in \mathcal{S}_{H} \\
f_{H}\left(y_{H}\right)
\end{gathered}
$$

$y_{T}+y_{H}=d$

Illustration with a simple example

$$
\begin{cases}\min & f_{T}\left(y_{T}\right)+f_{H}\left(y_{H}\right) \\ \text { s.t. } & y_{T} \in \mathcal{S}_{T}, y_{H} \in \mathcal{S}_{H} \\ & y_{T}+y_{H}=d\end{cases}
$$

Two power plants

$$
\begin{aligned}
& y_{T} \in \mathcal{S}_{T} \\
& f_{T}\left(y_{T}\right)
\end{aligned}
$$

$$
\begin{gathered}
y_{H} \in \mathcal{S}_{H} \\
f_{H}\left(y_{H}\right)
\end{gathered}
$$

A less simple example

Two power plants

$$
\begin{gathered}
y_{T} \in \mathcal{S}_{T} \\
\langle\mathcal{F}, x\rangle+f_{T}\left(y_{T}\right) \\
x \in\{0,1\} \text { and } y_{T} \leq x y^{u p}
\end{gathered}
$$

$y_{H} \in \mathcal{S}_{H}$ $f_{H}\left(y_{H}\right)$

A less simple example

$$
\begin{cases}\min & \langle\mathcal{F}, x\rangle+f_{T}\left(y_{T}\right)+f_{H}\left(y_{H}\right) \\ \text { s.t. } & y_{T} \in \mathcal{S}_{T}, y_{H} \in \mathcal{S}_{H} \\ & y_{T}+y_{H}=d \\ & x \in\{0,1\} \text { and } y_{T} \leq x y^{u p} \Longleftrightarrow\left(x, y_{T}\right) \in \mathcal{S}_{T}\end{cases}
$$

Two power plants

$$
\begin{gathered}
y_{T} \in \mathcal{S}_{T} \\
\langle\mathcal{F}, x\rangle+f_{T}\left(y_{T}\right) \\
x \in\{0,1\} \text { and } y_{T} \leq x y^{u p}
\end{gathered}
$$

$$
\begin{gathered}
y_{H} \in \mathcal{S}_{H} \\
f_{H}\left(y_{H}\right)
\end{gathered}
$$

Primal scissors (Benders)

- Good, to split 0-1 variables from possible NLP relations

Primal scissors (Benders)

- Good, to split 0-1 variables from possible NLP relations
- Bad, because all technologies dealt with together

Primal scissors (Benders)

- Good, to split 0-1 variables from possible NLP relations
- Bad, because all technologies dealt with together

$$
\text { for instance, }\left\{\begin{aligned}
\min & \langle\mathcal{F}, x\rangle+f_{T}\left(y_{T}\right)+f_{H}\left(y_{H}\right) \\
\text { s.t. } & \left(x, y_{T}\right) \in \mathcal{S}_{T}, y_{H} \in \mathcal{S}_{H} \\
& y_{T}+y_{H}=d
\end{aligned}\right.
$$

Primal scissors (Benders)

- Good, to split 0-1 variables from possible NLP relations
- Bad, because all technologies dealt with together

$$
\text { for instance, }\left\{\begin{aligned}
\min & \langle\mathcal{F}, x\rangle+f_{T}\left(y_{T}\right)+f_{H}\left(y_{H}\right) \\
\text { s.t. } & \left(x_{k}, y_{T}\right) \in \mathcal{S}_{T}, y_{H} \in \mathcal{S}_{H} \\
& y_{T}+y_{H}=d
\end{aligned}\right.
$$

\Longrightarrow operational subproblem in both y_{T}, y_{H}
for each given x_{k} (a master program defines x_{k+1})

Primal scissors (Benders)

- Good, to split 0-1 variables from possible NLP relations
- Bad, because all technologies dealt with together

$$
\text { for instance, }\left\{\begin{aligned}
\min & \langle\mathcal{F}, x\rangle+f_{T}\left(y_{T}\right)+f_{H}\left(y_{H}\right) \\
\text { s.t. } & \left(x_{k}, y_{T}\right) \in \mathcal{S}_{T}, y_{H} \in \mathcal{S}_{H} \\
& y_{T}+y_{H}=d
\end{aligned}\right.
$$

\Longrightarrow operational subproblem in both y_{T}, y_{H}
for each given x_{k} (a master program defines x_{k+1})
To separate technologies we need dual scissors

Primal scissors (Benders)

- Good, to split 0-1 variables from possible NLP relations
- Bad, because all technologies dealt with together

$$
\text { for instance, }\left\{\begin{aligned}
\min & \langle\mathcal{F}, x\rangle+f_{T}\left(y_{T}\right)+f_{H}\left(y_{H}\right) \\
\text { s.t. } & \left(x_{k}, y_{T}\right) \in \mathcal{S}_{T}, y_{H} \not \mathcal{S}_{H} \\
& y_{T}+y_{H}=d
\end{aligned}\right.
$$

\Longrightarrow operational subproblem in both y_{T}, y_{H} for each given x_{k} (a master program defines $\left.x_{k+1}\right)$

To separate technologies we need dual scissors

Dual scissors: Lagrangian relaxation

$$
\left\{\begin{array}{rlll}
\min & f_{T}\left(x, y_{T}\right)+f_{H}\left(y_{H}\right) \\
\text { s.t. } & \left(x, y_{T}\right) \in \mathcal{S}_{T} \\
& y_{H} \in \mathcal{S}_{H} \\
& y_{T}+y_{H}=d
\end{array} \longrightarrow \begin{array}{c}
\\
\end{array}\right.
$$

Dual scissors: Lagrangian relaxation

$$
\left\{\begin{array}{cll}
\min & f_{T}\left(x, y_{T}\right)+f_{H}\left(y_{H}\right) \\
\text { s.t. } & \left(x, y_{T}\right) \in \mathcal{S}_{T} \\
y_{H} \in \mathcal{S}_{H} \\
& y_{T}+y_{H}=d \\
& \overleftrightarrow{I}
\end{array} \Longrightarrow \begin{array}{cc}
L(x, y, u)= & f_{T}\left(x, y_{T}\right)+f_{H}\left(y_{H}\right) \\
& +\left\langle u, d-y_{T}-y_{H}\right\rangle \\
& = \\
L_{T}\left(x, y_{T}, u\right)+L_{H}\left(y_{H}, u\right) \\
& +\langle u, d\rangle
\end{array}\right.
$$

Dual scissors: Lagrangian relaxation

$$
\begin{aligned}
& \int \min f_{T}\left(x, y_{T}\right)+f_{H}\left(y_{H}\right) \\
& \text { s.t. }\left(x, y_{T}\right) \in \mathcal{S}_{T} \\
& y_{H} \in \mathcal{S}_{H} \\
& y_{T}+y_{H}=d \quad \leftrightarrow \mathbf{u} \\
& L(x, y, u)=f_{T}\left(x, y_{T}\right)+f_{H}\left(y_{H}\right) \\
& +\left\langle u, d-y_{T}-y_{H}\right\rangle \\
& =L_{T}\left(x, y_{T}, u\right)+L_{H}\left(y_{H}, u\right) \\
& +\langle u, d\rangle \\
& \left\{\begin{array}{rl}
\min _{x, y} \max _{u} & L(x, y, u) \\
\text { s.t. } & \left(x, y_{T}\right) \in \mathcal{S}_{T} \\
& y_{H} \in \mathcal{S}_{H}
\end{array}\right.
\end{aligned}
$$

Dual scissors: Lagrangian relaxation

$$
\left\{\begin{array}{rlrl}
\min & f_{T}\left(x, y_{T}\right)+f_{H}\left(y_{H}\right) & & L(x, y, u)= \\
& & f_{T}\left(x, y_{T}\right)+f_{H}\left(y_{H}\right) \\
\text { s.t. } & \left(x, y_{T}\right) \in \mathcal{S}_{T} & & +\left\langle u, d-y_{T}-y_{H}\right\rangle \\
& y_{H} \in \mathcal{S}_{H} \\
& y_{T}+y_{H}=d & \leftrightarrow \mathbf{u} & \\
= & L_{T}\left(x, y_{T}, u\right)+L_{H}\left(y_{H}, u\right) \\
& & +\langle u, d\rangle
\end{array}\right.
$$

DUAL maxmin replaces minmax

$$
\left\{\begin{array}{cl}
\max _{u} \min _{y} & L(x, y, u) \\
\text { s.t. } & \left(x, y_{T}\right) \in \mathcal{S}_{T} \\
& y_{H} \in \mathcal{S}_{H}
\end{array}\right.
$$

Dual scissors: Lagrangian relaxation

$$
\left\{\begin{aligned}
\min & f_{T}\left(x, y_{T}\right)+f_{H}\left(y_{H}\right) \\
\text { s.t. } & \left(x, y_{T}\right) \in \mathcal{S}_{T} \\
& y_{H} \in \mathcal{S}_{H} \\
& y_{T}+y_{H}=d
\end{aligned} \leftrightarrow \mathbf{u}\right.
$$

$$
\begin{aligned}
L(x, y, u)= & f_{T}\left(x, y_{T}\right)+f_{H}\left(y_{H}\right) \\
& +\left\langle u, d-y_{T}-y_{H}\right\rangle \\
= & L_{T}\left(x, y_{T}, u\right)+L_{H}\left(y_{H}, u\right) \\
& +\langle u, d\rangle
\end{aligned}
$$

DUAL maxmin replaces minmax

$$
\left\{\begin{array}{rl}
\max _{u} \min _{y} & L(x, y, u) \\
\text { s.t. } & \left(x, y_{T}\right) \in \mathcal{S}_{T} \\
& y_{H} \in \mathcal{S}_{H}
\end{array}\right.
$$

$$
\max _{u} \theta_{T}(u)+\theta_{H}(u)+\langle u, d\rangle
$$

Dual scissors: Lagrangian relaxation

$$
\left\{\begin{aligned}
\min & f_{T}\left(x, y_{T}\right)+f_{H}\left(y_{H}\right) \\
\mathrm{s.t.} & \left(x, y_{T}\right) \in \mathcal{S}_{T} \\
& y_{H} \in \mathcal{S}_{H} \\
& y_{T}+y_{H}=d \quad \leftrightarrow \mathbf{u}
\end{aligned}\right.
$$

DUAL maxmin replaces minmax

$$
\left\{\begin{array}{cl}
\max _{u} \min _{y} & L(x, y, u) \\
\text { s.t. } & \left(x, y_{T}\right) \in \mathcal{S}_{T} \\
& y_{H} \in \mathcal{S}_{H}
\end{array}\right.
$$

$\max _{u} \theta_{T}(u)+\theta_{H}(u)+\langle u, d\rangle$

$$
\theta_{T}(u):=\min L_{T}\left(x, y_{T}, u\right):\left(x, y_{T}\right) \in \mathcal{S}_{T}
$$

for

$$
\theta_{H}(u):=\min L_{H}\left(y_{H}, u\right): y_{H} \in \mathcal{S}_{H}
$$

Dual scissors: Lagrangian relaxation à la bundle

$$
\begin{aligned}
& \int \min f_{T}\left(y_{T}\right)+f_{H}\left(y_{H}\right) \\
& \text { s.t. } \quad x \in\{0,1\}, y_{T} \in \mathcal{S}_{T} \\
& y_{T} \leq x y^{u p} \\
& y_{H} \in \mathcal{S}_{H} \\
& y_{T}+y_{H}=d \quad \leftrightarrow \mathbf{u} \\
& L(y, u)=f_{T}\left(y_{T}\right)+f_{H}\left(y_{H}\right) \\
& +\langle u, d\rangle \\
& \text { DUAL maxmin replaces minmax } \\
& \left\{\begin{array}{cl}
\max _{u} \min _{y} & L(x, y, u) \\
& \text { s.t. } \\
& \left(x, y_{T}\right) \in \mathcal{S}_{T} \\
& y_{H} \in \mathcal{S}_{H}
\end{array}\right. \\
& \max _{u} \theta_{T}(u)+\theta_{H}(u)+\langle u, d\rangle
\end{aligned}
$$

Dual scissors: Lagrangian relaxation à la bundle

$$
\left.\begin{array}{l}
\left\{\begin{array}{cl}
\min & f_{T}\left(y_{T}\right)+f_{H}\left(y_{H}\right) \\
\text { s.t. } & x \in\{0,1\}, y_{T} \in \mathcal{S}_{T} \\
& y_{T} \leq x y^{u p} \\
& y_{H} \in \mathcal{S}_{H} \\
& y_{T}+y_{H}=d
\end{array} \leftrightarrow \mathbf{u}\right.
\end{array}\right\} \text { DUAL maxmin replaces minmax } \quad \begin{aligned}
& \text { max }
\end{aligned}
$$

$$
\left\{\begin{array}{cl}
\max _{u} \min _{y} & L(x, y, u) \\
\text { s.t. } & \left(x, y_{T}\right) \in \mathcal{S}_{T} \\
& y_{H} \in \mathcal{S}_{H}
\end{array}\right.
$$

$\max _{u} \theta_{T}(u)+\theta_{H}(u)+\langle u, d\rangle$

$$
\theta_{\mathrm{T}}(\mathbf{u}) \approx \min L_{T}\left(x, y_{T}, u\right):\left(x, y_{T}\right) \in \mathcal{S}_{T}
$$

for

$$
\theta_{\mathbf{H}}(\mathbf{u}) \approx \min L_{H}\left(y_{H}, u\right): y_{H} \in \mathcal{S}_{H}
$$

b Dual scissors

- Good, to separate technologies + inexact information
b Dual scissors
- Good, to separate technologies + inexact information
- Good, if output of interest if u (shadow price)

b Dual scissors

- Good, to separate technologies + inexact information
- Good, if output of interest if u (shadow price)
- Bad, if output of interest is x, y : the final ones may be infeasible

b Dual scissors

- Good, to separate technologies + inexact information
- Good, if output of interest if u (shadow price)
- Bad, if output of interest is x, y : the final ones may be infeasible (dual approach solves the bi-dual of original problem)

b Dual scissors

- Good, to separate technologies + inexact information
- Good, if output of interest if u (shadow price)
- Bad, if output of interest is x, y : the final ones may be infeasible (dual approach solves the bi-dual of original problem)

Scissor features

primal feasibility

Scissor features

Primal scissors
Dual scissors
Can we have both (x, y) and u ???

Scissor features

Primal scissors

primal feasibility

Dual scissors

Can we have both (x, y) and u ???

Need primal-dual scissors

Primal-dual scissors:

$$
L_{r}(x, y, u)=L(x, y, u)+\frac{r}{2}\left\|d-y_{T}-y_{H}\right\|^{2}
$$

- Good, closes duality gap

Primal-dual scissors:

$$
L_{r}(x, y, u)=L(x, y, u)+\frac{r}{2}\left\|d-y_{T}-y_{H}\right\|^{2}
$$

- Good, closes duality gap
- Bad, puts back together the technologies

Primal-dual scissors:

Augmented Lagrangians

$$
L_{r}(x, y, u)=L(x, y, u)+\frac{r}{2}\left\|d-y_{T}-y_{H}\right\|^{2}
$$

- Good, closes duality gap
- Bad, puts back together the technologies
- Also: inexact calculations make it difficult to manage parameter r

Primal-dual scissors:

Augmented Lagrangians

$$
L_{r}(x, y, u)=L(x, y, u)+\frac{r}{2}\left\|d-y_{T}-y_{H}\right\|^{2}
$$

- Good, closes duality gap
- Bad, puts back together the technologies
- Also: inexact calculations make it difficult to manage parameter r

Need to sharpen our scissors

Primal-dual scissors: Sharp Augmented Lagrangians

$$
L_{r}(x, y, u)=L(x, y, u)+\frac{r}{2}\left\|d-y_{T}-y_{H}\right\|^{2}
$$

- Good, closes duality gap
- Bad, puts back together the technologies
- Also: inexact calculations make it difficult to manage parameter r

Need to sharpen our scissors

$$
L^{\#}(x, y, u, r)=L(x, y, u)+r\left|d-y_{T}-y_{H}\right|_{1}
$$

Primal-dual scissors: Sharp Augmented Lagrangians

$$
L_{r}(x, y, u)=L(x, y, u)+\frac{r}{2}\left\|d-y_{T}-y_{H}\right\|^{2}
$$

- Good, closes duality gap
- Bad, puts back together the technologies
- Also: inexact calculations make it difficult to manage parameter r

Need to sharpen our scissors

$$
L^{\#}(x, y, u, \boldsymbol{r})=L(x, y, u)+r\left|d-y_{T}-y_{H}\right|_{1}
$$

\mathbf{r} is a dual variable

Generalized Augmented Lagrangians (GAL)

$$
\left\{\begin{array} { c l }
{ \operatorname { m i n } } & { f _ { T } (x , y _ { T }) + f _ { H } (y _ { H }) } \\
{ \operatorname { s . t . } } & { (x , y _ { T }) \in \mathcal { S } _ { T } , y _ { H } \in \mathcal { S } _ { H } } \\
{ } & { y _ { T } + y _ { H } = d }
\end{array} \Longleftrightarrow \left\{\begin{array}{rl}
\min & \varphi(x) \\
\text { s.t. } & x \in X \\
& h(x)=0
\end{array}\right.\right.
$$

Generalized Augmented Lagrangians (GAL)

The perturbation function p

$$
p(u)=\left\{\begin{array}{ll}
\inf & f_{T}\left(x, y_{T}\right)+f_{H}\left(y_{H}\right) \\
\text { s.t. } & \left(x, y_{T}\right) \in \mathcal{S}_{T}, y_{H} \in \mathcal{S}_{H} \\
& y_{T}+y_{H}=d+u
\end{array} \quad \Longleftrightarrow \quad p(u)= \begin{cases}\inf & \varphi(x) \\
\text { s.t. } & x \in X \\
& h(x)=u\end{cases}\right.
$$

Generalized Augmented Lagrangians (GAL)

The perturbation function p

$$
p(u)=\left\{\begin{array}{ll}
\inf & f_{T}\left(x, y_{T}\right)+f_{H}\left(y_{H}\right) \\
\text { s.t. } & \left(x, y_{T}\right) \in \mathcal{S}_{T}, y_{H} \in \mathcal{S}_{H} \\
& y_{T}+y_{H}=d+u
\end{array} \quad \Longleftrightarrow p(u)= \begin{cases}\inf & \varphi(x) \\
\text { s.t. } & x \in X \\
& h(x)=u\end{cases}\right.
$$

If in the example $f_{T / H}$ are quadratic, p is the minimum
of two quadratic functions

Generalized Augmented Lagrangians (GAL)

The perturbation function p

$$
p(u)=\left\{\begin{array}{ll}
\inf & f_{T}\left(x, y_{T}\right)+f_{H}\left(y_{H}\right) \\
\text { s.t. } & \left(x, y_{T}\right) \in \mathcal{S}_{T}, y_{H} \in \mathcal{S}_{H} \\
& y_{T}+y_{H}=d+u
\end{array} \quad \Longleftrightarrow p(u)= \begin{cases}\inf & \varphi(x) \\
\text { s.t. } & x \in X \\
& h(x)=u\end{cases}\right.
$$

If in the example $f_{T / H}$ are quadratic, p is the minimum
of two quadratic functions

Generalized Augmented Lagrangians (GAL)

The perturbation function p

$$
p(u)=\left\{\begin{array}{ll}
\inf & f_{T}\left(x, y_{T}\right)+f_{H}\left(y_{H}\right) \\
\text { s.t. } & \left(x, y_{T}\right) \in \mathcal{S}_{T}, y_{H} \in \mathcal{S}_{H} \\
& y_{T}+y_{H}=d+u
\end{array} \quad \Longleftrightarrow p(u)= \begin{cases}\inf & \varphi(x) \\
\text { s.t. } & x \in X \\
& h(x)=u\end{cases}\right.
$$

If in the example $f_{T / H}$ are quadratic, p is the minimum
of two quadratic functions

Generalized Augmented Lagrangians (GAL)

The perturbation function p

$$
p(u)=\left\{\begin{array}{ll}
\inf & f_{T}\left(x, y_{T}\right)+f_{H}\left(y_{H}\right) \\
\text { s.t. } & \left(x, y_{T}\right) \in \mathcal{S}_{T}, y_{H} \in \mathcal{S}_{H} \\
& y_{T}+y_{H}=d+u
\end{array} \Longleftrightarrow p(u)= \begin{cases}\inf & \varphi(x) \\
\text { s.t. } & x \in X \\
& h(x)=u\end{cases}\right.
$$

If in the example $f_{T / H}$ are quadratic, p is the minimum of two quadratic functions

Need a "wedge" to close duality gap and bring magenta curve closer to blue one

The GAL according to R\&W

$$
p(u)= \begin{cases}\inf & \varphi(x) \\ \text { s.t. } & x \in X \\ & h(x)=u\end{cases}
$$

The GAL according to R\&W

$$
p(u)=\{\begin{array}{ll}
\inf & \varphi(x) \\
\text { s.t. } & x \in X \\
& h(x)=u
\end{array}=\inf _{x \in X} \underbrace{\left(\varphi(x)+\mathbb{I}_{\{h(x)-u=0\}}(x)\right)}_{\mathcal{D}(x, u)}
$$

The GAL according to R\&W

$$
p(u)=\{\begin{array}{ll}
\inf & \varphi(x) \\
\text { s.t. } & x \in X \\
& h(x)=u
\end{array}=\inf _{x \in X} \underbrace{\left(\varphi(x)+\mathbb{I}_{\{h(x)-u=0\}}(x)\right)}_{\mathcal{D}(x, u)}
$$

- p as a marginal function of \mathcal{D}

The GAL according to R\&W

$$
p(u)=\{\begin{array}{ll}
\inf & \varphi(x) \\
\text { s.t. } & x \in X \\
& h(x)=u
\end{array}=\inf _{x \in X} \underbrace{\left(\varphi(x)+\mathbb{I}_{\{h(x)-u=0\}}(x)\right)}_{\mathcal{D}(x, u)}
$$

- p as a marginal function of \mathcal{D}
- \mathcal{D} is the conjugate of the Lagrangian: $\mathcal{D}^{*}=L$

The GAL according to R\&W

$$
p(u)=\{\begin{array}{ll}
\inf & \varphi(x) \\
\text { s.t. } & x \in X \\
& h(x)=u
\end{array}=\inf _{x \in X} \underbrace{\left(\varphi(x)+\mathbb{I}_{\{h(x)-u=0\}}(x)\right)}_{\mathcal{D}(x, u)}
$$

- p as a marginal function of \mathcal{D}
- \mathcal{D} is the conjugate of the Lagrangian: $\mathcal{D}^{*}=L$
- "Fix" \mathcal{D} adding a " σ-term"

$$
\mathcal{D}_{\sigma}=\mathcal{D}+\frac{1}{r} \sigma^{*}
$$

The GAL according to R\&W

$$
p(u)=\{\begin{array}{ll}
\inf & \varphi(x) \\
\text { s.t. } & x \in X \\
& h(x)=u
\end{array}=\inf _{x \in X} \underbrace{\left(\varphi(x)+\mathbb{I}_{\{h(x)-u=0\}}(x)\right)}_{\mathcal{D}(x, u)}
$$

- p as a marginal function of \mathcal{D}
- \mathcal{D} is the conjugate of the Lagrangian: $\mathcal{D}^{*}=L$
- "Fix" \mathcal{D} adding a " σ-term"

$$
\begin{aligned}
& \mathcal{D}_{\sigma}=\mathcal{D}+\frac{1}{r} \sigma^{*} \\
& \mathcal{D}_{\sigma}^{*}=\mathcal{D}^{*}{ }^{*} r \sigma
\end{aligned}
$$

The GAL according to R\&W

$$
p(u)=\{\begin{array}{ll}
\inf & \varphi(x) \\
\text { s.t. } & x \in X \\
& h(x)=u
\end{array}=\inf _{x \in X} \underbrace{\left(\varphi(x)+\mathbb{I}_{\{h(x)-u=0\}}(x)\right)}_{\mathcal{D}(x, u)}
$$

- p as a marginal function of \mathcal{D}
- \mathcal{D} is the conjugate of the Lagrangian: $\mathcal{D}^{*}=L$
- "Fix" \mathcal{D} adding a " σ-term"

$$
\begin{aligned}
\mathcal{D}_{\sigma} & =\mathcal{D}+\frac{1}{r} \sigma^{*} \\
\mathcal{D}_{\sigma}^{*} & =\mathcal{D}^{*}+r \sigma \\
& =L_{\sigma} \text { is the GAL }
\end{aligned}
$$

- $L_{\sigma}(x, u, r)=L(x, u)+r \sigma(h(x))$

The GAL according to R\&W

$$
p(u)=\{\begin{array}{ll}
\inf & \varphi(x) \\
\text { s.t. } & x \in X \\
& h(x)=u
\end{array}=\inf _{x \in X} \underbrace{\left(\varphi(x)+\mathbb{I}_{\{h(x)-u=0\}}(x)\right)}_{\mathcal{D}(x, u)}
$$

- p as a marginal function of \mathcal{D}
- \mathcal{D} is the conjugate of the Lagrangian: $\mathcal{D}^{*}=L$
- "Fix" \mathcal{D} adding a " σ-term"

$$
\begin{aligned}
\mathcal{D}_{\sigma} & =\mathcal{D}+\frac{1}{r} \sigma^{*} \\
\mathcal{D}_{\sigma}^{*} & =\mathcal{D}^{*}{ }_{\downarrow} r \sigma \\
& =L_{\sigma} \text { is the GAL }
\end{aligned}
$$

- $L_{\sigma}(x, u, r)=L(x, u)+r \sigma(h(x))$
- p_{σ} is the marginal function of \mathcal{D}_{σ}

$\sigma=|\cdot|_{1}$

The GAL according to R\&W

$$
p(u)=\{\begin{array}{ll}
\inf & \varphi(x) \\
\text { s.t. } & x \in X \\
& h(x)=u
\end{array}=\inf _{x \in X} \underbrace{\left(\varphi(x)+\mathbb{I}_{\{h(x)-u=0\}}(x)\right)}_{\mathcal{D}(x, u)}
$$

- p as a marginal function of \mathcal{D}
- \mathcal{D} is the conjugate of the Lagrangian: $\mathcal{D}^{*}=L$
- "Fix" \mathcal{D} adding a " σ-term"

$$
\begin{aligned}
\mathcal{D}_{\sigma} & =\mathcal{D}+\frac{1}{r} \sigma^{*} \\
\mathcal{D}_{\sigma}^{*} & =\mathcal{D}^{*}{ }^{*} r \sigma \\
& =L_{\sigma} \text { is the GAL }
\end{aligned}
$$

- $L_{\sigma}(x, u, r)=L(x, u)+r \sigma(h(x))$
- p_{σ} is the marginal function of \mathcal{D}_{σ}

$\sigma=|\cdot|_{1}$
no duality gap!

Sharp and Proximal GAL according to R\&W

$$
\begin{gathered}
L_{\sigma}(x, u, r) \\
L(x, u)+r|h(x)|_{1} \quad \text { and } \quad L(x, u)+\frac{r}{2}|h(x)|_{2}^{2}
\end{gathered}
$$

Sharp and Proximal GAL according to R\&W

$$
L(x, u)+r|h(x)|_{1} \quad L_{\sigma}(x, u, r) \text { and } \quad L(x, u)+\frac{r}{2}|h(x)|_{2}^{2}
$$

No duality gap, but two catches:

Sharp and Proximal GAL according to R\&W

$$
L(x, u)+r|h(x)|_{1} \quad \begin{gathered}
L_{\sigma}(x, u, r) \\
\text { and }
\end{gathered} L(x, u)+\frac{r}{2}|h(x)|_{2}^{2}
$$

No duality gap, but two catches:

- separable $L(x, u)=L_{T}\left(x_{T}, u\right)+L_{H}\left(x_{H}, u\right)$ turned into non-separable $L_{\sigma}(x, u, r)=L(x, u)+r\left|x_{T}+x_{H}-d\right|_{1}$

Sharp and Proximal GAL according to R\&W

$$
L(x, u)+r|h(x)|_{1} \quad L_{\sigma}(x, u, r) \text { and } \quad L(x, u)+\frac{r}{2}|h(x)|_{2}^{2}
$$

No duality gap, but two catches:

- separable $L(x, u)=L_{T}\left(x_{T}, u\right)+L_{H}\left(x_{H}, u\right)$ turned into non-separable $L_{\sigma}(x, u, r)=L(x, u)+r\left|x_{T}+x_{H}-d\right|_{1}$
- requires exact evaluation of dual function $\theta_{\sigma}(u, r)=\min _{x \in X} L_{\sigma}(x, u, r)$ a global optimization problem

Sharp and Proximal GAL according to R\&W

$$
L(x, u)+r|h(x)|_{1} \quad L_{\sigma}(x, u, r) \text { and } \quad L(x, u)+\frac{r}{2}|h(x)|_{2}^{2}
$$

No duality gap, but two catches:

- separable $L(x, u)=L_{T}\left(x_{T}, u\right)+L_{H}\left(x_{H}, u\right)$ turned into non-separable $L_{\sigma}(x, u, r)=L(x, u)+r\left|x_{T}+x_{H}-d\right|_{1}$
- requires exact evaluation of dual function $\theta_{\sigma}(u, r)=\min _{x \in X} L_{\sigma}(x, u, r)$ a global optimization problem

is a proposal to address these issues

GAL according to

$$
\text { GAL of }\left\{\begin{array}{cl}
\min & \varphi(x) \\
\text { s.t. } & x \in X \\
& h(x)=0
\end{array}\right.
$$

GAL of $\left\{\begin{array}{cl}\min & \varphi(x) \\ \text { s.t. } & x \in X \\ & h(x)=0\end{array} \equiv\right.$ Lagrangian of $\left\{\begin{array}{cl}\min & \varphi(x) \\ \text { s.t. } & x \in X \\ & h(x)=0 \\ & \sigma(h(x)) \leq 0\end{array}\right.$

$$
\text { GAL of }\left\{\begin{array} { c l }
{ \operatorname { m i n } } & { \varphi (x) } \\
{ \text { s.t. } } & { x \in X } \\
{ } & { h (x) = 0 }
\end{array} \equiv \text { Lagrangian of } \left\{\begin{array}{cl}
\min & \varphi(x) \\
\text { s.t. } & x \in X \\
& h(x)=0 \\
& \sigma(h(x)) \leq 0
\end{array}\right.\right.
$$

From now on we consider $L(x, u, r)$ for problem on the right \uparrow

$$
\text { GAL of }\left\{\begin{array} { c l }
{ \operatorname { m i n } } & { \varphi (x) } \\
{ \text { s.t. } } & { x \in X } \\
{ } & { h (x) = 0 }
\end{array} \equiv \text { Lagrangian of } \left\{\begin{array}{cl}
\min & \varphi(x) \\
\text { s.t. } & x \in X \\
& h(x)=0 \\
& \sigma(h(x)) \leq 0
\end{array}\right.\right.
$$

From now on we consider $L(x, u, r)$ for problem on the right to examine relations of approximate solutions to $\min _{x} L(x, u, r)$

GAL of $\left\{\begin{array}{cl}\min & \varphi(x) \\ \text { s.t. } & x \in X \\ & h(x)=0\end{array} \equiv\right.$ Lagrangian of $\left\{\begin{array}{cl}\min & \varphi(x) \\ \text { s.t. } & x \in X \\ & h(x)=0 \\ & \sigma(h(x)) \leq 0\end{array}\right.$
From now on we consider $L(x, u, r)$ for problem on the right to examine relations of approximate solutions to $\min _{x} L(x, u, r)$

- with ε-subgradients of the dual function $\theta(u, r)$
- with numerical schemes à la bundle
- with solutions to problem on the left

$$
\text { GAL of }\left\{\begin{array} { c l }
{ \operatorname { m i n } } & { \varphi (x) } \\
{ \operatorname { s . t . } } & { x \in X } \\
{ } & { h (x) = 0 }
\end{array} \equiv \text { Lagrangian of } \left\{\begin{array}{cl}
\min & \varphi(x) \\
\text { s.t. } & x \in X \\
& h(x)=0 \\
& \sigma(h(x)) \leq 0
\end{array}\right.\right.
$$

From now on we consider $L(x, u, r)$ for problem on the right to examine relations of approximate solutions to $\min _{x} L(x, u, r)$

- with ε-subgradients of the dual function $\theta(u, r)$
- with numerical schemes à la bundle
- with solutions to problem on the left

$$
\text { GAL of }\left\{\begin{array} { c l }
{ \operatorname { m i n } } & { \varphi (x) } \\
{ \text { s.t. } } & { x \in X } \\
{ } & { h (x) = 0 }
\end{array} \equiv \text { Lagrangian of } \left\{\begin{array}{cl}
\min & \varphi(x) \\
\text { s.t. } & x \in X \\
& h(x)=0 \\
& \sigma(h(x)) \leq 0
\end{array}\right.\right.
$$

From now on we consider $L(x, u, r)$ for problem on the right to examine relations of approximate solutions to $\min _{x} L(x, u, r)$

- with ε-subgradients of the dual function $\theta(u, r)$
- with numerical schemes à la bundle
- with solutions to problem on the left

Any CQ for original problem yields multipliers (u, r) for the σ-augmented problem

Everett's theorem σ continuous, non-negative with unique minimizer at 0

Everett's theorem σ continuous, non-negative with unique minimizer at 0

Fix (\tilde{u}, \tilde{r}) and consider evaluating $\theta(\tilde{u}, \tilde{r})=\min _{x} L(x, \tilde{u}, \tilde{r})$, what primal problem is solved by minimizer \tilde{x} ?

Everett's theorem σ continuous, non-negative with unique minimizer at 0

Fix (\tilde{u}, \tilde{r}) and consider evaluating $\theta(\tilde{u}, \tilde{r})=\min _{x} L(x, \tilde{u}, \tilde{r})$, what primal problem is solved by minimizer \tilde{x} ?

NLP Everett's: A stationary point \tilde{x} for $\theta(\tilde{u}, \tilde{r})$, i.e., solving

$$
0 \in \partial_{x} L(x, \tilde{u}, \tilde{r})+N_{X}(x), \text { with } x \in X
$$

is a stationary point for the original problem $\Longleftrightarrow h(\tilde{x})=0$

Everett's theorem σ continuous, non-negative with unique minimizer at 0

Fix (\tilde{u}, \tilde{r}) and consider evaluating $\theta(\tilde{u}, \tilde{r})=\min _{x} L(x, \tilde{u}, \tilde{r})$, what primal problem is solved by minimizer \tilde{x} ?

NLP Everett's: A stationary point \tilde{x} for $\theta(\tilde{u}, \tilde{r})$, i.e., solving

$$
0 \in \partial_{x} L(x, \tilde{u}, \tilde{r})+N_{X}(x), \text { with } x \in X
$$

is a stationary point for the original problem $\Longleftrightarrow h(\tilde{x})=0$
ε-Everett's: An ε-solution \tilde{x} for $\theta(\tilde{u}, \tilde{r})$, i.e., satisfying

$$
L(\tilde{x}, \tilde{u}, \tilde{r}) \leq L(x, \tilde{u}, \tilde{r})+\varepsilon \text { for all } x \in X
$$

approximately solves the original problem $\left(\varphi(\tilde{x}) \leq \varphi^{*}+\varepsilon\right) \Longleftrightarrow h(\tilde{x})=0$

Everett's theorem σ continuous, non-negative with unique minimizer at 0

Fix (\tilde{u}, \tilde{r}) and consider evaluating $\theta(\tilde{u}, \tilde{r})=\min _{x} L(x, \tilde{u}, \tilde{r})$, what primal problem is solved by minimizer \tilde{x} ?

NLP Everett's: A stationary point \tilde{x} for $\theta(\tilde{u}, \tilde{r})$, i.e., solving

$$
0 \in \partial_{x} L(x, \tilde{u}, \tilde{r})+N_{X}(x), \text { with } x \in X
$$

is a stationary point for the original problem $\Longleftrightarrow h(\tilde{x})=0$
ε-Everett's: An ε-solution \tilde{x} for $\theta(\tilde{u}, \tilde{r})$, i.e., satisfying

$$
L(\tilde{x}, \tilde{u}, \tilde{r}) \leq L(x, \tilde{u}, \tilde{r})+\varepsilon \text { for all } x \in X
$$

approximately solves the original problem $\left(\varphi(\tilde{x}) \leq \varphi^{*}+\varepsilon\right) \Longleftrightarrow h(\tilde{x})=0$

Everett's theorem σ continuous, non-negative with unique minimizer at 0

Fix (\tilde{u}, \tilde{r}) and consider evaluating $\theta(\tilde{u}, \tilde{r})=\min _{x} L(x, \tilde{u}, \tilde{r})$, what primal problem is solved by minimizer \tilde{x} ?

NLP Everett's: A stationary point \tilde{x} for $\theta(\tilde{u}, \tilde{r})$, i.e., solving

$$
0 \in \partial_{x} L(x, \tilde{u}, \tilde{r})+N_{X}(x), \text { with } x \in X
$$

is a stationary point for the original problem $\Longleftrightarrow h(\tilde{x})=0$
ε-Everett's: An ε-solution \tilde{x} for $\theta(\tilde{u}, \tilde{r})$, i.e., satisfying

$$
L(\tilde{x}, \tilde{u}, \tilde{r}) \leq L(x, \tilde{u}, \tilde{r})+\varepsilon \text { for all } x \in X
$$

approximately solves the original problem $\left(\varphi(\tilde{x}) \leq \varphi^{*}+\varepsilon\right) \Longleftrightarrow h(\tilde{x})=0$

- Summing up:
- Augmentation (approximately) closes the duality gap, provided $h(\tilde{x})=0$

Everett's theorem σ continuous, non-negative with unique minimizer at 0

Fix (\tilde{u}, \tilde{r}) and consider evaluating $\theta(\tilde{u}, \tilde{r})=\min _{x} L(x, \tilde{u}, \tilde{r})$, what primal problem is solved by minimizer \tilde{x} ?

NLP Everett's: A stationary point \tilde{x} for $\theta(\tilde{u}, \tilde{r})$, i.e., solving

$$
0 \in \partial_{x} L(x, \tilde{u}, \tilde{r})+N_{X}(x), \text { with } x \in X
$$

is a stationary point for the original problem $\Longleftrightarrow h(\tilde{x})=0$
ε-Everett's: An ε-solution \tilde{x} for $\theta(\tilde{u}, \tilde{r})$, i.e., satisfying

$$
L(\tilde{x}, \tilde{u}, \tilde{r}) \leq L(x, \tilde{u}, \tilde{r})+\varepsilon \text { for all } x \in X
$$

approximately solves the original problem $\left(\varphi(\tilde{x}) \leq \varphi^{*}+\varepsilon\right) \Longleftrightarrow h(\tilde{x})=0$

- Summing up:
- Augmentation (approximately) closes the duality gap, provided $h(\tilde{x})=0$
- $h(x)=0 \Longleftrightarrow \sigma(h(x))=0$

Everett's theorem σ continuous, non-negative with unique minimizer at 0

Fix (\tilde{u}, \tilde{r}) and consider evaluating $\theta(\tilde{u}, \tilde{r})=\min _{x} L(x, \tilde{u}, \tilde{r})$, what primal problem is solved by minimizer \tilde{x} ?

NLP Everett's: A stationary point \tilde{x} for $\theta(\tilde{u}, \tilde{r})$, i.e., solving

$$
0 \in \partial_{x} L(x, \tilde{u}, \tilde{r})+N_{X}(x), \text { with } x \in X
$$

is a stationary point for the original problem $\Longleftrightarrow h(\tilde{x})=0$
ε-Everett's: An ε-solution \tilde{x} for $\theta(\tilde{u}, \tilde{r})$, i.e., satisfying

$$
L(\tilde{x}, \tilde{u}, \tilde{r}) \leq L(x, \tilde{u}, \tilde{r})+\varepsilon \text { for all } x \in X
$$

approximately solves the original problem $\left(\varphi(\tilde{x}) \leq \varphi^{*}+\varepsilon\right) \Longleftrightarrow h(\tilde{x})=0$

- Summing up:
- Augmentation (approximately) closes the duality gap, provided $h(\tilde{x})=0$
- $h(x)=0 \Longleftrightarrow \sigma(h(x))=0$
- An inexact bundle method drives $\sigma\left(h\left(x^{k}\right)\right)$ to 0

GAL and the σ-simplex

$$
\begin{aligned}
& \theta(\tilde{u}, \tilde{r})=\min _{x \in X} L(x, \tilde{u}, \tilde{r})=\min _{x \in X} \varphi(x)+\langle\tilde{u}, h(x)\rangle+\tilde{r} \sigma(h(x)) \\
& \Longrightarrow\left(h\left(x^{\min }\right), \sigma\left(h\left(x^{\min }\right)\right)\right) \in \partial_{\varepsilon} \theta(\tilde{u}, \tilde{r})
\end{aligned}
$$

GAL and the σ-simplex

$\theta(\tilde{u}, \tilde{r})=\min _{x \in X} L(x, \tilde{u}, \tilde{r})=\min _{x \in X} \varphi(x)+\langle\tilde{u}, h(x)\rangle+\tilde{r} \sigma(h(x))$
$\Longrightarrow\left(h\left(x^{\text {min }}\right), \sigma\left(h\left(x^{\text {min }}\right)\right)\right) \in \partial_{\varepsilon} \theta(\tilde{u}, \tilde{r})$
Suppose X compact
Explicit calculus rule in
ε-Optimal solutions in nondifferentiable convex programming and some related questions
J. -J. Strodiot, V. Hien Nguyen $\&$ Norbert Heukemes

Mathematical Programming 25, 307-328(1983)

GAL and the σ-simplex

$\theta(\tilde{u}, \tilde{r})=\min _{x \in X} L(x, \tilde{u}, \tilde{r})=\min _{x \in X} \varphi(x)+\langle\tilde{u}, h(x)\rangle+\tilde{r} \sigma(h(x))$
$\Longrightarrow\left(h\left(x^{\min }\right), \sigma\left(h\left(x^{\min }\right)\right)\right) \in \partial_{\varepsilon} \theta(\tilde{u}, \tilde{r})$
Suppose X compact
Explicit calculus rule in
ε-Optimal solutions in nondifferentiable convex programming and some related questions
J. -J. Strodiot, V. Hien Nguyen \& Norbert Heukemes

Mathematical Programming 25, 307-328(1983)
$\Longrightarrow \sigma$-simplex $=\operatorname{conv}\left\{\sigma\left(h\left(x^{i}\right)\right), x^{i}\right.$ approximate minimizers $\}$

GAL and the σ-simplex

$\theta(\tilde{u}, \tilde{r})=\min _{x \in X} L(x, \tilde{u}, \tilde{r})=\min _{x \in X} \varphi(x)+\langle\tilde{u}, h(x)\rangle+\tilde{r} \sigma(h(x))$
$\Longrightarrow\left(h\left(x^{\text {min }}\right), \sigma\left(h\left(x^{\text {min }}\right)\right)\right) \in \partial_{\varepsilon} \theta(\tilde{u}, \tilde{r})$
Suppose X compact
Explicit calculus rule in
ε-Optimal solutions in nondifferentiable convex programming and some related questions
J. -J. Strodiot, V. Hien Nguyen \& Norbert Heukemes

Mathematical Programming 25, 307-328(1983)
$\Longrightarrow \sigma$-simplex $=\operatorname{conv}\left\{\sigma\left(h\left(x^{i}\right)\right), x^{i}\right.$ approximate minimizers $\}$
Theorem: $0 \in \sigma$-simplex is equivalent to

- $0 \in \partial_{\varepsilon} \theta(\tilde{u}, \tilde{r})$
- One $x^{i_{\text {best }}}$ in the σ-simplex is primal feasible: $h\left(x^{i_{\text {best }}}\right)=0$
$\Longrightarrow x^{i_{\text {best }}}$ approximate solution for original problem

PDBM: a primal-dual bundle method for GAL

Init Choose $\left(u^{1}, r^{1}\right)$ and compute $x^{1} \approx \min _{x \in X} L\left(x, u^{1}, r^{1}\right)$
Dual Solve bundle QP with a model for θ to obtain $\left(u^{+}, r^{+}\right)$

PDBM: a primal-dual bundle method for GAL

Init Choose $\left(u^{1}, r^{1}\right)$ and compute $x^{1} \approx \min _{x \in X} L\left(x, u^{1}, r^{1}\right)$
Dual Solve bundle QP with a model for θ to obtain $\left(u^{+}, r^{+}\right)$
Noise? Adjust prox-parameter and go to Dual if too much noise

PDBM: a primal-dual bundle method for GAL

Init Choose $\left(u^{1}, r^{1}\right)$ and compute $x^{1} \approx \min _{x \in X} L\left(x, u^{1}, r^{1}\right)$
Dual Solve bundle QP with a model for θ to obtain $\left(u^{+}, r^{+}\right)$
Noise? Adjust prox-parameter and go to Dual if too much noise
Primal Compute $x^{+} \approx \min _{x \in X} L\left(x, u^{+}, r^{+}\right)$

PDBM: a primal-dual bundle method for GAL

Init Choose $\left(u^{1}, r^{1}\right)$ and compute $x^{1} \approx \min _{x \in X} L\left(x, u^{1}, r^{1}\right)$
Dual Solve bundle QP with a model for θ to obtain $\left(u^{+}, r^{+}\right)$
Noise? Adjust prox-parameter and go to Dual if too much noise
Primal Compute $x^{+} \approx \min _{x \in X} L\left(x, u^{+}, r^{+}\right)$
Stop if $\sigma\left(h\left(x^{+}\right)\right)$is small

PDBM: a primal-dual bundle method for GAL

Init Choose $\left(u^{1}, r^{1}\right)$ and compute $x^{1} \approx \min _{x \in X} L\left(x, u^{1}, r^{1}\right)$
Dual Solve bundle QP with a model for θ to obtain $\left(u^{+}, r^{+}\right)$
Noise? Adjust prox-parameter and go to Dual if too much noise
Primal Compute $x^{+} \approx \min _{x \in X} L\left(x, u^{+}, r^{+}\right)$
Stop if $\sigma\left(h\left(x^{+}\right)\right)$is small
Bundle Classify $\left(u^{+}, r^{+}\right)$as serious or null step, update the model

PDBM: a primal-dual bundle method for GAL

Init Choose $\left(u^{1}, r^{1}\right)$ and compute $x^{1} \approx \min _{x \in X} L\left(x, u^{1}, r^{1}\right)$
Dual Solve bundle QP with a model for θ to obtain $\left(u^{+}, r^{+}\right)$
Noise? Adjust prox-parameter and go to Dual if too much noise
Primal Compute $x^{+} \approx \min _{x \in X} L\left(x, u^{+}, r^{+}\right)$
Stop if $\sigma\left(h\left(x^{+}\right)\right)$is small
Bundle Classify $\left(u^{+}, r^{+}\right)$as serious or null step, update the model
Loop to Dual

PDBM: a primal-dual bundle method for GAL

Init Choose $\left(u^{1}, r^{1}\right)$ and compute $x^{1} \approx \min _{x \in X} L\left(x, u^{1}, r^{1}\right)$
Dual Solve bundle QP with a model for θ to obtain $\left(u^{+}, r^{+}\right)$
Noise? Adjust prox-parameter and go to Dual if too much noise
Primal Compute $x^{+} \approx \min _{x \in X} L\left(x, u^{+}, r^{+}\right)$
Stop if $\sigma\left(h\left(x^{+}\right)\right)$is small
Bundle Classify $\left(u^{+}, r^{+}\right)$as serious or null step, update the model
Loop to Dual

Theorem:

1. Noise attenuation loop is finite
2. There is a primal feasible limit point $\bar{x}^{i_{\text {best }}}$ that is approximately optimal
3. If the dual sequence has accumulation points, they solve approximately the dual problem
4. For existence of dual accumulation points, see "Convex proximal bundle methods in depth" MP2014

Solving difficult problems with PDBM for GAL

DC problems with explicit nonconvexity (exact solution of subproblems)

$$
\begin{cases}\min _{x \in X=\mathbb{R}^{n}} & \varphi(x):=\frac{1}{2}\langle x, Q x\rangle+\langle x, q\rangle-\max _{i \in\{1, \ldots, N\}}\left\{\left\langle x, \alpha_{i}\right\rangle+\beta_{i}\right\} \\ \text { s.t. } & h(x):=A x-b=0\end{cases}
$$

Solving difficult problems with PDBM for GAL

DC problems with explicit nonconvexity (exact solution of subproblems)

$$
\begin{cases}\min _{x \in X=\mathbb{R}^{n}} & \varphi(x):=\frac{1}{2}\langle x, Q x\rangle+\langle x, q\rangle-\max _{i \in\{1, \ldots, N\}}\left\{\left\langle x, \alpha_{i}\right\rangle+\beta_{i}\right\} \\ \text { s.t. } & h(x):=A x-b=0\end{cases}
$$

augmented with $\sigma(\cdot)=\frac{1}{2}\|\cdot\|_{2}^{2}$ yields an easy dual function $\theta(u, r)=\min _{i \in\{1, \ldots, N\}} \theta_{i}(u, r)$

Solving difficult problems with PDBM for GAL

DC problems with explicit nonconvexity (exact solution of subproblems)

$$
\begin{cases}\min _{x \in X=\mathbb{R}^{n}} & \varphi(x):=\frac{1}{2}\langle x, Q x\rangle+\langle x, q\rangle-\max _{i \in\{1, \ldots, N\}}\left\{\left\langle x, \alpha_{i}\right\rangle+\beta_{i}\right\} \\ \text { s.t. } & h(x):=A x-b=0\end{cases}
$$

augmented with $\sigma(\cdot)=\frac{1}{2}\|\cdot\|_{2}^{2}$ yields an easy dual function $\theta(u, r)=\min _{i \in\{1, \ldots, N\}} \theta_{i}(u, r)$ Each θ_{i} is a QP having the same quadratic term for all i

$$
\theta_{i}(u, r)=\min _{x} \frac{1}{2}\langle x, Q x\rangle+\langle x, q\rangle+\left\langle x, \alpha_{i}\right\rangle+\beta_{i}+\langle A x-b, u\rangle+\frac{1}{2} r\|A x-b\|_{2}^{2}
$$

Solving difficult problems with PDBM for GAL

DC problems with explicit nonconvexity (exact solution of subproblems)

$$
\begin{cases}\min _{x \in X=\mathbb{R}^{n}} & \varphi(x):=\frac{1}{2}\langle x, Q x\rangle+\langle x, q\rangle-\max _{i \in\{1, \ldots, N\}}\left\{\left\langle x, \alpha_{i}\right\rangle+\beta_{i}\right\} \\ \text { s.t. } & h(x):=A x-b=0\end{cases}
$$

augmented with $\sigma(\cdot)=\frac{1}{2}\|\cdot\|_{2}^{2}$ yields an easy dual function $\theta(u, r)=\min _{i \in\{1, \ldots, N\}} \theta_{i}(u, r)$ Each θ_{i} is a QP having the same quadratic term for all i

$$
\theta_{i}(u, r)=\min _{x} \frac{1}{2}\langle x, Q x\rangle+\langle x, q\rangle+\left\langle x, \alpha_{i}\right\rangle+\beta_{i}+\langle A x-b, u\rangle+\frac{1}{2} r\|A x-b\|_{2}^{2}
$$

	PDBM	MSM	(Gas02)	ENUM		
	avg	stdev	avg	stdev	avg	stdev
$\Delta \varphi$	$-1 \mathrm{E}-03$	$3 \mathrm{E}-03$	$-7 \mathrm{E}-02$	$3 \mathrm{E}-01$	0	0
$h(\bar{x})$	$4 \mathrm{E}-08$	$3 \mathrm{E}-08$	$1 \mathrm{E}-03$	$6 \mathrm{E}-03$		
\#primal	25	42	105	115		
CPU (s)	5	8	21	36	209	515

Solving difficult problems with PDBM for GAL

Unit-commitment problems (inexact solution of subproblems, using ADMM)

$$
\begin{cases}\min & \sum_{i \in I}\left(\left\langle\mathcal{F}, x_{i}\right\rangle+C_{i}\left(y_{i}\right)\right) \\ \text { s.t. } & \left(x_{i}, y_{i}\right) \in \mathcal{S}_{i} \\ & \sum_{i} y_{i}=D\end{cases}
$$

Solving difficult problems with PDBM for GAL

Unit-commitment problems (inexact solution of subproblems, using ADMM)

$$
\left\{\begin{array} { l l }
{ \operatorname { m i n } } & { \sum _ { i = 1 } (\langle \mathcal { F } , x _ { i } \rangle + C _ { i } (y _ { i })) } \\
{ \text { s.t. } } & { (x _ { i } , y _ { i }) \in \mathcal { S } _ { i } } \\
{ } & { \sum _ { i } y _ { i } = D }
\end{array} \Longleftrightarrow \left\{\begin{array}{ll}
\min & \sum_{i \in I} \varphi_{i}\left(x_{i}, y_{i}\right) \\
\text { s.t. } & \left(x_{i}, y_{i}\right) \in \mathcal{S}_{i} \\
& \sum_{i} z_{i}=D \\
& h(x, y)=z-y=0
\end{array}\right.\right.
$$

Solving difficult problems with PDBM for GAL

Unit-commitment problems (inexact solution of subproblems, using ADMM)

$$
\left\{\begin{array} { l l }
{ \operatorname { m i n } } & { \sum _ { i = 1 } (\langle \mathcal { F } , x _ { i } \rangle + C _ { i } (y _ { i })) } \\
{ \text { s.t. } } & { (x _ { i } , y _ { i }) \in \mathcal { S } _ { i } } \\
{ } & { \sum _ { i } y _ { i } = D }
\end{array} \Longleftrightarrow \left\{\begin{array}{ll}
\min & \sum_{i \in I} \varphi_{i}\left(x_{i}, y_{i}\right) \\
\text { s.t. } & \left(x_{i}, y_{i}\right) \in \mathcal{S}_{i} \\
& \sum_{i} z_{i}=D \\
& h(x, y)=z-y=0
\end{array}\right.\right.
$$

augmented with $\sigma(\cdot)=|\cdot|_{1}$ gives

$$
L(x, y, z, u, r)=L_{0-1}(x, y, u)+L_{\text {cont }}(z, u)+r|y-z|_{1}
$$

Solving difficult problems with PDBM for GAL

Unit-commitment problems (inexact solution of subproblems, using ADMM)

$$
\left\{\begin{array} { l l }
{ \operatorname { m i n } } & { \sum _ { i = 1 } (\langle \mathcal { F } , x _ { i } \rangle + C _ { i } (y _ { i })) } \\
{ \text { s.t. } } & { (x _ { i } , y _ { i }) \in \mathcal { S } _ { i } } \\
{ } & { \sum _ { i } y _ { i } = D }
\end{array} \Longleftrightarrow \left\{\begin{array}{ll}
\min & \sum_{i \in I} \varphi_{i}\left(x_{i}, y_{i}\right) \\
\text { s.t. } & \left(x_{i}, y_{i}\right) \in \mathcal{S}_{i} \\
& \sum_{i} z_{i}=D \\
& h(x, y)=z-y=0
\end{array}\right.\right.
$$

augmented with $\sigma(\cdot)=|\cdot|_{1}$ gives

$$
\begin{aligned}
L(x, y, z, u, r) & =L_{0-1}(x, y, u)+L_{\text {cont }}(z, u)+r|y-z|_{1} \\
& \approx \underbrace{L_{0-1}(x, y, u)+\frac{r}{2}\left|y-z^{\text {fixed }}\right|_{1}}+\underbrace{L_{\text {cont }}(z, u)+\frac{r}{2}\left|y^{\text {fixed }}-z\right|_{1}}
\end{aligned}
$$

Solving difficult problems with PDBM for GAL

Unit-commitment problems (inexact solution of subproblems, using ADMM)

$$
\left\{\begin{array} { l l }
{ \operatorname { m i n } } & { \sum _ { i = I } (\langle \mathcal { F } , x _ { i } \rangle + C _ { i } (y _ { i })) } \\
{ \text { s.t. } } & { (x _ { i } , y _ { i }) \in \mathcal { S } _ { i } } \\
{ } & { \sum _ { i } y _ { i } = D }
\end{array} \Longleftrightarrow \left\{\begin{array}{ll}
\min & \sum_{i \in I} \varphi_{i}\left(x_{i}, y_{i}\right) \\
\text { s.t. } & \left(x_{i}, y_{i}\right) \in \mathcal{S}_{i} \\
& \sum_{i} z_{i}=D \\
& h(x, y)=z-y=0
\end{array}\right.\right.
$$

augmented with $\sigma(\cdot)=|\cdot|_{1}$ gives

$$
\begin{aligned}
L(x, y, z, u, r) & =L_{0-1}(x, y, u)+L_{\text {cont }}(z, u)+r|y-z|_{1} \\
& \approx \underbrace{L_{0-1}(x, y, u)+\frac{r}{2}\left|y-z^{\text {fixed }}\right|_{1}}_{\sum_{i} \min _{\left(x_{i}, y_{i}\right) \in \mathcal{S}_{i}}}+\underbrace{L_{\text {cont }}(z, u)+\frac{r}{2}\left|y^{\text {fixed }}-z\right|_{1}}_{\sum_{i} z_{i}=D}
\end{aligned}
$$

Solving difficult problems with PDBM for GAL

Unit-commitment problems (inexact solution of subproblems, using ADMM)
Very good performance, provided r_{0} is well chosen (not too large)
Results for 56 synthetic instances, horizon from 1 to 7 days, hourly discretization

	PDBM		MSM	(Gas02)
	avg	stdev	avg	stdev
Gap(\%)	4.5	6.5	14.6	12.1
$h(\bar{x})$	$4.5 \mathrm{E}-03$	$7.2 \mathrm{E}-04$	$5.3 \mathrm{E}-03$	$1.1 \mathrm{E}-03$
\#primal	105	52	208	131
CPU (s)	96	121	148	140

Some works on GAL

- E. Golshtein and N. Tretyakov, Modified Lagrangians and Monotone Maps in Optimization, Wiley 1996
- R. Rockafellar and R. Wets. Variational Analysis. Springer, 1998
- A. M. Rubinov, B. M. Glover and X. Q. Yang, "Decreasing Functions with Applications to Penalization", SiOPT 1999
- R. N. Gasimov. "Augmented Lagrangian Duality and Nondifferentiable Optimization Methods in Nonconvex Programming",JOGO 2002 \leftarrow MSM
- X. X. Huang and X. Q. Yang. "A Unified Augmented Lagrangian Approach to Duality and Exact Penalization",MOR 2003
- R. Burachik, R. Gasimov, N. Ismayilova, C. Kaya. "On a Modified Subgradient Algorithm for Dual Problems via Sharp Augmented Lagrangian",JOGO 2006
- R. Burachik and A. Rubinov. "Abstract Convexity and Augmented Lagrangians",SiOPT 2007
- A. Nedič, A. Ozdaglar, and A. Rubinov. "Abstract convexity for nonconvex optimization duality", OPT 2007
- R. Burachik, A. N. Iusem, and J. G. Melo. "A primal dual modified subgradient algorithm with sharp Lagrangian",JOGO 2010
- R. Burachik. "On primal convergence for augmented Lagrangian duality", OPT 2011
- R. Burachik, A. Iusem, and J. Melo. "An Inexact Modified Subgradient Algorithm for Primal-Dual Problems via Augmented Lagrangians", JOTA 2013
- N. L. Boland and A. C. Eberhard. "On the augmented Lagrangian dual for integer programming", MP 2015
- M. J. Feizollahi, S. Ahmed, and A. Sun. "Exact augmented Lagrangian duality for mixed integer linear programming",MP 2017
- A. M. Bagirov, G. Ozturk, and R. Kasimbeyli, "A sharp augmented Lagrangian-based method in constrained non-convex optimization", OMS 2018
- X. Gu, S. Ahmed, and S. S. Dey. "Exact Augmented Lagrangian Duality for Mixed Integer Quadratic Programming",SiOPT 2020

Some works on GAL

- E. Golshtein and N. Tretyakov, Modified Lagrangians and Monotone Maps in Optimization, Wiley 1996
- R. Rockafellar and R. Wets. Variational Analysis. Springer, 1998
- A. M. Rubinov, B. M. Glover and X. Q. Yang, "Decreasing Functions with Applications to Penalization", SiOPT 1999
- R. N. Gasimov. "Augmented Lagrangian Duality and Nondifferentiable Optimization Methods in Nonconvex Programming",JOGO 2002 \leftarrow MSM
- X. X. Huang and X. Q. Yang. "A Unified Augmented Lagrangian Approach to Duality and Exact Penalization",MOR 2003
- R. Burachik, R. Gasimov, N. Ismayilova, C. Kaya. "On a Modified Subgradient Algorithm for Dual Problems via Sharp Augmented Lagrangian",JOGO 2006
- R. Burachik and A. Rubinov. "Abstract Convexity and Augmented Lagrangians",SiOPT 2007
- A. Nedič, A. Ozdaglar, and A. Rubinov. "Abstract convexity for nonconvex optimization duality", OPT 2007
- R. Burachik, A. N. Iusem, and J. G. Melo. "A primal dual modified subgradient algorithm with sharp Lagrangian",JOGO 2010
- R. Burachik. "On primal convergence for augmented Lagrangian duality", OPT 2011
- R. Burachik, A. Iusem, and J. Melo. "An Inexact Modified Subgradient Algorithm for Primal-Dual Problems via Augmented Lagrangians", JOTA 2013
- N. L. Boland and A. C. Eberhard. "On the augmented Lagrangian dual for integer programming", MP 2015
- M. J. Feizollahi, S. Ahmed, and A. Sun. "Exact augmented Lagrangian duality for mixed integer linear programming",MP 2017
- A. M. Bagirov, G. Ozturk, and R. Kasimbeyli, "A sharp augmented Lagrangian-based method in constrained non-convex optimization", OMS 2018
- X. Gu, S. Ahmed, and S. S. Dey. "Exact Augmented Lagrangian Duality for Mixed Integer Quadratic Programming",SiOPT 2020

